The Effects of Explicitly Parallel Mechanisms on the Multi-ALU Processor Cluster Pipeline

Andrew Chang, William J. Dally, Stephen W. Keckler, Nicholas P. Carter, Whay S. Leef

Computer Systems Laboratory
Stanford University
Gates CS Building
Stanford, CA 94305

tAurtificial Intelligence Laboratory
Massachusetts Institute of Technology

545 Technology Square
Cambridge, MA 02139

{achang, billd, skeckler, npcarter, wslee}@cva.stanford.edu

Abstract

Continuing reductions in on-chip geometries yield in-
creasing numbers of transistors per chip and fundamentally
faster devices but also result in effectively slower wires. This
combination presents significant challenges for new micro-
processor architectures. The disparity in performance be-
tween on-chip arithmetic units and memory creates longer
effectively latencies. The changing balance between gate
delay and wire delay penalizes global interactions. The
MIT Multi-ALU Processor (MAP) architecture incorporates
three explicitly parallel mechanisms to address these chal-
lenges. Efficient intercluster interactions enable instruction
scheduling across clustered arithmetic units. Deferred ex-
ceptions based on ERRVAL'’s facilitate aggressive instruc-
tion reordering and speculation. Zero-cycle multithread-
ing provides latency tolerance without sacrificing single
threaded performance. In this paper, we describe each
of these mechanisms and quantify their impact on the area
and routing of the cluster pipeline in the 5 Million tran-
sistor MAP chip. Zero-cycle multithreading accounts for
over 44% of the total cluster area. Support for ERRVAL’s
requires very little area (less than 4%). The intercluster
interaction mechanisms require minimal cluster area and
less than 5% of the available global routing resources, but
enable fully general access across clusters and between all
arithmetic units.

1 Introduction

As interconnect delay becomes an increasingly impor-
tant limit to processor performance, new innovations are
needed in microprocessor architectures to minimize global
interactions, enable explicit instruction scheduling, and tol-
erate wire latencies. One approach, compiler-scheduled
explicit parallelism, simplifies instruction issue and enables
distributed decision logic. While, compiler based instruc-
tion scheduling has been used in VLIW supercomputers [3],
and has been proposed for new architectures such as the
Intel EPIC [7], additional mechanisms are needed for ef-
fective scheduling across distributed clusters of arithmetic

units. Compilers can aggressively uncover more Instruction
Level Parallelism (ILP) by reordering instructions above or
below branches [11], and by scheduling instructions spec-
ulatively. However, unnecessarily triggered exceptions can
negate the performance benefits. Multithreading can pro-
vide latency tolerance and improve utilization by interleav-
ing the execution of multiple instruction streams [6, 1]. It
can also improve performance by simultaneously combin-
ing instruction and thread level parallelism [8, 10]. Unfor-
tunately, many existing implementations of multithreading
penalize single-threaded performance.

The MIT Multi-ALU Processor (MAP) incorporates three
explicitly parallel mechanisms to address these challenges.
The MAP’s distributed execution units and register files ef-
ficiently communicate and synchronize through a small set
of intercluster interactions. The introduction of a tagged
error-value (ERRVAL) datatype simplifies exception defer-
ral. Zero-cycle multithreading combines instantaneous
thread switches with cycle-by-cycle dynamic thread selec-
tion without sacrificing single-threaded performance. While
the performance benefits of these features have been detailed
separately [9, 8], this paper describes each mechanism and
quantifies the associated logic area costs and routing re-
quirements. Section 2 provides a brief overview of the
organization of the MAP chip, including the partition of
global and local resources and the composition of each clus-
ter. Section 3 details the three mechanisms and their usage.
Section 4 describes the cluster pipeline. Section 5 evaluates
the costs associated with implementing each mechanism in
the MAP chip. Finally, Section 6 summarizes the three key
mechanisms and discusses their applicability to mainstream
microprocessor pipelines.

2 Description of MIT Multi-ALU Processor
The MAP maximizes on-chip performance by simul-

taneously supporting parallelism at all granularities. As

shown in Figure 1, the MAP' contains three independent

!'The original MIT MAP architecture [4] included four symmetric pro-
cessing clusters; a quad-banked memory system; the two switches; and a
network interface/3D-mesh-router.

External
Memory

Nemory Tnterface Bus

) 11 |

Cache
Bank 0

Cache

External Bank 1

Memory
Interface

[I | l MemorySv!vibchl |> LD Bus
I I 1] [

Cluster Switch

| |
[11 [11 1]

CBAR CBAR
Cluster 0 Cluster 1 Cluster 2

NIF NIF
Output Input

Network

Figure 1. Block Diagram of the MAP

Figure 2. Plot of the MAP Chip

processor clusters, each with three execution units; a dual
banked 32-KByte unified cache; two global communication
switches (Cluster Switch and Memory Switch); a network
interface/2D-mesh-router; and an I/O controller. The clus-
ters can directly write into each other’s register files and re-
ceive results from memory system and I/O requests through
the Cluster Switch. They submit memory and I/O requests
using the Memory Switch. The clusters can perform global
synchronization through a single cbar instruction enabled
by a set of global CBAR wires.

Figure 2 shows a plot of the actual 5 Million transistor
MAP chip which measures 18.25mm x 18.30mm. Due
to on-chip area constraints, the clusters in the actual chip
are asymmetric. Cluster O is complete and contains three
execution units - integer (IU), memory (MU), and floating-
point (FPU), while clusters 1 and 2 lack the floating point-
pipelines. The MAP chip was released for manufacturing in
June 1998 and is being fabricated in a 0.7m drawn, 0.5um
effective, 5-level metal, CMOS process. The MAP chip is
the core processing element for each node of the planned
16-node prototype M-Machine multicomputer.

Cluster Organization: As illustrated in Figure 3, Clus-
ter 0 is equivalent to a basic 64-bit microprocessor with-
out a data cache. The cluster consists of three local arith-
metic units, three register files, and a 4-KByte instruction
cache. The IU contains a 64-bit ALU and a barrel shifter
while the MU contains a 64-bit ALU and a load/store unit.
The FPU consists of a fully-pipelined, four-cycle multiplier-
accumulate unit and a non-pipelined iterative divide/square-
rootunit. Both the Integer and Floating-Pointunits can write
results to remote clusters via a shared Cluster Switch port.
The MU and the Instruction Cache submit fetch requests
through a shared Memory Switch port. Each instruction
contains up to three operations (one per arithmetic unit)
which are issued simultaneously and in lock step. While,

issued in order, instructions may complete out of order due
to differences in execution latencies.

The data within a cluster is stored in three register files.
The integer register file (IRF) contains 5 banks of 16 registers®
and can be read and written independently by both the inte-
ger and memory units. The floating-point register file (FRF)
also includes five banks of 16 registers. The floating-point
unit can read three operands (for multiply-accumulate) and
write one result to the FRF. The memory unit can read one
operand from the FRF for floating-point store operations.
The local Cluster Switch port can write into either the IRF
or the FRF. Each cluster also has five banks of 16 one-bit con-
dition code (CC) registers. These registers hold the results
from comparison operations and are used for conditional
branches and predication.

Concurrency is exploited within a cluster using multi-
threading. In each cluster pipeline, up to five threads may
be simultaneously loaded into dedicated thread slots consist-
ing of private pipeline registers and unique sets of integer,
floating point and CC register banks. Instructions from dif-
ferent threads are dynamically interleaved over the cluster’s
execution units. A total of 15 thread slots are implemented
across the three MAP clusters, and an instruction stream may
be installed in any thread slot. The thread slots on separate
clusters are organized into five thread groups consisting of
one thread slot from each cluster. The intercluster interac-
tions discussed in this paper are only applicable within a
single thread group.

Global Interconnections: The Cluster Switch and the
Memory Switch provide the communication paths between
the MAP’s processing units and storage modules. The Clus-
ter Switch, shown in Figure 1, is a crossbar composed of
three global busses, each writing into a different specific

21n the IREF, i0 is hard-wired to Zero and il is set to the value of the
program counter. Similarly, fO is hard-wired to Zero in the FRF.

8 Memory Switch 8
CBAR | r
11
Instruction
——— | Cache Cluster
Control
Memory KB
Unit
_[CCReg
4[I T 3| File
Integer [~ Floating Point
Register File | Register File
Integer Floating Point
Unit Unit
i
{ Cluster Switch !

Figure 3. Block Diagram of Cluster 0

cluster. A cluster uses the switch to write data directly into
another cluster’s register file and to transfer data between its
own integer and floating-point register files. The memory
banks, the external memory interface, and the I/O unit use
the Cluster Switch to return data to the clusters in response
to prior requests. All seven data sources arbitrate for the
Cluster Switch one cycle prior to sending the data, and loss
of arbitration causes the source unit to stall. The Memory
Switch is a crossbar implemented with two busses. Each
bus writes into one of the on-chip cache banks. The clusters
transmit load and store requests to the memory system via
the Memory Switch after successfully arbitrating for the bus
connected to the bank indicated by the address. Both arbi-
tration and data transfer on the Memory Switch can occur in
the same cycle. The combination of the Cluster and Memory
Switches allows multiple clusters to access multiple cache
banks simultaneously with a minimum load-use latency of
three cycles, including both switch traversals.

Clusters can perform fast synchronization through a sepa-
rate global CBAR mechanism. Threads on different clusters
but within the same thread group can initiate a barrier by
issuing a cluster barrier (cbar) instruction. A set of ded-
icated CBAR wires transmit the synchronization condition
to all three clusters. Each thread group has its own unique
set of CBAR wires. As a result, the MAP chip can support
simultaneous barriers in multiple thread groups and allow
an arbitrary mix of synchronizing and non-synchronizing
thread groups.

3 Explicitly Parallel Mechanisms

The MAP architecture incorporates three mechanisms to
enable efficient compiler-driven instruction scheduling. In-
tercluster interactions enable fast explicit communication
and synchronization between decoupled clusters of execu-
tion units. ERRVAL based deferred exceptions provide a

simple means to preserve fault state and enable aggressive
instruction reordering and speculation by eliminating un-
necessary handling penalties. Zero-cycle multithreading
provides latency tolerance and allows instantaneous thread-
switch while preserving single-threaded performance.

Intercluster Interactions: Four features collectively en-
able efficient intercluster interactions: local register score-
boarding, remote-register write capability, the empty in-
struction, and the cbar instruction. The combination of the
first three enables efficient explicit communication, while
cbar allows fast intercluster synchronization. The local
register scoreboard unifies the management of both local
and remote register writes. A register is present (full), if it
has been updated and is absent (empty) if it is awaiting the
update. The empty state of aregister will stall any instruction
which attempts to read that register before it is updated. All
integer and floating-point arithmetic instructions can spec-
ify either a local or remote register as their destination. A
local operation, upon issue, implicitly marks the destination
register as empty and, upon completion, automatically sets
the presence bit to full. For remote-register writes, the com-
piler must use the empty instruction to explicitly empty
the destination register in the remote cluster. The source
cluster can not implicitly invalidate this register as it only
has local instruction schedule information. It would need a
global interaction path to the destination cluster to eliminate
a potential read-after-write hazard. When the remote-write
completes, the local Cluster Switch port at the destination
marks the register full and any stalled instruction stream
may then proceed.

In both superscalar and VLIW processors, barriers are
implicit. Ordering is guaranteed by hardware in the former
and by the lock-step issue policy of the latter. However, in
the MAP chip, lock-step issue is only maintained within a
cluster. The cbar instruction provides an explicit barrier.
The insertion of a cbar into the instruction stream in each
of the three clusters implements a fast barrier among threads
within a thread-group. When a cbar reaches the issue point
in a cluster, it stalls that thread until the associated threads
in each of the other clusters have also reached their own
cbar operations. Each cluster then issues its respective
cbar with no side-effects and proceeds normally. Any in-
struction scheduled after the cbar’s is guaranteed to issue
only after the barrier has occurred. The clusters signal each
other using the CBAR wires. At the cost of a singleissue slot
and the CBAR wires, this mechanism guarantees the order-
ing of instructions for threads within a thread group, across
clusters, and independent of dynamic execution effects.

ERRVAL Enabled Deferred Exceptions: The MAP ar-
chitecture uses a segmentation-based memory system and
implements unforgeable guarded pointers for fast capability-
based addressing [2]. The ERRVAL is a specific type of

R T

V77777 Tavaire]

— T B]

(wzsrsrsa

[

i
V27777777772 DF
;

ﬁ_@w

Basic RISC Pipeline

| wmom WB

MARP Cluster Pipeline

Figure 4. Basic RISC vs. MAP Cluster Pipeline

guarded pointer and, for several common protection and
segmentation violations, encodes a distinct error code; the
identifier of the offending thread; and the program counter
value. In each faulting case, hardware detects the error con-
dition and automatically creates the appropriate ERRVAL.
Instead of triggering an exception, the ERRVAL is written
back as the result for the faulting instruction.

ERRVAL’s are allowed to freely migrate throughout the
MAP architecture. As with a regular data type, they can be
loaded and stored into registers/memory and off-chip /O,
or be transmitted in messages between MAP nodes. All
arithmetic operations can take ERRVAL’s as operands. If
one operand is an ERRVAL, the operation simply propagates
that ERRVAL as the result. If an operation has multiple
ERRVAL operands, it arbitrarily passes one of them.

An ERRVAL only triggers an actual exception when con-
tinued propagation is impossible, for example: stores to an
ERRVAL address, comparison operations with one or both
ERRVAL operands, and final resolution of branch/jump op-
erations. If desired, the occurrence of ERRVAL'’s can be
easily detected using a provided iserr instruction allow-
ing programmers to test the results of registers to detect
ERRVAL’s and control their propagation.

Zero Cycle Multithreading: The MAP employs zero-
cycle multithreading to enhance performance. Each cluster
accommodates up to five independent threads simultane-
ously. Each of these can be switched into execution instan-
taneously, allowing efficient overlap of computation onto
latencies of even a few cycles. Every cycle, zero-cycle mul-
tithreading dynamically adapts the selection for instruction
issue to the number of ready and available threads. No
issue slots are granted to stalled threads. When only a sin-
gle thread is installed, zero-cycle multithreading maximizes
performance by allowing that thread to issue instructions
whenever its operands are present and the execution re-

AVAIL IF KILL

g

(IOP [MOP[FOP |

/N

RF_IU l‘:_l RF_MU l:l RF_FPU [*
sz [© szmu [SZ_FPU I‘
1 I 1 I 1

TSEL

| WB_IU |

Figure 5. Distributed Implementation

sources are available. When combined with the register
scoreboard, zero-cycle multithreading provides a mecha-
nism to instantly trigger an installed but dormant thread
without incurring polling or interrupt overhead. The pres-
ence state of a register becomes the activation condition.
When the register is updated, its presence state becomes
“full” and the previously dormant thread becomes eligible
to issue instructions. The MAP architecture also supports
thread priorities, which are useful for dynamic optimization
of multithreaded execution during a critical code section [5]
and when there is a static hierarchy of importance among
the threads. In the MAP chip, the priority of each thread
can be set dynamically, allowing detailed adjustment of its
relative issue frequency.

4 Pipeline Description and Operation

Each cluster employs a basic 5-stage pipeline consist-
ing of an Instruction Fetch (IF) stage, a Register Fetch
(RF) stage, a Synchronization (SZ) stage, an Execution
(EX) stage, and a Writeback (WB) stage. The operation
of the cluster pipeline is similar to a standard 5-stage RISC
pipeline. However, as highlighted in Figure 4, there are
five key differences: the addition of the SZ stage to con-
trol instruction issue and decouple pipeline operation, the
replication of pipeline and register resources to support
zero-cycle multithreading, the addition of a register score-
board, the added remote-write capability through the Clus-
ter Switch, and the absence of a Data Fetch (DF) stage.
Branches have three delay slots, however, these can be filled
effectively as the execution of any instruction can be pred-
icated on the value of one of 16 CC registers. To simplify
its implementation, the cluster contains no support for ei-
ther register renaming or branch prediction. The following
sections examine the differentiating features of the MAP
pipeline in more detail.

Pipeline Overview and Operation: The single logical
cluster pipeline is implemented as a distributed set of three
physically separate pipelines sharing a common IF stage.
As depicted in Figure 5, the instruction issue logic (SZ_CT)
controls pipeline operation with a 5-bit thread-select (TSEL)
signal. The assertion of one of these bits selects the corre-
sponding thread to advance in the pipeline for one cycle.
The operation of the MAP pipeline is highly decoupled as
different portions can proceed or stall independent of other
stages. During single-threaded execution, an instruction in
the MAP cluster pipeline proceeds in a similar fashion to
the standard RISC pipeline. However, a thread stalls if one
of its instructions is in the SZ stage waiting for its operands
to become present. Other threads can proceed forward and
issue, execute, and write-back their results independent of
the stalled thread since the pipeline registers are replicated
in the IF, RF and SZ stages. The top three stages (IF, RF, and
SZ) of the pipeline are stalled only if all installed threads
are stalled. In this scenario, the EX and WB stages can
still proceed to complete all previously issued operations.
Updates and bypass-writes from the Cluster Switch port,
even those targeting a stalled thread, can also still occur.
Only when every execution unit in the pipeline is waiting
to use a shared resource, such as the Cluster Switch or the
Memory Switch, do all five stages of the pipeline stall.

Instruction Fetch Stage (IF): The IF stage of the cluster
is composed of a 4KB instruction cache, an autonomous
prefetch engine, a multithreaded instruction queue and a
multithreaded prefetch program counter buffer. Up to eight
operations from each thread can be stored in the instruction
queue. The replication of both the instruction queue and the
program counter buffer is the main modification to the IF
stage to support zero-cycle multithreading. The transfer of
instruction issue decisions from the IF stage to the SZ stage
requires the generation and distribution of both the AVAIL
and KILL signals. The vector of AVAIL signals optimisti-
cally reports the availability of operations in the instruction
queue for each thread. The KILL signal is the only required
pipelineinterlock and is asserted if an instruction cache miss
occurs for a selected thread that previously signaled AVAIL.
Also, the IF stage contains a comparator to detect branch
targets which are ERRVAL’s. To support intercluster in-
teractions, the operation encodings are extended by 3 bits
to allow integer and floating-point arithmetic instructions
to specify the destination cluster and the target register file
(IRF/FRF). These bits are passed through the subsequent
stages to the EX and WB stages with minimal hardware
costs.

Register Fetch (RF): While the RF stage of the MAP
performs the same function as in the basic RISC proces-
sor, it requires additional hardware features to support the
three explicitly parallel mechanisms. Three modifications

Thread 0

TSEL_O

Operand Check Priority Mask Arbitrate
) I ot Y ettt 1
o | . Mheead s |
| | 1T
[
| [
I I ros1_3
|

I I

° | : ° ° T8EL_2
[
|

. . ° ° o
[
[
[
[[
[
[
[
|

—————————a

Figure 6. SZ Stage Issue Logic

are required to support intercluster interactions: the addi-
tion of a local register-scoreboard; the expansion of the
normal invalidation path between the execution unit and the
scoreboard, allowing the empt y instruction to clear an ar-
bitrary vector of register presence bits; and the addition of
a Cluster Switch port to both the register files and bypass
paths, enabling the identical handling of local and remote
writes. Five copies of the register files and five copies of the
pipeline register are required to support zero-cycle multi-
threading in the RF stage. Additional levels of decoding are
also required in both the writeback and bypass control logic
to discriminate between threads and to enable simultaneous
updates by different threads to both the register files and
pipeline registers. While the cluster’s lock-step issue policy
guarantees that local updates within a cycle are always from
the same thread, remote-writes received through the Clus-
ter Switch port can be targeted to a register in any thread
slot. While no additional hardware features are needed in
the RF stage to specifically support ERRVAL generation and
exception deferral, all datapaths are extended by one-bit to
support the guarded pointer datatype.

Synchronization Stage (SZ): The Synchronization (SZ)
stage is the most significant departure from the standard
RISC pipeline. Instruction issue, the zero-cycle thread-
switch, and the cluster barrier are controlled by the SZ stage.
The SZ stage consists of a distributed set of multithreaded
reservation stations [12], one for each execution pipeline
(8Z1U, SZ_MU, SZ_FPU); a centralized pipeline controller,
including the SZ_CT; and supporting bypass paths and de-
coding logic. The Cluster Switch port ensures that remote-
writes are bypassed directly to instructions stalled in the SZ
stage’s reservation stations. The SZ stage also maintains a
copy of the scoreboard values for all waiting instructions
and reflects all modifications resulting from data updates or
explicit empty instructions.

Each cycle, as shown in Figure 6, the SZ_CT determines

which thread will issue an instruction in three steps: operand
checking, priority masking, and rotating arbitration. The
operand check logic determines which of the five threads
are eligible to issue in the cycle. For each instruction, the
SZ_CT reviews the presence of each required operand, the
readiness of each requisite execution unit, the appropriate
optimistic AVAIL signal, and the thread’s cluster-barrier sta-
tus. The SZ_CT applies the priority mask to filter the eligible
threads and enforce thread priorities. The resulting eligible
threads are passed to a rotating arbiter which selects the ac-
tive thread for the cycle and generates an optimistic version
of TSEL. If the IF stage encounters an instruction-cache
miss for the selected thread, it invokes the KILL pipeline
interlock, nullifying the selection and signaling the SZ stage
to forego the issue slot for the cycle. An instruction is not
issued if it can cause a bubble in the IF stage. Since, for each
cycle, the SZ_CT logic dynamically selects from all ready
threads, any ready thread may be switched into execution
instantaneously, enabling zero-cycle multithreading.

The cluster-barrier logic in the SZ stage enables explicit
coupling of the instruction issue decisions between clusters.
The barrier is implemented by a simple finite state machine
(FSM) with three states: RUN, WAIT, and SYNC. Each
FSM communicates with the other two within its thread-
group through a unique set of CBAR wires. Each thread
slot has its own cbar FSM, resulting in five per cluster and
a total of 15 per MAP chip.

Execution Stage (EX) and Writeback Stage (WB): The
execution units in the MAP incorporate both the EX and
WB pipeline stages. As all threads share the execution re-
sources, the writeback signals between the EX and RF stage
are expanded to include thread-identifiers. The execution
units provide resource availability signals to the correspond-
ing SZ stages to support issue decisions. The EX stage also
trivially converts issued cbar’s into NOP’s. As data pro-
ducers need to arbitrate for the Cluster Switch one cycle
in advance of data delivery, both the IU and FPU control
logic are enhanced to enable arbitration requests. Also, in
both the IU and FPU, the register invalidation paths to the
RF stage are expanded to support explicit empty instruc-
tions. In addition to executing operations, the EX pipeline
stage is responsible for detecting error conditions. When
a deferrable error condition is detected, the EX stage au-
tomatically generates an ERRVAL to be written back in
place of original operation result. The thread state is other-
wise not modified. The EX stage halts the offending thread
and signals an exception only when the error condition is
non-deferrable. Both the decoding and multiplexing logic
required to support exception detection and ERRVAL gen-
eration are also enhancements to the basic EX logic. The
only required modifications to the WB stage are the added
routing to the Cluster Switch for remote register writes and
associated transceivers.

Module MAP(mm?) Basic (mm?) Area
IF (w/ I$) 59 5.0 + 18% (Growth)
RF 15.1 3.1 +387%
EX+WB 25.8 25.8 + 0%
Misc 113 2.3 +400%
SZ 12.2 - 16% (of Cluster 0)
Cluster Switch Port 1.6 - 2%
Scoreboard/empty 14 - 2%
Guarded Pointers 3.1 - 2.7%
ERRVAL generation 0.9 - 1%
cbar FSM 0.04 - 0.05%

[Pipelines 1] 703] 362 |+ 94% (Growth) |

MAP 334.0 -
Cluster 0 773 - 23% (of MAP)
Cluster 142 89.8 - 27%
Unified Cache 36.9 - 11%
1/0 Pads 34.0 - 10%
Network + Misc 96.0 - 29%

Table 1. Logic Area Consumed

5 Evaluation of Implementation Costs

The completion of the MAP chip enables the comparison
of the expected costs with the actual area and interconnect
requirements. The replicated thread state required for zero-
cycle multithreading was anticipated to be the most costly of
the three described explicitly parallel mechanisms. While
the local routing use was also expected to be noticeable, the
global routing consumption was planned to be negligible.
For intercluster interactions, the anticipated logic area was
small and the required global routing usage was planned in
detail and allocated explicitly to minimize its impact. The
costs in both chip area and routing to support ERRVAL’s
were expected to be a minimal as well, since ERRVAL’s ex-
ploit the MAP’s inherent support for guarded pointers. The
actual consumed area is determined by direct measurement
for datapath components and by combining the synthesized
netlist data with the actual random logic cell site utilization
(typically 45%—55%) for control logic modules. The inter-
connection statistics for both datapath and control modules
are determined by accumulating the route lengths for all rel-
evant nets in the wire report extracted from the place and
route (P&R) chip database.

Logic Area Utilization: A summary of the measured area
(square millimeters) costs is shown in the four horizontal
sections of Table 1. The first section compares the area cost
of zero-cycle multithreading for common pipeline stages
with a hypothetical pipeline composed of single-threaded
versions of the same stages. All differences are reported
relative to the single-threaded stage. The second section
itemizes the additional logic which, in conjunction with the
previously listed components, form a complete Cluster O.
While the SZ stage requires 16% of the area, the combina-
tion of a Cluster Switch port, Scoreboard/empt y logic and
cbar FSM account for only 3% of the cluster. Similarly, the
guarded pointer support and the added ERRVAL logic have
modest requirements. All statistics are relative to Cluster
0. The third section compares the total area of the 5-stage

MAP pipeline with the hypothetical 4-stage basic pipeline
and shows almost a doubling in size. However, this result
overstates the penalty as the hypothetical pipeline does not
include a Data Fetch stage. For reference, the fourth sec-
tion provides a coarse breakdown of the contributions of
each major component in the MAP. These area statistics are
relative to the full chip.

Interconnect Utilization: Each of the five available rout-
ing layers in the MAP has a primary purpose. The M1 layer
is used to provide routing within cells. The M5 layer dis-
tributes the pad pattern, power and clock. The M2, M3,
and M4 layers are key global routing resources as they are
used to interconnect cells, blocks and modules throughout
the chip. The maximum potential linear routing available on
the chip is 834.9Mym and is calculated by assuming 50%
coverage on each of the 5 metal layers over the full area
of the chip. The analysis of the actual chip data shows that
only 519.5Mym (62%) is employed. The M2/M3/M4 usage,
252.3Mpm, represents almost 49% of the reported metaliza-
tion. Automated routing for random logic interconnect and
global wires predominantly employs the M2, M3, and M4
layers. It accounts for over 44% of their usage. The manual
wiring for the embedded routes in full-custom macrocells,
RAM arrays and also to supplement the pad pattern, clock
and power distribution, accounts for the remaining 56% of
consumed resources. Unfortunately, the wire report from
the P&R database does not provide detailed statistics for
these manual routes.

The four horizontal sections in Table 2 provides a break-
down of the interconnect usage. Each of the lengths is
reported in millions of microns. The first section summa-
rizes the contributions of manual and automated routing to
both total and M2/M3/M4 interconnect usage. Only 22%
of all metalization on the chip is the result of autorout-
ing, reflecting the high degree of customization effort in the
MAP’s implementation. The second section highlights the
resources consumed to support the explicitly parallel mech-
anisms. The accumulated interconnect usage is a small
fraction of both the total and the M2/M3/M4 resources con-
sumed (<5% and <8% respectively). These percentages
are relative to the MAP totals. The final two sections of Ta-
ble 2 enable the comparison of the local interconnect usage
required within a cluster to support Cluster Switch access
with the internal writeback and bypass paths. Here, the
percentages are relative to the cluster total.

Analysis: Both the actual logic area and interconnect us-
age correlate well with the original design assumptions.
Over 44% of Cluster 0 is devoted to supporting zero-cycle mul-
tithreading, confirming that the added SZ stage, routing and
replicated state have a noticeable area cost. The 5-way mul-
tithreaded RF stage requires almost 400% additional area
beyond the single-threaded basic version. In contrast, since

Type M1-M5 % | M2/M3/M4 %
MAP 519.52M | 100.0 252.34M | 100.0
Manual Routing 407.50M 784 140.30M 55.6
Autorouting 112.00M 21.6 112.00M 44.4
Cluster Switch 12.02M 23 12.02M 4.8
zero-cycle(global) 6.50M 1.2 6.50M 2.6
ERRVAL/ptr 1.38M 0.3 1.38M 0.6
cbar 0.14M - 0.14M <0.1
Cluster 0 28.70M 100.0
IF 1.70M 59
RF 6.44M 22.4
Sz 5.12M 17.8
EX+WB 8.36M 29.1

| Cluster Switch (local) || | 2.14M | 7.5 |

Total WB/BY 1.05M 3.7
IWB 0.17M 0.6
MWB 0.11M 0.4
FWB 0.19M 0.7
IBY 0.16M 0.6
MBY 0.15M 0.5
FBY 0.27M 0.9

Table 2. Interconnect Usage(im)

the area of the IF stage is dominated by the 4-KByte in-
struction cache, the effect of replication is small. Both the
local usage (significant) and global routing usage (minimal)
of zero-cycle multithreading also match expectations (37%
and 1.2% respectively). The total added logic for fast in-
tercluster interactions, ERRVAL’s and guarded pointers is
minimal, less than 8% of Cluster 0. The use of the Clus-
ter Switch to enable intercluster interactions results in a
small impact on both total routing (<3%) and M2/M3/M4
usage (<5%). The combination of guarded pointer and ER-
RVAL support has an insignificant effect on routing.

From the implementation, we also gain insight into or-
ganizing and correctly bypassing multiple arithmetic units.
Employing a single Cluster Switch port to channel all cross-
cluster operations is a significant advantage. While the local
Cluster Switch consumes two times the resources used for
intracluster writeback and bypassing, all intercluster writes
from four external execution units (IU and MU from each of
the other clusters) are channeled through the Cluster Switch.
The use of a single Cluster Switch port provides fully general
access between the independent register files and all seven
arithmetic pipelines without the routing overhead required
for the full cross-product of 49 interconnections.

6 Conclusion

The MIT MAP architecture partitions arithmetic units
into clusters to localize common interactions and to allow
explicit scheduling of global interactions. In existing su-
perscalar architectures, the shared register file provides a
simple unifying mechanism which implicitly performs data
communication and implicitly guarantees program synchro-
nization. With decoupled clusters and independent register
files, efficient explicit mechanisms are necessary. This pa-
per introduces three such mechanisms: intercluster inter-
actions, ERRVAL based exception deferral, and zero-cycle

multithreading. The combination of register scoreboard-
ing, remote-writes, and the explicit empty instruction en-
able fast producer/consumer interactions. In concert, the
cbar instruction provides a general purpose synchroniza-
tion barrier amongst clusters at the cost of only one issue
slot. The ERRVAL datatype encodes faulting protection and
segment violations, simplifies exception deferral, and allows
the elimination of unnecessary exception handling. Zero-
cycle multithreading combines instantaneous thread switch,
between five installed threads, with dynamic adaptation of
thread selection; and thereby increases arithmetic unit uti-
lization while preserving single-threaded performance.

There are five primary differences between the MAP
cluster pipeline and the basic RISC pipeline. The novel SZ
stage controls instruction issue and decouples pipeline op-
eration. The register state is replicated in the IF, RF, and SZ
stages. The local Cluster Switch port enables remote-writes
and channels the delivery of remote data. Local scoreboards
distribute the management of operand availability. Lastly,
the Memory Switch decouples memory requests from their
return values.

The analysis of the actual MAP chip design enables the
assessment of the implementation impact of each of the
three mechanisms. The logic required for intercluster inter-
actions consumes only 3% of the cluster area. Intercluster
interactions utilize the Cluster Switch interconnect and con-
sume under 5% of the total M2/M3/M4 routing and under
8% of the cluster M2/M3/M4 routing. The ERRVAL fea-
tures are based on the guarded pointer datatype in the MAP
architecture. The combined logic area cost for both ER-
RVAL handling and guarded pointers is a modest 3.7% of
the full cluster and has minimal routing impact. However,
zero-cycle multithreading consumes 44% of the total cluster
area, confirming that the replicated state is a significant cost.

The MIT Multi-ALU Processor architecture realizes ef-
fective instruction scheduling across clusters of arithmetic
units by facilitating efficient intercluster interactions, en-
abling aggressive compiler-driven instruction scheduling
and allowing effective latency tolerance. The use of a single
Cluster Switch port to channel all cross-cluster operations
is a significant advantage and provides fully general ac-
cess while reducing interconnect and bypassing complexity.
Each of the key enabling mechanisms has been successfully
implemented and integrated in the cluster pipelines of the
MAP chip. The resulting experience indicates that these
mechanisms can also be effectively incorporated into main-
stream microprocessor pipelines.

Acknowledgements

The research described in this paper was supported by the
Defense Advanced Research Projects Agency under ARPA
order 8272 and monitored by the Air Force Electronic Sys-
tems Division under contract F19628-92-C-0045. Thanks

to the anonymous reviewers for their valuable feedback and
to Sun Microsystems for their generous equipment dona-
tions. Thanks also to the Cadence Design Factory for their
contributions to the physical design of the MAP chip.

References

[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The Tera computer system.
In Proceedings of the International Conference on Super-
computing, pages 1-6, June 1990.

[2] N.P.Carter, S. W.Keckler,and W.J. Dally. Hardware support
for fast capability-based addressing. In Proceedings of the
Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
VI), pages 319-327, Oct. 1994.

[3] R.P.Colwell, R. P.Nix, J.J. O’Donnell, D. B. Papworth, and
P. K. Rodman. A VLIW architecture for a trace scheduling
compiler. IEEE Transactions on Computers,37(8):967-979,
August 1988.

[4] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang,
Y. Gurevich, and W. S. Lee. The M-Machine Multicomputer.
In Proceedings of the 28th International Symposium on Mi-
croarchitecture, pages 146-156, Ann Arbor, MI, December
1995.

[5] S. Fiske and W. J. Dally. Thread prioritization: A thread
scheduling mechanism for multiple-context parallel pro-
cessors. In Proceedings of the First IEEE Symposium on
High-Performance Computer Architecture, pages 210-221,
Raleigh, NC, January 1995.

[6] A.Guptaand W.-D. Weber. Exploring the benefits of multiple
hardware contexts in a multiprocessor architecture: Prelim-
inary results. In Proceedings of 16th Annual Symposium on
Computer Architecture, pages 273-280. IEEE, May 1989.

[7]1 L.Gwennap. Intel, hp make epic disclosure. Microprocessor
Report, 11(14), October 1997.

[8] S.W.Keckler and W. J. Dally. Processor coupling: Integrat-
ing compile time and runtime scheduling for parallelism. In
Proceedings of the 19th International Symposium on Com-
puter Architecture, pages 202-213, May 1992.

[9] S.W.Keckler, W.J. Dally, D. Maskit, N. P. Carter, A. Chang,
and W. S. Lee. Exploiting fine—grain thread level parallelism
on the MIT multi-ALU processor. In Proceedings of the
25th International Symposium on Computer Architecture,
June 1998.

[10] J.L. Lo, S.J. Eggers, J. S. Emer, H. M. Levy, R. L. Stamm,
and D. M. Tullsen. Converting thread-level parallelism to
instruction-level parallelism via simultaneous multithread-
ing. ACM Transactions on Computer Systems, 15(3):322—
354, August 1997.

[11] P. G. Lowney, S. G. Freudenberger, T. J. Karzes, W. D.
Lichtenstein, R. P. Nix, J. S. O’Donnell, and J. C. Ruttenberg.
The multifiow trace scheduling compiler. The Journal of
Supercomputing, 7(1-2):51-142, May 1993.

[12] R. Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. IBM Journal, 11:25-33, January 1967.

