
Appears in the
�����

Value-Prediction Workshop

Lightweight Distributed Selective Re-Execution and its Implications for
Value Speculation

Rajagopalan Desikan
�

Simha Sethumadhavan Ramadass Nagarajan Doug Burger
Stephen W. Keckler

Computer Architecture and Technology Laboratory
�

Department of Electrical and Computer Engineering
Department of Computer Sciences
The University of Texas at Austin

cart@cs.utexas.edu - www.cs.utexas.edu/users/cart

Abstract

In this paper, we describe a lightweight protocol to
support selective re-execution on the TRIPS processor.
The protocol permits multiple waves of speculation to
be traversing a dataflow graph simultaneously and in
any order, with a cleanup “commit” wave propagating
as well to determine completion of a group of instruc-
tions. The protocol is completely distributed, consist-
ing of point-to-point messages and requiring no central-
ized control. Thus, recovery from value mis-speculations
requires no additional fetching or decoding of instruc-
tions, and no issue of instructions that were independent
of the faulting instruction. We describe briefly one way
in which this protocol can be exploited: by allowing ev-
ery instruction to use a decentralized last value predic-
tor. Our results show that in this scheme up to 26% of
all instructions can fire as soon as they are fetched, with
0.001% of instructions firing incorrectly.

1 Introduction

Speculation has become significantly more widespread
and aggressive as processors have gone to deeper
pipelines, wider issue, and higher frequencies. While
control speculation has historically been the main fo-
cus of speculation research, data speculation has grown
in research popularity over the past 5 years. However,
there are three major problems with current implemen-
tations of data speculation. First, in some processors,
rollback is quite expensive, triggering a pipeline flush.
This will only be exacerbated in future deeply pipelined,
wide issue machines with a large number of instructions
in the pipeline. Second, more recent processors, such
as the Alpha 21264 [11] in a limited fashion, and the
Pentium IV [8] in an aggressive fashion, implement se-
lective re-execution in which only instructions depen-

dent upon the faulting instruction are re-executed. In
centralized superscalar processors with deep pipelines,
these selective re-execution policies cause an explosion
in control and datapath complexity, and are unlikely to
scale to higher ILP machines. Third, the implementation
of proposed data predictors has problems; implement-
ing multiple predictors is complex, as they may compete
for speculations and have unintended interactions. Fur-
thermore, centralized predictors make it difficult to get a
high bandwidth of predictions out of the predictor, espe-
cially if the rate of instructions accessing the predictor is
high.

In this work, we describe the selective re-execution
protocol that we are currently implementing, that is in-
tended to solve the problems enumerated above. This se-
lective re-execution protocol is a completely distributed
re-execution protocol, based on the Grid Processor Ar-
chitecture [19], which permits ultra-low-overhead roll-
back from data mis-speculations by incorporating effi-
cient selective re-execution. This protocol permits mul-
tiple speculations to be in flight simultaneously, per-
mitting more aggressive speculation than conventional
re-execution protocols. The protocol has a simple de-
sign, while permitting arbitrary number of speculation
engines to inject speculations, and can even support mul-
tiple speculations of the same operand in flight at once.
Finally, the implementation of selective re-execution is
simple and distributed, requiring no centralized control
or state.

To make the complexity feasible, we envision a sin-
gle speculation engine that is run by multiple speculation
state machines. The challenge in that implementation is
in discovering the right way to have different instruc-
tions select the state machines that are best suited for
the type of access they need to do.

We illustrate the potential of this single speculation
engine by employing a data predictor scheme in which
every instruction, arithmetic or memory, that produces

I−cache Bank3

I−cache Bank2

I−cache Bank1

I−cache Bank0

I−cache BankM

D−cache Bank0

D−cache Bank1

D−cache Bank2

D−cache Bank3

Block Control

R0−R31 R32−63 R64−R95 R95−R127 On chip memory tiles

a) GPA b) Selective Re−execution

N1

N2 N3 N4

N5 N6 N7 N8

N9 N10 N11

 N0

N11: lshift {(R2)}
N10: inc {(R1)}
N9: sub {(R0)}
N8: add {(N11, L)}
N7: inc {(N10, R)}
N6: rshift {(N9, L)}

N0: load {(N2, L)}
N1: load {(N3, L), (N4, L)}
N2: inc {(N5, R), (N7, R)}
N3: dec {(N6, R), (N8, L)}
N4: lshift {(N8, R)}
N5: inc {(N9, R)}

Figure 1. 4x4 Grid Processor Architecture.

register value is permitted to speculate in a distributed
fashion. We show that with simple control, 26% of
all instructions that are fetched can produce their result
correctly at decode, with a negligible number of mis-
speculations, from which the selective re-execution pro-
tocol can recover efficiently.

In the rest of this paper, we first provide a review of
the block-atomic Grid Processor Architecture, which is
the hardware substrate on which we are implementing
these value predictors. In the following section, we de-
scribe the distributed selective re-execution (DSRE) pol-
icy. We then describe a fine-grained last-value predictor
implementation, in which every instruction is fetched
along with its last value and highly confident instruc-
tions fire immediately upon fetch.

2 Block-Atomic Execution on Grid Pro-
cessor Architectures

The Grid Processor Architecture (GPA) [19] is a fam-
ily of architectures that are designed to scale to high
performance at future wire-dominated technologies. It
is a “static-placement, dynamic-issue” (SPDI) proces-
sor that follows a block-atomic execution model. In this
model, programs are compiled into large blocks of in-
structions with a single entry point, no internal transfers
of control, and possibly multiple exit points, as found
in hyperblocks. Each block has a static set of state in-
puts, and potentially a variable set of state outputs that
depend on the exit point from the block. The com-
piler statically assigns each instruction to an execution
resource and explicitly encodes inter-instruction depen-
dences within a block. At run-time, the execution pro-
ceeds by fetching a block of instructions from memory,
mapping them onto the execution resources, loading the
state inputs, and executing the instructions in dynamic
dataflow order. Intermediate values that are produced
and consumed within the block are routed directly from

producers to consumers without being committed to per-
sistent store. After the block is executed to completion,
architecture state is committed. Exceptions, if any, cause
rollback to the last committed block boundary.

The hardware is composed of a two-dimensional ar-
ray of homogeneous execution nodes (ALUs) connected
by a routed operand network as shown in Figure 1a. An
execution node consists of an integer unit, floating point
unit, router ports at the input and output, and a set of
reservation stations, each of which contains storage for
an instruction and its two source operands. The dis-
tributed L-1 instruction cache, data cache, and a regis-
ter file are placed around the periphery of the execution
array. When a reservation station has its instruction and
two operands ready, the node can select the instruction
for execution. After execution, the node forwards the re-
sult along the operand network to the consuming reser-
vation station. When a block has all of its instructions
executed, its outputs are committed and its execution re-
sources freed for use by subsequent blocks.

To achieve high performance, the GPA supports ag-
gressive control speculation. The next block predic-
tor speculatively selects the next block that should be
fetched and executed, while the current block is still exe-
cuting. Instructions in speculative blocks can execute as
soon as they receive their input operands. To enable this,
the GPA also supports aggressive forwarding of outputs
from a block to consumers in subsequent blocks. In the
current implementation, the GPA achieves 91% hit rates
in the next block predictor and can sustain execution of
upto 32 hyperblocks concurrently.

Data value speculation is a technique to overcome the
limits on parallelism imposed by data dependences in
the program. Using data value speculation, an instruc-
tion’s result is predicted before it is calculated and for-
warded to the instruction’s consumers. The speculation
is later validated when the instruction is actually exe-
cuted and on a mis-speculation, rollback is initiated. In
the next section, we describe a low cost mechanism for

implementing data value speculation on the GPA.

3 A Distributed Selective Re-execution
Protocol

To support efficient data value speculation, we are
implementing a protocol that enables simple, distributed
selective re-execution, which is a light-weight mecha-
nism for recovering from data mis-speculation. In the
DSRE protocol, the data-flow graph (DFG) is mapped
as a block onto the GPA and is traversed by specula-
tive waves of computation. The ALUs receive specu-
lative operands in this scheme, fire, and forward their
speculative results to subsequent instructions mapped at
other ALUs. On a mis-speculation, only the instructions
in the mis-speculated path need to re-fire and propagate
the correct data values. By selectively re-executing in-
structions that received the wrong data values, we can
have a low cost data speculation recovery mechanism,
thus enabling highly aggressive data value speculation.
We show an example of selective re-execution of a de-
pendent sub-tree of a DFG in Figure 1b. The colored
nodes are the nodes which need to be re-executed, to cor-
rect a data mis-speculation. In this example, instructions
scheduled on nodes N6, N8, N9, and N11 are depen-
dent on the instruction scheduled on node N3. If node
N3 speculates incorrectly on the value of its result, and
then later corrects the speculation, only the instructions
scheduled on the these dependent nodes need to be re-
executed.

3.1 Challenges for a DSRE Protocol

There are two main challenges to the implementation
of the DSRE protocol. First, we need to ensure that the
correct value of a speculated operand is not overwritten
by an incorrect value. Second, every node needs to know
when it has received the correct value for its operands.
The selective re-execution protocol in the GPA is in-
tended as a general mechanism for supporting different
types of data value speculation. This might include ag-
gressive forwarding of load values to consumers, using
data value prediction tables at an ALU node to inject
speculative values, and injecting speculative values for
invalid lines in the cache in a shared memory multipro-
cessor configuration.

To support selective re-execution, each instruction
buffer at an ALU node on the GPA includes a commit
bit, a valid bit, and a version number for each input
operand. An operand is assumed to be speculative if
its commit bit is not set. Results generated using specu-
lative operands are themselves speculative, and are for-
warded as such to their consumers.

In this protocol, instructions can fire as soon they re-
ceive all their input operands, irrespective of whether
the operands are speculative or non-speculative. When
a data value speculation mechanism injects specula-
tive values into the grid, it injects them without setting
the commit bit. When the speculation is resolved, the
operand is re-injected with the commit bit set. A block
is deemed safe to commit when all the outputs of the
block have been received with their commit bit set. If
it can be determined that the speculative execution was
correct, then the nodes do not need to re-fire, and only
commit bits need to be propagated in the grid.

3.2 Version Numbers

There are two factors which contribute to improved
performance with selective re-execution. First, we need
a mechanism to identify correctly speculated data values
to avoid re-computation. Second, the cost to propagate
commit bits in the grid should be lower than the cost to
propagate operand data values.

To identify correctly speculated operand values, we
use a versioning system in the GPA. Version numbers
are required in the protocol as messages can be received
by a node out-of-order. Every operand has a version
number associated with it. This is set to 1 when an
operand is generated for the first time in the GPA. When
a new value for an operand is generated, it is re-injected
with a higher version number. Every time a node re-
ceives an operand with a higher version number, it re-
fires and generates a higher version number for its out-
put, which is then propagated to the instruction’s con-
sumers. For correctness, the protocol guarantees that
the non-speculative value for an operand will have the
highest version number. When the data speculation is
resolved and is determined to be correct, only the com-
mit bit for the result is injected. The version number for
the result is not incremented, to communicate that the
speculation was correct, thus avoiding re-computation.

When a node receives the commit bit for one of its
operands, it checks the incoming version number of this
operand against the last received version number for that
operand. If the instruction requires two input operands,
and one of the operands is still speculative, no output
is generated. If the incoming operand is the last non-
speculative operand, then the instruction fires and sends
a commit bit for its result to all of the instruction’s con-
sumers, without incrementing the version number of the
result. This can result in a commit wave with the in-
struction’s consumers in turn firing and generating com-
mit bits, once all their operands become non-speculative.
The following list enumerates the various cases that can
be encountered in this protocol :

� Only one input operand for a two input operand

instruction arrives at a node. No output is gener-
ated.

� The second operand arrives at this node. The com-
mit bit for at least one of the operands is not set.
The node fires speculatively and generates a spec-
ulative output with the commit bit not set.

� One of the operand arrives again at the node with
a higher version number. The node fires again
and generates an output. If the commit bits for
both operands are set, the generated output is non-
speculative and has its commit bit set. Otherwise,
the generated output is speculative and its commit
bit is not set.

� An operand arrives at the node with a lower ver-
sion number. The operand is ignored and no ac-
tion is taken.

� Only a commit bit arrives for one of the operands.
If the commit bits for both operands are now set,
a commit bit is generated for the output and set
to the instruction’s consumers. If commit bits for
both operands are not set, no output is generated.

In Figure 2, we show some examples to illustrate the
use of version numbers. The node in the figure rep-
resents an instruction with two inputs and one output,
mapped onto an ALU. The version number and commit
bit status of the input operands and output operand gen-
erated by the instruction are also shown in the figure.

In Figure 2a, initially the node receives speculative
input operands with version number 1. The node fires
and generates a speculative output operand with ver-
sion number 1. Subsequently, the node receives a higher
non-speculative version for one of its operands and fires
again generating a speculative newer version of its out-
put. Finally, the node receives the commit bit for its sec-
ond operand and generates the commit bit for its output.
The version number for the output is not incremented to
indicate to the consumers of the instruction that the last
speculative output generated was correct.

In Figure 2b, we show the case where the node gets
incorrect speculative values for both its input operands.
In this case when the speculation is finally resolved,
the node generates a new version number for the non-
speculative output with the correct output value. Fig-
ure 2c shows the case where different versions of an
operand arrives at a node out-of-order. Version 3 of the
first operand arrives before version 2. The node pro-
duces a speculative output when version 3 arrives at the
node. No output is generated by the node on the arrival
of version 2 of the first operand. When the commit bit
for the first operand arrives at the node, the node gener-
ates only the commit bit for the result and forwards it to

the instruction’s consumers. Thus, using the versioning
system ensures that only the correct value is forwarded
by this node to its consumers.

Finally in Figure 2d, we illustrate the case when mul-
tiple speculative versions of the input operands arrive at
the node followed by the commit bits for these operands.
In this case the node does not fire if it receives the com-
mit bits for one of its operands while the other operand
is still speculative. The node also does not fire if the
the version number of its output exceeds a threshold.
Thus, version numbers can be used for throttling spec-
ulation. The node finally fires and generates a non-
speculative output when all its input operands become
non-speculative.

3.3 Load-Store Dependence Speculation

One important application for selective re-execution
is load-store memory disambiguation. Aggressive for-
warding of load values to consumers is necessary for
high performance. By using the selective re-execution
mechanism, loads can forward their values to consumers
while there are earlier unresolved stores. When stores
resolve and determine that a load has fired incorrectly,
the load can be fired again with the right value to cor-
rect the mis-speculation. Thus, unlike most conventional
processors that flush the pipeline on a data value mis-
speculation, selective re-execution on the GPA ensures
that only the instructions in the mis-speculated path are
re-executed to correct the mis-speculation.

Researchers have proposed using load-store depen-
dence predictors to aggressively issue loads in the pres-
ence of unresolved stores [17, 5, 25]. These predictors
use confidence estimators to predict when a load con-
flicts with a previous store. When a load is predicted
non-conflicting with high confidence, it is allowed to
access data from the cache and send it to the load’s con-
sumers. The speculation is later validated, and if found
to be incorrect, mis-speculation recovery is initiated, ei-
ther by flushing the pipeline or re-executing the instruc-
tions in the mis-speculated load’s datapath.

We propose using a mixed approach, that com-
bines a load-store dependence predictor and selective
re-execution for load-store disambiguation. In this ap-
proach, a distributed load-store predictor with confi-
dence estimator is used to predict conflicts between
loads and stores in the instruction window of the GPA.
Loads predicted to be no conflicting with a high confi-
dence are allowed to send data to their consumers with
the commit bit set. If a mis-speculation is detected later,
the pipeline is flushed and the load is re-issued. Loads
predicted to be conflicting with a high confidence are
throttled and not issued till the conflicting store or all
prior stores have been resolved. For loads that cannot be

C = 0

NODE

V = 2 V = 1
C = 1 C = 0

V = 2

V = 2 V = 1
C = 1 C = 1

V = 2
C = 1

a) NODE

V = 1 V = 1

V = 1
C = 0

NODE

C = 0

NODE

V = 2 V = 1
C = 1 C = 0

V = 2
C = 1

V = 2 V = 2
C = 1 C = 1

V = 3

b) NODE

V = 1 V = 1
C = 0 C = 0

V = 1
C = 0

C = 0 C = 0

NODE

c)

d)

C = 0

NODE

V = 2 V = 1

V = 2

C = 0 C = 0 C = 0 C = 0
V = 2 V = 2

V = 3
C = 0

NODE

V = 1
C = 0

C = 0 C = 0

NODE

V = 1 V = 1

NODE NODE

C = 1 C = 0 C = 1 C = 1
V = 2 V = 4

V = 4
C = 1

NODE

V = 2 V = 2
C = 1 C = 0

NO OUTPUT

V = 2 V = 3

NO OUTPUT

C = 0

V = 3 V = 1

V = 2

C = 0 C = 1

NODE

V = 1
C = 0

C = 0 C = 1

NODE

V = 1 V = 1

NODE

C = 1 C = 1

NODE

V = 2 V = 1
C = 0 C = 1

NO OUTPUT

V = 3 V = 1

V = 2
C = 1

Figure 2. Version Number Examples

predicted with a high confidence, we use the selective
re-execution mechanism to inject data speculatively and
later validate the speculation. Using different load-store
predictors, we can tune the correct level of interplay be-
tween these mechanisms to obtain optimal performance.

4 Decentralized Last Value Speculation

Data value locality and reuse is a phenomena which
has recently generated a lot of interest in the computer
architecture community. Data value reuse results when
an instruction produces the same result during different
dynamic invocations. A high data value reuse will re-
sult in greater performance improvement with data value
speculation.

Value locality was first defined by Lipasti et al. and
exploited to perform load value prediction [16]. Using
simple predictors, the authors were able to achieve 3%
and 6% average improvement in performance on pro-
cessors modeling the PowerPC 620 and Alpha 21164.
Value locality and reuse has been extended in a number
of directions since then. Value locality of load instruc-

tions has been investigated to eliminate redundancy [24].
The value locality of store instructions has been studied
in an effort to reduce multiprocessor data and address
bus traffic [14]. Also, a number of predictors have been
proposed in literature for predicting values of instruc-
tions [21, 23]. Researchers have also examined compiler
optimizations for increasing value reuse [2]. Other work
in value prediction has shown that considerable instruc-
tion fetch bandwidth is needed to speculate on values
effectively [7], which is not an issue in our context be-
cause of the ultra-high instruction fetch bandwidth pro-
vided by GPAs.

To investigate the potential for data value reuse in
SPEC CPU2000 programs, we modified the sim-alpha
simulator to count reuse for each dynamic instruction
executed [6]. We used simpoint simulations and simu-
lated 100 million instructions for each benchmark [22].
We associated 1, 2, and 3-bit saturating counters with
each static instruction. Similar confidence estimators
have been used by other researchers in earlier work to
increase the accuracy of their predictors [16, 20, 23, 1].
We incremented the counter when an instruction’s result
matched its previous result and decremented the counter

Confidence Estimator Throttling Counter Counter with Poison Bit
Average 1.39 0.001

Table 1. Percentage of mis-speculated instructions as a fraction of retired instructions

when it did not. Figure 3 shows the percentage of re-
tired instructions that produced the same result during
successive dynamic invocations, for the highest value of
the counter associated with the instruction. For brevity,
we show the results for only the 2-bit counter in this sec-
tion.

From Figure 3 we can see that on an average more
than 36% of the instructions committed produced the
same result in at least four successive dynamic invo-
cations. Thus, these is tremendous reuse in the SPEC
CPU2000 suite, which suggests that aggressive data
value speculation techniques, along with low cost re-
covery, have a great potential for performance improve-
ment.

To reduce data value mis-speculation, we associated
a poison bit with each static instruction, that is set for
an instruction if we mis-speculate. Other related work
in value speculation has examined throttling value spec-
ulation of instructions that have low confidence, which
has a goal similar to the saturating counter and poison
bits that we employ [4]. We throttle data value spec-
ulation for instructions whose poison bit is set. Fig-
ure 3 shows the percentage of retired instructions which
showed reuse and which didn’t have their poison bits
set. We see that even with the poison bit, 26% of the
instructions on an average reuse their results.

The benefit of using poison bits is actually reflected
in the number of mis-speculations. Table 1 shows the
percentage of retired instructions that mis-speculated for
the 2-bit counter scheme, with and without the poison
bit, averaged across the set of benchmarks. We can
see with the poison bit scheme, on an average, around
0.001% of retired instructions mis-speculate. Even with-
out the poison bit, the percentage of retired instruc-
tions that mis-speculated is small, at 1.4%. This shows
that simple techniques such as using poison bits can be
highly effective in reducing mis-speculations, and hence
greatly improve the accuracy of data value predictors.
By using a low-cost mis-speculation recovery mecha-
nism like selective re-execution, we can further reduce
the effect of these mis-speculations on performance.

5 Preliminary Results

To investigate the effectiveness of the decentralized
last value speculation, we implemented a simple last
value predictor in the GPA simulator. The predictor is

indexed using the instruction address and stores the last
value produced by the instruction. We associated a 2-
bit counter with each entry. We incremented the counter
every time an instruction produced the same result and
decremented it otherwise. The value associated with an
instruction is replaced when the high bit of the counter is
zero and the counter is reset on a replacement. An ALU
speculates on an instruction’s result when the high bit
of the counter associated with the instruction is 1. We
also associated a poison bit with each instruction that is
set whenever an instruction mis-speculates. Speculation
is throttled for instructions whose poison bit is set. We
simulated a set of benchmarks from the SPEC CPU95
suite, the SPEC CPU2000 suite, and the mediabench
suite. Decentralized last value speculation was applied
to only integer instructions in the benchmarks.

Table 2 lists the performance of the last value predic-
tor across the set of benchmarks. The first column shows
the IPC of the benchmark on the base case without value
prediction. The second column shows the speedup ob-
tained when using only the 2-bit counter. We see from
Table 2 that using the only the 2-bit counter actually
hurts the performance of some benchmarks. However,
some benchmarks like adpcm and mcf, show apprecia-
ble speedup with the last value predictor. We found that
the low accuracy of the 2-bit counter generates a large
number of mis-speculated values in the GPA resulting in
ALUs firing multiple times to generate the right value.

The third column in Table 2 lists the speedup ob-
tained with the 2-bit counter and poison bit. We see from
the table that using a poison bit never hurts performance.
Also, some benchmarks like adpcm and twolf show sig-
nificant improvement in performance. We found that us-
ing the poison bit reduces both the correct and the in-
correct value predictions. However, the reduction in the
number of mispredictions is far greater than the reduc-
tion in the number of correct predictions, thus resulting
in either increased performance or no change in perfor-
mance.

To get higher performance with the decentralized last
value predictor, we plan to evaluate a better confidence
estimator than the simple poison bit scheme we have
used in this paper. We also plan to extend the last value
prediction to floating point values to improve its perfor-
mance.

0

20

40

60

80

100

C
um

ul
at

iv
e

%
 h

it
s

Throttling Counter
Counter with Poison Bit

gzip
vpr

art lucas
gap

swim
gcc

mcf
parser

bzip2
mgrid

mesa
equake

eon
applu

galgel

ammp

perlbmk

M
ean

Figure 3. Correct Value Speculations with Throttling Counter and Poison Bit

Benchmark Base IPC Speedup - 2-bit Counter Speedup - 2-bit Counter
and Poison Bit

adpcm 1.3 7.7% 7.7%
art 4.3 -7.0% 4.6%
bzip2 3.6 5.6% 2.8%
dct 7.6 -1.3% 0.0%
m88ksim 1.7 -11.8% 0.0%
mcf 0.9 25.0% 0.0%
mgrid 2.2 NA% 0.0%
mpeg2encode 3.9 -10.3% 0.0%
parser 1.7 -6.2% 0.0%
twolf 1.7 5.9% 5.9%

Table 2. Last Value Speculation Performance on the GPA

6 Related Work

The work most relevant to this proposed work is a pa-
per by Calder et al., in which they compare a number of
load-prediction strategies, including dependence predic-
tion, address prediction, value prediction, and memory
renaming [3]. This work differs from ours in that the au-
thors did not consider all of the speculation together, de-
termining which policy should be used for distinct loads,
nor did they propose a hardware substrate to implement
those multiple speculation types effectively. The DSRE
protocol enables us to use these prediction techniques at
the same time. Finally, that analysis was performed in
the context of a rollback scheme that is different from
the scalable, low-overhead one that we propose through
DSRE.

We do not consider certain other sorts of data specu-
lation in our speculation engine. For example, Lepak
and Lipsati [14] analyzed silent stores, which do not
change the value currently in memory, exploiting them
to reduce issued instructions in a uniprocessor, and co-
herence traffic in a multiprocessor. That work was ex-
tended to exploit temporally silent stores in multiproces-
sors [15], in which a value is changed and then changed

back, to reduce coherence traffic further.
We also do not consider much of the speculation

work that has been done to accelerate coherence proto-
cols without speculating on values. In these protocols,
a speculative engine may self-invalidate a block [13],
writing it back early so a different node may more
quickly gain exclusive access, or protocols that predict
coherence traffic patterns to forward shared or exclusive
copies of data around the system. Those protocols can
be address-based [18, 12] or instruction-based [9, 10].
While these speculation techniques have been shown
to have great potential to accelerate programs running
on shared-memory machines, they typically are imple-
mented at lower-level caches or memory controllers, and
do not interact with rollback mechanisms upon mispre-
diction. A separate engine to unify these techniques
where appropriate may be beneficial.

7 Conclusions

Many forms of data speculation are now being pro-
posed as key technologies for improving system per-
formance. While prior research on data speculation

have primarily focused on improving prediction accu-
racies, there has been less work on reducing the penal-
ties associated with mispredictions. In this paper, we
describe a new protocol called the Distributed Selective
Re-execution Protocol, that permits ultra-low-overhead
rollback from data mis-speculations by incorporating ef-
ficient selective re-execution.

The DSRE protocol we describe uses distributed,
simple local state machines, and supports multiple spec-
ulation engines, so long as the various engines injecting
speculative values obey the protocol. We have shown
a speculation engine where up to 26% of fetched in-
structions can execute immediately with predicted val-
ues, with only 0.001% of instructions executing incor-
rectly. An extremely simple version of this speculation
engine was implemented on the GPA and shown to pro-
vide appreciable speedup on some benchmarks, with no
loss in performance on others. We plan to improve the
performance of this engine in future work.

The distributed selective re-execution protocol we de-
scribe in this paper permits multiple speculations to be in
flight simultaneously, allowing more aggressive specula-
tion than conventional processors. Future work will ex-
plore designs that merge different forms of speculation
— load value, memory dependence, store forwarding,
synchronization (lock elision), and coherence state —
into an unified speculation engine, implementing multi-
ple speculative state machines.

References

[1] M. Burtscher and B. G. Zorn. Exploring last n value prediction.
In Proceedings of the International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), pages 66–76,
Oct 1999.

[2] B. Calder, P. Feller, and A. Eustace. Value profiling and opti-
mization. Journal of Instruction Level Parallelism, 1:1–6, 1999.

[3] B. Calder and G. Reinman. A comparative survey of load spec-
ulation architectures. Journal of Instruction-Level Parallelism,
2000.

[4] B. Calder, G. Reinman, and D. M. Tullsen. Selective value pre-
diction. In Proceedings of the 26th International Symposium on
Computer Architecture, ISCA-99, pages 64–74, 1999.

[5] G. Z. Chrysos and J. S. Emer. Memory dependence prediction
using store sets. In Proc. of the 25th Annual Int’l Symp. on Com-
puter Architecture (ISCA’98, pages 142–153, 1998.

[6] R. Desikan, D. Burger, S. W. Keckler, and T. M. Austin. Sim-
alpha: a validated execution driven alpha 21264 simulator. Tech-
nical Report TR-01-23, Department of Computer Sciences, Uni-
versity of Texas at Austin, 2001.

[7] F. Gabbay and A. Mendelson. The effect of instruction fetch
bandwidth on value prediction. In Proceedings of the 25th Inter-
national Symposium on Computer Architecture, ISCA-98, pages
272–281, 1998.

[8] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The microarchitecture of the Pentium
4 processor. Intel Technology Journal Q1, 2001.

[9] S. Kaxiras and J. R. Goodman. Improving CC-NUMA perfor-
mance using instruction-based prediction. In Proc. of the 5th
International Symposium on High Performance Computer Ar-
chitecture, pages 161 – 170, Jan 1999.

[10] S. Kaxiras and C. Young. Coherence communication prediction
in shared-memory multiprocessors. In Proc. of the 6th Inter-
national Symposium High Performance Computer Architecture,
pages 156–167, 2000.

[11] R. Kessler. The Alpha 21264 microprocessor. IEEE Micro,
19(2):24–36, March 1999.

[12] A.-C. Lai and B. Falsafi. Memory sharing predictor: The key to
a speculative coherent DSM. In Proceedings of the 26th Annual
Int’l Symp. on Computer Architecture (ISCA’99), pages 172 –
183, May 1999.

[13] A. R. Lebeck and D. A. Wood. Dynamic self-invalidation: Re-
ducing coherence overhead in shared-memory multiprocessors.
In IEEE/ACM International Symposium on Computer Architec-
ture (ISCA), June 1995.

[14] K. M. Lepak and M. H. Lipasti. On the value locality of store
instructions. In Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 182–191, 2000.

[15] K. M. Lepak and M. H. Lipasti. Temporally silent stores. In
Proceedings of the Tenth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS), Oct 2002.

[16] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and
load value prediction. In Architectural Support for Programming
Languages and Operating Systems, pages 138–147, 1996.

[17] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi.
Dynamic speculation and synchronization of data dependences.
In Proceedings of the 24th Annual International Symposium on
Computer Architecture, pages 181–193, June 1997.

[18] S. S. Mukherjee and M. D. Hill. Using prediction to accelerate
coherence protocols. In Proc. of the 25th Annual Int’l Symp. on
Computer Architecture (ISCA’98), pages 179 – 190, June 1998.

[19] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keck-
ler. A design space evaluation of grid processor architectures. In
Proceedings of the 34th International Symposium on Microar-
chitecture, December 2001.

[20] G. Reinman and B. Calder. Predictive techniques for agggressive
load speculation. In Proceedings of the 31st Annual ACM/IEEE
International Symposium on Microarchitecture, MICRO-98,
pages 127–137, Dec 1998.

[21] Y. Sazeides and J. E. Smith. The predictability of data values. In
Proceedings of the 30th International Symposium on Microar-
chitecture, MICRO-30, pages 248–258, Dec 1997.

[22] T. Sherwood, E. Perelman, and B. Calder. Basic block distribu-
tion analysis to find periodic behavior and simulation points in
applications. In Proceedings of the International Conference on
Parallel Archit ectures and Compilation Technique, Sept. 2001.

[23] K. Wang and M. Franklin. Highly accurate data value predic-
tion using hybrid predictors. In International Symposium on Mi-
croarchitecture, pages 281–290, Dec 1997.

[24] J. Yang and R. Gupta. Load redundancy removal through instruc-
tion reuse. In International Conference on Parallel Processing,
pages 61–68, 2000.

[25] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Speculation tech-
niques for improving load related instruction scheduling. In
Proc. of the 26th Annual Int’l Symp. on Computer Architecture
(ISCA’99, pages 42–53, 1999.

