
Appears in the
�������

International Conference on Computer Design

Exploiting Microarchitectural Redundancy For Defect Tolerance

Premkishore Shivakumar Stephen W. Keckler Charles R. Moore Doug Burger
Computer Architecture and Technology Laboratory

Department of Computer Sciences
The University of Texas at Austin

cart@cs.utexas.edu - www.cs.utexas.edu/users/cart

Abstract

The continued increase in microprocessor clock frequency that
has come from advancements in fabrication technology and reduc-
tions in feature size, creates challenges in maintaining both manu-
facturing yield rates and long-term reliability of devices. Methods
based on defect detection and reduction may not offer a scalable
solution due to cost of eliminating contaminants in the manufac-
turing process and increasing chip complexity. This paper pro-
poses to use the inherent redundancy available in existing and fu-
ture chip microarchitectures to improve yield and enable graceful
performance degradation in fail-in-place systems. We introduce
a new yield metric called performance averaged yield (�	��
	�)
which accounts both for fully functional chips and those that ex-
hibit some performance degradation. Our results indicate that at
250nm we are able to increase the � ��
	� of a uniprocessor with
only redundant rows in its caches from a base value of 85% to 98%
using microarchitectural redundancy. Given constant chip area,
shrinking feature sizes increases fault susceptibility and reduces
the base � �	
�� to 60% at 50nm, which exploiting microarchitec-
tural redundancy then increases to 99.6%.

1 Introduction
The bulk of the performance improvement in micropro-

cessors in recent years has come from increases in clock
frequency predominantly achieved by aggressive reductions
in technology features sizes from
������ to ����
������ , and
on-chip transistor counts that have soared from 2,300 to
over 100 million. While technology trends suggest chips
with clock frequencies in the multigigahertz range contain-
ing over a billion transistors by the end of the decade, two
substantial challenges must be addressed to enable practi-
cal deployment of such systems. First, shrinking lithog-
raphy, new materials and process technologies, and lower
design tolerances make integrated circuits more susceptible
to manufacturing defects, requiring substantial investments
to maintain chip yield at acceptable levels. Second, some
manufacturing defects are latent and manifest themselves
only after the chips have been deployed and run for some
period of time. As larger commercial and scientific systems
are constructed from hundreds or thousands of processors,
the probability and frequency of latent failures increase.

In this paper we examine the redundancy already avail-
able within modern microprocessors that can be used to

improve chip yield and enhance the graceful degradation
of fail-in-place systems. While modern chips are typically
declared functional only if all of the components are fully
functional (taking into account redundant rows to increase
yield in caches), we propose that chips with some non-
functioning components are still useful and can contribute
to both overall yield and gracefully degraded components in
a fail-in-place system. Today, it has also become common
for manufacturers to separate chips that are for sale into
speed bins based on their operating frequency, and recently
some have made use of a more general performance binning
strategy that separates parts into bins of guaranteed perfor-
mance levels rather than bins based solely on operating fre-
quency [11]. We propose that designs that include repli-
cated or non-essential functions in support of increased per-
formance be enhanced with the capability to disable some
of these structures in face of defects detected within the cir-
cuitry. Chips of different end-performance, corresponding
to different degraded configurations, can be offered at dif-
ferent prices, extending the current manufacturers use of
speed binning. We formalize this notion of performance
binning, and propose a new yield metric called performance
averaged yield (�������) in which the total yield is a function
of the performance range of each bin and the number of
chips in the bins. Our results indicate that the � ����� for a
uniprocessor can be improved from 85% to 98% with cer-
tain assumptions about defect density and defect size. For
chip-multiprocessor architectures at future technologies, we
show that microarchitectural redundancy provides substan-
tial benefits achieving � ����� of up to 99.6%.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on yield loss and some related
work in yield enhancement. Section 3 identifies and clas-
sifies the types of redundancy in modern microprocessors
and describes the mechanisms required to exploit it for yield
and fail-in-place enhancement. Section 4 describes the de-
tails of our yield, area, and performance models. Section 5
presents results showing the yield benefits of microarchitec-
tural redundancy as a function of technology, defect charac-
teristics, and architecture. Section 6 summarizes our find-
ings and describes the synergy between this work and other
design trends.

1

2 Background and Related Work
Yield loss over time can be divided into an initial phase

of technology deployment dominated by systematic fail-
ures, with an eventual crossover to a more mature phase
dominated by random defects [17]. Future technology ad-
vancements are expected to involve continued shrinking of
feature sizes, and the introduction of new process steps and
materials increasing the yield sensitivity to design features,
introducing new sources of systematic defects, and requir-
ing a feature-based methodology to quantify yield loss [12].
Though we focus primarily on the yield loss due to random
defects, we recognize that many of the techniques discussed
here will also help in identifying more usable chips dur-
ing the initial technology learning phase. In this paper we
push the traditional techniques of yield enhancement, based
on detecting and either disabling or reconfiguring the faulty
resources [10], inside the boundaries of a single processor
by identifying and exploiting redundancies at the microar-
chitectural level. Due to the enormous expense of suitable
testers and test time with growing chip complexity, com-
pounded by the fine-grained nature of redundancy proposed
in this paper, we envision the need for more advanced BIST
controllers that build on the capability that exists for array
repair to include support for other types of fault tolerance
mechanisms [6].

There are two classes of work related to the performance
averaged yield concept. In [20], yield evaluation is done
for memory chips with redundancy that allows the chip to
be partitioned so that the fault-free sections can operate in-
dependently. The equivalent yield concept proposed in that
paper accounts for partially good chips by scaling the yield
by the memory capacity of the degraded chip. In this pa-
per, we extend the argument to processor chips and propose
a performance based metric that is a better measure of the
effect of chip degradation at the system level. Performabil-
ity [14] was proposed as a refined measure of availability
by accounting for the degraded performance dynamically.
Performance averaged yield adapts this dynamic concept to
static chip yield evaluation, while recognizing the fact that it
directly applies to fail-in-place systems with runtime BIST
and repair.

3 On-Chip Redundancy Model
This section describes each redundancy model and our

implementation of the redundancy models in the different
processor components. In the future, many chips will likely
contain multiple processors, when we can imagine a set
of intra-processor redundancies as well as inter-processor
redundancy at the next level of hierarchy. As a basis for
analysing the effects of the different redundancy types, we
have defined a processor model (Table 1) that is similar to
the Alpha 21264 [9]. Both the integer and floating point
clusters are symmetric and each have 2 functional units

within them. The processor also has an on-chip L2 cache
of 1MB. The spare entries provided in the components are
used only in the face of defects and do not contribute to ad-
ditional performance. We identify three primary types of
redundancy as a basis for our redundancy model (Figure 1).

Component Level Redundancy (� �"!): In � �"! , the
component is typically replicated to provide additional per-
formance through parallelism, but only a subset is actually
required for correct functionality. Each component that has� �"! has a resource line associated with it, and the compo-
nent’s BIST module sets the resource line to be permanently
BUSY in the event the component is disabled due to inter-
nal faults. The parent control logic already contains mech-
anisms that restricts its use each cycle to only those com-
ponents whose resource lines are FREE. For instance, the
instruction scheduling logic is implemented using wakeup
arrays that contain RESOURCE AVAILABLE lines indicat-
ing which resources are FREE in the given cycle [4]. The
execution clusters and the internal ALUs of the processor
are covered by the � �"! model. The hierarchical nature of
the � �"! for the clusters and ALUs provides coverage over
the control logic of the individual clusters.

Array Redundancy (#$!): When defects are detected in
rows or columns of bit cells in the main body of the array,
the #%! mechanisms can be configured to effectively steer
the decode towards the redundant entry rather than towards
the bad row or column. From a yield perspective, #%! is
attractive because a relatively small investment in area can
offer excellent defect tolerance for the entire structure. The
set associative L1 and L2 caches are way-interleaved allow-
ing both � �&! (disabling one set) and #%! (redundant row
steering within one of the operational sets). The � �"! for
the caches provides coverage over the peripheral logic of
the individual cache banks also. Consistent with the ac-
cepted design practice [8], the redundant rows and columns
are about 2.5% of the base cache capacity. The TLBs are
also covered by the #$! model.

Dynamic Queue Redundancy (')(*!): A valid bit is
added to each queue entry that has '+(,! . If a particular
queue entry has defects, it can be permanently disabled by
clearing the valid bit, thus decreasing the number of avail-
able entries. The existing protocols that add queue entries
are modified to stall the machine when the available queue
entries are full. Downstream queue access logic is also aug-
mented so that the queue entries marked invalid are never
processed. In highly pipelined designs, as well as designs
that support dynamic reordering of operations, many struc-
tures such as the reorder buffer, the issue window, the regis-
ter remappers, the load and store buffers are implemented as
queues. In our implementation of ')(*! , we include spare
queue entries to provide some defect tolerance without los-
ing any performance, similar to #$! . Nevertheless, our ex-

Processor Redundancy Configuration
Microarchitecture Resource Base capacity / Spare entries Redundancy Model Minimum operational size

INT, FP Instruction Window 20 / 1 DQR 20
INT, FP Register File 80 / 2 DQR 80
INT, FP Map Table 32 / 1 DQR 32
Execution units per cluster 2 / 0 CLR 1
(INT Alu, FP Alu, INT Mult, FP Mult)
INT, FP Clusters 2 / 0 CLR 1
Reorder Buffer 80 / 2 DQR 80
Load / Store queue 32 / 1 DQR 32
TLBs (Fully associative) 128 / 2 AR 128
L1 I, D cache (2-way associative) 64KB / 1.5KB AR, CLR 32KB
L2 cache on-chip 1MB / 24KB AR, CLR 0MB

Table 1. Processor redundancy configuration

x

x

(bad entry)

xxxxx

xxxxx

xxxxx

(a) Component Level Replication (CLR)

(bad entry)

(bad entry)

Extra Row
Available

Extra Row used
in place of bad entry

All entries available Two entries invalid
are usable
Only three

for parallelism
Four built in

(c) Dynamic Queue Redundancy (DQR)(b) Array Redundancy (AR)

Functional, with performance loss Functional, no performance loss Functional, some performance loss

Figure 1. Basic Redundancy Models.

periments show that disabling one or two entries in most of
these queues results in at most 1% loss in performance.

Elements of the processor not listed in the table, like ran-
dom control logic, and logic that is used to implement the
redundancy model itself, have no redundancy coverage in
our example design. Nevertheless, approximately 85% of
the total area of the processor has coverage through redun-
dancy, as compared to 50% with #$! alone in the L1 and
L2 caches. This configuration and aggregate model is used
for the uniprocessor and multiprocessor yield analysis de-
scribed throughout this paper. Since mainstream proces-
sors [2] already employ redundant rows and columns in
caches, the baseline yield (��-.��/10) corresponds to a pro-
cessor with #%! in the L1 and L2 caches.

4 Methodology
Our methodology for calculating overall chip yield inte-

grates a basic yield model and a microprocessor area model
with the redundancy model of the chip components. The
yield of the chip computed thus is then linked with its mea-
sured end-performance across the range of different config-
urations to obtain the performance averaged yield (� �����).
The remainder of this section describes each of these mod-
els in greater detail.

4.1 Random Defect Limited Yield Model

In this paper, we have adopted the Poisson Yield
model for modeling the random yield component [13]. Our

methodology can be extended to use other commonly stud-
ied and more detailed yield models such as the Negative
Binomial model [10]. The Poisson Yield (���) Model mod-
els the random defects to be completely independent and is
described by:

���32547698�:<;>= � =@?BA�C (1)

where 'D� is the defect density measured in defects per EF�HG ,# represents the area of the component in EF�HG , and IJ!
is the kill ratio or the fraction of the total component area
that is sensitive to defects. The kill ratio models the inter-
action between the defect size and the layout feature size,
and increases as the ratio of defect size to the feature size
increases. The ITRS [17] has set a target of 83% for the
random-defect limited yield of microprocessors. We obtain
a � -K��/10 of 85.4% at 250nm using the defect density pro-
vided by the ITRS, for a normal defect to feature size ratio,
and a chip area of �7L����M�NG , validating our input parameters
to the Poisson Yield model.

4.2 Chip Area Model

Estimation of individual component yield requires de-
tailed area models of the processing cores and caches. We
configured Cacti 3.0 [19], an integrated memory access
time, energy, and area model, to derive area estimates of L1
and L2 caches, TLBs, register files, and all on-chip queues.
To model the area of functional units we used an empirically
derived, technology-independent area model [5]. To esti-

Structure Percentage of total area

L2 cache 49.0%
L1 D cache 12.7%
L1 I cache 5.5%
Integer functional units 6.3%
Floating point functional units 6.7%
On-chip storage structures 11.1%
(except caches)
Misc. components 6.0%
(BIU, PLL,I/O pads etc.)
Random control logic 2.7%
Total Area at 250nm OFPFQ�R%R S

Table 2. The Uniprocessor Model

mate the area of miscellaneous blocks such as I/O pads and
clock distribution trees, we developed an empirical model
based on our analysis of the Alpha 21264 floorplan [9]. We
validated our area model against the Alpha 21264 micropro-
cessor floorplan area [9] and calculated the error to be 3.8%.
Table 2 shows the area of the processor model described in
Section 3, and its distribution among its most significant
components.

4.3 Overall Chip Yield Model

Section 3 describes how a single processor component
may have more than one form of redundancy. If the multi-
ple redundancies are non-hierarchical in nature, the overall
component yield is simply equal to the product of the in-
dividual region yields corresponding to the different redun-
dancy models. The individual yields can be composed using
a simple product because the Poisson model treats defects
as completely independent. On the other hand if the compo-
nent has redundancies that compose hierarchically, we be-
gin by applying the method at the lowest level at which the
redundancies of the regions are non-hierarchical and then
reapply the method recursively at each higher level of hier-
archy. The chip area model is used to estimate the area of
the different component regions. The redundancy model of
a region is one of � �"! , #$! , ')(*! or no redundancy. The
Poisson Yield model is used directly to calculate the statis-
tical yield of a region with no redundancy. The method to
calculate the yield of a region with one of the three primary
redundancy schemes is described below.

Yield with the basic redundancy models: A redun-
dancy model specifies the minimum number of working en-
tries the component must possess to ensure correct over-
all functionality. The overall component yield is therefore
the sum of the probabilities associated with all the config-
urations in which the component has at least the minimum
number of working entries, out of the total number of entries
including spares. The � A from this calculation is summa-
rized using the well known binomial expansion:

� AUT
6WV�XZY[X]\]C^
_�`+ab_Wc X

� 6�VdX]Y[XZ\]Cae_Wc X f)g"h�i Good j _ f)gkhli Bad j�6�VdX]Y[XZ\�8 _ C
(2)

where � cm is the combinations operator, �Mn�o[p is the sub-
set of entries required for correct functionality, qrp repre-
sents the base number of entries in the component, and pl4
is the number of spare entries. The probability of a entry
being functional or invalid is computed using the Poisson
Yield model. For example, caches that have #$! are pro-
vided with enough redundant rows and columns to greatly
improve yield and at the same time show no reduction from
peak performance. Hence in this case �Mndo[p becomes equal
to qrp , and the value of pl4 is dependent on the cache capac-
ity. With � �"! in the clusters, the processor could poten-
tially have a configuration with only one functional cluster,
in which case p�4 is equal to zero and �Mndo[p is equal to one.
Hence �ts �.0 A ��u@u , our overall yield metric, not only in-
cludes the traditionally accounted fully functional chips but
also includes chips with degraded components. The min-
imum subset of entries for each on-chip component deter-
mined by the specific redundancy model is given in Table 1.

4.4 Performance Averaged Yield Model

While � s �.0 A ��u	u treats all the resulting yield config-
urations equally regardless of their degraded state, �������
specifically aims to differentiate between fully functional
chips and chips with degraded components. Our design
of the � ����� metric achieves this by using the vxw,� of
the resulting chip configuration as the discriminating mea-
sure. Using this formulation captures both the effects of
redundancy—improvements in yield and reductions from
peak performance. Adding three steps to the algorithm
for computing � s �.0 A ��u@u gives us ���[��� . First, they #{zJvxw,� corresponding to the base configuration (which
is the maximal configuration) is calculated. Each degraded
configuration is then associated with a relative IPC, which
is the ratio of its vxw,� to the

y #$zJv7w,� . Finally the yield
of each configuration is scaled by its relative IPC and accu-
mulated to give ������� . This is described by the equation:

� ����� T
^

t|$}r~�~x�Z��c��l���� m }F�9_W��c X
� _ f

vxw,� _y #{z�v7w,� (3)

To evaluate the performance of the various degraded con-
figurations we used the sim-alpha simulator [3] which mod-
els the Alpha 21264 core in detail. First, we configured
sim-alpha to resemble our processor model. We further
made modifications that enable us to simulate the differ-
ent degraded configurations by selectively disabling on-chip
components. We chose seven benchmarks (Figure 2) from
the SPEC2000 benchmark suite and sphinx, a speech recog-
nition benchmark, to provide a wide range of behavior in

Benchmark category Benchmark name FFWD RUN MaxIPC
(x100M)

INT Memory intensive 181.mcf 336.3 100M 0.13
sphinx 60 200M 0.57

Processor bound 164.gzip 332 100M 1.76
252.eon 207.3 100M 1.29

FP Memory intensive 171.swim 1196 100M 1.02
179.art 66.3 100M 0.26

Processor bound 183.equake 193.4 100M 1.11
177.mesa 639.9 100M 1.34

Figure 2. Benchmarks used for performance experiments

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

Relative IPC

0.0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n
of

 c
on

fi
gu

ra
ti

on
s

Figure 3. IPC distribu-
tion for the different
configurations.

IntFus 4 3 2 4 4 4 4 4 2 2 1 1 4 2 1
FpFus 4 4 4 3 2 4 4 4 2 2 1 1 4 2 1
IL1 (KB) 64 64 64 64 64 32 64 64 64 32 64 32 64 32 32
DL1 (KB) 64 64 64 64 64 64 32 64 64 32 64 32 64 32 32
L2 (MB) 1 1 1 1 1 1 1 0.5 1 0.5 1 0.5 0 0 0

Rel IPC 1.0 0.97 0.93 0.98 0.99 0.97 0.97 0.94 0.93 0.85 0.73 0.69 0.65 0.50 0.44

Table 3. Relative IPCs for a few sample degraded configurations.

their usage of the memory system and the execution re-
sources. Figure 2 also shows the number of instructions
skipped to reach the start of the execution phase (�*�,��'),
the number of instructions simulated (!,� �), determined
using SimPoint [18], and the maximum IPC for each bench-
mark at the base configuration.

Two important factors contribute to � ����� being nearly
equal to �ts �.0 A ��u	u . To describe the factors we plot the
normalized IPC distribution for the range of all the allowed
processor configurations (Figure 3), not accounting for their
actual yield or likelihood of occurence. First, the graph
shows that 80% of the configurations have a relative IPC
(Rel IPC) greater than 0.8. The remaining configurations
having Rel IPC around 0.55 correspond to the chips with a
fully defective L2 cache. The left section of Table 3 shows
harmonic mean Rel IPCs of a small subset of chip configu-
rations having Rel IPC greater than 0.8. In the right section,
the Rel IPC drops below 0.8, with the last column corre-
sponding to our most degraded configuration. Second, there
is enough redundancy in our processor model that most of
the yield is also concentrated in configurations with high
Rel IPC, and highly degraded configurations such as in the
right section of the table never occur and hence provide no
contribution to yield. Hence in all of the product terms con-
tributing to ������� (Equation 3) with non-zero yield (� _) the
associated Rel IPC is close to one.

5 Results

In this section we present our results for the yield en-
hancement we observe at future technologies and chip mi-
croarchitectures as a function of the defect characteristics
and the redundancy model.

5.1 Chip Topologies

Future chip microarchitectures have substantial flexibil-
ity in using the larger number of transistors that can fit in
a given chip area. In the case of special-purpose proces-
sors, where the desired functionality remains fairly con-
stant with time, the required performance can be achieved
with no additional features in the processor architecture.
As shown in Figure 4a, the area of the uniprocessor in
the constant-architecture scheme decreases rapidly with de-
creasing feature size because the microarchitecture is kept
constant. However, with successive microprocessor gen-
erations, the dominant trend in general purpose processor
design has been to add microarchitectural features that en-
hance the processor’s functionality and consume the extra
silicon area. Figure 4b illustrates this constant-area unipro-
cessor model, where the relative proportions of the core
area and the area occupied by caches is kept approximately
constant. Technology scaling trends and considerations on
multi-thread performance have influenced some emerging
architectures to include multiple processors within a single

L2 Cache

Processor
core

L2 Cache

Processor
core

L2 Cache

Processor
core

L2 Cache

Processor
core

L2 Cache

Processor
core

(b) Constant−area scaling(a) Constant−architecture scaling (c) Chip−multiprocessor scaling

Figure 4. Chip topologies.

chip, which has substantial implications for yield. Figure 4c
illustrates the CMP (Chip multiprocessor) model built using
the constant-architecture uniprocessor model as the build-
ing block.

5.2 Uniprocessor Yield

250nm

180nm

130nm

100nm

70nm

50nm

Technology

0.850

0.900

0.950

1.000

Y
_P

A
V

Y_OVERALL : All benchmarks
CLR: Clusters
CLR: Functional units
DQR: On-chip queues
CLR: L1 D bank level redundancy
CLR: L1 I bank level redundancy
CLR: L2 bank level redundancy
L1, L2 Array redundancy (Y_BASE)

Figure 5. Yield for a constant-architecture
uniprocessor model at normal defect size.

Constant-architecture Uniprocessor Yield: Figure 5
shows ������� obtained by incrementally adding different
flavors of on-chip redundancy to the constant-architecture
uniprocessor model. For instance, at 100nm the maxi-
mum contribution comes from L2 bank level redundancy,
and � �"! in the functional units dominates among all the
other types of redundancy, which together increase � ����� to
98.8%. Across technologies, � -K��/10 increases from 85.4%
to a maximum of 93.7% because the gain from the rapidly
decreasing chip area outweighs the increased susceptibility
to yield loss due to the higher kill ratio. Second, the con-
tribution of L2 bank level redundancy continues to be sig-
nificant, and all the other types of redundancy give progres-

sively diminishing returns. This is because the L1 and L2
caches occupy almost 70% of the chip area and the abso-
lute area occupied by the remaining components becomes
vanishingly small at smaller feature sizes. Finally, �������
increases from 98% at 250nm to 99.2% at 50nm, and since
most of the configurations lie within 20% of maximum per-
formance (Figure 3) � s �.0 A ��u@u (indicated by the dotted
line) is at most 0.4% above ������� across all technologies.
The above result is significant because it shows that even
though ��-.��/10 improves with technology, ������� can be
further improved by adding microarchitectural redundancy.

Constant-area Uniprocessor Yield: Unlike the
constant-architecture model ��-K��/10 decreases substantially
from 85.4% at 250nm to 59.5% at 50nm, as the area of the
chip components remain constant across technologies, and
the kill ratio increases with decreasing feature size. Hence,
exploiting the greater available redundancy at smaller
feature sizes, whether in the form of more functional
units, cache banks, offers greater improvements to ��-K��/10 ,
achieving � s �.0 A ��u	u ranging from 98% at 250nm to
91.3% at 50nm. However, the increasing difficulty in
achieving scalable performance by scaling an out of order
superscalar uniprocessor, has induced the adoption of
CMPs as discussed in the next section.

5.3 Multiprocessor Yield

In this paper, we explore two types of multiprocessor re-
dundancy. In intra-processor redundancy, a chip can have its
processors in any of the allowed internally degraded states,
but the entire chip is considered bad once the available re-
dundancy is exhausted in even one of its processors. On the
other hand a processor in a chip with only inter-processor
redundancy becomes useless if any fault resides in it. How-
ever, if enough of the remaining processors are functional,
the chip can still be operational. In this paper we consider
the chip to be functional as long as there is at least one
good processor, but in practice our models never produce
chip configurations with more than two bad processors per
chip. We calculate chip performance as the aggregate per-
formance of all the cores on the chip, since we model the
multiple threads to be independent. The algorithm for cal-
culating ������� from Section 4.4 can be naturally extended
to a multiprocessor by modifying each step to account for

250nm

180nm

130nm

100nm

70nm

50nm

0.50

0.60

0.70

0.80

0.90

1.00

Y
_P

A
V

Y_OVERALL: All benchmarks
CLR: Clusters
CLR: Functional units
DQR: On-chip queues
CLR: L1 D bank level redundancy
CLR: L1 I bank level redundancy
CLR: L2 bank level redundancy
L1, L2 Array redundancy (Y_BASE)

1 2 4 6 12 24

Tech

#Proc

Figure 6. Yield with intra-processor redun-
dancy at normal defect size.

250nm

180nm

130nm

100nm

70nm

50nm

0.50

0.60

0.70

0.80

0.90

1.00

Y
_P

A
V

L1, L2 Array redundancy (Y_BASE)
Intra-processor redundancy
Inter-processor redundancy
Both Crossover

point

1 2 4 6 12 24

Tech

#Proc

Figure 7. Comparison of ������� for different
redundancy models.

the v7w,� of the entire multiprocessor (whether the configu-
ration is fully functional or degraded).

5.3.1 Yield with Intra-processor Redundancy

Figure 6 plots ���[��� , across all technologies, obtained by
incrementally adding redundancy to each processor in a
multiprocessor chip with intra-processor redundancy. The
x-axis shows the feature size and the number of proces-
sors per chip at each technology. At any given technol-
ogy adding redundancy improves � ����� substantially, � �"!
in the functional units give maximum yield benefit, and
the benefits from L2 bank level redundancy, '+(*! in the
queues, and � �"! in the clusters are comparable. For in-
stance, at 70nm adding redundancy dramatically improves� ����� from 68.2% to 93.7%. There are three interesting
features that can be observed across technologies. First,
the �t-.��/10 decreases substantially from 85.4% at 250nm
to 59.5% at 50nm, because the kill ratio increases consider-
ably at smaller feature sizes. Second, the instances of intra-
processor redundancy on the chip increases linearly with the
number of processors, and as a result the addition of redun-
dancy leads to greater improvements in yield at smaller fea-
ture sizes. For instance, at 180nm ������� increases by 4.4%
on adding � �&! in the functional units, whereas it increases
by 12.4% at 50nm. Third, the higher yield benefits, depend-
ing on the redundancy model, imply that more chips are de-
graded at smaller technologies. But as the area occupied
by a single processor decreases, its � -K��/10 increases (see
Figure 5), and hence the probability of it being defective
decreases. Combined with the increasing number of proces-

sors per chip, the fraction of degraded processors per chip
decreases with technology. Hence, even though the number
of degraded chips increases at smaller technologies, each
resulting degraded chip configuration contains a majority
of fully functional processor cores and very few degraded
processors. As a result, ������� continues to be within 0.2%
of � s �K0 A ��u@u at all technologies. Although there are sig-
nificant benefits from adding redundancy, ���[��� with all the
types of redundancy drops from 98% at 250nm to 91.3% at
50nm due to higher kill ratio.

5.3.2 Comparison of Redundancy Models

Figure 7 compares � ����� obtained using four different re-
dundancy models. With only #$! , � ����� decreases rapidly
from 85.4% at 250nm to 59.5% at 50nm. Having intra-
processor redundancy alone achieves high ������� , which
decreases slightly from 98% at 250nm to 91.3% at 50nm.
Inter-processor redundancy gives coverage over the entire
area of the chip and hence ������� increases uniformly from
85.4% at 250nm to 98% at 50nm. The yield benefits offered
by intra and inter-processor redundancy crossover at 100nm
because of the opposite trends in their ������� across tech-
nologies. While this analysis assumes a constant defect den-
sity across technologies, larger defect densities will shift the
crossover point to the right because the fault susceptibility
per unit area of silicon increases, and hence fine grained re-
dundancy becomes more appropriate. Also while our CMP
design is composed of a number of relatively small Alpha
21264-like cores, future CMP designs may take advantage
of much larger uniprocessor cores to achieve technology

scalable high performance over a wide range of applica-
tions [16]. Consequently, there will be fewer processors and
significantly greater intra-processor redundancy than inter-
processor redundancy per chip, which will again shift the
crossover point to the right. Since intra and inter-processor
redundancy offer different types of coverage, having both
intra and inter-processor redundancy provides consistently
high ������� ranging from 98% at 250nm to 99.6% at 50nm,
with a maximum improvement in ������� of 3.75% over hav-
ing only one of the types of redundancy.

6 Conclusions

This paper, examines the redundancy in modern microar-
chitectures that can be used to enhance their yield, and eval-
uates the trade-off between performance and yield within
the context of microprocessors and chip multiprocessors.
We propose a new yield metric called performance aver-
aged yield (� �����) which accounts for the level of perfor-
mance degradation on all functioning chips. By exploiting
microarchitectural redundancy we demonstrate that ���[���
can be improved to as high as 99.6% at 50nm, with a max-
imum reduction in performance in any chip of less than
20%, a substantial improvement from a � s �K0 A ��u@u of 60%
achieved when only considering the defect-free parts.

Today’s systems that provide fail-in-place capabilities do
so at the system level and typically provide hot spares for
power supplies, processors chips, memory modules, and
disks [2]. We advocate pushing fail-in-place inside the
boundaries of a single chip or processor and allowing defec-
tive components to continue to operate, perhaps with some-
what degraded performance. Of course fail-in-place also
requires techniques for detection and recovery from inter-
mittent and transient failures that occur during a program’s
execution, and some such mechanisms are summarized in
the literature [1, 15].

The regularity and redundancy that we exploit is syner-
gistic with several technology and design trends. Manag-
ing increasing design complexity demands modular design
techniques that reuse chip components, thus creating redun-
dancy opportunities. Second, the increase in wire delay rel-
ative to transistor switching time will likely lead to parti-
tioned architectures composed of replicated hardware mod-
ules [16]. Finally, looming limits on energy and heat have
led architects to suggest trading power for performance by
selectively disabling microarchitecture components [7]. We
expect that future systems designers will take advantage
of replication and partitioning to meet these joint goals of
power, performance, reliability, and ease of design.

References
[1] T. Austin. DIVA: A Reliable Substrate for Deep Submicron Microar-

chitecture Design. International Symposium on Microarchitecture,
pages 196–207, November 1999.

[2] D. C. Bossen, A. Kitamorn, K. F. Reick, and M. S. Floyd. Fault-
tolerant design of the IBM pseries 690 system using Power4 pro-
cessor technology. IBM Journal of Research and Development,
46(1):77, January 2002.

[3] R. Desikan, D. Burger, and S. W. Keckler. Measuring experimen-
tal error in microprocessor simulation. In Proceedings of the 28th
Annual International Symposium on Computer Architecture, pages
266–277, July 2001.

[4] J. A. Farrell and T. C. Fischer. Issue logic for a 600MHz Out of Or-
der execution microprocessor. IEEE Journal of Solid-State Circuits,
33(5), 1998.

[5] S. Gupta, S. Keckler, and D. Burger. Technology independent area
and delay estimations for microprocessor building blocks. Technical
Report TR-00-05, Department of Computer Sciences, The University
of Texas at Austin, Austin, TX, Feb. 2001.

[6] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan,
and J. Rajski. Logic bist for large industrial designs: Real issues and
case studies. In International Test Conference (ITC), pages 358–367,
January 1999.

[7] A. Iyer and D. Marculescu. Microarchitectural level power manage-
ment. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 10(3):230–239, June 2002.

[8] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Patnaik,
and J. Torellas. FlexRAM: Towards an Advanced Intelligent Mem-
ory System. International Conference on Computer Design, October
1999.

[9] J. Keller. The 21264: A Superscalar Alpha Processor with Out-of-
Order Execution. Microprocessor Forum presentation, October 1996.

[10] I. Koren and Z. Koren. Defect tolerant VLSI circuits: Techniques
and yield analysis. In Proceedings of the IEEE, volume 86, pages
1817–1836, September 1998.

[11] K. Krewell. Marketing PC Performance. Microprocessor Report,
November 2001.

[12] X. Li, A. J. Strojwas, and M. F. Antonelli. Holistic Yield Improve-
ment Methodology. Semiconductor Fabtech Journal, 8(7):257–265,
July 1998.

[13] W. Maly and J. Deszczka. Yield estimation model for VLSI artwork
evaluation. In Electronic Letters, volume 19, pages 226–227, March
1983.

[14] J. F. Meyer. On evaluating the performability of degradable computer
systems. In Proceedings of the IEEE, volume 29, pages 720–731,
August 1980.

[15] S. K. Reinhardt and S. Mukherjee. Transient Fault Detection via
Simultaneous Multithreading. In International Symposium on Com-
puter Architecture, pages 25–36, July 2000.

[16] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. Keckler, and C. Moore. Exploiting ILP, TLP, and DLP with
the polymorphous TRIPS architecture. In Proceedings of the 30th
Annual International Symposium on Computer Architecture, pages
422–433, June 2003.

[17] The International Technology Roadmap for Semiconductors. Semi-
conductor Industry Association, 2001.

[18] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automati-
cally characterizing large scale program behavior. In Tenth Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, October 2002.

[19] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated cache tim-
ing, power and area model. Technical report, Compaq Computer
Corporation, August 2001.

[20] C. H. Stapper, A. N. McLaren, and M. Dreckmann. Yield model for
productivity optimization of VLSI memory chips with redundancy
and partially good product. IBM Journal of Research and Develop-
ment, 24:398–409, May 1980.

