
Inputs of Coma: Static Detection of
Denial-of-Service Vulnerabilities

Richard Chang∗, Guofei Jiang†, Franjo Ivančić†, Sriram Sankaranarayanan† and Vitaly Shmatikov∗
∗The University of Texas at Austin
†NEC Laboratories America

Abstract—As networked systems grow in complexity, they
are increasingly vulnerable to denial-of-service (DoS) attacks
involving resource exhaustion. A single malicious input of coma
can trigger high-complexity behavior such as deep recursion in
a carelessly implemented server, exhausting CPU time or stack
space and making the server unavailable to legitimate clients.
These DoS attacks exploit the semantics of the target application,
are rarely associated with network traffic anomalies, and are thus
extremely difficult to detect using conventional methods.

We present SAFER, a static analysis tool for identifying
potential DoS vulnerabilities and the root causes of resource-
exhaustion attacks before the software is deployed. Our tool
combines taint analysis with control dependency analysis to
detect high-complexity control structures whose execution can
be triggered by untrusted network inputs.

When evaluated on real-world networked applications, SAFER
discovered previously unknown DoS vulnerabilities in the Expat
XML parser and the SQLite library, as well as a new attack
on a previously patched version of the wu-ftpd server. This
demonstrates the importance of understanding and repairing the
root causes of DoS vulnerabilities rather than simply blocking
known malicious inputs.

I. INTRODUCTION

Complex networked systems are increasingly vulnerable
to remote attacks that exploit unintended functionality and
semantic implementation bugs. Denial of service is one of the
most serious threats. For example, a single malicious packet
containing an “input of death” [20], [5] can crash a server by
exploiting a buffer overflow bug.

This paper focuses on sophisticated denial-of-service (DoS)
attacks that deliberately cause resource exhaustion in net-
worked applications. Typically, the attacker sends a single
request or a small number of requests to trigger a computation
that results in extraordinary consumption of an internal system
resource such as CPU time or stack space. Because the
malicious requests cause the target to freeze or even crash,
we will call them inputs of coma.

Many popular systems have fallen victim to resource-
exhaustion attacks, including Web servers [17], FTP [41], and
DNS proxy servers [12], Samba [34], PHPMailer [31] and the
Zend PHP engine [47], XML parsers [23] (the “billion laughs”
XML attack also belongs to this class [16]), and, most recently,
the Red Hat directory server [33].

Detecting software defects that can be exploited to cause
denial of service is a challenging task. Unlike flooding and
distributed DoS attacks, which inundate the target with a large
number of requests, often originating from an orchestrated

network of compromised machines (see the survey in [26]),
inputs of coma are not associated with any network traffic
anomalies and do not involve sending a large number of
requests to the server. They can often be launched by a single
attacker with a single malicious packet.

Unlike server-crashing inputs of death, inputs of coma do
not rely on programming bugs that violate the semantics of the
programming language in which the server is implemented.
For example, buffer overflows violate memory safety or even
control-flow integrity. By contrast, a maliciously crafted input
that induces an exponential number (with respect to input size)
of recursive calls to a regular-expression parsing routine in
an FTP server (as is the case, for example, in the wu-ftpd
vulnerability described below) does not violate any safety or
integrity property. In fact, the target program does exactly what
it was written to do; unfortunately, the implementers did not
realize that their code can be abused to cause denial of service
to legitimate clients.

Our goal is to develop a principled software analysis method
that can detect DoS vulnerabilities before they are exploited
by inputs of coma. The root causes of CPU, stack, and
other resource-exhaustion vulnerabilities are often design flaws
rather than programming errors. This observation motivates
our approach. Our tool incorporates several resource-specific
analyses which detect high-complexity control structures such
as recursive calls and loops that potentially depend on tainted
network inputs and can thus be exploited by a remote attacker
to cause denial of service.

The static approach to discovering potential DoS vulner-
abilities has several advantages. First, it helps identify and
fix vulnerabilities during development, before the software
is deployed, thus breaking the unwinnable loop of system
administrators detecting and mitigating DoS attacks in real
time as they are mounted against production servers. Second,
conventional defenses against denial of service focus on net-
work monitoring; adapting them to detect single-packet attacks
that exploit the target application’s semantics in a non-trivial
way is very difficult, if at all possible.

Our contributions. We present a novel static analysis ap-
proach to detecting semantic vulnerabilities in networked
software which may be exploited to cause denial of service
due to resource exhaustion. We focus in particular on CPU
and stack exhaustion. Our approach has been implemented in a
tool called SAFER: Static Analysis Framework for Exhaustion

of Resources.
SAFER currently operates on C programs. We chose C as

the target language because of its popularity for implementing
networked applications and the fact that there are known
resource-exhaustion DoS vulnerabilities in C applications.
SAFER employs the CIL static analysis framework [28] and
incorporates several heuristics for identifying loops and recur-
sive calls whose execution is influenced by untrusted network
inputs and for estimating their complexity.

We evaluated SAFER on several large applications, including
FTP and web servers, an SQL library, and an XML parser.
In addition to detecting known problems, SAFER uncovered
previously unknown denial-of-service vulnerabilities in the
Expat XML server and SQLite library, as well as a new
exploit against wu-ftpd.

The latter exploit, which we will use as our running
example, is particularly interesting. wu-ftpd was previously
patched with a custom input sanitization to prevent precisely
this kind of attack. Our analysis shows that the patch was
insufficient, and a slightly more complex “input of coma” can
be used to stage a DoS attack even on the patched version. This
demonstrates the importance of identifying the root causes
of DoS vulnerabilities–that is, the underlying software design
flaws–rather than simply blocking specific attack inputs.

New wu-ftpd exploit. An example of a CPU exhaustion
vulnerability appears in Listing 1, which shows the relevant
portion of a pattern-matching function from the wu-ftpd
implementation of an FTP server (the line numbers are for
illustrative purposes only and do not correspond to the line
numbers in the original code).

This pattern-matching code can be exploited by sending
an input to the wu-ftpd server that causes amatch() to be
called with arguments that induce a large number of recursive
calls. These calls cause high CPU utilization and prevent other
users from accessing the server. This attack, associated with
the “DIR *************...” input, was discovered in
2005 [44]. It is worth noting that the initial vulnerability report
placed it in the wu_fnmatch() function, rather than its true
location, the body of amatch(). The pattern-matching code
was subsequently patched with a custom input sanitization that
collapses all consecutive wildcard symbols (*) prior to making
the recursive call [42].

We applied SAFER to the latest version of wu-ftpd and,
by analyzing its output, discovered a new attack input, “DIR
{{*{*{...}*}*}*}*”, that works against the patched
code. (There can be no legitimate reason for a remote user to
input this regular expression, which is equivalent to “DIR *”.)
This attack was not known prior to our analysis. Its denial-of-
service effect is the same as in the original attack: the process
reaches 100% CPU utilization for up to 10 minutes, making
the server unavailable to legitimate users.

This example demonstrates several important features of
semantic resource-exhaustion vulnerabilities, as well as our
approach to detecting them. First, they are subtle. Focusing
on specific attack inputs, such as the “DIR *********...”

pattern above, may lead to a misinterpretation of the under-
lying vulnerability and leave the server exposed to denial-of-
service attacks. This example also illustrates the danger of
custom input sanitizations. A manual security audit of the
source code, conducted without assistance from a tool like
SAFER, might conclude that the code is safe because the input
has been sanitized. Therefore, our analysis should be applied
even to known and patched vulnerabilities, in case the patch
proves insufficient.

Second, the attack does not involve a violation of memory
safety, nor execution of any control paths not intended by the
programmer. The pattern-matching function is implemented
“correctly” in the sense that it correctly matches strings to
regular expressions.

Third, other static analysis approaches (see Section II) are
unlikely to detect this vulnerability. For example, in the case
of static taint analyses, the set of source and sink calls is fixed
independently of the program being analyzed. In the wu-ftpd
exploit, however, a tainted network input does not flow into a
fixed sink location; it is not obvious how to express the attack
in terms of source and sink locations. This vulnerability is not
easily expressed as a reachability property, either. It is not the
case that simply reaching the recursive call leads to a DoS
attack; the problem is that the number of recursive calls is a
function of a tainted value. More specifically, the number of
recursive calls is super-linear with respect to the input length.

1 static int amatch(char *s, char *p)
2 {
3 register int scc;
4 int ok, lc;
5 char *sgpathp;
6 struct stat stb;
7 int c, cc;
8 globbed = 1;
9 for (;;) {

10 scc = *s++ & TRIM;
11 switch (c = *p++) {
12 case ’{’:
13 return (execbrc(p - 1, s - 1));
14 case ’[’:
15 ok = 0;
16 lc = 077777;
17 while ((cc = *p++)) {
18 ...
19 case ’*’:
20 if (!*p)
21 return (1);
22 if (*p == ’/’) {
23 p++;
24 goto slash;
25 }
26 s--;
27 do {
28 /∗ e x p l o i t a b l e r e c u r s i v e c a l l ∗ /
29 if (amatch(s, p))
30 return (1);
31 } while (*s++);
32 return (0);
33 ...
34 }
35 }
36 }

Listing 1. wu-ftpd CPU Exhaustion Vulnerability

Structure of the paper. We discuss related work in Section II.

In Section III, we describe our approach and the implementa-
tion of SAFER. Section IV addresses the limitations of SAFER.
In Section V, we discuss our experimental evaluation and
describe new DoS vulnerabilities in real-world applications
found by SAFER. Section VI concludes.

II. RELATED WORK

Defenses against DoS. Prior work on defenses against denial
of service focused primarily on network-level detection of
traffic anomalies and on filtering of malicious traffic [3], [19],
[46], [39], [36]. While potentially effective against distributed
DoS attacks, these approaches can only be activated once an
attack has been mounted.

By contrast, we focus on a very different class of DoS
vulnerabilities (relatively small, malicious inputs that cause
resource exhaustion in server applications) and aim to discover
their root causes by analyzing the source code of servers before
they are deployed. While this paper is not about flooding
attacks, we believe that the SAFER framework can be extended
to detect semantic flooding attacks which try to exhaust system
resources by exploiting the target program’s semantics via a
sequence of well-crafted inputs (see Section VI).

Qie et al. developed a toolkit for making software sys-
tems robust against DoS attacks that exhaust internal system
resources [32]. This work is complementary to ours. The
toolkit allows programmers to annotate program locations
where resources are acquired and released, and to declare
when resources should be reclaimed at runtime to recover
from resource exhaustion. The programmer must analyze the
code by hand in order to add the appropriate annotations.
SAFER can be used in tandem with such a tool to guide
programmers to potentially vulnerable code sections where
resource-management annotations may be needed.

Inputs of coma are related to algorithmic-complexity DoS
attacks that exhaust server resources by leveraging the dispar-
ity between average-case and worst-case behavior of certain
server algorithms [10]. For example, a malicious sequence of
inputs can be crafted to cause collisions in hash functions
used to insert objects into data structures. Our approach
is fundamentally different and complementary. While [10]
relies on manual analysis of the hash-function implementation,
SAFER automatically performs structural analysis of the entire
source code, without assuming that the vulnerable behavior
occurs in a particular routine. SAFER can be used, for example,
to flag program locations where functions with potentially
vulnerable worst-case behavior are invoked on tainted inputs;
further analysis can then verify the presence of an algorithmic-
complexity vulnerability.

Inputs of coma are much harder to detect at the network
level than algorithmic-complexity attacks. The attacks against
hash functions described in [10] require tens of thousands of
network inputs. With inputs of coma, a single input is often
sufficient for denial of service.

Recent work by Burnim et al. [4] proposes a testing-
based approach for generating worst-case inputs for imperative

programs and estimating worse-case computational complex-
ity. Other techniques for estimating worst-case complexity
include [8], [14]. These approaches are largely complementary
to ours, which uses structural analysis to estimate complexity
of loops and recursive calls. Unlike the techniques of [4], our
analysis is static rather than dynamic; we do not require con-
straint generation and solving to explore individual program
execution paths. Also, as demonstrated in Section V, our anal-
yses scale to programs with more than 100,000 LOC, while
the testing-based approach of [4] has been evaluated only on
relatively small benchmarks such as sorting and tree-search
algorithms. The static analysis framework underlying SAFER
is general in the sense that it can incorporate new resource-
specific analyses, including those that estimate computational
complexity.

Formal methods can be used to identify computational
asymmetries which may make security protocols vulnerable
to denial of service [25]. This analysis is done at the level
of protocol specifications, i.e., at a much higher level of
abstraction than the source-code-level analysis in this paper.
Also, in the client-server applications of the kind of we
consider (FTP, XML, HTTP), the server, by design, performs
substantial computations in response to requests. The threshold
beyond which an expensive computation becomes a denial-
of-service attack is, fundamentally, a judgment call; there is
a large “gray area” between obviously benign and obviously
malicious inputs.

By contrast, our approach performs detailed static analysis
of the source code of server applications in order to detect
high-complexity control structures which may be exploited by
malicious network inputs. This is a very complex class of
software vulnerabilities which do not manifest themselves at
the level of network-protocol specifications. Furthermore, our
analysis highlights the vulnerable section(s) of the source code.

Zheng and Myers introduce a framework that uses static
information-flow analysis to specify and enforce availability
policies in programs [48]. They propose a way to specify
availability policies as an extension to the decentralized label
model, present a simple imperative language that allows ex-
plicit specification of security policies, and develop a security
type system to reason about end-to-end availability policies.
They also discuss several examples where violations of an
availability policy correspond to denial-of-service attacks. This
work targets a different domain than ours. We analyze real-
world systems implemented in C and, unlike [48], do not
require additional type annotations to be added to programs.
Most importantly, our focus is on the root causes of resource-
exhaustion attacks. To express these attacks as failures of
some availability policy, it is necessary to model formally
how resource exhaustion results in the failure of the system to
deliver some expected output, which can be very difficult for
reasonably complex systems.

Security applications of static analysis. Our SAFER tool
utilizes many conventional static analysis tools and techniques,
including the CIL front end [28], taint analysis, and depen-

dency analysis. It is substantially different, however, from
the existing program-analysis techniques, most of which are
based on tainted data-dependency analysis or reachability
analysis [24], [5].

Program-analysis tools have been used with great suc-
cess to detect potential buffer overflows [38], [22], program
crashes [5], and unsafe memory dereferences [29], [45], [13].
These tools tend to focus on violations of the intended
program semantics, such as memory safety [11] or control-
flow integrity [9], [1]. They cannot be used to detect semantic
resource-exhaustion vulnerabilities, because the latter do not
depend on such violations.

Security applications of taint analysis. Taint analysis tech-
niques have been successfully used to detect many classes
of security vulnerabilities. Dynamic taint analyses [7] mon-
itor how untrusted inputs flow through the program during
execution, and can be used at runtime to detect when a data
value dependent on an untrusted input flows into a potentially
dangerous function call or instruction without having been
properly sanitized. This can be used, for example, to detect
injection attacks [30]. Dynamic taint analysis can also be
used at the instruction level [37], [21], [9] to prevent control
transfers based on tainted data, such as those associated with
buffer-overflow attacks.

Static taint analyses approximate the set of program vari-
ables that are data-dependent on untrusted inputs by statically
analyzing the program’s source code or compiled binary. Be-
cause of factors such as aliasing and polymorphic types, these
analyses are often imprecise. Nevertheless, they have been
successfully used to detect security vulnerabilities, such as
cross-site scripting and SQL injection in web applications [24],
[18], [40].

Taint analysis cannot be used directly to find DoS vulnera-
bilities because inputs of coma are not characterized by tainted
values passed as arguments to certain functions. Instead,
SAFER employs static taint analysis in a novel way by com-
bining it with control dependency analysis to compute the set
of program locations whose execution is influenced by tainted
values (this is fundamentally different from “control hijacking”
attacks, such as stack smashing and return-to-libc,
because all control transfers are already present in the original
code). In other words, we focus not on the use of values
that are data-dependent on tainted inputs, but rather on the
potential execution of basic blocks that are control-dependent
on tainted inputs.

III. STATIC DETECTION OF DOS VULNERABILITIES

To detect vulnerabilities that allow a remote attacker to
exhaust CPU or stack resources via inputs of coma, our SAFER
framework uses a novel combination of two standard program
analyses. First, taint analysis is used to compute the set of
program values that are data-dependent on network inputs.
Second, control dependency analysis is used to compute the set
of program statements whose execution may affect whether or
not a given statement is executed. SAFER combines the results

of these analyses to compute the set of program statements
whose execution is control-dependent on tainted values.

Control
dependency

analysis

Taint
analysis

Resource-specifc
analyses

Recursive call
analysis

Tainted-loop
analysis

Warning
analysis

Source
code Resource

exhaustion
warnings

Fig. 1. SAFER Architecture

Figure 1 shows the architecture of SAFER. Our analysis
focuses on loops and recursive calls because they (especially
recursive calls inside loops) present the easiest targets for
CPU- and stack-exhaustion attacks on C programs. First,
SAFER computes the set of loops and recursive calls whose
iterations and activation-record counts are potentially influ-
enced by network inputs. Then structural analyses are used to
estimate the complexity of recursion. The results are combined
to generate warnings for all potentially exploitable recursive
calls. Finally, the warnings are ranked by estimated complexity
and severity before they are presented to the user.

We illustrate our framework by showing how each com-
ponent analyzes the amatch() function from Listing 1.
SAFER includes both intraprocedural components, which look
at each function independently, and interprocedural compo-
nents, which analyze the entire program, crossing function-call
boundaries. Each component of SAFER is implemented as a
CIL analysis built on top of several generic analyses provided
by CIL [28]. In the following, many details of CIL’s inter-
mediate representation are simplified for expository clarity.
For each component of our framework, we give an overview,
the analysis algorithm used, and the result of analyzing the
amatch() function.

A. Program representation
An imperative program can be represented by a set of

procedures P ∪ Q, wherein P represents the user-defined
procedures, while Q represents calls to external proce-
dures. Furthermore, there is a distinguished entry procedure
main ∈ P and a set of global variables G. Each procedure
P consists of an intraprocedural control-flow graph (CFG)
(N, E, a, L, retVal, entry, exit), wherein N is a set of nodes
corresponding to program locations, E ⊆ N × N is a set
of edges, a is a function labeling each edge in the CFG
with an action, L is a set of procedural formal and local
variables, and retVal ∈ L is a special return value for the
procedure. Finally, entry, exit ∈ N denote the procedure
entry and exits, respectively. Actions labeling edges include
assignments to program variables, conditional guards, calls to
other procedures in P ∪Q, and returns from the procedure.

To simplify the exposition, we assume that the programs
are free from pointers and that procedures are called by value.
This is done for expository clarity only; we do handle pointers
in our implementation.

B. Control dependency analysis

SAFER employs a classic intraprocedural control depen-
dency analysis which is based on computing post-dominators
for each node in the control-flow graph of a function [27].
Informally, a CFG node s1 is control-dependent on s2 if
whether s1 is executed depends on the execution of conditional
statements at s2. In our amatch() example, the recursive call
to amatch() at Line 29 is control-dependent on the while
statement at Line 31 and the case statement at Line 19.

The result of control dependency analysis yields a map
CD : P × N 7→ 2N , wherein CD(p, n) maps node n in
a procedure p of the program to a subset of nodes in p,
representing conditional statements on which n is control-
dependent. Control dependencies can be computed in time
linear in the size of the control-flow graph. This analysis is
run on every function in the program and the resulting map
can be queried for computing control dependencies.

C. Taint analysis

A program variable x is tainted at a node n in a procedure
p under a particular context c if and only if there is some
execution that reaches n under the context c such that the
value of x is data-dependent on some user input.

The terms “data-dependent” and “user input” are at the heart
of this definition and will be clarified below. Let I be the set of
designated external procedures through which untrusted inputs
arrive to the system (e.g., I may contain the procedures that
read data from network sockets). Let q(a1, . . . , am) ∈ I be a
procedure returning a value of type t, with possible side effects
on some of its arguments Sq ⊆ {a1, . . . , am} (for clarity, we
will omit our analysis of pointers and side effects).

A user input to the program results from a call to an external
procedure q ∈ I . Such a call yields two types of user inputs:
(a) the return value of the call, and (b) the side effects, if any,
that redefine global variables.

A variable x is said to be data-dependent on y at any
program point if and only if there exists a reaching definition
of the form x := e such that e is a program expression
containing y, or some other variable z which is itself data-
dependent on y.

Formally, we wish to compute a relation T (c, p, n, x) denot-
ing that a variable x is tainted at a node n in procedure p under
a calling context c. This relation is computed using standard
interprocedural program analysis, by applying inference rules
until a fixed point is reached.

The rule external-input-taint (shown below) specifies that
just after an assignment x := q(), the variable x may be
regarded as tainted in the target node m under all contexts.

n
x:=q()−−−−→ m, q ∈ Q

T (c, p,m, x)
(external− input− taint)

Some of the taint rules are shown in Fig. 2. The taint rule for
assignment says that, as a result of an assignment x := y, if y
is tainted at the source node, then x is tainted at the target. The
call-taint rule says that, as a result of a call r(y1, . . . , yk) to

an internal procedure r ∈ P , if yi were tainted at the call site
under some context c, then the corresponding formal argument
argi is tainted at the entry node of the procedure r under the
context r :: c. The return-taint rule governs the propagation
of a tainted return value from a procedure back to its call site
under an appropriate change of contexts. Our implementation
uses additional rules for passing taints for variables which
are not affected by a statement and also for handling variable
aliasing due to pointers and call-by-reference. For brevity, we
omit them here.

Implementing taint analysis. We defined taint analysis via a
set of rules which specify the interprocedural, context-sensitive
tainting relation T (c, p, n, x). In practice, however, the number
of contexts can be astronomical even for a medium-sized C
program.

Therefore, we use procedure summarization to summarize
the effect of a procedure call. Formally, a summary for
a procedure p specifies the transformation of the relation
T (c, q, m, x) at any call site to p, y := p(y1, . . . , ym), for a
variable x that may alias y, any of the arguments y1, . . . , ym,
or a global variable that is a side effect of the call to p.
The summary for a procedure p expresses the possibility of
a variable x being tainted at the exit exit(p) as a Boolean
formula over atomic propositions that range over the taint-
state of the program variables at the entry entry(p). The overall
taint analysis consists of (a) bottom-up summarization and (b)
top-down taint computation. The first phase computes the sum-
mary for each procedure assuming that all of its callees have
already been summarized. This is enabled by performing a
strongly-connected-component decomposition of the function
call graph. Recursive procedures (including mutually recursive
sets of procedures) are summarized by treating recursive calls
context-insensitively. Each recursive call and each return from
such a call is treated, effectively, as a go-to statement.

After each procedure is summarized, we revisit the call
graph in the topological order, beginning at main and comput-
ing the actual taint relation T at the entry of each procedure
and therefore at each node of each procedure. During this
topological exploration of the call graph, we also record the
set RF of visited procedures. The analysis that computes the
taintedness relation T for each procedure is intraprocedural.
Calls to other procedures are analyzed using summarization.
We thus compute a relation T (n, p, x), which is obtained
by joining the earlier relation T (c, n, p, x) under all possible
calling contexts of p. We also define a Boolean relation
TS (n, p), which is true if and only if there exists some variable
x such that there is a use of x on an outgoing edge from n
and T (n, p, x) is true.

The second phase can also be query-driven, i.e., computed
in response to queries asking whether a particular variable x is
tainted under a particular context c. This is enabled by using
the stored summaries and selectively analyzing the procedures
called in the context c.

n
x:=y−−−→ m, T (c, p,m, y)

T (c, p,m, x)
(assign− taint)

n
x:=r(y1,...,yi,...,yk)−−−−−−−−−−−−−→ m, r ∈ P, T (c, p, n, yi)

T (r :: c, p, entry(r), argi)
(call− taint)

n
x:=r(y)−−−−−→ m, r ∈ P, T (r :: c, r, exit(r), retVal(r))

T (c, p,m, x)
(return− taint)

Fig. 2. Some rules for inferring and propagating taints across assignments, procedure calls and returns.

D. Warning generation

Our resource-specific analyses use taintedness and control-
dependency information to estimate the complexity of recur-
sive calls and to identify loops and recursive calls whose
execution can be influenced by a remote attacker.

Tainted-loop analysis: Informally, we want to identify all
loops for which the number of iterations depends on a tainted
input. We statically approximate this set using the information
computed by the previously described analyses. We say that
any program loop in which there exists a path leaving the
loop body whose final statement is control-dependent on a
tainted statement inside the loop is a tainted loop. We compute
the set TL of tainted loops via an intraprocedural analysis
(implemented using CIL) which examines the control-flow
graph (CFG) of each loop body in a given function. Note
that the CIL front end detects syntactic loops in C programs
and allows other CIL analyses to access CFG subgraphs
corresponding to loop bodies.

For each loop body, we examine all edges that leave the loop
body and check for tainted control dependencies. If any such
dependencies exist within the loop body, we mark the loop
as tainted and add it to TL. In the amatch() example, the
for loop at Line 9 is marked as a tainted loop because there
exists a path leaving the loop whose final statement is control-
dependent on a case statement using *p, which has been
marked as tainted. The algorithm for checking loop taintedness
appears in Algorithm 1. SAFER executes it once for each set
of CFG nodes corresponding to a top-level loop body in each
function of the program.

Algorithm 1: ComputeTL(p, L)
Input: a set of CFG nodes L, and a procedure p
for s ∈ L do

if isLoopHead(s) then
ComputeTL(LoopNodes(p, s));

else
for (s, c) ∈ E do

if c 6∈ L then
for d ∈ CD(p, c) do

if TS(d, p) ∧ d ∈ L then
TL← TL ∪ {L};
break;

Recursive call analysis: We now describe the analyses used
by SAFER to estimate the complexity of recursive calls and to
identify those whose execution may be influenced by a remote
attacker. SAFER first computes an annotated call graph, using
an interprocedural analysis much like computing a standard
call graph [27]. The key differences are that the SAFER call
graphs are context-sensitive and annotated with additional
information such as control dependencies, recursive calling
contexts, taintedness, and source code information.

The algorithm for computing the annotated call graph
appears in Algorithm 2. The graph consists of function nodes
(with a unique node for every function in the program) and call
nodes. The children of a function node are call nodes, which
correspond to the calls in the function body. The call nodes
contain information about the corresponding call sites (name
of function, source code information, etc.). To compute the set
of function nodes, SAFER uses the set of reachable functions
RF computed during the taint analysis. SAFER also maintains
a mapping from function names to function nodes in a map
called NameMap. When computing the graph, SAFER also
queries the taint analysis and control dependency analysis to
check if a call is control-dependent on a tainted statement. We
refer to such calls as tainted calls. Intuitively, their execution
may be influenced by a remote attacker through tainted inputs.

After computing the annotated call graph, SAFER computes
the set of tainted recursive calls and estimates their complexity.
This analysis is performed via a bounded depth-first search of
the annotated call graph.

Finding tainted recursive calls. We identify tainted recursive
calls by performing a depth-first search on the annotated call
graph while tracking the current calling context (Algorithm 3).
Every time the search reaches a tainted call node, SAFER
checks whether a call to the same function exists in the
current context. If it does, the call node is recorded as a
tainted recursive call and added to the corresponding set RC .
We bound the search depth for efficiency (a large program
can have an exponential number of calling contexts under
which a particular call is recursive) and also because in our
benchmarks, most recursive calls were found at very shallow
search depths. Thus we limit the context depth to 3 in our
experiments. An excerpt from the annotated call graph for
wu-ftpd after identifying tainted recursive calls appears in
Figure 3. As we explain in Section V, the recursive-calling-

Algorithm 2: ComputeACG
for f ∈ RF do

t← new FunctionNode;
t.name ← f ;
t.type ← function;
NameMap ← NameMap ∪ (f, t);
for s ∈ CFG(f) do

if isCall(s) then
u← new CallNode;
u.name ← calledFunc(f , s);
u.type ← call;
u.statement ← s;
u.deps ← CD(f , s);
u.recContexts ← ∅;
for d ∈ CD(f , s) do

if TS(d, f) then
u.tainted ← true;

t.children ← t.children ∪ {u}

context data proved very useful during our manual analysis of
the SAFER warnings and helped discover a new attack input.

func: amatch()
file: glob.c

call: amatch()
line: 29
file: glob.c
tainted: true
recursive contexts: {
[match, amatch:glob.c:395],
[execbrc, amatch:glob.c:366],
...
}

call: execbrc()
line: 13
file: glob.c
tainted: true
recursive contexts: {}

...

Fig. 3. Annotated Call Graph Node for amatch()

Estimating complexity of recursive calls. Attacks exploiting
tainted recursive calls can lead to both CPU and stack ex-
haustion. Stack exhaustion occurs when a chain of recursive
calls grows so deep that the program runs out of space
for activation records, typically resulting in a crash. While
these are serious vulnerabilities, their effect is limited to the
vulnerable application. CPU exhaustion attacks can be even
more dangerous because of their potential to affect other
applications sharing the same server. If a single process begins
to consume all available CPU resources, the result is denial of
service to the clients of all applications.

Our running example, wu-ftpd, is a CPU exhaustion vul-
nerability. The depth of recursion is linear in the length of
the attacker-controlled network input, thus stack space is not
exhausted. Unfortunately, the tainted recursive call occurs
inside a tainted loop. As a result, the total number of recursive
calls generated by the vulnerable call site is exponential in

the length of the attack input, leading to CPU exhaustion. (If
one imagines the tree of recursive calls generated from this
call site, its depth is linear, but the total number of nodes is
exponential.)

Warnings caused by call structures of this type are of higher
severity because of the potential for CPU exhaustion that
could affect all processes on a server. When computing tainted
recursive calls, SAFER also considers the information provided
by the tainted-loop analysis. If a tainted recursive call occurs
within a tainted loop, it generates a so-called super-linear
warning, because of the potential for super-linear recursive
behavior at this call site. Warnings of this type are collected
in the SRC set (see Algorithm 4).

Algorithm 3: ComputeRCWarnings
for f ∈ RF do

n← NameMap[f];
C ← new Context;
FindTaintedRC (n, C);

Algorithm 4: FindTaintedRC (n, C)
Input: an annotated call graph node n, and a calling

context C
if Size(C) > ContextDepthLimit then

return;
else

if n.type = function then
for p ∈ n.children do

FindTaintedRC (p, c);
else /* n.type = call */

if n.tainted = true ∧C .contains(n.name) then
n.recContexts ← n.recContexts ∪ C;
RC ← RC ∪ n;
for L ∈ TL do

if n.statement ∈ L then
SRC ← SRC ∪ n;
break;

else
q ← NameMap[n.name];
FindTaintedRC (q ,C .add(n.statement));

return;

IV. LIMITATIONS AND TRADEOFFS

Analysis of potential resource-exhaustion vulnerabilities in-
evitably involves judgment calls. Unlike obvious coding bugs
such as buffer overflows, software design flaws that make
denial of service possible involve only legitimate memory
accesses and execution of code paths which are already present
in the original program.

The objective of SAFER is to flag high-complexity compu-
tations which can be triggered by untrusted network inputs.
In many cases, they can be exploited to cause extremely high
CPU utilization and/or deep recursion. Nevertheless, the dis-
tinction between a “legitimate” computation that just happens

to freeze the server and a denial-of-service vulnerability is
fundamentally a matter of opinion. The system developer must
interpret the SAFER warnings. For example, imagine running
our analysis on a server that decodes and streams video in
response to client requests. By its very nature, it performs
high-complexity computations whose execution is dependent
on (tainted) client requests. Without developer’s comments
or annotations (e.g., see [32]) indicating that these high-
complexity code segments are benign even though they are
control-dependent on tainted values, SAFER must report them
as potential vulnerabilities. We employ user-tunable heuristics
to minimize the number of warnings that are likely to be false
positives.

SAFER deliberately sacrifices both soundness and complete-
ness in order to scale to realistically-sized systems and detect
real vulnerabilities. SAFER may miss vulnerabilities because it
only supports a (realistic) subset of the C language (e.g., we do
not analyze function pointers). False positives may be caused
by (i) imprecision of taint analysis, (ii) sanitization of user
input, and (iii) safeguards on the usage of system resources.

Our taint analysis is not field-sensitive, which means that
if any field in a complicated struct is marked as tainted,
we assume all fields in that struct are tainted. This leads
to some false positives where the analysis determines that an
attacker may control the value of a field which is untainted in
reality (see Listing 2).

1 APR_DECLARE(void) apr_pool_destroy(apr_pool_t *pool)
2 {
3 ...
4 while (pool->child)
5 /∗ pool−>c h i l d i s i n c o r r e c t l y marked
6 as t a i n t e d because one of ∗poo l ’ s f i e l d s
7 i s data−dependent on a t a i n t e d v a l u e .
8 r e c u r s i v e c a l l below i s a f a l s e p o s i t i v e . ∗ /
9 apr_pool_destroy(pool->child);

10 ...
11 }

Listing 2. Apache false positive (field insensitivity)

Known denial-of-service vulnerabilities, such as the original
wu-ftpd vulnerability described in Section I, are often repaired
by adding custom sanitization code, which checks and/or
bounds the amount of computation due to tainted user inputs.
For example, if the vulnerability is associated with reading a
string from the network and then iterating over each character
while performing an expensive computation at each iteration,
then sanitization may attempt to limit the length of the string.

Traditional approaches for static reasoning about sanitiza-
tion [24], [18] are syntactic and thus do not work for resource-
exhaustion vulnerabilities. Balzarotti et al. [2] proposed a
technique for reasoning about sanitization of tainted strings by
modeling a set of strings as an automaton; a similar approach
may work for sanitization with respect to CPU and stack
resources. SAFER does not currently model sanitization of
user input and may thus generate false positives for potential
vulnerabilities which are not exploitable due to sanitization
(see Listing 3).

int apr_fnmatch(char *p, char *string, int flags)
{

...
for (stringstart = string;;) {

switch (c = *p++) {
...
case ’*’:

c = *p;
/∗ i n p u t i s s a n i t i z e d by loop ∗ /

while (c == ’*’) {
c = *++p;

}
...
while ((test = *string) != EOS) {

/∗ r e c u r s i v e c a l l below i s a f a l s e p o s i t i v e ∗ /
if (!apr_fnmatch(p, string, flags))

...
}

}

Listing 3. Apache false positive (sanitization)

We emphasize that the mere presence of input sanitization
does not mean that the code is safe and may give a false
sense of security. As demonstrated by our exploit against
patched wu-ftpd (discovered using SAFER), if sanitization
simply blocks a specific attack input, the vulnerability remains
exploitable by a different input. SAFER flags all functions in
the code where sanitization is necessary; they must be audited
to ensure that sanitization is present and effective. It is worth
noting that the original report of the DoS vulnerability in
wu-ftpd indicated the wrong function, while SAFER flags the
correct one.

The third potential cause of false positives is the input-
independent safeguards in the code that limit consumption of
certain system resources. For example, SAFER may statically
detect that a recursive call is “expensive” because it is depen-
dent on a tainted value and inside a tainted loop, but the code
may contain explicit (see Listing 5) or implicit (see Listing 4)
safeguards to limit the depth of recursion.

The safeguards are handled in SAFER by adding user anno-
tations for program-specific functions that check the height of
a program’s stack during execution. Several systems, including
Apache, use special functions to help prevent some cases of
stack exhaustion due to infinite recursion (often caused by
misconfigurations). In the case of Apache, there is a risk of
stack exhaustion if a request is recursively redirected a large
number of times. This can occur if the server is misconfigured
so that there is a cycle in the redirect rules. The basic idea
is that while servicing a request via recursive calls, a func-
tion called ap_is_recursion_limit_exceeded() is
called to check the current redirect recursion depth. This
function does not actually check the current stack depth, but
rather examines the request data structure which records this
depth as a field. If the depth ever exceeds some statically set
depth limit, then the request processing is aborted.

SAFER suppresses all warnings in which the recursive
calling context contains a call to one of the user-defined stack-
checking functions. Safeguards of this type are fundamen-
tally different from user-input sanitization. They are designed
specifically to detect when a program’s stack is about to

int ap_rgetline_core(char **s, apr_size_t n,
apr_size_t *read, request_rec *r,
int fold, apr_bucket_brigade *bb)

{
...
if (fold && bytes_handled && !saw_eos) {

for (;;) {
...

/∗ False p o s i t i v e due t o i m p l i c i t l i m i t
on r e c u r s i v e c a l l dep th . Inpu t i s no t s a n i t i z e d ,
bu t t h e chain of r e c u r s i v e c a l l s r e t u r n s when a
b u f f e r i s f u l l . There fore , t h e wors t−case dep th of
c a l l s i s a f u n c t i o n of t h i s b u f f e r s i z e , no t
t h e t a i n t e d i n p u t . ∗ /

rv = ap_rgetline_core(&tmp, next_size,
&next_len, r, 0, bb);

...
}

Listing 4. Apache false positive (implicit safeguard)

be exhausted and to allow the program to gracefully handle
the condition. The presence of a call to a stack-checking
function on the execution path means—assuming it has been
implemented correctly—that the developers are aware of the
potential problem, eliminating the need for SAFER warnings.

The developer must be careful to place calls to stack-
checking functions in all recursive calling contexts. If any
tainted recursive call is found in a context without a safeguard,
SAFER will generate a warning. It should also be noted that
these stack-checking calls are often used to prevent only very
specific types of stack exhaustion. For example, in Apache
they only prevent stack exhaustion due to recursion when
handling redirects. The reported warnings for Apache in
Section V correspond to recursive calls that occur in contexts
without stack-checking sanitization calls.

static int unixOpen(sqlite3_vfs *pVfs,
const char *zPath,
sqlite3_file *pFile, int flags,
int *pOutFlags) {

...
fd = open(zName, oflags,

isDelete?0600:DEFAULT);
if(fd<0 && errno!=EISDIR && isReadWrite &&

!isExclusive) {
flags &= ˜(READWRITE|CREATE);
flags |= READONLY;

/∗ This c a l l can on ly occur a t c a l l dep th 0 ,
a l l e x e c u t i o n s w i th more than 1 r e c u r s i v e c a l l
are i n f e a s i b l e because t h e c a l l c o r r e s p o n d s
t o s i m p l y a t t e m p t i n g t o open t h e f i l e a second
t ime wi th d i f f e r e n t p e r m i s s i o n s . ∗ /
return unixOpen(pVfs,zPath,pFile,flags,pOutFlags);

}
...

}

Listing 5. SQLite false positive (explicit safeguard)

Our practical experience with SAFER, described in Sec-
tion V, demonstrates that SAFER can successfully discover
complex DoS vulnerabilities in systems code, and that the
number of false positives is relatively low for real-world
programs (e.g., 1 warning per 15,000 lines of Apache code)
and thus amenable to manual analysis. The false positive ratio
of SAFER is comparable to other static security-audit tools,

such as those targeting buffer overflows [38], violations of
Unix security rules [6] and injection vulnerabilities in web
applications [18].

V. EXPERIMENTAL RESULTS

We evaluated SAFER on five large, real-world systems:
Apache, wu-ftpd, Expat, SQLite, and Samba. The results
of using SAFER to analyze these systems demonstrate that our
approach scales to realistic programs. In 2 systems, SAFER
rediscovered known DoS vulnerabilities; in 3 systems, SAFER
discovered new DoS vulnerabilities.

A. wu-ftpd

wu-ftpd is a popular FTP server daemon available for Unix
systems, including recent versions of Linux distributions such
as Ubuntu [43]. We used SAFER to analyze the latest ver-
sion (2.6.2) of wu-ftpd, which contains 20,382 LOC. SAFER
reported 3 warnings, all of which correspond to recursive
function calls where the depth of recursion is potentially super-
linear in the size of a tainted input string. Two of the warnings
were false positives, one due to the field-insensitivity of our
taint analysis and the other due to input sanitization. The third
warning was the amatch() call that we have been using as
the running example throughout this paper.

wu-ftpd attack revisited. Recall the code in Listing 1. As
described earlier, a DoS attack against wu-ftpd was discovered
in February 2005 [44]. This attack results in CPU exhaustion
due to an exponential number of recursive calls while trying
to match the malicious “DIR *********...” pattern. The
original mailing-list message attributed the vulnerability to a
recursive call in the wu_fnmatch() function, but SAFER
flags the recursive amatch() call, and our manual analysis
confirms this call as the source of the vulnerability.

A patch designed to address this vulnerability was quickly
incorporated into wu-ftpd packages used by Linux distri-
butions [42]. The patch attempts to sanitize the input by
collapsing contiguous blocks of wildcard symbols (*) into a
single wildcard prior to performing pattern matching.

SAFER’s context-sensitive recursive call analysis reports two
contexts in which the recursive call is control-dependent on
tainted inputs (see Figure 4 for a simplified warning). By
examining both contexts, we discovered that sanitization can
be nullified by a remote attacker. Our new attack input “DIR
{{*{*{...}*}*}*}*” induces an exponential number of
recursive calls to amatch(), just like the original attack.

Call funcName: amatch, file: glob.c, line: 448
Recursive calling contexts:
1) context start: matchdir
[match:glob.c:280, amatch:glob.c:395,]
2) context start: expand
[execbrc:glob.c:240, amatch:glob.c:366,]

Fig. 4. Simplified amatch() warning

In the first calling context, the sanitized pattern is passed
to amatch() without modification. In the second context,

however, after the sanitization code is executed, the pattern
string is passed to execbrc(). With the new attack string,
this function essentially “unsanitizes” it by removing matching
braces, resulting in a string made up of wildcards (*) only.
This string is then passed to amatch(), causing the same
CPU exhaustion as the original attack. We have successfully
confirmed our new “input of coma” against patched versions of
wu-ftpd, including the latest version available for Ubuntu [43].

Observe that the input of coma in this case does not require
the attacker to know anything about the file-system structure of
the target. While some legitimate input patterns may trigger
expensive computation in the pattern-matching routine (e.g.,
those that match directories deep in the file system), our attack
pattern is clearly malicious and can never occur in a benign
FTP query.

This example highlights the subtlety of DoS attacks and how
important it is to understand their root causes. The original
vulnerability report cited an incorrect function as the cause
and the sanitization patch only blocked a specific attack input.
The fact that it could not prevent exploitation of the recursive
call by a different “input of coma” demonstrates the need for a
principled approach to detecting and preventing such attacks.

B. Expat

Expat is a stream-oriented XML parsing library that has
been used by several open-source projects, including scripting-
language implementations (Perl, Python, and PHP). We ap-
plied SAFER to the sample parsing application included with
the Expat distribution of version 2.0.1 (12,251 LOC), along
with the source code of the library itself. SAFER flagged 3
super-linear recursive call warnings. Our analysis of these
warnings led to the discovery of a previously unknown stack-
exhaustion attack against Expat involving the parsing of
Document Type Definitions (DTD). A malicious remote user
can induce arbitrarily deep recursion in an application that
utilizes Expat by supplying a specially crafted DTD with a
deeply nested element declaration. The application’s call stack
will then be exhausted, crashing the program.

static void
build_node(XML_Parser parser,

int src_node,
XML_Content *dest,
XML_Content **contpos,
XML_Char **strpos)

{
...
for (i = 0,

cn = dtd->scaffold[src_node].firstchild;
i < dest->numchildren;
i++, cn = dtd->scaffold[cn].nextsib) {

/∗ r e c u r s i v e c a l l t h a t c au se s s t a c k e x h a u s t i o n
when p a r s i n g DTD e n t i t y d e c l a r a t i o n wi th
l o t s o f n e s t i n g ∗ /
build_node(parser, cn, &(dest->children[i]),

contpos, strpos);
}

...
}

Listing 6. Expat Vulnerability

To check that a particular XML file is valid with respect
to a given DTD, an XML parser must first parse the DTD
itself. For any application that defines a handler for DTD
elements, Expat parses the DTD via recursive calls to a
function called build_node(), which generates an in-
memory representation of a DTD. This recursive call is flagged
as vulnerable by SAFER (see Listing 6).

Figure 5 shows a sample attack DTD. Attempting to parse
this file with Expat leads to a recursive call chain whose depth
is linear with respect to the number of nested elements. In
practice, an 800-kilobyte DTD file of this form can crash the
target application via stack exhaustion.

<!ELEMENT A (A,(A,(A,(A,(A,(A,(A,
(A,(A,(A,(A,(A,(A,(A,(A,(A,(A,(A,
(A,(A,(A,(A,(A,(A,(A,(A,(A,(A,(A,...

Fig. 5. Malicious DTD exploiting Expat vulnerability

C. SQLite

SQLite is a software library that implements a database
engine. It has been used in many software systems as an
application-file format, a web-application back end, and as a
component of several operating systems for portable devices.
For a recent version (3.6.3) consisting of 63,207 LOC, SAFER
reported 6 super-linear recursive call warnings. Recall that
super-linear warnings are more severe because of their poten-
tial to affect all processes on a system, rather than just the one
in which the vulnerability occurs. The low number of super-
linear warnings makes a detailed manual analysis feasible. One
of the warnings turns out to be a potentially exploitable DoS
vulnerability.

The fact that SQLite is a library and not a standalone appli-
cation presents a slight challenge. SAFER uses taint analysis
to model the ways in which a remote attacker may affect code
execution, so normally the starting point would be some net-
worked application that uses SQLite. We chose not to analyze
any particular web application because it may only utilize a
small part of the library. Instead, we analyzed the library along
with a utility bundled with the SQLite distribution that allows
to query a database from the command line. Therefore, we are
implicitly assuming that all query strings are under attacker’s
control. The results produced by SAFER on this benchmark
highlight complex recursive behavior in the library whose
execution is triggered by database queries (note that in many
web applications, the contents of database queries do depend
on untrusted network inputs). This information may be used
during security audit of the code to systematically identify all
program locations where input safeguards or sanitization are
needed, and to help the developers verify that all complex
recursive behavior is bounded explicitly or implicitly.

The false-positive warnings for SQLite were due to saniti-
zation. Many of them correspond to functions that recursively
process in-memory query structures. The SQLite parser has
several safeguards that prevent deeply nested queries from
being processed by SQLite. To eliminate these false positives,

we could have treated all values that pass through certain
sanitization functions as safe (such functions would need to
be annotated by the developer). This syntactic approach to
modeling sanitization, however, can result in missing attacks,
as in the wu-ftpd example.

We also note that these warnings are not false in the
sense that they do correspond to recursive calls which are
control-dependent on tainted input. Developers can thus focus
their auditing and testing effort on ensuring that recursion is
bounded in all of the flagged locations.

SQLite vulnerability. The code in Listing 7 con-
tains a potentially exploitable recursive call inside the
sqlite3Select() function. This recursive call is flagged
as super-linear because it is inside the body of a tainted
loop. A recursive call is generated on the call stack for
each nested SELECT clause, and the for loop iterates
over the tables in the FROM clause of the query. Consider
the following query: SELECT * FROM (SELECT * FROM
(. . .) as t1) as t2 JOIN SELECT * FROM (. . .. It
attempts to maximize both the depth of the recursive call and
the number of iterations of the loop.

SQLITE_PRIVATE int sqlite3Select(
Parse *pParse,
Select *p,
SelectDest *pDest

){
...
for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
...

/∗ r e c u r s i v e c a l l t h a t i s v u l n e r a b l e
t o CPU e x h a u s t i o n ∗ /
sqlite3Select(pParse, pSub, &dest);
pItem->isPopulated = 1;

...
}

Listing 7. SQLite vulnerability

The safeguards in SQLite limit the nesting of SELECT
clauses and prevent more than 64 tables from being joined
in the FROM clause. These safeguards, however, still allow
extremely large temporary results to be generated. Even for
a small database consisting of a single table with 2 rows,
a query of the above form could generate a result set with
264 rows. In practice, iterating over this result set causes
CPU exhaustion for several minutes. Note that the attacker
does not need to know the database schema in order to
mount this attack. Further analysis reveals that the recursive
calls are not necessary for this attack, but the vulnerability
was discovered due to warnings generated by SAFER. The
tainted loop allows an attacker to generate large result sets,
with or without recursive-select subqueries. Because SAFER
computes the set of tainted loops for each program analyzed,
we could have easily implemented an analysis that flags all
tainted loops, such as the one in this example, but this would
have produced many more false positives. One area of future
work is incorporating range analysis [15] and ranking function
synthesis [8] into our tainted-loop analysis in order to estimate

bounds on loop iterations and use this information to filter out
the false-positive warnings.

Our analysis of SQLite assumes that the attacker controls all
query strings. This assumption may be unreasonable for well-
written web applications, but if an application using SQLite as
its back end were to fall victim to an SQL injection attack, this
vulnerability can greatly increase the impact of the attack by
allowing the attacker to exhaust CPU resources on the server.
A conventional SQL injection attack only affects a single
application and its database. An SQL injection combined with
a resource-exhaustion attack on a co-hosted application may
cause denial of service to all clients of all applications running
on the shared server.

D. Apache HTTP Server

Apache is a widely deployed web server. It is the second
largest application (109,650 LOC) that we analyzed using
SAFER, demonstrating the scalability of our approach. For
a recent version (2.2.9) of Apache, SAFER generated only
7 super-linear warnings, none of which correspond to DoS
vulnerabilities. This false positive rate is substantially better
than that of existing static analysis tools for finding potential
security vulnerabilities [38], [6].

E. nmbd (Samba)

Samba is an open-source implementation of the SMB/CIFS
protocol used to provide file and print services to networked
clients. We analyzed the nmbd daemon which provides a
NetBIOS name server as part of the 3.0.7 release of Samba.
We chose this version because it contains a known CPU
exhaustion vulnerability [34].

The nmbd daemon was the largest system we analyzed
(131,662 LOC). SAFER reported a total of 15 super-linear
warnings. This again demonstrates the scalability of our
approach. Most importantly, SAFER did detect the known
DoS vulnerability. The corresponding source code appears
in Listing 8. This vulnerability is very similar in nature to
the wu-ftpd vulnerability as it involves matching filenames
with patterns containing contiguous wildcard (*) characters.
SAFER flagged two different pattern-matching routines that
have essentially the same exponential recursive behavior. The
original vulnerability report only mentions the attack input
and the top-level pattern-matching function. A subsequent
patch [35] modified the bodies of both functions to prevent
the exponential recursion. While sanitization worked correctly
in this case, SAFER’s analysis is able to identify the root causes
of the vulnerability.

VI. CONCLUSIONS AND FUTURE WORK

We have presented SAFER, a static analysis tool for de-
tecting potential resource-exhaustion vulnerabilities in net-
worked software which can be exploited to cause denial of
service. SAFER uses novel resource-specific analyses which
utilize taint- and control-dependency information to identify
program branches whose execution can be influenced by a
remote attacker via network inputs. SAFER also identifies and

int ms_fnmatch_w(const smb_ucs2_t *pattern,
const smb_ucs2_t *string,
int protocol, BOOL c_s) {

...
while ((c = *p++)) {
switch (c) {

...
case UCS2_CHAR(’*’):
for (; *n; n++) {

/∗ r e c u r s i v e c a l l t h a t i s v u l n e r a b l e t o
CPU e x h a u s t i o n ∗ /

if (!ms_fnmatch_w(p,n,protocol,c_s))
return 0;

}
...

}

Listing 8. Previously discovered Samba vulnerability

estimates the complexity of tainted recursive calls in order
to detect CPU- and stack-exhaustion vulnerabilities. We have
applied SAFER to several real-world systems, including FTP
and HTTP servers and XML parsers. SAFER successfully dis-
covered known DoS vulnerabilities, as well as three previously
unknown ones.

Future work includes developing analyses for sanitization
code, which can help filter out false positives, and extending
our approach to other types of DoS vulnerabilities by augment-
ing SAFER with new resource-specific analyses for problems
such as non-termination, memory leaks, and semantic flooding
attacks that acquire and don’t release resources (e.g., TCP
SYN floods which exhaust the server’s thread pool). Other
directions include automatic generation of attack inputs for the
vulnerabilities discovered by SAFER and extending SAFER to
languages such as PHP and Java.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in CCS, 2005.

[2] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing static and dynamic
analysis to validate sanitization in Web applications,” in S&P, 2008.

[3] D. Bernstein, “SYN cookies,” http://cr.yp.to/syncookies.html, 1996.
[4] J. Burnim, S. Juvekar, and K. Sen, “WISE: Automated test generation

for worst-case complexity,” in ICSE, 2009.
[5] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler, “EXE:

Automatically generating inputs of death,” in CCS, 2006.
[6] H. Chen, D. Dean, and D. Wagner, “Model checking one million lines

of C code,” in NDSS, 2004.
[7] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis

framework,” in ISSTA, 2007.
[8] M. Colón and H. Sipma, “Synthesis of linear ranking functions,” in

TACAS, 2001.
[9] J. Crandall and F. Chong, “Minos: Control data attack prevention

orthogonal to memory model,” in MICRO, 2004.
[10] S. Crosby and D. Wallach, “Denial of service via algorithmic complexity

attacks,” in USENIX Security, 2003.
[11] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner, “Memory safety

without runtime checks or garbage collection,” SIGPLAN Not., vol. 38,
no. 7, pp. 69–80, 2003.

[12] “CVE-2005-2316,” http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2005-2316, 2005.

[13] D. Evans, J. Guttag, J. Horning, and Y. Tan, “LCLint: A tool for using
specifications to check code,” SIGSOFT Softw. Eng. Notes, vol. 19, no. 5,
pp. 87–96, 1994.

[14] B. Gulavani and S. Gulwani, “A numerical abstract domain based on
expression abstraction and max operator with application in timing
analysis,” in CAV, 2008.

[15] W. Harrison, “Compiler analysis of the value ranges for variables,” IEEE
Trans. Softw. Eng., vol. 3, no. 3, pp. 243–250, 1977.

[16] IBM, “Configure SAX parsers for secure processing,” http://www.ibm.
com/developerworks/xml/library/x-tipcfsx.html, 2005.

[17] “CVE-2003-0718,” http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2003-0718, 2003.

[18] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool for
detecting Web application vulnerabilities (short paper),” in S&P, 2006.

[19] S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz-4-Sale: Surviving
organized DDoS attacks that mimic flash crowds,” in NSDI, 2005.

[20] M. Kenney, “Ping of Death,” http://insecure.org/sploits/ping-o-death.
html, 1997.

[21] J. Kong, C. Zou, and H. Zhou, “Improving software security via runtime
instruction-level taint checking,” in ASID, 2006.

[22] D. Larochelle and D. Evans, “Statically detecting likely buffer overflow
vulnerabilities,” in USENIX Security, 2001.

[23] “CVE-2008-3281,” http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2008-3281, 2008.

[24] B. Livshits and M. Lam, “Finding security vulnerabilities in Java
applications with static analysis,” in USENIX Security, 2005.

[25] C. Meadows, “A formal framework and evaluation method for network
denial of service,” in CSFW, 1999.

[26] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” SIGCOMM Comput. Commun. Rev., vol. 34,
no. 2, pp. 39–53, 2004.

[27] S. Muchnik, Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[28] G. Necula, S. McPeak, S. Rahul, and W. Weimer, “CIL: Intermediate
language and tools for analysis and transformation of C programs,” in
CC, 2002.

[29] G. Necula, S. McPeak, and W. Weimer, “CCured: Type-safe retrofitting
of legacy code,” in POPL, 2002.

[30] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans,
“Automatically hardening Web applications using precise tainting,” in
ISC, 2005.

[31] “CVE-2005-1807,” http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2005-1807, 2005.

[32] X. Qie, R. Pang, and L. Peterson, “Defensive programming: using an
annotation toolkit to build DoS-resistant software,” in OSDI, 2002.

[33] “CVE-2008-2930,” http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2008-2930, 2008.

[34] “CVE-2004-0930,” http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2004-0930, 2004.

[35] “samba-3.0.7-cve-2004-0930.patch,” http://us5.samba.org/samba/ftp/
patches/security/samba-3.0.7-CVE-2004-0930.patch, 2004.

[36] V. Sekar, N. Duffield, K. van der Merwe, O. Spatscheck, and H. Zhang,
“LADS: Large-scale automated DDoS detection system,” in Proc.
USENIX, 2006.

[37] G. Suh, J. Lee, D. Zhang, and S. Devadas, “Secure program execution
via dynamic information flow tracking,” in ASPLOS, 2004.

[38] D. Wagner, J. Foster, E. Brewer, and A. Aiken, “A first step towards
automated detection of buffer overrun vulnerabilities,” in NDSS, 2000.

[39] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker,
“DDoS defense by offense,” in SIGCOMM, 2006.

[40] G. Wassermann and Z. Su, “Sound and precise analysis of Web
applications for injection vulnerabilities,” in PLDI, 2007.

[41] “CVE-2005-0256,” http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2005-0256, 2005.

[42] “Debian changelog wu-ftpd (2.6.2-20),” http://packages.debian.
org/changelogs/pool/main/w/wu-ftpd/wu-ftpd 2.6.2-20/changelog.
html#versionversion2.6.2-19, 2005.

[43] “Ubuntu – details of package wu-ftpd in gutsy,” http://packages.ubuntu.
com/gutsy/net/wu-ftpd, 2007.

[44] “WU-FTPD file globbing denial of service vulnerability,” http://labs.
idefense.com/intelligence/vulnerabilities/display.php?id=207, February
2005.

[45] Y. Xie, A. Chou, and D. Engler, “ARCHER: Using symbolic, path-
sensitive analysis to detect memory access errors,” in ESEC/FSE, 2003.

[46] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting network
architecture,” in SIGCOMM, 2005.

[47] “CVE-2007-1285,” http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2007-1285, 2007.

[48] L. Zheng and A. Myers, “End-to-end availability policies and noninter-
ference,” in CSFW, 2005.

