
Appears in the Proceedings of the 2005 Workshop on High Performance Computing Reliability Issues

Fault Aware Instruction Placement for Static Architectures

Premkishore Shivakumar Divya P. Gulati Calvin Lin Stephen W. Keckler

Department of Computer Sciences
The University of Texas at Austin

Abstract

Aggressive technology scaling, rising clock frequencies,and the
continued increase in microprocessor power density threaten both
manufacturing yield rates and long-term reliability of integrated
circuits. While defects in dynamically scheduled microprocessor
architectures can be tolerated using mechanisms that are trans-
parent to software, static architectures create differentopportuni-
ties and challenges for reliability management. This paperpro-
poses to expose the defective hardware configuration in a static
architecture to the compiler, which can perform efficient fault re-
configuration through intelligent instruction scheduling. We con-
ducted our studies on the TRIPS architecture whose computation
core consists of a two-dimensional array of ALUs. The compiler
generates blocks of instructions that are statically placed on the
distributed ALU array, which are then executed dynamicallyin
dataflow order. We consider two fault models, one in which only
the computation elements can fail, and another that also allows
faults in the communication channels. We examine scheduling al-
gorithms that can avoid the faulty resources by exploiting the spa-
tial redundancy inherent in the computation substrate. Fora set of
microbenchmarks, preliminary results demonstrate that our algo-
rithms can reschedule the assembly code to tolerate execution unit
faults with negligible loss in performance.

1 Introduction
Aggressive technology scaling, rising clock frequencies,

and the continued increase in microprocessor power density
threaten both the manufacturing yield rates and the long-
term reliability of devices. Shrinking lithography, new ma-
terials and process technologies, and lower design toler-
ances increase the yield sensitivity to design features, and
make integrated circuits more susceptible to manufacturing
defects [7]. Further, rising core operating temperatures and
power densities accelerate processor wear-out from intrin-
sic failure mechanisms such as electromigration, leading to
reduced processor lifetimes [14].

Todays microprocessor based systems implement fault
tolerance both at the system and the processor level. At
the system level, they include hot spares for power supplies,
processor chips, and memory modules, and rely on a service

processor and the operating system for fault detection and
reconfiguration. Recent microprocessor systems employ
virtualization, and dynamic reconfiguration techniques such
as dynamic CPU sparing to achieve goals of system perfor-
mance, and availability [5, 4]. Fault tolerance at the proces-
sor level is typically implemented through purely hardware
based techniques that are restricted to parity, ECC, and re-
dundant rows in caches; and scrubbing and redundant bit-
steering in the main storage. In the future, increasing de-
mand for greater parallelism and faster clock rates will re-
quire microprocessors to distribute their resources and re-
move primitives that require single cycle global communi-
cation. We recognise that fault tolerance through purely
hardware techniques in such processor architectures can
lead to overheads in area, verification, and more importantly
cycle time. First, we propose that future static architectures
push dynamic fault reconfiguration within the boundaries
of a single processor to achieve greater yield and system
availability. Second, we propose that the defective proces-
sor configuration be exposed to the compiler which can then
perform efficient fault reconfiguration by intelligent instruc-
tion placement. We argue that fault aware physical layout
of the instructions can more effectively exploit the avail-
able spatial redundancy, and with fewer overheads than a
purely hardware based approach to achieve both better per-
formance and yield.

We conducted our studies on the TRIPS architecture
whose computation core consists of a two-dimensional ar-
ray of ALUs. The compiler generates hyperblocks [8] of in-
structions that are statically placed on the distributed ALU
array which are then executed dynamically in dataflow or-
der. We consider two fault models, one in which only the
computation elements can fail, and another that also allows
faults in the communication channels. We examine schedul-
ing algorithms that can avoid the faulty resources by ex-
ploiting the spatial redundancy inherent in the computation
substrate. For a set of microbenchmarks, preliminary re-
sults demonstrate that our algorithms can reschedule the as-
sembly code to tolerate execution unit faults with negligi-
ble loss in performance. In this study, we focus only on
defects exposed during the static compilation time, but we

see a natural path for extending the mechanism for dynamic
compilation.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses how our work is related to, and extends
other work in this area. Section 3 introduces the TRIPS
architecture, discusses the fault model and describes the
duties of a fault aware scheduling algorithm for this fault
model. The base TRIPS scheduler algorithm, and our pro-
posed fault aware algorithm are described in Section 4. We
then briefly describe our methodology in Section 5. The ex-
perimental results are described in Section 6. Finally, Sec-
tion 7 presents our conclusions.

2 Related Work

Yield management is typically done at multiple levels of
the design. There are several ways in which additionalde-
sign for yieldguidelines can be incorporated to minimize
the effects of common yield detractors at the layout and the
circuit level [6]. Once these defects occur on the devices
in the chip, techniques can be employed at the microarchi-
tectural level to mask faults arising from these defects. In
designs with a high degree of regularity such as DRAMs
and SRAMs, it is common to make use of extra redundant
rows to help improve yield. While defects in dynamic su-
perscalar architectures can be tolerated using dynamic hard-
ware mechanisms [12], static architectures provide an op-
portunity for software assisted yield management. In this
paper, we propose to extend yield management in static ar-
chitectures to the compiler level, thus enabling fault aware
instruction placement and potentially achieving better yield
and performance [12].

Dynamic reconfiguration on logically partitioned IBM
pSeries symmetric multiprocessor systems allows move-
ment of hardware resources from one partition to another
enabling autonomic system management to optimize per-
formance, resource utilization, and reliability [4]. It pro-
vides the foundation for self-healing and diagnosing soft-
ware for dynamic CPU sparing that allows systems to trans-
parently replace a defective processor with a fully func-
tional processor with no impact on the application. The
self-diagnosing software monitor the recoverable error rates
for processors through firmware routines [4]. If the number
of errors exceed an internal threshold, the operating system
is notified which in turn triggersdynamic reconfigurationto
substitute the defective processor.

We propose a more fine-grained technique where the
error-detection mechanisms would first trigger a dynamic
translation layer that attempts to isolate the fault withinthe
processor. The dynamic translation layer we suggest is an
instruction scheduler that can perform dynamic sparing of
the defective processor resources, failing which the next
layer or the operating system is triggered to replace the de-
fective processor. The dynamic translation layer should be

capable of extracting instruction blocks from the binary, and
then remapping the block instructions to produce new as-
sembly code and binary that will successfully execute on the
faulty hardware by avoiding the defective resources. In this
study, we focus only on defects exposed during the static
compilation time and investigate scheduling algorithms that
can perform the fault reconfiguration described above. Of
course fail-in-place also requires techniques for detection
and recovery from intermittent and transient failures that
occur during a program’s execution, and some such mecha-
nisms are summarized in the literature [1, 10].

Traditionally, VLIW processors expose the processor
pipeline details to the compiler, requiring all existing bina-
ries to be recompiled following any change in the pipeline
microarchitecture. The Transmeta Crusoe processor virtu-
alized an X86 CPU by implementing a code morphing soft-
ware layer that dynamically translated instructions from the
target X86 ISA to the VLIW host ISA [5]. The Transmeta
processor thus solved the problem by exposing the actual
VLIW hardware configuration only to the code morphing
software that does the dynamic translation. In general, dy-
namic translation can be used to isolate the details of the
hardware from the software whenever the underlying hard-
ware configuration is expected to change, thus enabling ap-
plication portability to new environments and processors.In
this paper, we extend this concept to reliability management
in static architectures.

3 Yield Management in the TRIPS Architec-
ture

We begin by describing the salient features of the TRIPS
architecture. We then argue that the instruction scheduler
is a suitable place for implementing fault tolerance in the
TRIPS processor, and explore the duties of a fault aware
scheduling algorithm for a specific fault model.

3.1 TRIPS Architecture

The TRIPS architecture [2] contains a two-dimensional
array of computation elements connected by a thin mesh
operand routing network. Each ALU includes an integer
unit, a floating point unit, an operand router, and an in-
struction and operand buffer for storing instructions and
their operands. The operand router follows dimension-order
routing to communicate within the network. When routing
a packet from a parent to a child node, the packet first travels
in the x-direction (along the row) until it reaches the column
of the child. Then it travels in the y-direction until it reaches
the child node. Figure 1 illustrates the organization of the
TRIPS core.

The TRIPS compiler generates hyperblocks [8] and
schedules each hyperblock independently. An example
schedule of instructions on a2�2 execution array is shown
in Figure 2.Readinstructions are used to fetch values from
the register file to the consumer instructions. Block register

S

e
c
o
n
d
a
ry

C
a
c
h
e

In
te

rf
a
c
e

Router

Input ports

Output ports

Operand

buffers

Integer
FP

Frame C

Frame B

Frame A

Instruction

buffers

A

B

C

G R R R R

D

D

D

DI

I

I

I

I

EE

E

E

E

E

E

E

EE

E

E

E

E

E

E

D D-cache banks

I I-cache banks

R Register banks

E Execution node

G Global control

Figure 1. Example 4�4 TRIPS Processor.

outputs are produced bywrite instructions. In the TRIPS
ISA, instructions do not encode their source operands, in-
stead they explicitly encode the locations of their children.
Figure 2 shows the instruction encoding for the above ex-
ample. For example, theadd instruction placed at location
[0,1,0], upon execution, forwards its result to theLSH in-
struction placed at location [1,1,0].

The TRIPS architecture follows a dataflow execution
model. The hardware fetches the actual instructions to the
execution array, reads the input registers from the register
file, and injects them into the appropriate ALUs. An instruc-
tion can fire once the instruction itself and all its operands
have been received, which in turn forwards its results to
consumer ALUs through the operand network on comple-
tion. Temporary values that are only live within a block are
communicated directly from producer to consumer through
the operand network; only register outputs are written to the
register file.

Each ALU contains a fixed number of instruction buffer
slots. We refer to corresponding slots across all ALUs col-
lectively as aframe. A 4�4 grid with 64 instruction buffer
entries at each ALU thus has 8 frames of 8 instructions
each. A subset of contiguous frames constitutes anarchi-
tecture frame(A-frame), into which the compiler schedules
all instructions from a hyperblock. For example, dividing
64 frames into 8 A-frames composed of 8 physical frames
each allows the scheduler to map a total of 128 instructions
(per hyperblock) at once to the ALU array.

3.2 Fault Aware Instruction Placement

Error free execution can be achieved on a defective pro-
cessor by forcing the program to utilize only the functional
processor resources. Implementing a purely hardware based
fault reconfiguration mechanism in partitioned static archi-
tectures, like the TRIPS architecture, can be quite ineffi-
cient. First, to handle failures in all of the statically sched-
uled resources a purely hardware based approach is required
to replicate the fault isolation hardware in each of them.
Further, a hardware based mechanism may be restricted by

Original Program

AND R1, R1, R4
ADD R3, R4, R5
LSH R3, R3, #3

SUB R7, R1, R6

Dataflow Graph

Instruction Placement

READ R2
READ R4
READ R5

WRITE R7

ADD

LSH

[0, 0, 1] AND
[0, 0, 0] SUBI

[1, 0, 0] ADDI
[1, 0, 1] SUB

[0, 1, 1]
[0, 1, 0] ADD

[1, 1, 1]
[1, 1, 0] LSH

AND [1, 0, 1]

ADD [1, 1, 0]

SUB R7

LSH #3 [1, 0, 1]

SUBI R1, R2, #0

ADDI R6, R3, #0

SUBI

SUBI #0 [0, 0, 1]

ADDI #0 [1, 0, 0]

READ R2 [0, 0, 0]
READ R4 [0, 0, 1] [0, 1, 0]
READ R5 [0, 1, 0]

Instruction Encoding

AND

SUBI ADD

ADDISUB

LSH

SUB

AND

ADDI

Figure 2. Instruction Physical Layout

area and complexity constraints to simple fault models, and
solutions based on steering requests to explicitly provided
spare resources, similar to caches.

On the other hand, the instruction scheduler in partitioned
static architectures, like the TRIPS architecture, can exam-
ine the entire distributed execution substrate in evaluating
all the constraints that contribute to optimal performance.
The instruction scheduler can therefore naturally treat fault
isolation as an additional constraint to the scheduling algo-
rithm without any overheads in area, or dynamic execution
time. The scheduler can also more effectively exploit the
available redundancy and hence potentially scale better for
complex fault models and greater number of defects. We
argue that this visibility makes the instruction schedulera
natural target for implementing efficient fault reconfigura-
tion.

3.3 Fault Model

In this study, our focus is only on the execution array in
the TRIPS processor, one of the resources exposed to the
compiler for static instruction placement. The execution ar-
ray in the TRIPS processor occupies a substantial fraction
of the processor area because each node contains a full set of
integer and floating point functional units. While the layout
and routing density of logic structures is less than regular

a) Avoid Fault Nodes

READ R2
READ R4
READ R5

WRITE R7

ADD

[1, 0, 0] ADDI
[1, 0, 1] SUB

[0, 1, 1] AND
[0, 1, 0] ADD

[1, 1, 1] SUBI
[1, 1, 0] LSH

AND

[0, 0, 1]
[0, 0, 0]

b) Avoid Faulty Nodes, Routes

READ R2
READ R4
READ R5

WRITE R7

ADD

[0, 0, 1]
[0, 0, 0]

[1, 0, 0] ADDI
[1, 0, 1] SUB

[0, 1, 0] ADD

[1, 1, 1] AND
[1, 1, 0] LSH

[0, 1, 1] SUBI

ADDI

SUB

ADDI

ANDSUB

LSH

SUBI

LSH

SUBI

Figure 3. Fault Aware Instruction Placement

memory arrays, the large area occupied by the ALUs make
it susceptible to defects. Further, the functional units are
one of the hottest on-chip structures making them suscepti-
ble to intrinsic failures [14, 13].

The analysis in the rest of this paper assumes that an array
contains at most one defective ALU in the execution array.
Further, we consider two different granularities for a defect
in the ALU node:� Only the local functional units, the instruction buffer,

or the operand buffers are defective.� A more restrictive fault model which also allows de-
fects in the operand router that transmits the results of
computation to dependent instructions.

Depending on the defect granularity, a fault aware
scheduling algorithm must not only avoid placing instruc-
tions on the faulty ALUs, but additionally ensure that no
communication path between dependent instructions in-
cludes a node with a defective router. Figure 3 illustrates
the two fault models, and the corresponding fault aware in-
struction placement for the same dataflow graph shown in
Figure 2. While in the first case the algorithm only has to
avoid placing instructions on the faulty ALUs, it can be ob-
served in the second case (Figure 3.b) that the algorithm
avoids the faulty communication paths also. For example,
theand instruction is remapped to location [1,1,1], and the
childsub instruction is remapped to [1,0,1] so that the com-
munication path does not include the faulty node.

4 Fault Aware Instruction Placement
The base scheduler for the TRIPS architecture takes as

input the instructions, and a detailed processor model that
includes the routing topology, static instruction and com-
munication latencies and produces the instruction schedule
containing the assignment of instructions to ALUs. We be-
gin by describing the base scheduler and then proceed to
describe two simple heuristics for fault aware instruction
placement.

4.1 Base Scheduler Algorithm

While a VLIW scheduler assigns each instruction an
ALU and a time slot, the TRIPS scheduler assigns each in-
struction only an ALU without specifying a time slot. The
base scheduler first computes the initial set of ready instruc-
tions, all of which can issue in parallel. These instructions
are then ordered by their criticality, which is determined by
their depth in the dataflow graph, and the instruction with
the highest priority is selected for placement. The ALU as-
signed to the instruction is that which gives it theearliest
ready time(ERT), which is calculated as follows:

ERT(i; alu) = max8p fECT(p) + TransmissionTime[p; alu℄g
where p denotes a parent ofi, ERT (i; alu) is the ear-
liest time at which the instruction can issue at this alu,ECT (p) is the earliest completion timeand refers to the
expected time at whichp will produce its results, andTransmission T ime[p; alu℄ denotes the time taken for
the operand to reach instructioni at the nodealu. To sched-
ule i, the scheduler chooses the alu that minimizesERT .
After it schedules an instructioni, it adds to the ready set
any of i’s children whose parents have all been scheduled.
It selects the next instruction for scheduling and iteratesun-
til completion. A detailed explanation of the base TRIPS
scheduler is provided in [9].

4.2 Fault Aware Scheduler Algorithms

Fault aware scheduling algorithms rely on the redundancy
in the execution substrate to isolate the fault. The nature of
the fault model influences the redundancy needed to toler-
ate the potential failures. In the particular TRIPS processor
configuration we consider, each hyperblock can contain a
maximum of 128 instructions and can map upto 8 instruc-
tions on a single ALU. To tolerate one defective ALU in
the execution array (Section 3.3), the algorithm needs to be
able to remap the instructions scheduled on the defective
ALU to other functional ALUs. Since the base scheduling
algorithm may map upto 8 instructions on an ALU, the fault
aware scheduling algorithm must find atleast 8 empty func-
tional slots in the remaining nodes to provide the minimal
redundancy for successful fault reconfiguration. This im-
plies that each hyperblock can contain a maximum of 120
instructions (= 128 - 8) to have any redundancy at all for the
algorithm to exploit.

The more restrictive fault model that allows both faulty
ALUs and communication paths may prove this minimal re-
dundancy to be inadequate even for mapping average sized
hyperblocks on a TRIPS processor, for now each instruc-
tion has to not only find a functional ALU but also one that
can be reached from all parents through functional routes.
In this paper, we provide more than the minimal redun-
dancy by compiling all the benchmarks to contain at most
112 instructions in each byperblock before the fault aware

scheduling algorithm is applied. This can potentially lead
to performance loss even in the fault-free case and is the
static cost of the technique, as we have to first create redun-
dancy before it can be dynamically exploited when there are
defects. As explained earlier, this is similar in concept to
adding explicit spares for fault tolerance, which contribute
to fixed overheads in area, and execution time. We now aug-
ment the base scheduler with two heuristics for the two fault
models.

Avoid Faulty Nodes (AFN): This heuristic assumes that
only the ALUs can be defective, and everything else includ-
ing the communication paths are operational. The scheduler
takes as input a detailed processor configuration which ad-
ditionally includes pointers to the defective ALU nodes, the
rest of the inputs are identical to the base scheduler. The
algorithm itself is identical to the base scheduler, but it now
considers only the functional ALUs for instruction place-
ment.

Avoid Faulty Links (AFL): This heuristic accounts for
both faulty ALUs and routing paths, and can be considered
as an enhancement to the previous algorithm. The input pro-
cessor configuration now not only contains pointers to the
defective ALUs, but also has infinite communication laten-
cies assigned to the defective nodes from all of its immedi-
ate neighbours. This implies that any path from a producer
to a consumer instruction that includes a defective execution
node is of infinite duration, which naturally serves to ensure
that such a path is never selected to provide the instruction
with theearliest ready time(ERT).

The constraints imposed by faulty communication paths
and dimension-order routing can potentially lead to unsuc-
cessful fault isolation frequently. Figure 4.a illustrates an
example placement of the parent instructions and the faulty
node, for which there is no node where the child can be
placed that gives functional routes (that follow dimension-
order routing) from both the parents. The base algorithm
for instruction placement is identical to the base scheduler
— but now some of the routes from parent instructions to
children may be faulty. For every faulty path from a parent
to the child instruction at this node, we insert an extraMOV
instruction between the two. TheMOV instruction is placed
so that both the routes from the parent to it, and from it to
the child node are fully functional. The algorithm presently
chooses the first slot that satisfies the above condition, we
recognize that more sophisticated choices are possible here.
The only function of theMOV instruction is to pass the re-
sult from the parent to the child instruction and it now be-
comes the new child of the parent, and the new parent of the
original child instruction. Figure 4.b illustrates one possible
node forMOV insertion. The algorithm fails if it can find no
node for successfulMOV insertion.

E E E

E

E

E E

E

E E

���
���
���
���
���
���

���
���
���
���
���
���

FP1

E

E

P2

C

E

E

E

E EE E

���
���
���
���
���
���

���
���
���
���
���
���

F

E E

E

P1

E

P2

C M

y

x x

y

Defective Path
Good Path

a) Bad placement of Parent Instructions and
 Faulty Node

b) Insertion of extra MOV instruction

Figure 4. Figure 4a. shows that there is no path from the
ALU corresponding to parent P2 to the child, since all paths
have to pass through the faulty ALU. Figure 4b. shows the
insertion of an extra MOV instruction that acts as an in-
termediate target. Both the routes from P2 to the MOV
instruction and from the MOV instruction to the child are
functional.

5 Methodology

The TRIPS processor [11] used in our study has an 4 x
4 array of execution nodes each with a full set of integer
and floating point functional units. Each computation node
also has 64 reservation stations, so that the overall array can
accomodate eight blocks of 128 instructions each simulta-
neously. Further, a router resides on each of the 16 nodes
to dynamically route results between dependent instructions
taking 0.5 cycles per hop. The first level banked instruction
and data caches are each 64KB, two-way, three cycle la-
tency, and are located to the left of the execution array. We
model a 13 cycle miss penalty to a 2MB L2 cache, and a
132 cycle main memory access time. The register file is
also banked and is located at the top of the execution array.

Section 4 describes in detail both the baseline TRIPS
instruction scheduler and the new fault aware scheduling
algorithms. The applications we used for evaluating the
scheduling algorithms are from the TRIPS microbenchmark
suite [3]. Table 1 lists the microbenchmarks that we used in
our evaluation. The microbenchmarks come from critical
kernels in the SPEC 2000 suite, which are then compiled
using the TRIPS compiler. It also includes hand optimized
versions of some microbenchmarks that were formed by ap-
plying some transformations like loop unrolling more ag-
gressively. In this preliminary exploration we are primarily
interested in whether our fault aware scheduling algorithm
is able to discover enough redundancy to remap the block
instructions on the fully functional resources. To compare
performance across the two schedules, we measure instruc-
tions per cycle (IPC) using a cycle accurate timing simulator
that models the TRIPS architecture in detail.

Microbenchmark Form

ammp 1 C source
ammp 2 C source
art 1 C source
art 2 C source
art 3 C source
art 1 hand Hand optimized assembly code
art 2 hand Hand optimized assembly code
bzip 1 C source
bzip 2 C source
bzip 3 C source
bzip 1 hand Hand optimized assembly code
bzip 3 hand Hand optimized assembly code
dhry C source
equake C source
equake hand Hand optimized assembly code
gzip 1 C source
gzip 2 C source
matrix C source
matrix hand Hand optimized assembly code
parser C source
sieve C source
sieve hand Hand optimized assembly code
twolf 1 C source
twolf 2 C source
twolf 1 hand Hand optimized assembly code
twolf 2 hand Hand optimized assembly code

Table 1. Microbenchmark Suite

6 Preliminary Results

The Avoid Faulty Nodesalgorithm succeeds in finding
a legal schedule for all the microbenchmarks. The hyper-
blocks in all the microbenchmarks contain at most 112 in-
structions and hence can be mapped to fit on 14 ALUs each
with 8 instructions. Since there is only one defective node
(and no faulty links) there is always enough redundancy to
remap the instructions.

The Avoid Faulty Linksheuristic succeeded for 24 out
of 25 microbenchmarks. Table 2 shows the extraMOV in-
structions inserted in the microbenchmark schedule to route
around the defective nodes and links. The total number
of MOV instructions inserted in all the microbenchmarks
varies between 0 and 20; the maximum number ofMOV
instructions in any single block varies between 0 and 16.
For instance, the heuristic inserts 16 extraMOV instruc-
tions in a single hyperblock ofart 1 hand to successfully
remap the instructions. Table 2 also shows that less than
two MOV instructions are inserted in each hyperblock on
the average, with most benchmarks successfully resched-
uled without inserting any extra instructions at all. This
demonstrates that, for this specific fault model, restricting
each hyperblock to 112 instructions provides ample redun-
dancy in most cases for effective intra-processor fault re-
configuration. The heuristic succeeds in scheduling the hy-
perblocks in the microbenchmarks with greater than 90 in-
structions, showing promise of scaling to real benchmarks.

Original Modified
AFL Heursitic AFL Heursitic

Micro Total MOV Max. MOV Avg. MOV Total MOV
Benchmarks Inst/Program Inst/Block Inst/Block Inst/Program

ammp 1 0 0 0 0
ammp 2 0 0 0 0

art 1 0 0 0 0
art 2 2 2 0.17 2
art 3 0 0 0 0

art 1 hand 20 16 1.11 14
art 2 hand 0 0 0 0

bzip 1 0 0 0 0
bzip 2 0 0 0 0
bzip 3 0 0 0 0

bzip 1 hand 2 2 0.14 1
bzip 3 hand 0 0 0 0

dhry 0 0 0 0
equake 4 2 0.18 4

equake hand 3 3 0.18 3
gzip 1 0 0 0 0
gzip 2 0 0 0 0
matrix 0 0 0 0

matrix hand 1 1 0.05 1
parser 1 1 0.08 1
sieve 0 0 0 0

sieve hand 10 10 0.71 6
twolf 1 4 3 0.21 4
twolf 2 1 1 0.11 1

twolf 1 hand 8 6 1.14 7
twolf 2 hand 2 2 0.14 2

Table 2. Extra MOV Instructions

The Avoid Faulty Linksheuristic fails to schedule a
hyperblock in the hand optimized assembly benchmarksievehand that has 102 instructions in it. The algorithm
failed after it had already added tenMOV instructions, and
was unable to find a suitable node to map another. We mod-
ified theAvoid Faulty Linksheuristic slightly so that when
there is no node for the child that gives functional routes
from all its parents, the child node that has the least num-
ber of defective routes, and hence needs the least number of
MOV instructions, is chosen. Although the total number of
extraMOV instructions decreases, as shown in the last col-
umn of Table 2 (Modified AFL Heuristic), the heuristic still
fails to remapsievehand.

Since both the variants of the algorithm consider exactly
one instruction at a time for scheduling, they can potentially
arrive at a bad intermediate schedule where there is neithera
node for the child instruction that provides functional paths
between the child and all its parents, nor is there a suit-
able node forMOV insertion between the parent-child pair
with the faulty path. Making the algorithm more sophisti-
cated without adversely affecting the scheduling latency,or
adding lookahead to the scheduling algorithm will increase
its robustness but still cannot ensure its success. Figure 5
shows a way for ensuring a successful schedule for every
hyperblock. By avoiding scheduling instructions on all the

E

E

E

E EE E

���
���
���
���
���

���
���
���
���
���

x

y

Avoid Row and Column of Faulty Node

F

E E

E

E

E M

E E

Figure 5. Avoid all the nodes in the same row or column
as the faulty node during scheduling. This ensures that no
communication path between a parent and child can include
the defective node.

nodes in the same row or column as the faulty node we can
ensure that no two dependent instructions include the de-
fective node in their communication path. For this to be
possible, each hyperblock can now contain a maximum of
72 (= 128 - 7x8) instructions. Although this is simple, it
is both overly conservative and can potentially have a large
negative impact on performance.

In general, we have only investigated a simple fault aware
scheduling algorithm that reschedules all the instructions in
every block avoiding all faulty execution nodes, and com-
munication paths between dependent instructions that in-
clude faulty nodes. This is only one solution in the spectrum
of possible scheduling algorithms that optimize concur-
rently for performance, availability, and scheduling latency.
Algorithms that reschedule the entire block of instructions
can potentially offer higher performance and yield, but may
have considerable scheduling latency. At the other extreme,
algorithms that aim to remap the minimum number of in-
structions will incur smaller scheduling latencies but will
likely have poorer yield and performance.

Both theAFN andAFL heuristics show a very slight
(approximately 1%) drop in performance compared to the
base scheduler with no faults.

7 Conclusion

This paper proposes to enhance yield and enable graceful
degradation of fail-in-place systems through efficient com-
piler assisted fault reconfiguration in future microproces-
sors. We discuss the trade-offs between scheduling latency,
performance and system availability, and evaluate a sim-
ple scheduling algorithm that remaps all the instructions to
avoid the faulty resources but optimizing only for perfor-
mance. Our preliminary results demonstrate, on a set of
microbenchmarks, that we are able to remap the assembly
code to avoid the defective execution units and paths on a

TRIPS processor with atmost one defective node with neg-
ligible loss in performance.

Our compiler assisted solution for exploiting redundancy
and enabling fault aware instruction placement is syner-
gistic with many proposed design ideas for performance,
low power, and reliability. Future wire delay dominated
architectures may be required to use the compiler in spa-
tially scheduling the instructions on the distributed execu-
tion substrate to achieve scalable performance by explic-
itly accounting for the communication latencies between
dependent instructions [11, 15]. The Transmeta Crusoe pro-
cessors judiciously traded performance for low power con-
sumption by an innovative partitioning of the microproces-
sor functions between software and hardware [5]. Finally,
dynamic reconfiguration features have provided the foun-
dation for the relatively coarse grained self-healing and di-
agnosing features built into the IBM pseries 690 servers in
AIX 5.2 [4].

We are planning to extend this preliminary investigation
in several ways. A detailed area, yield, and lifetime reliabil-
ity model will be required to determine more precisely the
fault model that primarily influences the complexity of the
scheduling algorithm. Our preliminary experiments use mi-
crobenchmarks, and it will be interesting to investigate how
the nature of applications influence the complexity of the
scheduling algorithm. We plan to extend our evaluation to
encompass the floating point and integer SPEC benchmark
suite. We view these as interesting opportunities for future
work in this area.

Acknowledgments
This material is based upon work supported by the De-

fense Advanced Research Project Agency (DARPA) under
Contract NBCH30390004.

References
[1] AUSTIN, T. DIVA: A Reliable Substrate for Deep Submi-

cron Microarchitecture Design.International Symposium on
Microarchitecture(November 1999), 196–207.

[2] BURGER, D., KECKLER, S., MCK INLEY, K., DAHLIN ,
M., JOHN, L., L IN , C., MOORE, C., BURRILL , J., MC-
DONALD , R., W.YODER, AND THE TRIPS TEAM . Scaling
to the End of Silicon with EDGE Architectures. p. 37:7.

[3] CHEN, X. Trips Microbenchmark suite.

[4] JANN , J., BROWNING, L. M., AND BURUGULA, R. S.
Dynamic Reconfiguration: Basic Building Block for Auto-
nomic Computing on IBM pSeries Servers.IBM Systems
Journal, Vol 42, No 1(March 2003), 29–37.

[5] K LAIBER , A. The Technology Behind Crusoe Processors.
Transmeta White Paper(January 2000).

[6] K OREN, I., AND KOREN, Z. Defect tolerant VLSI circuits:
Techniques and yield analysis. InProceedings of the IEEE
(September 1998), vol. 86, pp. 1817–1836.

[7] L I , X., STROJWAS, A. J.,AND ANTONELLI , M. F. Holistic
Yield Improvement Methodology.Semiconductor Fabtech
Journal 8, 7 (July 1998), 257–265.

[8] M AHLKE , S., LIN , D., CHEN, W., HANK , R., AND

BRINGMANN , R. Effective compiler support for predicated
execution using the hyperblock. InProceedings of the 25th
Annual International Symposium on Microarchitecture(June
1992), pp. 45–54.

[9] NAGARAJAN, R., KUSHWAHA, S. K., BURGER, D.,
MCK INLEY, K. S., LIN , C., AND KECKLER, S. W. Static
Placement, Dynamic Issue (SPDI) Scheduling for EDGE Ar-
chitectures. InProceedings of the 13th International Confer-
ence on Parallel Architecture and Compilation Techniques
(October 2004).

[10] REINHARDT, S. K., AND MUKHERJEE, S. Transient Fault
Detection via Simultaneous Multithreading. InInternational
Symposium on Computer Architecture(July 2000), pp. 25–
36.

[11] SANKARALINGAM , K., NAGARAJAN, R., LIU , H., KIM ,
C., HUH, J., BURGER, D., KECKLER, S., AND MOORE,
C. Exploiting ILP, TLP, and DLP with the Polymorphous
TRIPS Architecture. InProceedings of the 30th Annual
International Symposium on Computer Architecture(June
2003), pp. 422–433.

[12] SHIVAKUMAR , P., KECKLER, S. W., MOORE, C. R.,AND

BURGER, D. Exploiting microarchitectural redundancy for
defect tolerance. InThe 21st International Conference on
Computer Design(October 2003).

[13] SRINIVASAN , J., AND ADVE, S. V. Predictive Dynamic
Thermal Management for Multimedia Applications.Pro-
ceedings of the 17th Annual ACM International Conference
on Supercomputing (ICS 2003)(June 2003).

[14] SRINIVASAN , J., ADVE, S. V., BOSE, P., AND RIVERS,
J. A. The Case for Microarchitectural Awareness of Life-
time Reliability. In Proceedings of the Annual International
Symposium on Computer Architecture (ISCA)(2004).

[15] WAINGOLD , E., TAYLOR , M., SRIKRISHNA, D., SARKAR ,
V., LEE, W., LEE, V., K IM , J., FRANK , M., FINCH, P.,
BARUA , R., BABB , J., AMARSINGHE, S.,AND AGARWAL ,
A. Baring It All to Software: RAW Machines.IEEE Com-
puter (September 1997), 86–93.

