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Abstract

While technology trends have ushered in the age of chip mul-
tiprocessors (CMP) and enabled designers to place an increasing
number of cores on chip, a fundamental question is what size to
make each core. Most current commercial designs are symmetric
CMPs in which each core is identical and range from a relatively
simple RISC pipeline to a large and complicated out-of-order x86
core. When the granularity of parallelism in the tasks matches the
granularity of the processing cores, a CMP will be at its mostef-
ficient. To adjust the granularity of a core to the tasks running
on it, recent research has proposed flexible-core chip multiproces-
sors, which typically consist of a number of small processing cores
that can be aggregated to form larger logical processors. These
architectures introduce a new resource allocation and schedul-
ing problem which must determine how many logical processors
should be configured, how powerful each processor should be,and
where/when each task should run. This paper introduces and mo-
tivates this new scheduling problem, describes the challenges as-
sociated with it, and examines and evaluates several algorithms
(amenable to implementation in an operating system) appropriate
for such flexible-core CMPs. We also describe how schedulingfor
flexible-core architectures differs from scheduling for fixed multi-
core architectures, and compare the performance of flexible-core
CMPs to both symmetric and asymmetric fixed-core CMPs.

1 Introduction

While technology trends have ushered in the age of chip
multiprocessors (CMP) and enabled designers to place an
increasing number of cores on chip, a fundamental ques-
tion is what size to make each core. Most current com-
mercial designs are symmetric CMPs (SCMPs) in which
each core is identical and range from a relatively simple
RISC pipeline to a large and complex out-of-order x86 core.
However, the concurrency characteristics of programs to be
run on a CMP demonstrate substantial diversity. For ex-
ample, the amount of available instruction-level parallelism
across different applications may vary widely [14]. Even
the characteristics of a single program may vary during dif-
ferent phases of its execution [12]. Selecting the number

of cores and the size of the cores at design time will result
in inefficiencies when the characteristics of the workload do
not match the fixed parameters of the system. An alternative
to SCMPs are asymmetric chip multiprocessors (ACMPs)
which typically comprise multiple processors of different
sizes and granularities. Such a design allows individual ap-
plications or application phases to be mapped to the proces-
sor size best suited to it, resulting in better power efficiency,
greater throughput, and better area efficiency (defined as
throughput per unit area) than SCMPs. However, the com-
position of the ACMPs must still be determined at design
time, leaving such multicore processors vulnerable to mis-
matches between the workload and the available hardware.

Recently proposed alternatives to fixed-core CMPs are
a family of flexible-core chip multiprocessors (FCMPs)
in which the number and granularity of the processors is
determined at runtime through aggregation and configu-
ration [7, 9, 13]. Such designs typically comprise small
to moderately sized uniprocessor cores which can execute
in parallel as a multitasking/parallel system or which can
be aggregated together to form fewer but more powerful
uniprocessor cores. The aggregation typically produces a
core with higher issue width, a larger instruction window,
and more level-1 instruction and data cache capacity. The
flexibility of FCMPs provides the opportunity to tailor the
hardware to the requirements of the tasks running on the
system, or to co-optimize the software and the configura-
tion of the underlying hardware. FCMPs offer a number of
advantages over ACMPs, including the opportunity to map
a wider range of workloads, simpler hardware implementa-
tion as all of the cores of an FCMP can be identical [7], and
better tolerance to performance asymmetries resulting from
the fixed but varying cores [1]. The flexibility in FCMPs
also allows optimization of different metrics such as perfor-
mance, power efficiency, and area efficiency. When com-
bined with Dynamic Voltage Frequency Scaling (DVFS),
the range of configuration possibilities can be manifold.

While providing flexibility is one challenge for FCMP
architectures, managing the resources for a FCMP is a ma-



jor challenge for such a system. A scheduler and resource
allocator must determine (1) how many logical processors
to assemble from the cores, (2) how large each processor
should be and whether the allocation should be symmetric
or asymmetric, (3) what topology each logical core should
take, (4) where each task should run, (5) under what circum-
stances should the assignment of tasks to processors change,
and (6) the optimal way of migrating task state on reconfig-
uration. While ACMPs may require some aspects of (4) and
(5), determining the configurations and assignments coop-
eratively is a new problem unique to FCMPs.

This paper introduces and motivates this novel schedul-
ing problem, describes the challenges associated with it,
and presents several operating-system amenable algorithms
suited to FCMP resource allocation and scheduling. We
explore the problem in an environment consisting of mul-
tiprogrammed single-threaded workloads with both fixed
and dynamic workloads. The fixed workloads range from
one to 16 tasks all of which are available at time zero; the
dynamic workloads include a Poisson rate of task arrival
which causes the number of running tasks to vary over time.
We adapt scheduling algorithms from the multiprocessor
scheduling literature to FCMPs and compare them to ex-
isting algorithms for symmetric and asymmetric CMPs. In
our experiments, we focus solely on performance, for which
we use response time, defined as the time elapsed between
a task’s arrival and departure, as the metric. For the sake
of simplicity, we restrict this configurability of the archi-
tecture to the cores and leave an examination of DVFS for
future work.

Section 2 describes in further detail the characteristics of
a flexible-core CMP as well as the specific TFlex flexible-
core architecture we use in this study [9]. Section 3 de-
scribes prior scheduling approaches for fixed core SCMPs
and ACMPs, and the challenges common to scheduling for
CMPs in general and for FCMPs in particular. Section 4
describes a set of our proposed scheduling algorithms, Sec-
tion 5 discusses our experimental methodology, and Sec-
tion 6 presents the results of our experiments.

2 Flexible-Core Architectures

Flexible-core architectures seek to provide adaptivity in
the number and granularity of processors, enabling the sys-
tem to efficiently execute both a large and a small num-
ber of threads. The basic approach is to aggregate a num-
ber of smaller identical processors to form larger logical
processors. One example of a flexible core architecture is
Core Fusion, which provides mechanisms to enable multi-
ple out-of-order cores to be fused into a single more pow-
erful core [7]. Federation is a similar solution, but instead
federates multiple in-order cores to create an out-of-order
processor [13]. While these approaches have the advantage

of working with conventional instruction set architectures,
the sequential execution model may hinder scaling the num-
ber of aggregated cores. Voltron applies a related approach
to fuse multiple VLIW cores into a larger VLIW core [15].
Supporting this degree of flexibility requires physical dis-
tribution of different architectural structures including the
register file, instruction window, L1 caches, and operand
bypass network. In addition to the partitioning, various dis-
tributed control protocols are required to correctly imple-
ment instruction fetch, execute, commit, speculation recov-
ery, and other processor actions.

In this paper, we use the TFlex Configurable Lightweight
Processor (CLP) multicore architecture because of its abil-
ity to aggregate up to 32 cores into a single logical core [9].
Each CMP core is a simple dual issue out-of-order proces-
sor. Figure 1 (taken from [9]) shows a high-level floor-
plan of a TFlex processor. In addition to the grid of cores,
TFlex contains 32 banks of level-2 cache arranged in a non-
uniform (NUCA) architecture [8]. The figure also shows
three of many possible configurations of a TFlex system.
The configuration in Figure 1a has 32 1-core processors,
Figure 1c has one 32-core processor, and Figure 1b has a
diverse mix of processors. Throughout the rest of this paper
we will be using a terminology of P-N to refer to a logical
processor withN cores. Thus Figure 1b shows a configura-
tion with two P-8s, two P-4s, and four P-2s. The rest of this
section describes the basic architecture of TFlex, how cores
are composed into larger processors, and considerations for
reconfigurability.

ISA support: The scalability of flexible core architec-
tures can be hindered by an execution model that requires a
sequential instruction stream fetched from a common in-
struction store. The execution model also influences the
ease of distributing different microarchitecture structures,
such as the operand bypass bus, the register rename table,
and load/store queues. To address these challenges, TFlex
employs an Explicit Data Graph Execution (EDGE) ISA,
which enables distributed instruction fetch and makes ex-
plicit the communication between different instructions [2].

EDGE ISAs are characterized by two properties. The
first is block-atomic execution, in which control protocols
for instruction fetch, completion, and commit operate on
blocks (chunks of instructions containing up to 128 instruc-
tions on TFlex). This model of execution amortizes over-
heads like those of branch prediction and commit, making
them tolerant to latency as would be seen in an composed
processor. The second is that instructions explicitly encode
the address of their consumers. This simplifies operand by-
pass hardware, which simply has to route the data produced
by an instruction to the consumer, rather than broadcasting
it on a bus. The instructions are interleaved across all cores
composed as one processor, in a specific order, which helps
to locate them using a point-to-point network. The inter-
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(a) 32 2-wide CLP config. (b) 8-processor CLP config. (c) One 64-wide CLP config.

Figure 1:Three dynamically assigned CLP configurations.
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Figure 2:Illustration of microarchitectural components of one coreof a 32-core TFlex CLP (left and center) and internal organization of
the next-block predictor (right).

leaving changes when the core allocation changes.

Microarchitectural support: TFlex achieves full com-
posability, which means that no structures are shared across
cores. Figure 2 (from [9]) illustrates the various microarchi-
tectural components of a TFlex core. When a core operates
as its own dual-issue processor, all of the microarchitecture
structures are local. When cores are aggregated, the logi-
cal instruction window, register file, instruction cache, data
cache, and branch predictor are interleaved over the partic-
ipating cores. These structures are addressed partitionedin
the following manner: (1)Block starting address(equiva-
lent of PC in conventional architectures) is used to partition
the next-block predictor (branch predictor) structures and
block tag structures. Each block is assigned an owner core
based on the starting block address; ownership can rotate
among the participating cores. (2)Instruction IDs(within
blocks) are used to partition the instruction window and I-
cache, which results in a block getting equally distributed
across all participating cores. (3)Data addressis used to
partition L1 data cache and register files.

Since interleaving is controlled by bit-level hash func-
tions, all logical processor sizes must consist of a power-of-
two number of cores. All components of block execution,
including branch prediction, instruction fetch, instruction
execution, memory access, commit, and misspeculation re-
covery are distributed across the participating cores and are
implemented using pipelined and distributed protocols. The
protocols are realized using the control and data networks
of the TFlex architecture. Additional details of the TFlex
architecture are found in [9].

Processor reconfiguration:To be effective at adapting

to a changing number and type of simultaneously execut-
ing programs, a flexible core architecture must (1) be able
to isolate the tasks running on separate logical processors,
and (2) be easily configured from one arrangement of log-
ical processors to another. In TFlex, each core is allocated
a physical ID, which for a 32-core system, ranges from 0
to 31. Within each logical processor, all participating cores
are assigned alogical ID. To provide each task with its own
exclusive processor, the hardware implements a virtualiza-
tion layer that translates the logical core IDs to physical core
IDs. Each participating core contains a configuration map
which provides a mapping of its logical core IDs to physical
core IDs so that the control networks implement the proces-
sor control protocols correctly. In addition, each core also
knows the size of its configuration, which is used to com-
pute the interleaving factors. Finally, cache lines in the L1
data caches maintain an address space ID (ASID) so that
they do not have to be flushed on reconfiguration.

Reconfiguration of a logical processor requires three
steps: (1) stopping the pipeline, (2) moving state from the
old set of cores to the new set of cores according to the
new interleaving, and (3) adjusting the configuration reg-
isters to reflect the new mapping of physical cores to log-
ical processors. When stopping the pipeline, each I-cache
must be invalidated because a block’s tag is cached only at
the owner core and the execution protocol requires the data
blocks to be present in all of the other cores. Only the reg-
isters must be moved from the old configuration to the new
one and interleaved according to the size of the new con-
figuration. Because TFlex provides cache coherence at the
L1/L2 interface, invalidating the L1 D-cache is not neces-



sary; the blocks will automatically be fetched on demand
into the new cache banks. Ignoring the overhead associated
with context switching into the operating system, we esti-
mate the latency for a simple reconfiguration to require 500
cycles. Section 5 describes the modeling of reconfiguration
latency in greater detail.

3 Scheduling for Fixed-Core CMPs

3.1 Symmetric CMPs

In a traditional multitasking parallel system, a scheduler
must decide what tasks run and on what processors. Events
triggering scheduling typically include task arrival, com-
pletion, and interrupt. If all resources are equivalent and
all tasks are independent, scheduling is a straightforward
process that can most trivially be implemented in a first-
come, first-served algorithm. Periodic rescheduling can en-
sure a fair allocation of resources to tasks. In such systems,
scheduling can be infrequent enough to be implemented in
the operating system on millisecond timescales. Schedul-
ing becomes more challenging when tasks are composed
of multiple threads that interact with one another; gang
scheduling is effective at ensuring that tasks that interact are
run simultaneously [5]. For symmetric CMPs (SCMPs), we
assume that tasks are independent of one another and use
a simple first-come, first-served scheduler which runs each
task to completion. We also assume a model that uses the
operating system to perform the scheduling, but recognize
that finer grained rescheduling and reconfiguration could
benefit from more frequent and faster scheduling.

3.2 Asymmetric CMPs

The scheduling process becomes more challenging when
the individual cores in a CMP have different characteris-
tics as the scheduler must not only decide which tasks to
run, but also which processor to run each task on. A good
match between the characteristics of a task and the proces-
sor on which it runs will result in an efficient use of re-
sources. Take, for example, a hypothetical two-core CMP
with one core having twice the issue width of the other. Fur-
ther assume a workload with two tasks: (1) a high-ILP task
whose instruction throughput scales with the issue width,
and (2) a low-ILP task whose instruction throughput is in-
dependent of issue width. In the best assignment, this CMP
will achieve a throughput of 3×N instructions per cycle,
whereN is the issue width of the narrower processor. In the
worst assignment, the system will achieve a throughput of
only 2×N.

While asymmetric CMPs are a relatively new phe-
nomenon, Kumar et al. have examined a family of schedul-
ing and resource allocation algorithms for them [10]. Their

algorithms can be placed into three categories: static, ran-
dom, and dynamic. The static algorithm assumes that in-
formation about how each task performs on each processor
type is available a priori. This is then used to find an optimal
assignment of tasks to processors. Any time a task departs
or a new task arrives, the scheduler tries to find a new op-
timal assignment, and can use a number of optimization al-
gorithms, including dynamic programming. The random al-
gorithm simply finds a random assignment but ensures that
more powerful cores get used before less powerful ones.

In contrast, the dynamic algorithms attempt to adapt
to dynamic changes in the environment like task ar-
rival/departure or task phase changes. Kumar et al. divide
the algorithm into two phases:sampleandsteady. In the
sampling phase, the scheduler tries various different assign-
ments of tasks to processors to find the “best” one, by per-
muting the mapping of tasks to processors and measuring
the effect on throughput. Then the best assignment or sam-
ple is maintained in the steady phase, which is much longer
than the sampling phase. In the steady phase, throughput is
monitored for deviations to determine when task reassign-
ment might be necessary.

Sampling algorithms: Kumar et al. describe several
sampling algorithms, but we limit the discussion here to
their best performing one calledsample-sched. In sample-
sched the scheduler runs at most 4∗n different assignments
of tasks to processors, wheren is the number of tasks in
the system. This subset of the total possible configurations
is chosen randomly except for a constraint that each task
must be run at least once on the least powerful processor.
The assignment with the best throughput is used for the next
steady phase. Their algorithm usesweighted speedup(WS)
as a metric of performance which is defined as the sum of
individual speedups achieved by each task for a particular
configuration. Individual speedup of a task on a given pro-
cessor is computed as the ratio of its throughput on that pro-
cessor to that on the least powerful processor.

Triggering a sampling phase: Kumar et al. found
that triggering sampling periodically performs worse than
a policy that triggers sampling only after a change in
the workload or environment. Their best policy, called
bounded-global-trigger, triggers sampling when the mea-
sured throughput changes by more than a certain threshold.
In this policy the performance of each application is moni-
tored during the steady phase and the absolute value of the
percentage change in its IPC is calculated periodically. A
sampling phase is triggered if the sum of the percentage
IPC change of all tasks running exceeds a 100%. In or-
der to guard against short phase behavior, this policy delays
sampling until steady phase has run for a minimum thresh-
old number of cycles. Likewise, when steady phase runs for
a large number of cycles, exceeding a second threshold, the
algorithm triggers a sampling phase. To this policy we add



the condition that sampling should be triggered if a task de-
parts or a new one arrives and the lower threshold has been
exceeded.

For our experiments, we chose to model the duration of
the sampling interval as 50K cycles. We set the lower- and
upper-bounds for thebounded-global-triggerat 1M and 5M
cycles, respectively, meaning that the steady phase will run
for at least 1M and no more than 5M cycles. All of these
parameters are relatively small in order to accommodate the
slow execution rate of our simulator. While these values are
not nearly as large as those chosen by Kumar et al., their ra-
tios are similar to those in the original study. This methodol-
ogy will discover the smaller phases, while the larger phases
will be beyond the measurement capability of the simulator.

4 Scheduling for Flexible-Core CMPs

Flexible-Core CMPs present a number of unique chal-
lenges to a scheduler. The resource allocation and schedul-
ing problem has the following components.

(1) Determining the number and size of logical pro-
cessors: Determining the arrangement of cores into logi-
cal processors is complicated by the sheer number of pos-
sible configurations. For example, a 32-core TFlex FCMP
has 2279 unique configurations, where a configuration de-
termines the number and size of the logical processors. One
configuration of such a FCMP might include four logical
processors: one P-16 (16 cores), one P-8 (8 cores), and two
P-4s (four cores each). The number and size of the proces-
sors is influenced by the number of tasks that are ready to
run, by the parallelism profiles of the tasks which may vary
across phases of a task, and by the degree of contention for
shared resources like the level-2 cache. Scheduling for a
processor like TFlex requires finding a configuration that
best suits the workload and assigning the active tasks to it.

(2) Determining the topology of each logical proces-
sor: Flexible-Core CMPs also expose a tradeoff in the
shape of a logical processor. For example, although a 4-
core processor could be arranged as a 2x2 or a 1x4, the 2x2
will generally have better performance as it minimizes com-
munication distances. However, if only a 1x4 space is avail-
able, throughput will benefit from running a task on those
four cores rather than leaving them idle.

(3) Where should each task run:This not only involves
finding a vacant location for each task that has been allo-
cated some cores, but doing it in a manner that minimizes
shuffling already running tasks. Fragmentation can make
this problem more challenging as shown in figure 3(a). The
figure shows an assignment of cores to processors after
three tasks terminate. The shaded regions show the vacated
cores, that in this case, occupy discontiguous regions of the
array. Even though collectively there are eight free cores
available, assigning them to a new task in a contiguous man-

ner would require shuffling already running tasks around.
The problem of allocating cores in the free regions of a mul-
tiprocessor has been studied extensively in the domain of
multiprogrammed parallel systems, an excellent survey of
which is provided in [5].

(4) When should the configuration or assignment of
tasks to processors change:One of the objectives of a
scheduler is to minimize time spent in less than ideal con-
figuration. This requires deciding under what circumstances
should the configuration change. Significant events like task
arrival, task departure, or substantial changes in the system
performance can be used to consider reconfiguration. Issues
of fairness and priority can complicate this problem further.
Finally, a tradeoff exists between running in less than ideal
configuration and the overhead of reconfiguration.

(5) State migration during reconfiguration: When a
logical processor is reconfigured for a running task, its state
must be migrated from the old mapping to the new map-
ping. As described in Section 2, the memory state can
be migrated automatically, using built-in cache coherency
mechanisms. Registers can be moved in one of two ways.
The first method looks very much like a context switch as
the registers from the reconfigured processors are stored to
memory, the processors are reconfigured, and the register
values are retrieved from memory. The second method min-
imizes the memory traffic by transmitting the register values
directly from the old mappings to the new mappings. This
second method requires an ordering to the reconfiguration
of multiple processors to ensure that no state is lost during
the register remapping. The operating system is a natural
mechanism for performing the reconfiguration, but we also
envision state machines being capable of recognizing when
reconfiguration is desired and performing it without soft-
ware intervention.

While the challenges for FCMP scheduling are numer-
ous, we focus primarily on the problem of selecting the right
size and number of the logical processors. To that end, we
examine configuration scenarios that do not encounter the
issues of fragmentation and shape. We classify the space of
FCMP scheduling algorithms into three categories: static,
profiling-based, and dynamic.

Static algorithms: We define the class of static algo-
rithms as those that ignore the characteristics of individual
tasks, but may account for the number of running tasks. One
simple algorithm is to divide the number of cores into log-
ical processors of equal size and assign each one to a task.
We term this algorithmEQUI to reflect the equal allocation
of cores. Thus each task receives the same-sized processor
regardless of its concurrency and resource demands. Each
time the number of tasks changes due to arrival or depar-
ture, the algorithm re-calculates the number of cores and
changes the allocation if this number has changed. For ex-
ample in a 32-core system with two tasks, each will get 16



cores. Such a distribution can result in idle cores if the to-
tal number of cores is not evenly divisible by the number
of tasks. A slightly different version of this algorithm has
been used in a number of studies on scheduling for parallel
systems [5].

Profile-based algorithms: This class of algorithms as-
sumes that some information about the characteristics of
each application is available to the scheduler at its arrival
time. While this information could be obtained through a
priori or on-line profiling, we anticipate that compile-time
analysis could also provide hints about a task’s require-
ments.

One simple algorithm allocates each task its ideal num-
ber of cores on a first-come, first-served (FCFS) basis. If the
ideal core count for the task at the head of the FCFS queue
is available, the task is mapped onto those cores. Other-
wise, the task waits in the queue. If the task at the head of
the queue must wait, the scheduler could choose to main-
tain the FCFS ordering by forcing all other tasks to wait.
Another option is tobackfill by finding later arriving tasks
that have fewer resource requirements to fill in the gaps.
While backfilling has been extensively studied in multipro-
grammed parallel systems [4], we have not yet explored this
algorithm.

We call the profile-based algorithm that we implement
and examine in this paper,Profile. This algorithm assumes
that information about how a task’s weighted speedup varies
with core count (cores-to-ws function) is available at arrival
time. Using this it finds an allocation of cores that maxi-
mizes the weighted speedup of the system as a whole. This
can be stated as the following optimization problem:

Maximize
t

∑
i=1

fi(ci), given the constraint
t

∑
i=1

ci <= N

where fi is the cores-to-ws function andci is the number
of cores allocated for taski, t is the total number of tasks,
andN is the total number of cores in the system.

We solve this optimization problem by using an opti-
mal dynamic programming algorithm withO(tN2) com-
plexity [6]. Anytime a task departs or a new one arrives,
the scheduler runs the dynamic programming algorithm to
find the new optimal allocation.

Dynamic algorithms: While Profile exploits knowledge
of the characteristics of an individual task, it relies on this
knowledge being available a priori. Such profiling informa-
tion may not always be available or may be inaccurate due
to differences in the profiled and real execution of the pro-
gram. The obvious alternative is to acquire this information
online.

We call our dynamic algorithmPDPA, which stands for
Performance Driven Processor Allocation and is adapted
from [3]. Our modified version of the algorithm allocates
cores based on how efficiently a task is executing, where
efficiency is defined as (Speedupover 1 core) / (Num-
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ber of corescurrentlyallocated). If a task achieves an ef-
ficiency higher than a predefined threshold calledhigh eff,
the task can acquire more cores. Similarly, if it achieves
an efficiency lower than another predefined threshold called
target eff, cores are taken away. Otherwise the allocation is
maintained. Note that the thresholds are chosen such that
targeteff < high eff.

The scheduler implements a state machine shown in fig-
ure 3(b) with each task being in one of its states. It eval-
uates tasks periodically whenever the timer interrupt goes
off. The next state and the new allocation of a task is de-
termined based on how it performed in the just completed
interval, and is described below.

NEW state: Newly arriving tasks are initially placed in
the NEW state. If a task was in this state in the last interval,
the scheduler allocates it one core (shown asP = 1 in the
state diagram), if one is available, and changes its state to
NOREF. The task stays in the NEW state if no free core is
available.



NOREF state: The purpose of this state is to acquire a
baseline reference for a task by executing it on a single core.
If a task was in this state in the last interval, its referencehas
been acquired. Therefore, it is placed in the INC state with
an allocation of two cores.

INC state: In this state, the scheduler tries to deter-
mine how well the task utilized the increased allocation
and whether it can benefit by a further increase. If the
task achieved an efficiency greater than the higheff thresh-
old and if it achieved a speedup greater than it did in the
previous interval (the interval prior to the one being eval-
uated), the allocation of the task is doubled and its state
maintained as INC. However, if this is not true, the task’s
state is changed to STABLE. Furthermore, in the latter case
if the task’s efficiency dropped below the targeteff thresh-
old, its allocation is halved. The allocation never exceeds
16 cores and never becomes zero until the task terminates.

DEC state: This state is the analog of the INC state. If a
task’s efficiency drops below the targeteff, its allocation is
halved and its state maintained as DEC. Otherwise, its state
is changed to STABLE.

STABLE state: When a task reaches the STABLE state,
it is assumed to have an optimal allocation, and is therefore
maintained there. However, this may no longer be desirable
if the load on the system changes significantly. For exam-
ple, if the system transitions from a moderate load to a light
load, it may be better to allocate more cores to the existing
tasks. In order to accomplish this the scheduler maintains
different values of the efficiency thresholds according to the
load on the system, and re-evaluate tasks in the STABLE
state whenever the thresholds change. If a task’s efficiency
drops below the new targeteff, its allocation is halved and
state changed to DEC; if efficiency exceeds the new value
of high eff, its allocation is doubled and state changed to
INC; otherwise its state is maintained as STABLE.

For our experiments, the efficiency thresholds were cho-
sen as follows. If number of tasks is

< 4,high e f f = 0.6, target e f f = 0.4

>= 4and<= 8,high e f f = 0.8, target e f f = 0.65

> 8,high e f f = 0.9, target e f f = 0.7

These values were selected using the efficiency achieved by
each of our benchmarks on each core count, and with the
desire to keep the grid of cores as occupied as possible. Fi-
nally, the timer interval was chosen to be 100K cycles to
strike a balance between letting the tasks reach their sta-
ble state as soon as possible, and allowing the scheduler to
evaluate the tasks accurately.

5 Experimental Methodology

To explore the benefits of flexibility and to gain insights
into the potential for scheduling for an FCMP like TFlex,

we compare the performance of some algorithms for TFlex
to the best known algorithms for fixed-core CMPs. This
section describes the methodology used in our experiments.

Simulator parameters:We model a 32-core TFlex pro-
cessor. The experiments were done using the cycle accurate
simulator also used in [9]. The architectural parameters for
a single TFlex core are described in table 1, which was also
taken from [9].

Modeling fixed-core CMPs:Fixed-core CMPs are mod-
eled by “freezing” a TFlex configuration. For example, a
four-processor SCMP can be created by configuring TFlex
to have four processors with eight cores each. We evaluate
SCMPs with granularity varying from one 32-core proces-
sor to 32 one-core processors. We also evaluate a coarse-
grained and a “balanced” ACMP. The coarse-grained ver-
sion is composed of one P-16, one P-8, and two P-4s,
whereas the balanced ACMP is composed of one P-8, two
P-4s, four P-2s, and eight P-1s. The latter is called balanced
because 16 of the 32 cores are devoted to larger processors,
and the remaining 16 are devoted to smaller processors.

Assumptions about reconfiguration:The scheduling
algorithms for TFlex described so far only go as far as find-
ing a suitable core count for each task on the sytem. They do
not provide any information aboutwhereto allocate these
cores. Here we describe our solution and assumptions about
this problem.

For this study we use the following method for recon-
figuration. We assume that all tasks are halted and their
state pulled out of the grid of cores. Then we use a sim-
ple algorithm that sorts the allocations in descending order
of size and starts allocating from the lower left corner of
the grid, moving upwards and towards the right. This guar-
antees a legal allocation since all allocations are powers of
two. We also assume the following shapes for the various
allocations: a P-16 is 4x4, a P-8 is 4x2, a P-4 is 2x2, and a
P-2 is 2x1.

We assume that the register state of a task being recon-
figured is moved via memory through spills and fills and
costs roughly 500 cycles. This is done one task at a time
which makes the total reconfiguration cost equal to the sum
of the cost of individual tasks. Finally, this cost is added to
all the tasks on the system including the ones which never
participated in the reconfiguration but still had to wait forit
to complete.

Our experiments do not count the overheads of the exe-
cution of the actual scheduling algorithm that finds the next
allocation. The assumption is that the scheduler need not
stop any tasks while running its evaluation algorithm. It
halts tasks only after it has decided upon an allocation and
is ready to reconfigure.

Workload construction: We use a set of hand-
tuned benchmarks that were taken from the EEMBC and
Versabench suites and are shown in table 1. Table 2 shows



Parameter Configuration
Instruction Supply Partitioned 8KB I-cache (1-cycle hit); Local/Gshare Tournament predictor (8K+256 bits, 3 cycle latency) with speculative

updates; Local: 64(L1) + 128(L2), Global: 512, Choice: 512,RAS: 16, CTB: 16, BTB: 128, Btype: 256.
Execution Out-of-order execution, RAM structured 128-entry issue window, dual-issue (up to two INT and one FP).
Data Supply Partitioned 8KB D-cache (2-cycle hit, 2-way set-associative, 1-read port and 1-write port); 44-entry LSQ bank; 4MB de-

coupled S-NUCA L2 cache [8] (8-way set-associative, LRU-replacement); L2-hit latency varies from 5 cycles to 27 cycles
depending on memory address; average (unloaded) main memory latency is 150 cycles.

Hand-optimized
Benchmarks

7 EEMBC benchmarks (a2time, autocore, basefp, bezier, dither, rspeed, tblook), 2 Versabench (802.11b, 8b10b) [11]

Table 1:Single Core TFlex Microarchitecture Parameters
Benchmark P-1 P-2 P-4 P-8 P-16 P-32
a2time 0.22 0.45 0.63 1.00 0.68 0.31
autocor 0.16 0.29 0.44 0.65 0.88 1.00
basefp 0.12 0.20 0.38 0.68 1.00 0.82
bezier 0.11 0.22 0.45 0.68 0.99 1.00
dither 0.29 0.60 0.91 1.00 0.86 0.95
rspeed 0.17 0.36 0.63 1.00 0.98 0.93
tblook 0.51 0.73 0.80 0.94 0.95 1.00
802.11a 0.24 0.45 0.79 0.93 1.00 0.84
8b10b 0.23 0.44 0.81 0.92 1.00 0.88

Table 2:Cores-to-WS function for our benchmarks

how the performance of these benchmarks varies with num-
ber of cores. The length of each benchmark was chosen to
be 20M cycles on a P-1 with the desire of striking a balance
between simulation time and simulation quality.

We modeled both fixed-sized workloads and dynamic
task arrival. The fixed-sized workloads vary from one to
16 tasks each of which is assumed to be available at time
zero. The dynamic workloads follow a poisson process ar-
rival model with an arrival rate of two, four, and six tasks
per 6M cycles. These arrival rate values were chosen to sim-
ulate a diverse range of system loads. A total of 128 tasks
arrive in the dynamic workload experiments.

The workloads were generated by randomly selecting
benchmarks from our pool of benchmarks. For each size
of the fixed workloads, 20 different workloads were gener-
ated and the results were averaged.

Metric: We choseresponse timeas the metric, which
is defined as the time elapsed between a task’s departure
and arrival. This is particularly relevant for interactivejobs,
which care less about their throughput and more about how
quickly they can be serviced. It has been one of the metrics
of choice in the field of parallel process scheduling [5, 3]
and was also used by Kumar et al. to evaluate their schedul-
ing work on ACMPs [10].

Scheduling algorithms:We evaluate most of the sched-
ulers described in the earlier sections of the paper. For the
SCMPs we chose theFCFSscheduler that runs the tasks to
completion. For the ACMPs we chosesample-sched, and
for TFlex we evaluateEQUI, Profile,andPDPA.

6 Experimental Results

This section presents the results of our experiments. We
first describe how the results demonstrate the benefits of
flexibility by comparing the performance of TFlex and the
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Figure 4: Performance results

fixed-core CMPs. This is followed by a comparison of the
performance of the scheduling algorithms for FCMPs to
help us understand their strengths and weaknesses.

Our experimental results are summarized in Figures 4(a)
and 4(b), with average response time on the y-axis as the
performance metric (lower is better). Figure 4(a) shows the
performance on fixed-size workloads with x-axis represent-
ing the workload size (1 to 16 tasks). Figure 4(b) shows
the performance on workloads modeling dynamic task ar-
rival with the x-axis representing different task arrival rates
(measured in tasks arriving per 6M cycles). The SCMPs



evaluated are labeled as SCMP-n where n is the number
of processors in that CMP. For example, SCMP-1 consists
of one 32-core processor, SCMP-2 consists of two 16-core
processors, etc. The coarse-grained and balanced ACMPs
are labeled as ACMP-coarse and ACMP-balanced.

6.1 Benefits of flexibility

Fixed-size workloads: Not surprisingly, Figure 4(a)
shows that the best performing SCMP depends directly on
the size of the workload. For example, SCMP-2 is the best
for size two tasks, SCMP-4 is the best for size 4 tasks, etc.
The performance of any given SCMP declines steadily as
the size of the workload increases beyond its granularity
since tasks are made to wait longer and longer. Moreover,
if the size of the workload is much smaller than its granu-
larity, any given SCMP performs worse than those with a
more coarse granularity than itself. Overall, SCMP-4 and
SCMP-8 perform the best amongst SCMPs, as shown by
the geometric mean, labelledGmeanin the figure.

Among ACMPs, ACMP-coarse does better for smaller
workloads (size one to four) because each processor is more
powerful. However, ACMP-balanced is better for larger
workloads (eight to 16), since it can accommodate more
tasks, significantly reducing the average waiting time.

The benefits of flexibility are evident in the results of
the schedulers for FCMPs. There are two components of
flexibility–(1) the ability to change the number of proces-
sors; (2) the ability to create asymmetrically sized proces-
sors. The benefits of the former are shown by how well
TFlex performs in comparison to fixed-core CMPs by using
just a simple scheduler like EQUI. Its performance is almost
as good as the best SCMP for each workload and is on aver-
age 10% better overall than the best SCMP (SCMP-8). Not
only can this algorithm alter the core allocation depending
upon the number of tasks available at time zero, but also
as the system load changes due to job completions. EQUI
is worse than ACMP-coarse for smaller workloads (smaller
than eight tasks) but outperforms it for larger workloads. It
outperforms ACMP-balanced for all workload sizes and is
about 12% better than the two ACMPs overall.

Profile shows the benefits of creating asymmetry of vary-
ing degrees, depending on the number of jobs and the avail-
ability of concurrency in each job, and on average outper-
forms the best SCMP and best ACMP by 21% and 23%,
respectively.

Dynamic workloads: Dynamic workloads further
demonstrate the benefits of flexible architectures. If the task
arrival rate changes such that a large mismatch is created be-
tween a fixed-core CMPs granularity and the system load,
the performance of fixed CMPs will deteriorate consider-
ably. For example, Figure 4(b) shows that SCMP-4 per-
forms well for a task arrival rate of two (per 6M cycles),

but considerably worse for a rate of six, as arriving tasks
must wait in the queue because of fewer processors. On the
other hand, if the load is much smaller than the granularity,
tasks are forced to run on weaker processors despite a lot
of the chip resources being idle. The only exception to this
is SCMP-16 whose performance does not fluctuate dramat-
ically as the rate changes; however, the performance is still
very low for smaller arrival rates since a large number of
cores are left idle.

All the FCMP scheduling algorithms are able to adapt
to the changes in the system load, since the hardware gives
them the option of changing core allocations dynamically.
EQUI outperforms the best SCMP (SCMP-8) by 6.3%; the
additional capability of creating asymmetry results in Pro-
file outperforming SCMP-8 by almost 32%.

6.2 Comparison of FCMP scheduling algorithms

This section compares Profile, EQUI, and PDPA and
provides some insights about their strengths and weak-
nesses.

Profile: The profiling algorithm performs better than
both EQUI and PDPA for all workloads–both fixed and
dynamic–because it always executes an optimal allocation
assuming no phase behavior in the application. In fact for
workloads containing applications with only a single phase,
Profile shows us the limits of what a scheduler can achieve.
Therefore we compare EQUI and PDPA to this algorithm to
gain some insights into their strengths and weaknesses. In
workloads that contains programs with phase behavior, Pro-
file would be at a disadvantage, relative to the dynamically
adaptive alternatives.

EQUI: As mentioned previously, the performance of
EQUI demonstrates that there is merit in adapting to the
numberof tasks even if one does not take into account their
individual characteristics. EQUI is trivial to implement and
is able to service newly arriving tasks immediately with ar-
rival triggered reconfiguration, thus reducing their waiting
time. In fact we observed that it achieves an average wait-
ing time close to zero even for heavy system loads, which
for example, can get caused by a task arrival rate of six.

A comparison of EQUI and Profile shows us the addi-
tional benefits that the asymmetry component of flexibility
can provide. Profile is 14% and 37% better than EQUI for
fixed and dynamic workloads, respectively.

The biggest weakness of EQUI is that certain “odd”
number of tasks can result in an allocation with too many
idle cores. For example, if the system has nine tasks, each
will get two cores (since 32/9 = 2) for a total of 18, result-
ing in 14 cores being idle. This weakness results in consid-
erable performance loss for this algorithm for the dynamic
workload with an arrival rate of six because in this case the
system load hovers around eight to 12 tasks. A simple mod-



ification would grow some of the processors to absorb the
idle cores and assign the tasks to these asymmetric units,
perhaps at random.

PDPA: The dynamic PDPA algorithm has dual strengths
of accounting for task characteristics and adapting to system
load changes. If a task only has a single phase, it has another
advantage of quickly tuning up to its optimal allocation and
maintaining it. However, if it does experience phase behav-
ior, PDPA could allocate cores suboptimally since once a
task enters the STABLE state it cannot leave until the effi-
ciency thresholds change.

The biggest weakness of this algorithm is that it is a bit
conservative. On many occassions cores are left idle be-
cause tasks cannot meet the higheff threshold. For this rea-
son, PDPA performs 15% worse than Profile on fixed work-
loads and 21% worse on dynamic workloads, overall. A
secondary reason for performance loss is that in comparison
to Profile and EQUI, PDPA allocates more powerful cores
much more slowly. For example in our experiments, at least
300K cycles are required for a task to get eight cores allo-
cated because any allocation changes happen once in 100K
cycles, and all tasks get one core initially. This can resultin
a performance loss of about 3-5%.

The combination of the two weaknesses described above
cause EQUI to outperform PDPA for the fixed workloads.
However, for the dynamic workloads, PDPA outperforms
EQUI since the latter can cause a lot of cores to be idle for
certain system loads. This algorithm needs more investi-
gation to find a relationship between efficiency thresholds
and load changes that results in more aggressive allocations
without being less robust. The challenge here is that on the
one hand adjust to fine changes in the load is preferable, but
on the other hand there is a risk of doing too many recon-
figurations and not finding a stable state.

7 Conclusion

Emerging flexible-core CMP (FCMP) architectures pro-
vide new challenges and opportunities for resource man-
agement and scheduling. In this paper, we presented three
algorithms for scheduling tasks on a FCMP that can adapt
to workloads with varying number of tasks and varying de-
grees of concurrency within the tasks. Our results show that
the FCMP and these algorithms can outperform fixed-core
CMPs by 21% to 13 times, depending on the workload. A
substantial fraction of this improvement stems merely from
the capability to match the number of cores to the num-
ber of tasks, rather than letting processors or tasks idle ina
fixed core CMP. In our experiments, additional but smaller
benefit can be achieved by exploiting the asymmetry in the
ILP demands of different tasks. Our ultimate goal is to
devise systems that obtain the best possible performance,
power, and efficiency in general purpose computing by co-

optimizing both the hardware and software. While FCMPs
and their scheduling algorithms are a step in that direction,
we anticipate that combining these techniques with other
dynamic resource allocation mechanisms such as DVFS
will yield further opportunities for system optimization.
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