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ABSTRACT
Re-identification is a major privacy threat to public datasets
containing individual records. Many privacy protection al-
gorithms rely on generalization and suppression of “quasi-
identifier” attributes such as ZIP code and birthdate. Their
objective is usually syntactic sanitization: for example, k-
anonymity requires that each “quasi-identifier” tuple appear
in at least k records, while `-diversity requires that the dis-
tribution of sensitive attributes for each quasi-identifier have
high entropy. The utility of sanitized data is also measured
syntactically, by the number of generalization steps applied
or the number of records with the same quasi-identifier.

In this paper, we ask whether generalization and sup-
pression of quasi-identifiers offer any benefits over triv-
ial sanitization which simply separates quasi-identifiers
from sensitive attributes. Previous work showed that k-
anonymous databases can be useful for data mining, but
k-anonymization does not guarantee any privacy. By con-
trast, we measure the tradeoff between privacy (how much
can the adversary learn from the sanitized records?) and
utility, measured as accuracy of data-mining algorithms
executed on the same sanitized records.

For our experimental evaluation, we use the same datasets
from the UCI machine learning repository as were used in
previous research on generalization and suppression. Our
results demonstrate that even modest privacy gains require
almost complete destruction of the data-mining utility. In
most cases, trivial sanitization provides equivalent utility
and better privacy than k-anonymity, `-diversity, and similar
methods based on generalization and suppression.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection; H.2.8 [Database
Management]: Database Applications—Data mining

General Terms
Algorithms, Security
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1. INTRODUCTION
Microdata records contain information about specific in-

dividuals. Examples include medical records used in public-
health research, individual transactions or preferences re-
leased to support the development of new data-mining algo-
rithms, and records published to satisfy legal requirements.

In contrast to statistical databases and randomized re-
sponse methods, the records in question contain actual,
unperturbed data associated with individuals. Some of the
attributes may be sensitive, e.g., health-related attributes
in medical records. Therefore, identifying attributes such as
names and Social Security numbers are typically removed
from microdata records prior to release. The published
records may still contain “quasi-identifiers,” e.g., demo-
graphic attributes such as ZIP code, age, or sex. Even
though the quasi-identifier attributes do not directly reveal
a person’s identity, they may appear together with the
identity in another public database, or it may be easy to
reconstruct their values for any given individual. Microdata
records may also contain “neutral” attributes which are
neither quasi-identifying, nor sensitive.

The association of quasi-identifiers with sensitive at-
tributes in public records has long been recognized as a
privacy risk [17,32]. This type of privacy breach is known as
sensitive attribute disclosure, and is different from member-
ship disclosure, i.e., learning whether a certain individual is
included in the database [12,26,30].

It is very easy to prevent sensitive attribute disclosure
by simply not publishing quasi-identifiers and sensitive at-
tributes together. Trivial sanitization that removes either all
quasi-identifiers, or all sensitive attributes in each data re-
lease provides the maximum privacy possible against an ad-
versary whose knowledge about specific individuals is limited
to their quasi-identifiers (this adversary is very weak, yet
standard in the microdata sanitization literature [10,22,34]).

There is large body of research on techniques such as k-
anonymity and `-diversity that apply domain-specific gener-
alization and suppression to quasi-identifier attributes and
then publish them together with unmodified sensitive at-
tributes. In this paper, we ask a basic question: what
benefit do these algorithms provide over trivial san-
itization? The only reason to publish generalized quasi-
identifiers and sensitive attributes together is to support
data-mining tasks that consider both types of attributes in
the sanitized database. Our goal in this paper is to evaluate
the tradeoff between this incremental gain in data-mining
utility and the degradation in privacy caused by publishing
quasi-identifiers together with sensitive attributes.



Our contributions. First, we give a semantic definition
of sensitive attribute disclosure. It captures the gain in the
adversary’s knowledge due to his observations of the sani-
tized dataset. This definition is somewhat similar to privacy
definitions used in random-perturbation databases [13], but
is adapted to the generalization and suppression framework.

Second, we give a methodology for measuring the tradeoff
between the loss of privacy and the gain of utility. Pri-
vacy loss is the increase in the adversary’s ability to learn
sensitive attributes corresponding to a given identity. Util-
ity gain is the increase in the accuracy of machine-learning
tasks evaluated on the sanitized dataset. The baseline for
both is the trivially sanitized dataset, which simply omits
either all quasi-identifiers, or all sensitive attributes, thus
providing maximum privacy and minimum utility.

Third, we evaluate our methodology on the same datasets
from the UCI machine learning repository as used in pre-
vious research on sanitized microdata utility [20–22]. We
show that non-trivial generalization and suppression either
results in large privacy breaches, or provides little incremen-
tal utility vs. a trivially sanitized dataset. Therefore, even
if the adversary’s knowledge is limited to quasi-identifiers,
the data-mining utility must be destroyed to achieve only
marginal privacy. To protect against an adversary with aux-
iliary knowledge, the loss of utility must be even greater.

2. RELATED WORK
Privacy in statistical databases has been a topic of much

research [2,35]. Techniques include adding random noise to
the data while preserving certain statistical aggregates [4,8,
13] and interactive output perturbation [6, 11].

By contrast, microdata publishing involves releasing un-
perturbed records containing information about individu-
als. k-anonymity is a popular interpretation of privacy [10,
31, 34]. Many methods have been proposed for achieving
it [5, 14, 15, 18, 19, 27, 29, 33, 41]; most apply generalization
and suppression to quasi-identifiers only. In Section 6, we
compare our experimental methodology to previous work.

Limitations of k-anonymity are: (1) it does not hide
whether a given individual is in the database [26, 30], (2) it
reveals individuals’ sensitive attributes [21, 22], (3) it does
not protect against attacks based on background knowl-
edge [22, 23], (4) mere knowledge of the k-anonymization
algorithm can violate privacy [43], (5) it cannot be applied
to high-dimensional data without complete loss of util-
ity [3], and (6) special methods are required if a dataset is
anonymized and published more than once [7, 37,40].

In [28], Øhrn and Ohno-Machado proposed that the sen-
sitive attributes associated with each quasi-identifier be “di-
verse.” This is similar to p-sensitivity [36], `-diversity [22],
and others [39, 42]. Diversity of sensitive attributes, how-
ever, is neither necessary, nor sufficient to prevent sensitive
attribute disclosure (see [21] and Section 4). A stronger def-
inition appears in [24], but it is unclear whether it can be
achieved in the data access model considered in the gener-
alization and suppression framework.

In the k-anonymity literature, the adversary’s knowledge
is limited to quasi-identifiers such as age and ZIP code.
Stronger adversaries with background knowledge are con-
sidered in [9, 23]. Our results show that generalization and
suppression do not protect privacy even against very weak
adversaries who only know the quasi-identifiers; privacy ob-
viously fails against stronger adversaries as well.

This paper is about sensitive attribute disclosure. Mem-
bership disclosure, i.e., learning whether a given individual
is present in the sanitized database, is a different, incompa-
rable privacy property. Methods for preventing membership
disclosure such as [12,26,30] are complementary to our work.

3. DEFINITIONS AND NOTATION
Let T = {t1, . . . tn} be a data table. Each ti is a tu-

ple of attribute values representing some individual’s record.
Let A = {a1, . . . am} be the set of attributes; t[ai] denotes
the value of attribute ai for tuple t. We use the follow-
ing notation for subsets of attributes and tuples. If C =
{c1, c2, . . . cp} ⊆ A, then t[C] denotes (t[c1], . . . t[cp]). If
U = {u1, u2, . . . up} ⊆ T , then U [a] denotes (u1[a], . . . up[a]).

Let S ∈ A be the sensitive attribute. This is an attribute
whose value the adversary should not be able to associate
with an individual (e.g., medical information). Let S =
{s1, . . . sl} be the set of possible attribute values for the
sensitive attribute S. All of the concepts in this paper are
easily explained in the single sensitive attribute setting, but
can also be generalized to multiple sensitive attributes.

Let Q ∈ A \ S be the quasi-identifier, i.e., the set of non-
sensitive (e.g., demographic) attributes whose values may
be known to the adversary for a given individual.

Two tuples ti and tj are Q-equivalent (denoted ti
Q≡ tj)

if ti[Q] = tj [Q]. This equivalence relation partitions T into
quasi-identifier equivalence classes, denoted as 〈tj〉, where

ti ∈ 〈tj〉 iff ti
Q≡ tj . Let EQ ⊆ T be a set of representative

records for each equivalence class imposed by
Q≡.

We make the standard assumption that the adversary
knows only the quasi-identifiers [10, 18, 34, 41]. This weak
adversary model makes our results stronger because if pri-
vacy fails against the weak adversary, it will also fail against
adversaries who have additional knowledge [22,23].
T may also contain attributes in A \ (Q ∪ S), which are

neither sensitive, nor quasi-identifying. For example, a user
may wish to construct a classifier that predicts the values of
these “neutral” attributes (e.g., length of hospital stay) on
the basis of both quasi-identifiers (e.g., age) and sensitive
attributes (e.g., diagnosis).

Consider a subset of tuples U = {u1, u2, . . . up} ⊆ T , and
the distribution of sensitive attribute values within U . For
any sensitive attribute value s, denote by Us the set {u ∈ U |
u[S] = s} of tuples in U whose sensitive attribute value is
equal to s, and denote by p(U, s) the corresponding fraction

of tuples in U , computed as |Us|
|U| . The notation p(U, s) can

be understood as “the probability that a randomly chosen
member of U has sensitive attribute value s.”

We assume that whenever an adversary is provided with
a sanitized table T ′, the record rows appear in a random
order to prevent “unsorted matching attacks” [34].

4. SENSITIVE ATTRIBUTE DISCLOSURE
Sensitive attribute disclosure occurs when the adver-

sary learns information about an individual’s sensitive
attribute(s). This form of privacy breach is different and in-
comparable to learning whether an individual is included in
the database, which is the focus of differential privacy [12].

To obtain a meaningful definition of data privacy, it
is necessary to quantify the knowledge about sensitive
attributes that the adversary gains from observing the san-



itized database. We call our definitions semantic because
they capture this shift in the adversary’s knowledge. The
need for semantic definitions of privacy is well-understood
for random-perturbation databases (e.g., [13]). By contrast,
research on microdata privacy has focused on purely syntac-
tic privacy definitions such as k-anonymity and `-diversity
(surveyed below), which only consider the distribution of
attribute values in the sanitized database, without directly
measuring what the adversary may learn.

4.1 Attack model
We use the standard model from the literature [10, 22].

The adversary is given a sanitized table T ′ generated from
an original table T , and the quasi-identifier t[Q] for some
target individual t known to be in the table T (i.e., we are
not considering membership disclosure). We re-emphasize
that giving the adversary more background knowledge will
result in even worse disclosure than we demonstrate.

To keep the sanitized database “truthful” [31,34], general-
ization and suppression are applied only to quasi-identifiers,
with sensitive attributes left intact. Therefore, the most
“private” sanitized table possible with this approach is the
trivial sanitization in which all Q are suppressed. Equally
effective is the trivial sanitization in which all S are sup-
pressed (and released in a separate, unlinked table).

The adversary’s baseline knowledge Abase is the minimum
information about sensitive attributes that he can learn after
any sanitization, including trivial sanitization which releases
quasi-identifiers and sensitive attributes separately. Abase is
the distribution of sensitive attributes in the original table,
which is revealed by any generalization and suppression al-
gorithm because sensitive attributes are left untouched to
keep them “truthful.” We are concerned about privacy leaks
in excess of this baseline knowledge; for example, if 90%
of the individuals in T have cancer, then it should not be
considered an attribute disclosure if the adversary concludes
that t has cancer with probability 90%, since this baseline
distribution is always revealed to the adversary. We for-
mally define Abase as the vector of probabilities representing
the distribution of sensitive attribute values in the entire
table T : Abase = 〈p(T, s1), p(T, s2), . . . , p(T, sl)〉.

The adversary’s posterior knowledge Asan is what he learns
from the sanitized table T ′ about the sensitive attributes of
his target individual t ∈ T . Unlike Abase, Asan takes quasi-
identifiers into account, because the records in T ′ contain a
mixture of generalized and suppressed quasi-identifiers. Be-
cause the generalization hierarchy on quasi-identifiers is re-
quired to be totally ordered [10], the adversary can uniquely
identify the quasi-identifier equivalence class 〈t〉 containing
the sanitized record of t in T ′. Asan is the distribution of
sensitive attribute values within this class 〈t〉: Asan(〈t〉) =
〈p(〈t〉, s1), p(〈t〉, s2), . . . , p(〈t〉, sl)〉.

Sensitive attribute disclosure is the difference between the
adversary’s posterior knowledge Asan and his baseline knowl-
edge Abase. It can measured additively or multiplicatively.

Adiff(〈t〉) = 1
2

Pl
i=1 |p(T, si)− p(〈t〉, si)|

Aquot(〈t〉) =
˛̨̨
log p(〈t〉,s)

p(T,s)

˛̨̨
Informally, it captures how much more the adversary learns
by observing sanitized quasi-identifiers than he would have
learned from a “maximally private” database where sensitive
attributes are separated from the quasi-identifiers.

4.2 Semantic privacy
To capture the incremental gain in the adversary’s knowl-

edge caused by the sanitized table T ′, we first consider his
baseline knowledge Abase as defined above. Recall that it
consists of the distribution of sensitive attributes in the ta-
ble T ∗, where all quasi-identifiers have been suppressed (any
sanitization that does not touch sensitive attributes neces-
sarily reveals T ∗). Furthermore, the adversary knows t[Q]
for all t ∈ T , i.e., the quasi-identifier attribute values for all
individuals in the database. The adversary can easily learn
these values from external databases and other resources.

Definition 1 (δ-disclosure privacy). We say that
an equivalence class 〈t〉 is δ-disclosure-private with regard
to the sensitive attribute S if, for all s ∈ S

Aquot(〈t〉) =

˛̨̨̨
log

p(〈t〉, s)
p(T, s)

˛̨̨̨
< δ

A table T is δ-disclosure-private if for every t ∈ EQ, 〈t〉 is
δ-disclosure private.

Intuitively, a table is δ-disclosure private if the distribu-
tion of sensitive attribute values within each quasi-identifier
class is roughly the same as their distribution in the entire
table. In contrast to [21], we use a multiplicative definition.
It correctly models disclosures when some value of the sen-
sitive attribute occurs in certain quasi-identifier classes, but
not in others. It also allows us to derive a bound on the gain
in adversarial knowledge, by relating the δ parameter to in-
formation gain used by decision tree classifiers such as ID3
and C4.5. Gain(S,Q) is defined as the difference between
the entropy of S and the conditional entropy H(S|Q).

Gain(S,Q) = H(S)−H(S|Q)

Lemma 1. If T satisfies δ-disclosure privacy, then
Gain(S,Q) < δ. Let αs = p(T, s) and let βt,s = p(〈t〉, s).

Note that αs =
P

t∈EQ
|〈t〉|
|T | βt,s.

Proof:

Gain(S,Q)

=
X
s∈S

−αs logαs −
X

t∈EQ

|〈t〉|
|T |

X
s∈S

−βt,s log βt,s

=
X
s∈S

X
t∈EQ

−|〈t〉||T | βt,s logαs −
X

t∈EQ

|〈t〉|
|T |

X
s∈S

−βt,s log βt,s

=
X

t∈EQ

|〈t〉|
|T |

X
s∈S

(−βt,s logαs + βt,s log βt,s)

=
X

t∈EQ

|〈t〉|
|T |

X
s∈S

βt,s log
βt,s

αs

<
X

t∈EQ

|〈t〉|
|T |

X
s∈S

βt,s · δ =
δ

|T |
X

t∈EQ

|〈t〉|
X
s∈S

|〈t〉s|
|〈t〉|

=
δ

|T |
X

t∈EQ

X
s∈S

|〈t〉s| = δ

Lemma 1 shows that when a database satisfies δ-disclosure
privacy, the ability to build a predictor for sensitive at-
tributes S based on the quasi-identifier Q is bounded by
δ. Note that definition 1 is stronger than the bound given
by lemma 1, because it requires that the distributions Abase

and Asan be similar, rather than just have similar entropies.



4.3 Syntactic privacy
k-anonymity. k-anonymity is based on the observation
that identity disclosure can lead to sensitive attribute disclo-
sure: if an adversary can determine which database record
corresponds to the target individual, then he can determine
this individual’s sensitive attribute value.

Definition 2 (k-anonymity [31,34]). Table T is k-
anonymous if and only if for each tj ∈ EQ, |〈tj〉| ≥ k

k-anonymity does not prevent sensitive attribute disclo-
sure [22,36], because an individual may belong to an equiv-
alence class in which sensitive attributes have a low-entropy
distribution. The attacker then learns the sensitive attribute
without learning which record belongs to the individual.

`-diversity. To prevent homogeneity attacks, sensitive at-
tribute values within each equivalence class should be “di-
verse.” This was observed in [28] and in [22].

Definition 3 (Recursive (c, `)-diversity [22]). Let
ri denote the number of times the ith most frequent sensi-
tive value appears in 〈ti〉. Given a constant c, 〈ti〉 satisfies
recursive (c, `)-diversity if r1 < c(r` + r`+1 + . . . + rm).
A table T satisfies recursive (c, `)-diversity if for every
ti ∈ Q-groups(T ), 〈ti〉 satisfies recursive (c, `)-diversity. We
say that (c, 1)-diversity is always satisfied.

Unfortunately, `-diversity is neither necessary, nor suffi-
cient to prevent sensitive attribute disclosure [21]. While
it prevents an attacker from learning a sensitive attribute
exactly, it can still reveal a lot of probabilistic information.

For example, consider a database in which 1% of indi-
viduals have a rare form of cancer and the quasi-identifier
equivalence class 〈ti〉 in which, say, 30% have this form of
cancer (or any high percentage, as required by the diversity
criterion). If the adversary’s target individual t ∈ 〈ti〉, then
the adversary can immediately infer that his target is far
more likely to have this form of cancer than a random in-
dividual in the database. In general, probabilistic sensitive
attribute disclosure occurs whenever an attribute which is
not diverse in the overall sensitive attribute distribution ap-
pears diverse in some quasi-identifier equivalence class. On
the other hand, if only 1% of individuals in the equivalence
class have this form of cancer, then there is no sensitive at-
tribute disclosure, even though the class is not diverse.

t-closeness. In [21], Li et al. assume that the adversary
knows the distributionAbase of sensitive attribute values over
the entire table, which is a reasonable assumption because
this information would have been revealed even if the quasi-
identifiers had been completely suppressed.

If the adversary determines that the target individual is in
an equivalence class with a sensitive attribute value distri-
bution significantly different from Abase, then he learns a lot
of information about the individual. The goal of t-closeness
is to ensure that these distributions are never too different.

Definition 4 (t-closeness [21]). An equivalence
class 〈ti〉 has t-closeness if the distance between the distri-
bution of a sensitive attribute in this class Asan(〈t〉) and
the distribution of the attribute in the whole table Abase is
no more than a threshold t. A table has t-closeness if all
equivalence classes have t-closeness.

The critical question is how to measure the distance be-
tween distributions. In [21], the Earth Mover’s distance
(EMD) is used, which for nominal attributes is equivalent
to Adiff . This is an additive (as opposed to multiplicative)
measure, and does not translate directly into a bound on
the adversary’s ability to learn sensitive attributes associ-
ated with a given quasi-identifier. By contrast, Lemma 1
gives such a bound for our semantic privacy definition.

Even though t-closeness does not directly bound the gain
in adversary’s knowledge, it is similar in its spirit to se-
mantic privacy; it, too, attempts to capture the difference
between the adversary’s baseline knowledge and the knowl-
edge he gains from the quasi-identifier equivalence classes in
the sanitized table. As parameters (t and δ, respectively)
approach 0, both t-closeness and our definition 1 converge
to statistical independence of quasi-identifiers and sensitive
attributes within the sanitized database.

4.4 Measuring privacy of sanitized databases
Semantic privacy definitions, such as our definition 1,

bound sensitive attribute disclosure, but an actual database
instance may have less sensitive attribute disclosure (and
thus more privacy) than permitted by the definition.

Conventional privacy metrics rely on syntactic properties
of the sanitized dataset: number of records with the same
quasi-identifier (k-anonymity) or frequency of sensitive at-
tributes within each quasi-identifier class (`-diversity). Un-
fortunately, the two metrics are incomparable. In [22], k and
` are compared directly, even though the two have different
domains: k can vary from 1 to the total number of records,
while ` can vary from 1 to the number of different sensi-
tive attribute values. For example, a 1000-record database
with a binary sensitive attribute can never be more than
2-diverse, but it can be anywhere up to 1000-anonymous.

We propose two different metrics to quantify attribute dis-
closure allowed by a sanitized database T ′ as opposed to
T ∗ where all quasi-identifiers have been trivially suppressed.
The first is based on the attribute disclosure distance Adiff :

Aknow =
1

|T |
X

t∈EQ

|〈t〉| · Adiff(〈t〉)

Aknow stands for “adversarial knowledge gain.” It is the
average amount of information about the sensitive attributes
of individual t that the adversary learns because he is able
to identify the class 〈t〉 based on t’s quasi-identifier.

One may also consider a metric based on Aquot, but only
semantically private databases achieve a finite privacy score.
Other privacy definitions allow sensitive attribute values to
be absent from some quasi-identifier classes, enabling the
adversary to learn with certainty that the corresponding in-
dividual does not have this value.

The second metric quantifies the adversary’s ability to
predict his target t’s sensitive attribute using his best strat-
egy, which is to guess the most common sensitive attribute
in 〈t〉. For a quasi-identifier class 〈t〉, let smax(〈t〉) be the
most common sensitive attribute value found in 〈t〉. Then,

Aacc =

0@ 1

|T |
X

t∈EQ

|〈t〉| · p (〈t〉, smax(〈t〉))

1A− p(T, smax(T ))

Aacc stands for “adversarial accuracy gain” and measures
the increase in the adversary’s accuracy after he observes
the sanitized database T ′ compared to his baseline accuracy



from observing T ∗, which is the most private database that
can be obtained by generalization and suppression.
Aacc underestimates the amount of information leaked by

the sanitized table T ′, because it does not consider shifts in
the probabilities of non-majority sensitive attributes. It is
still a useful metric because it can be directly compared to
our metrics of data-mining utility, described in Section 5.

5. MEASURING UTILITY
Utility of any dataset, whether sanitized or not, is innately

tied to the computations that one may perform on it. For
example, a census dataset may support an extremely ac-
curate classification of income based on education, but not
enable clustering based on household size. Without a work-
load context, it is meaningless to say whether a dataset is
“useful” or “not useful,” let alone to quantify its utility.

Nevertheless, the stated goal of privacy-preserving micro-
data publishing is to produce sanitized datasets that have
“good” utility for a large variety of workloads. The un-
known workload is an essential premise—if the workloads
were known in advance, the data publisher could simply ex-
ecute them on the original data and publish just the results
instead of releasing a sanitized version of the data.

The need for a workload-independent measure of utility
has led to the use of syntactic properties as a proxy for
utility. One approach is to minimize the amount of gener-
alization and suppression applied to the quasi-identifier at-
tributes to achieve a given level of privacy [10]. This “mini-
mization”is done with respect to absolute difference, relative
distance, maximum distribution, or minimum suppression.
Other syntactic metrics include the number of generaliza-
tion steps, average size of quasi-identifier equivalence classes,
the sum of squares of class sizes [22], and preservation of
marginals [16].

Workload-independent metrics quantify the “damage”
caused by sanitization, but they do not measure how much
utility remains. For example, small quasi-identifier equiva-
lence classes do not imply anything about the accuracy of
classifiers that one may compute on the sanitized data [25].

It has been recognized that utility of sanitized databases
must be measured empirically, in terms of specific workloads
such as classification algorithms [15, 20, 38]. This does not
necessarily contradict the “unknown workload” premise of
sanitization. It simply acknowledges that even when sani-
tization satisfies a syntactic damage minimization require-
ment, it may still destroy the utility of a dataset for certain
tasks; it is thus essential to measure the latter when evalu-
ating effectiveness of various sanitization methods.

We can assume that users of the sanitized database are in-
terested in workloads that take advantage of attribute corre-
lations within the database, e.g., construction of classifiers.
For workloads which consider attributes in isolation, the
data publisher can achieve maximum privacy by simply pub-
lishing two tables, one with the permuted quasi-identifiers,
the other with the remaining attributes since they cannot
be linked to the quasi-identifiers. Intuitively, utility of a
sanitized database should be measured by how well cross-
attribute correlations are preserved after sanitization.

It is critically important to measure both privacy and util-
ity using the same methodology. Otherwise, maximizing
utility may lead to privacy violations. For example, if utility
is measured as the ability to predict sensitive attributes from
the quasi-identifiers, then it is exactly the same as adversar-

ial sensitive attribute disclosure! Iyengar [15] concludes that
classification accuracy is maximized when attributes are ho-
mogeneous within each quasi-identifier group: this directly
contradicts the diversity requirement [22,36]. Similarly, [41]
says that the data publishing process should preserve cor-
relation between quasi-identifiers and sensitive attributes.
This contradicts both diversity and semantic privacy, and
immediately leads to sensitive attribute disclosure.

We aim to measure the tradeoffs between privacy and util-
ity in a single framework, using semantic definitions for both:
privacy in terms of adversarial sensitive attribute disclosure,
utility in terms of concrete machine-learning tasks.

First, for a given workload w, we measure workload-
specific utility of trivially sanitized datasets, i.e., datasets
from which either all quasi-identifiers Q, or all sensitive at-
tributes S have been removed. Both provide the maximum
privacy achievable using generalization and suppression.

Let U (w)
base be the corresponding empirical utility (to com-

pute U (w)
base , we pick the trivial sanitization with the largest

utility). We give specific workloads and utility metrics
in Section 6; for example, when the workload w involves

computing a classifier, U (w)
base is the accuracy of this classifier.

Then, we consider several non-trivially sanitized tables T ′,
one for each value of the sanitization parameter. For each

table, we compute its workload-specific utility U (w)
san .

The critical metric is U (w)
san −U (w)

base . This is the incremental
utility gain provided by the release of non-trivially sanitized

data. Note that if U (w)
san −U (w)

base is close to 0, then non-trivial
sanitization is pointless for this specific workload. In this
case, a trivial sanitization which suppresses all Q or removes
all S provides as much utility as any sophisticated sanitiza-
tion algorithm while providing as much privacy as possible.

Another metric we’ll employ is U (w)
max , the utility of

workload w as measured on the original, pre-sanitization

database. If U (w)
max is low (e.g., the corresponding classifier

has low accuracy), this means that the workload is inappro-
priate for the data regardless of sanitization. It does not
make sense to measure utility in terms of this workload,
because even if the users had been given the entire original
database, the utility would have been low.

6. EXPERIMENTS
Our experiments demonstrate that a trivial sanitizer

which simply suppresses all quasi-identifiers or all sensitive
attributes produces datasets with equivalent utility and
better privacy (or equivalent privacy and better utility)
than non-trivial generalization and suppression.

This appears to contradict previous work. For example,
it was shown that useful machine-learning workloads can
be evaluated on k-anonymous datasets [15, 20]. Of course,
k-anonymity is neither necessary, nor sufficient for privacy.
The “useful” datasets in question simply don’t prevent sen-
sitive attribute disclosure.

At the other end of the spectrum, `-diversity [22] and t-
closeness [21] do limit sensitive attribute disclosure. Utility,
however, is measured syntactically, by the number of gen-
eralization steps applied to quasi-identifiers, average size of
quasi-identifier equivalence classes, sum of squares of class
sizes, or preservation of marginals. In contrast to this paper,
the actual data-mining utility is not measured.

Wang et al. [38] give a sanitization which ensures a strong
privacy definition and better data-mining utility on the UCI



Attribute Values Generalization
Age 74 continuous
Workclass 7 hierarchy
Education 16 continuous
Marital Status 7 hierarchy
Occupation 14 hierarchy
Race 5 hierarchy
Sex 2 hierarchy
Native Country 41 hierarchy
Salary 2 hierarchy

Table 1: Summary of the UCI “Adult” dataset.

Adult dataset than simple removal of all sensitive attributes.
They do not consider the other trivial sanitization, which is
to remove all quasi-identifiers. We repeated their experi-
ments and observed that their sanitization does not provide
significantly better utility than the trivially sanitized dataset
consisting of sensitive attributes only.

6.1 Achieving semantic privacy
Semantic privacy, as defined in Section 4.2, is easily incor-

porated into k-anonymity frameworks such as Incognito [18].
Like `-diversity [22] and t-closeness [21], semantic privacy
has the monotonicity property : a generalization of a seman-
tically private table is itself semantically private.

We used the implementation of generalization and sup-
pression from LeFevre et al. [20], and modified the con-
straint checking portion of the code to support recursive
(c, `)-diversity (c=3 in all of our tests), t-closeness for nom-
inal sensitive attributes, and semantic privacy from this pa-
per (in the figures, s stands for δ from definition 1). This im-
plementation is“workload-aware,” i.e., when choosing quasi-
identifiers in Q to generalize, it attempts to maximize infor-
mation gain for some target attribute.

6.2 Experimental methodology
To enable direct comparison with previous microdata san-

itization work [21, 22], we used the same data for our ex-
periments: the 45,222-record Adult database from the UCI
Machine Learning Repository [1], described in table 1. Our
classifier learning used Weka with the default settings for
C4.5 (J48), Random Forests, and Naive Bayes. For all clas-
sification experiments, we used 10-fold cross-validation.

Choosing the quasi-identifier. In a real database, the
set of quasi-identifier attributes Q is domain-specific, and
includes the attributes to which the adversary is most likely
to have access via an external database (e.g., demographic
information). For our experiments, we examined several dif-
ferent sets of attributes for Q. All were picked to maximize
the likelihood that sanitization will produce a useful table.

It is common in the literature to choose large quasi-
identifiers, sometimes consisting of all non-sensitive at-
tributes. A larger quasi-identifier, however, gives more
prior information to the adversary and requires heavier
generalization and suppression during sanitization. Large
quasi-identifiers thus underestimate utility of the dataset
and increase the risk of a privacy breach. Our most impor-
tant criterion for choosing Q was to keep it small, to make
the adversary’s task as hard as possible.

Furthermore, if a legitimate user (whom we will call “re-
searcher”) is to get more utility out of the sanitized database

Attribute Intact Suppressed
Workclass 74.8618% 74.6672%
Education 41.6899% 41.1658%
Marital Status 69.3623% 58.5777%
Occupation 32.2387% 30.0363%
Country 91.7960% 91.6147%
Salary 82.7916% 82.4311%

Table 2: The effect of including age, sex, and race
on decision tree learning accuracy.

than the adversary, his task(s) must be different from the
adversary’s. If the sensitive attribute is also the researcher’s
target attribute and all other attributes are quasi-identifiers,
then both the researcher and the attacker are trying to use
Q to predict S! This is why in our measurements of utility,
we consider utility of classification on “neutral” attributes
which are neither quasi-identifiers, nor sensitive.

Choosing the workload and the sensitive attribute.
We must also choose a workload for the legitimate re-
searcher. As discussed in Section 5, classification is a
good workload because quality of classification depends
on the correlations between attributes in the database,
and the entire purpose of “truthfully” publishing quasi-
identifiers and sensitive attributes together is to preserve
these cross-attribute correlations.

We will look at classification of both sensitive and neutral
attributes. It is important to choose a workload (target)
attribute v for which the presence of the quasi-identifier at-
tributes Q in the sanitized table actually matters. If v can
be learned equally well with or without Q, then the data
publisher can simply suppress all quasi-identifiers.

Table 2 shows the difference in decision tree learning accu-
racy depending on whether or not the quasi-identifier (age,
sex, race) is included. Only marital status shows a signif-
icant drop when the quasi-identifier is entirely suppressed,
thus we choose it as the workload attribute for the “Occu-
pation” dataset. Even though salary is intuitively the sen-
sitive attribute in the “Adult” dataset, when the workload

w is “learning salary,” then U (w)
max ≈ U (w)

base . Since we are in-
terested in measuring utility of non-trivial sanitization (i.e.,
how much utility it provides over the table in which all quasi-
identifiers have been suppressed), we are only interested in

scenarios where U (w)
san > U (w)

base ; otherwise, complete suppres-
sion of Q provides better privacy and same utility as any

non-trivial sanitization. When U (w)
max ≈ U (w)

base , it cannot be

the case that U (w)
san > U (w)

base , thus we do not choose salary as
the sensitive attribute, and use marital status instead.

Datasets used. In the “Marital” dataset, Q=(age, occupa-
tion, education), S=marital status, the workload attribute
is salary. In the “Occupation” dataset, Q=(age, sex, race),
S=occupation, the workload attribute is marital status.

6.3 Experimental results
Learning the sensitive attribute S. The researcher may
wish to build a classifier for the sensitive attribute S using
both the quasi-identifiers and the neutral attributes as pre-
dictors. Of course, if sanitization has been correctly per-
formed, it is impossible to build a good classifier for S based
only on Q, because good sanitization must destroy any cor-
relation between S and Q (otherwise, the adversary will eas-
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Figure 1: Gain in classification accuracy for the sen-
sitive attribute (marital) in the “Marital” dataset.
With trivial sanitization, accuracy is 46.56% for the
adversary and 58.30% for the researcher.

ily learn the sensitive attributes associated with any quasi-
identifier). Our results demonstrate that the researcher can
build a classifier for S without using the attributes in Q just
as well as when using sanitized versions of Q.

Figure 1 shows the loss of privacy, measured as the gain
in the accuracy of adversarial classification Aacc for different
sanitizations of the “Marital” dataset, and compares it with

the gain in workload utility U (w)
san −U (w)

base where the workload
w is building a decision tree classifier for the “marital sta-
tus” attribute. As explained in Section 4.4, accuracy of ad-
versarial classification underestimates the actual amount of
sensitive attribute disclosure. Figure 1 shows that releasing
a sanitized table instead of simply suppressing all Q helps
the adversary associate sensitive attributes with individuals
much more than it helps the researcher to build legitimate
classifiers. Figure 2 shows the same result for the “Occupa-
tion” dataset, where the workload w is building a decision
tree classifier for the “occupation” attribute.

Learning a non-sensitive workload attribute. Perhaps
it is not surprising that sanitization makes it difficult to
build an accurate classifier for the sensitive attribute. We
now consider the case when the researcher wishes to build a
classifier for a non-sensitive attribute v.

If both Q and S are correlated with v, then a classifier
based on both Q and S may have higher accuracy than one
that considers only Q, only S, or neither. Our results show
that sanitization which removes the correlation between S
and Q also destroys the correlation between S and v.

In these experiments, we compute U (w)
base by running dif-

ferent machine learning algorithms on both trivially sani-

tized versions of the database; U (w)
base is the accuracy of the

best classifier. We then compute U (w)
base − U

(w)
san for different

sanitizations and different machine learning algorithms, and
compare this to the increase in adversarial accuracy Aacc.

Figure 3 compares gains in adversary’s and researcher’s re-
spective accuracies for the “Marital” dataset (workload w is
learning the“salary”attribute). The classification accuracies
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Figure 2: Gain in classification accuracy for the
sensitive attribute (occupation) in the “Occupa-
tion” dataset. With trivial sanitization, accuracy
is 13.31% for the adversary and 30.18% for the re-
searcher.

with the sensitive attribute removed were 80.73% for J48,
77.12% for Random Forests, and 79.45% for Naive Bayes.
Thus, the baseline for utility was set to 80.73%.

Figure 4 compares gains in adversary’s and researcher’s
respective accuracies for the “Occupation” dataset (work-
load w is learning the “marital status” attribute). Here we

see that U (w)
max = 69.52% and U (w)

base = 69.30% where the base-
line comes from J48 learning with the sensitive attribute

removed. With such a small gap between U (w)
max and U (w)

base , it
is not surprising that classification accuracies for sanitized
datasets are below those of trivial sanitizations, where the
sensitive attribute was simply removed.

Privacy of the sanitized database. Table 3 shows the
Aacc and Aknow scores for different sanitizations of the “Oc-
cupation” dataset (the accuracies are low even for the in-
tact database because the quasi-identifiers do not identify
a unique individual). Even for large k, k-anonymity barely
changes the value of Aknow compared to the intact database.
In other words, k-anonymity provides no privacy im-
provement whatsoever on this dataset. Furthermore, `-
diversity is no better than trivial sanitization because
it requires complete suppression of the quasi-identifiers to
substantially limit the gain in adversary’s knowledge.

7. ACHIEVING PRIVACY AND UTILITY
Our experimental results in Section 6 indicate that, em-

pirically, it is difficult to find a database table on which san-
itization permits both privacy and utility. Any incremental
utility gained by non-trivial sanitization (as opposed to sim-
ply removing quasi-identifiers or sensitive attributes) is more
than offset by a decrease in privacy, measured as the adver-
sarial sensitive attribute disclosure. It is possible, however,
to construct an artificial database, for which sanitization
provides both complete utility and complete privacy, even
for the strongest definition of privacy (semantic privacy).

Consider table T , in which each tuple t has five attributes
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Figure 3: Gain in the adversary’s ability to learn
the sensitive attribute (marital) and the researcher’s
ability to learn the workload attribute (salary) for
the “Marital” dataset. With the trivial sanitization,
accuracy is 46.56% for the adversary, and 80.73%
for the researcher.

a1, a2, a3, a4, a5. Their values are defined by three coin flips
r1, r2, r3, which are generated independently at random for
each tuple. The attributes are as follows:

a1 = r1 a2 = r2 a3 = (r2, r3) a4 = r1⊕r3 a5 = r1⊕r2

Now consider the case where Q = {a1, a2}, S = a3. This
database is a candidate for sanitization, since Q provides a
lot of information about S (half of the sensitive attribute can
be predicted perfectly from the quasi-identifier). If we sani-
tize by suppressing a2, then we are left with a database T ′

which is perfectly private, since a1 reveals nothing about a3.
But this database also has perfect utility, since a researcher
can learn a4 exactly from a1 and a3, and he can learn a5 ex-
actly from a1 and a3, and he can learn a3 exactly from a1, a4,
and a5. Furthermore, if Q were completely suppressed, the

Sanitization Aacc Aknow

Intact 0.1034 0.2492
k=10 0.0957 0.2331
k=100 0.0909 0.2236
k=1000 0.0885 0.2131
l=2 0.0966 0.2353
l=5 0.0940 0.2316
l=10 0.0400 0.1217
l=15 0 0
t=.4 0.0924 0.2264
t=.3 0.0861 0.2131
t=.2 0.0396 0.1213
δ=1.2 0.0328 0.0944
δ=1.0 0.0327 0.0937
δ=.8 0.0327 0.0915
Suppressed 0 0

Table 3: Aacc and Aknow scores for different sanitiza-
tions of the “Occupation” dataset.
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Figure 4: Gain in the adversary’s ability to learn the
sensitive attribute (occupation) and the researcher’s
ability to learn the workload attribute (marital) for
the “Occupation” dataset. With the trivial saniti-
zation, accuracy is 13.31% for the adversary, and
69.30% for the researcher.

researcher could learn nothing about a4 or a5 and he could
only learn half the information about a3 (r2⊕ r3). If S were
omitted, the researcher could learn nothing about a4 and
only half of the information about a5.

This artificial dataset is very unusual, and it is unclear
whether any real datasets exhibit similar properties. For
instance, sensitive attributes S can be split into two parts,
one of which is 100% correlated with the quasi-identifiers Q
and the other is completely independent of Q. Sanitization
can thus suppress the dependent part of Q entirely, while
leaving the independent part intact. Furthermore, a4 and
a5 are both completely determined by the joint distribution
of S and Q, but independent of either one taken alone. It is
unclear how often attributes which are pairwise independent
but jointly dependent arise in real data.

8. CONCLUSIONS
Microdata privacy can be understood as prevention of

membership disclosure (the adversary should not learn
whether a particular individual is included in the database)
or sensitive attribute disclosure (the sanitized database
should not reveal very much information about any in-
dividual’s sensitive attributes). It is known that gen-
eralization and suppression cannot prevent membership
disclosure [12,26]. For sensitive attribute disclosure, perfect
privacy can be achieved—against a very weak adversary
who knows just the quasi-identifiers—by simply removing
the sensitive attributes or the quasi-identifiers from the
published data. Of course, these trivial sanitizations also
destroy any utility that depended on the removed attributes.

Algorithms such as k-anonymity and `-diversity leave all
sensitive attributes intact and apply generalization and sup-
pression to the quasi-identifiers. The goal is to keep the data
“truthful” and thus provide good utility for data-mining
applications, while achieving less than perfect privacy. We



argue that utility is best measured by the success of data-
mining algorithms such as decision tree learning which take
advantage of relationships between attributes. Algorithms
that need only aggregate statistical information can be
executed on perturbed or randomized data, with much
stronger privacy guarantees against stronger adversaries
than achieved by k-anonymity, `-diversity, and so on.

Our experiments, carried out on the same UCI data as was
used to validate existing microdata sanitization algorithms,
show that the privacy vs. utility tradeoff for these algorithms
is very poor. Depending on the sanitization parameter, san-
itized datasets either provide no additional utility vs. trivial
sanitization, or the adversary’s ability to compute the sen-
sitive attributes of any individual increases much more than
the accuracy of legitimate machine-learning workloads.

An important question for future research is whether there
exists any real-world dataset on which quasi-identifier gen-
eralization supports meaningfully better data-mining accu-
racy than trivial sanitization without severely compromising
privacy via sensitive attribute disclosure.

Another important question is how to design microdata
sanitization algorithms that provide both privacy and util-
ity. Sensitive attribute disclosure results, in part, from the
fact that each individual t can only belong to a unique quasi-
identifier equivalence class 〈t〉 in the sanitized table T ′. This
is a consequence of the requirement that the generalization
hierarchy be totally ordered [10]. This requirement helps
the adversary, but does not improve utility. If we consider
G(t), the set of records in T ′ whose quasi-identifier values
are generalizations of t[Q], there is no privacy reason why
each record of G(t) must have the same quasi-identifier val-
ues. It is possible that a generalization strategy that uses,
e.g., DAGs instead of totally ordered hierarchies may pro-
vide better privacy than the existing algorithms.
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