
0018-9162/98/$10.00 © 1998 IEEE November 1998 69

I
n traditional message interfaces, high latency and
processor occupancy inhibit our ability to exploit
large-scale parallelism. Even though recent
designs address this problem by removing OS lay-
ers from the interface,1-5 the remaining overhead

is still large. To amortize communication overhead of
hundreds of cycles, programmers use messages that
are hundreds to thousands of words in size. Conse-
quently, threads run for thousands of cycles between
communications, which precludes many paralleliza-
tion opportunities.

When designers incorporate multiple hardware
thread slots onto each node, this overhead is exacer-
bated if primitive support for fair and protected
resource allocation is lacking. Much of the communi-
cation overhead can be removed by carefully making
complementary design choices in primitive messaging
mechanisms in order to facilitate messages as short as
several words in size and to enable fine-grain paral-
lelism. For instance, a complete round-trip null mes-
sage takes only 38 cycles in the MIT M-Machine, an
experimental multicomputer designed to exploit par-
allelism with a wide range of granularity.6

The design space for messaging mechanisms can be
divided into three elements:

• mapping, which defines how the network inter-
face (NI) hardware is presented to the software;

• atomicity, which determines whether message
injection/extraction is uninterruptible; and

• dispatch, which describes the mechanism that
determines how the processor reacts to message
arrivals.

Memory-mapped interfaces access the network state
through specific addresses as if they are part of the
memory, while instruction/register-mapped interfaces
integrate tightly with the processor, injecting and
extracting messages with special instructions or read-
ing and writing special device registers. A streaming
interface allows the message’s head to worm through

the system without waiting for its tail. Conversely, a
buffered interface requires each message to be com-
pletely stored in a buffer before it is injected in an unin-
terruptible fashion or received as an atomic unit.
Conventionally, an interrupt mechanism asynchro-
nously displaces the current program with an inter-
rupt handler when the message arrives, while a polling
system periodically checks for message arrival.

In examining the impact of design choices on mes-
sage interface performance, we find that the dispatch
mechanism is critical. A message can be dispatched up
to 18 times faster by reserving a hardware thread con-
text for message reception instead of an interrupt-dri-
ven interface. The mapping decision is also important,
with integrated register-mapped interfaces as much as
3.5 times more efficient than conventional systems.
With fine-grain messages, atomicity does not have a
very significant impact on performance. However, in
a processor containing multiple hardware thread slots,
the atomicity provided by buffered interfaces is impor-
tant for protection and preventing starvation.

An enduring design challenge is to select a mix of
mechanisms that complement one another, enhance
protection, improve raw performance, and reduce
overhead.

THE MIT M-MACHINE
Designed to exploit parallelism, the MIT M-

Machine consists of an array of Multi-ALU Processor
(MAP) nodes connected to each other in a two-dimen-
sional mesh. The MAP chip contains three execution
clusters, a two-bank unified cache, and an external
memory interface. An on-chip NI and a two-dimen-
sional router allow multiple MAP chips to be con-
nected in the M-Machine. In this system, clusters make
memory requests to the interleaved cache banks over
the 3 × 2 M-Switch crossbar, which connects the three
clusters to the two interleaved cache banks. The 7 × 3
C-Switch crossbar provides intercluster communica-
tion, returns data from the memory system, and con-
nects the clusters to two outgoing message queues.

The authors describe a message interface that provides high performance
and low processor overhead, and features a robust protection model. They
discuss this system in the framework of the multithreaded MIT M-Machine
and show that—unlike other approaches—this system is able to avoid
starvation while providing protection and maintaining high efficiency.

Whay Sing
Lee
William J.
Dally
Stephen W.
Keckler
Nicholas P.
Carter
Andrew
Chang
Stanford
University

Co
ve

r F
ea

tu
re An Efficient,

Protected
Message Interface

.

70 Computer

Each of the three execution clusters is a 64-bit,
three-issue, pipelined processor that has two integer
ALUs, a floating-point ALU, register files, and a 4-
Kbyte instruction cache. Due to area constraints, only
one FPU is implemented in the MAP prototype chip,
although the simulation studies performed here
assume an FPU for each of the three clusters.

Each cluster implements cycle-by-cycle multi-
threading, with the register file and pipeline registers
replicated for five independent thread slots. Each
thread includes 14 integer registers, 15 floating-point
registers, and 16 Boolean condition-code (CC) regis-
ters. Instructions from the threads are interleaved over
the execution units on a cycle-by-cycle basis with no
pipeline stalls when switching between threads. A syn-
chronization pipeline stage selects the thread to issue
based upon resource availability and data dependency,
using a scoreboard to keep track of the validity of each
register.

M-MACHINE MESSAGE
INTERFACE ARCHITECTURE

The M-Machine maps its message interfaces—illus-
trated in Figure 1—into the processor’s general regis-
ter name space and pairs a buffered, atomic injection
interface with a streaming extraction interface. This
system dispatches messages asynchronously within a
jump delay (of three cycles) upon arrival.

Injection
As shown in Figure 1, a user thread first assembles

the message body (which can be up to 10 words in
length) in either its integer or its floating-point regis-
ter files, starting at register i4 or f4. A nonblocking
SEND instruction then atomically injects the message
into the network: SEND <length>, <DestAddr>,
<HandlerIP>, <Ack>. A virtual memory pointer,
DestAddr, specifies the destination. During injection
a small hardware cache—known as the global trans-
lation look-aside buffer (GTLB)—translates Dest-
Addr into physical routing information, which directs
the message through the network.

The action at the receiving end is specified by Hand-
lerIP, which is an instruction pointer to a message
handler routine. The M-Machine requires DestAddr
and HandlerIP to be unforgeable pointers,7 and aborts
the SEND instruction with a protection-violation excep-
tion if either is found to be invalid. Ack specifies a con-
dition register to be validated after the network
controller has retrieved the message from the register
file. As soon as the system issues the SEND instruction,
the program can proceed with further computation as
long as it avoids contaminating the message registers or
getting swapped out before Ack is validated.

Extraction
The M-Machine reserves two independent thread

reg i12
reg i11
reg i10

reg i15 = MsgHead
reg i16 = MsgBody

SEND 3, <DestAddr>,
<HandlerIP>, <Ack>

LD i12, i4
Add i10, i11, i5
MOV f14, i6

Message buffer
start = reg i4

msg 1

msg1 . Arg2
msg1 . Arg1
msg1 . Arg0

msg 1 . HandlerIP
msg0 . Arg r

msg0 . Arg (r-1)
msg0 . Arg (r-2)

General
Register
File

General
Register
File

Incoming
message
queue

Network

Sender

Receiver
New
message

Current
message

Figure 1. The architec-
ture of the MIT M-
Machine message
interfaces.

.

slots for message reception, one for each message pri-
ority, and maps integer registers i14 (MsgHead) and
i15 (MsgBody) in each of these thread slots to a corre-
sponding incoming message queue, as shown in Figure
1. Whenever MsgHead is read, the network hardware
returns the handler IP of the next message, discarding
any remaining words from the current message.

Reading MsgBody returns the next word in the cur-
rent message instead. In either case, the consumed word
is also popped from the queue. Thus, a sequence of reads
to MsgBody returns the subsequent words in a message.
After the system consumes a message tail, the NI unit
pads further reads to MsgBodywith dummy values until
the next message is scrolled in by a read to MsgHead.
Both MsgHead and MsgBody can be used directly as
the source operand in any regular instruction.

Dispatch
For MsgHead and MsgBody, the system maps the

corresponding scoreboard bits to the presence of a
new message and the availability of the next word in
the current message. Consequently, an instruction rely-
ing on these registers does not issue until the corre-
sponding message word is available. This allows a
message dispatcher installed in the reserved thread slot
to wait for message arrival without consuming any
execution resources, yet still remain able to activate
immediately when the first message word arrives.

PERFORMANCE EVALUATION
We evaluated the performance impact of design

choices in primitive messaging mechanisms using three
benchmarks:

• Ping, which measures request-response time
between two nodes;

• Remote Procedure Call (RPC), which measures
the time it takes to send an eight-argument mes-
sage to spawn a new remote thread; and

• Distribute, which measures the time it takes to
send eight RPC messages to eight different nodes.

To gauge the efficiency of doing block transfers, we

also used the Blockwrite benchmark, which measures
the speed of a 1,024-word remote-memory transfer
in packets of 10-word messages.

We explored the design space by running the bench-
marks over system models with a streamed or buffered
protocol, register-based or memory-based interface
map, using interrupt-driven, polled, and M-Machine-
style dedicated-thread dispatch mechanisms. Since we
are experimenting with various combinations of
mechanisms, these models may not correspond
exactly to existing architectures. However, familiar
points of reference include the CM-5 (memory-
mapped streaming injection and extraction),1 the J-
Machine (register-mapped streaming injection and
extraction),2 and Shrimp (memory-mapped buffered
injection and extraction).5

For each experiment, we measured the latency from
message creation to the last message-driven event. We
also measured processor occupancy as the sum of all
cycles used by message-related operations, including
message creation and handling. We conducted all
experiments on msim, a C-level simulator used for
verification of the M-Machine implementation. Msim
is accurate to within 10 percent of actual cycle times
and is augmented to simulate both register-buffered
injection and register-mapped streaming injection.

Dispatch mechanisms
Figure 2 shows the receiving-end latency compo-

nents for ping with different dispatch mechanisms.
Upon an interrupt (INTR_MIN), swapping the entire
thread context (32 registers in our benchmarks) causes
an overhead that is nearly 18 times the actual ping
service time. The polling mechanism (POLL_MIN) is
less costly since the polling program knows to save
only the known live registers. However, the resulting
ping response is still more than three times slower than
the M-Machine architecture.

Figure 3 illustrates similar latency trends for each
benchmark. POLL_MIN indicates the best case sce-
nario, where the message arrives exactly when the
polling takes place, while POLL_MAX represents the
worst-case results, when message arrival misses the

November 1998 71

INTR_MIN 125 cycles 177 cycles

Interrupt

PI
N

G

Return

POLL_MIN

Poll

PI
N

G

PI
N

G

Return

M-Machine

Instruction
issue

17 cycles

18 cycles

Context swap (full)

Context swap (partial)

Resident application

Figure 2. The latency
components at the
receiving end of the
ping test.

.

72 Computer

poll by one cycle. In both the polling and the inter-
rupt-driven models, our handlers check for new mes-
sages before returning to the displaced application.
INTR_MIN and INTR_MAX represent the best-case
and worst-case scenarios where subsequent message
arrivals happen to hit and miss this check, respectively.

Naturally, the difference between INTR_MIN and
INTR_MAX is only relevant when multiple messages are
received consecutively in the benchmark, as in Block-
write. However, the good INTR_MIN result for Block-
write is deceptive, because it shuts out the displaced
application for an extended period of time—until all
103 messages in Blockwrite have been received.

Mapping
The address setup overhead in memory-mapped

interfaces causes as much as 1.6 times the processor
occupancy of the M-Machine. Those extra instructions,
together with the latency incurred as each message
word traverses the on-chip memory hierarchy to reach
the pins, also make these interfaces up to 3.5 times
slower than the corresponding integrated mechanisms.

In register-mapped interfaces, performance is
degraded if message words must be explicitly copied
to and from a register name-space separate from the
general register file. In the M-Machine extraction
interface, both MsgHead and MsgBody can be used
directly as instruction operands, giving the interface
a slight advantage over others in which the network-
mapped register only supports the copy instruction.
While conventional integrated interfaces could be used
in the M-Machine to achieve competitive latency
results, they would have to use multiple function units
to overlap extraction with message handling and pay
for it with higher processor occupancy.

Block transfers often motivate incorporating Direct
Memory Access (DMA) engines into a system. How-
ever, traditional DMA interfaces are advantageous
only for large transfers because they incur thousands
of cycles of overhead in system calls. Although the per-
transfer cost can be reduced to several hundred cycles
via user-level DMA mechanisms, an expensive system
call is still required to set up the sender-receiver DMA
buffer mapping. Therefore, for moving a moderate
amount of data, a DMA system is not necessarily
faster than the software-packetized M-Machine
model, which already uses roughly 38 percent of the
network bandwidth and avoids cache pollution with
uncached memory load instructions. However, for
very large transfers, a DMA system does incur lower
processor occupancy.

Buffering versus streaming
Streaming injection interfaces benefit from being

able to overlap message assembly and injection time,
yielding latency savings proportional to the sum of all
delays during message creation, including cache
misses. Figure 4 contrasts the latency components in
RPC for the three tightly integrated injection inter-
faces. By targeting message-generating instructions
directly into the message-buffer-mapped registers, the
M-Machine avoids explicitly copying messages into
the message buffer, as is necessary in the more con-
ventional INJ_REG_BUF call.

Figure 4 also shows that overlapping message cre-
ation with injection makes the streaming interface even
faster. But that is not always the case. For example,
with very short messages, the memory-mapped stream-
ing channel setup cost sometimes dominates the per-
word buffering overhead. A streaming interface is also
unable to exploit message reuse. When message assem-
bly time is amortized over several messages, as in Dis-
tribute, INJ_REG_STR lags behind M-Machine and
INJ_REG_BUF. In Blockwrite, the latency results are
similar among the three designs due to aggressive soft-
ware-pipelining compensating for buffering delays.

With its relatively small register files, the M-
Machine faces register pressure in Distribute, where
four arguments are regenerated for each message.
With the message occupying 10 registers, too few reg-
isters are left to overlap that computation with injec-
tion. Although messages can be pipelined from the
integer and floating-point register files in the M-
Machine, this capability is limited in Distribute
because the regeneration phase happens to use some
instructions that are specific to the integer unit. In
architectures with larger register files, this problem
can conceivably be alleviated by pipelining messages
(from different portions of each register file) using a
simple modification to allow the message buffer to be
placed anywhere within the registers.

M-Machine

POLL_MIN

POLL_MAX

INTR_MIN

INTR_MAX

N
o

rm
al

iz
ed

 la
te

n
cy

9

8

7

6

5

4

3

2

1

0

38
 c

yc
le

s

44
 c

yc
le

s

18
5

cy
cl

es

2,
66

5
cy

cl
es

Ping RPC Distribute Blockwrite

Figure 3. Normal laten-
cies for each of the four
benchmark tests.

.

Latency and architecture
Figure 5 summarizes the end-to-end latency for ping

when gradually switching from a traditional memory-
mapped, buffered, interrupt-driven message interface
to the M-Machine architecture. The most significant
latency reduction comes from eliminating the context-
swap upon dispatch (which can amount to roughly
60 percent in time savings). The various memory-
mapped interface options do not differ much in per-
formance. Substituting the M-Machine register-based
mapping produces another 30 percent improvement.
The fast address translation mechanism in the GTLB
provides the remaining latency reduction. Taken in
sum, the M-Machine message architecture delivers up
to an order of magnitude performance improvement,
even before considering the system-call layer often
required by traditional messaging systems.

MULTITHREADED MESSAGING
The message interface is subject to conflicts when

multiple threads attempt to access it concurrently. It
is the system’s responsibility to guarantee noninter-
ference between concurrent threads by granting exclu-
sive use of the shared messaging facilities according
to need, while at the same time preventing any thread
from monopolizing resources and starving other
threads. The message system should also seamlessly
extend its protection system beyond node boundaries.
We describe in this section how the M-Machine effi-
ciently supports these needs without slow software
semaphores or authentication systems.

Resource sharing
Figure 6 shows the possible configurations for

resource sharing in a multithreaded message system.
Resources can be shared on the basis of an open-ended
exclusive allocation, fixed time-slicing, or a “bounded
time” lease. In Figure 6a, a streaming injection inter-
face exclusively allocates virtual channels from a
resource pool to threads on demand, which allows
multiple logical connections to be open concurrently.
Although the traffic from these virtual channels can
be multiplexed onto the network port on a time-slice
basis, each exclusively allocated virtual channel can-
not be reused until it is voluntarily returned to the
resource pool by the user. This allows programs to
cause starvation easily by exhausting the shared

resources, intentionally or otherwise.
This inability to reclaim shared resources is a fun-

damental problem of open-ended exclusive allocation
schemes. In Figure 6b, a buffered injection interface
also multiplexes a pool of message composition
buffers onto the network port. Since each message is
atomically injected, the network port needs to be con-
nected to a buffer only for a bounded duration. An
appropriate fair arbitration model can thus be used
here to prevent starvation. But a potential danger still
exists, since the buffer pool itself is shared among
threads based on an open-ended allocation scheme,
which may allow a thread to monopolize the buffers.

Figure 6c shows a model that eliminates the exclu-
sive allocation step by hardwiring a message buffer to
each hardware thread slot. This technique removes
dynamic buffer allocation overhead and eliminates

November 1998 73

INJ_REG_BUF 18 9 1 25

M-Machine 18 251

INJ_REG_STR 18
25

10

Generate

Buffering

Launch/inject

Net latency
and handling

Memory-mapped, buffered injection,
buffered extraction, interrupt dispatch

Substitute polling dispatch

Substitute M-Machine dispatch
(multithreaded)

Substitute memory-mapped
streaming extraction

Substitute memory-mapped
streaming injection

Substitute M-Machine extraction

Substitute M-Machine injection

MM with GTLB

500

450

400

350

300

250

200

150

100

50

0

La
te

n
cy

 (
cy

cl
es

)

Ping

Figure 4. Latency
components in
Remote Procedure
Call (RPC) message
injection.

Figure 5. End-to-
end latency for ping
when gradually
switching from a
traditional memory-
mapped, buffered
message interface
to the M-Machine
architecture.

.

74 Computer

the risk of starvation since the execution of thread
slots is already fairly arbitrated in hardware. The mes-
sage buffer then becomes an integral part of the thread
context. To avoid the high latency of main memory
messaging operations, each dedicated buffer can con-
ceivably be implemented in special on-chip memory,
but this technique would waste valuable chip area. By
buffering in existing register files, the M-Machine pre-
vents starvation without wasting chip area on buffers
that are often idling. In addition, this type of mapping
is naturally scalable as the number of thread slots or
processing clusters grow on the chip.

We face a similar set of trade-offs in the design of a
message extraction interface. Figure 6d shows an
interface that shares a pool of extraction channels
among a set of user threads, while Figure 6e shows
the corresponding shared buffer interface. In both
models, since user threads are granted direct access to
the critical network components, incoming messages
are subject to blocking when the shared resources are
not relinquished promptly.

As shown in Figure 6f, the M-Machine uses a more
robust and flexible alternative extraction interface,
which is closely related to the Active Message com-
munication model.8 Instead of being received by a par-
ticular thread, each message designates a handler
routine to be invoked at the destination. The handler
is given exclusive access to the extraction interface so
that it can flexibly react to the message. To avoid star-
vation and deadlocks, conventional Active Message-
like implementations count on the handlers to

complete their tasks and return control to the system
quickly. The M-Machine, however, provides an en-
forcement mechanism—through its protection system
described below—so that only safe, trusted handlers
are accessible to the user.

Protection
The M-Machine extends protection domains across

multiple nodes by restricting both the set of processors
to which a thread can send a message and the handlers
that can be invoked at the destination. In the M-
Machine, all of the memory resides in a single global
virtual address space. Protection domains are imple-
mented not by different address spaces, but by using
the segmentation and capabilities of guarded pointers.7

In a SEND instruction, the destination must be specified
with an unforgeable virtual address pointer. Since the
GTLB transparently maps these addresses to physical
nodes, a thread can only communicate with nodes
within its own protection domain.

In order to prevent a user from invoking an ill-behav-
ing message handler, the guarded pointer system is also
used to implement trusted handlers in the M-Machine.
A trusted handler is a user or system routine certified to
be safe. A trusted handler never blocks indefinitely and
is guaranteed not to cause any unrecoverable errors.
Certification may be done through careful human
inspection or compiler analysis. In the M-Machine,
the SEND instruction requires that HandlerIP—which
specifies the invoked handler—be an instruction pointer
of type Execute-Message. An Execute-Message
pointer cannot normally be executed or modified by
user-level programs. However, as the message is injected
into the network, the hardware transparently converts
and transmits HandlerIP as an executable instruc-
tion pointer instead. Therefore, trusted handlers can
only be invoked via the message system. By selectively
making Execute-Message pointers available to each
thread, the system can regulate the remote operations
accessible to the thread while ensuring that only well-
behaving message handlers are given access to the
extraction interface.

The SEND instruction causes an exception and
aborts the message if either DestAddr or HandlerIP
is the wrong type of guarded pointer. No authentica-
tion is required at the destination. To enhance protec-
tion even more, the M-Machine discards the remaining
words of the current message when MsgHead is read
and pads the end of each message with null values to
thwart a user’s attempts at confusing the handler with
a message of unexpected length.

A fast, low-overhead message subsystem is essen-
tial for efficient multicomputing. As we’ve
explained, a dedicated-thread mechanism can

cut dispatch latency by as much as 18 times the latency

Figure 6. Resource
sharing in a multi-
threaded message
system using (a)
shared injection chan-
nels, (b) shared injec-
tion buffers, (c) dedi-
cated injection
buffers, (d) shared
extraction channels,
(e) shared extraction
buffers, and (f) a mes-
sage handler.

T
T

T

(a) (d)

T
T

T

T
T

T

(b) (e)

T
T

T

T

(c) (f)

T
TT

T

T

T

local
comm

Network

Resource sharing

 Thread

 Time-sliced sharing

 Virtual channel

T

Bounded time sharing

Buffer

Exclusive allocation

Network port

.

of an interrupt-driven interface. Mapping the message
interface to memory—instead of integrating it with
the processor—costs up to 3.5 times more in end-to-
end latency. For short messages, however, buffered
and streaming models do not substantially differ. Raw
performance alone, however, is by no means sufficient.
To meet the challenges and exploit the opportunities
presented by emerging multithreaded processor archi-
tectures, low overhead mechanisms for protection
against message corruption, interception, and starva-
tion must be integral to the message system design, as
they are in the M-Machine.

With increasing demand for computing power, mul-
tiprocessing computers will become more common in
the future. In these systems, the growing discrepancy
between processor and memory technologies will
cause tightly integrated message interfaces to be essen-
tial for achieving the necessary efficiency, which is
especially important in light of the growing interest in
software-distributed, shared-memory systems.

Increasing effective chip area has also enabled novel
architectures that exploit on-chip parallelism. When
incorporated into networks of workstations and mul-
ticomputers, these emerging architectures will provide
low-cost, high-performance computing. However, with
multiple processors and thread slots on each chip, such
systems will encounter many protection, resource-allo-
cation, and starvation issues. The simple messaging
mechanisms described here can help provide a solution
to these challenges, as they have in the M-Machine. ❖

Acknowledgments
The research described in this article was supported

by the Defense Advanced Research Projects Agency
under ARPA order 8272 and monitored by the Air
Force Electronic Systems Division under contract
F19628-92-C-0045. We thank the anonymous review-
ers for their valuable feedback.

References
1. C. Leiserson et al., “The Network Architecture of the

Connection Machine CM-5,” Proc. Symp. Parallel Algo-
rithms and Architectures, ACM Press, New York, 1992,
pp. 272-285.

2. W.J. Dally et al., “The J-Machine: A Fine-Grain Con-
current Computer,” Proc. Information Processing 89,
Elsevier Science, North Holland, 1989, pp. 1,147-1,153.

3. K. Mackenzie et al., “Exploiting Two-Case Delivery for
Fast Protected Messaging,” Proc. High-Performance
Computer Architecture, IEEE CS Press, Los Alamitos,
Calif., 1998, pp. 231-242.

4. J. Kuskin et al., “The Stanford Flash Multicomputer,”
Int’l Symp. Computer Architecture, ACM Press, New
York, 1994, pp. 302-313.

5. M.A. Blumrich et al., “Protected User-Level DMA for
the Shrimp Network Interface,” Proc. High-Perfor-
mance Computer Architecture, IEEE CS Press, Los
Alamitos, Calif., 1996.

6. M. Fillo et al., “The M-Machine Multicomputer,” Proc.
28th Ann. Int’l Symp. Microarchitecture, IEEE CS Press,
Los Alamitos, Calif., 1995, pp. 104-114.

7. N. Carter, S. Keckler, and W. Dally, “Hardware Support
for Fast Capability-Based Addressing,” Architectural
Support for Programming Languages and Operating
Systems, IEEE CS Press, Los Alamitos, Calif., 1994.

8. T. von Eicken et al., “Active Messages: A Mechanism
for Integrated Communication and Computation,”
Proc. 19th Int’l Symp. Computer Architecture, IEEE CS
Press, Los Alamitos, Calif., 1992, pp. 256-266.

Whay Sing Lee is the communication system archi-
tect for the MIT M-Machine. His research interests
include computer architecture, multicomputer net-
works, and fault-tolerant computing. Lee received an
MS in computer science from the Massachusetts Insti-
tute of Technology, where he is also a PhD candidate.

William J. Dally is a professor of electrical engineer-
ing and computer science at Stanford University,
where he leads projects on high-speed signaling, mul-
tiprocessor architecture, and graphics architecture.
Dally received an MS in electrical engineering from
Stanford University and a PhD in computer science
from the California Institute of Technology.

Stephen W. Keckler is an assistant professor of com-
puter science at the University of Texas at Austin. His
research interests include computer architecture, par-
allel and embedded processors, VLSI design, and the
relationship between technology and computer sys-
tems development. Keckler received an MS and a PhD
in computer science from the Massachusetts Institute
of Technology.

Nicholas P. Carter is a PhD candidate at the Massa-
chusetts Institute of Technology, where he received an
MS in computer science. His research interests include
shared-memory computer systems, processor archi-
tectures to minimize communication, and circuits for
on-chip signaling.

Andrew Chang is a PhD student in the Concurrent
VLSI Architecture group at Stanford University. His
research interests include VLSI, CAD, computer
architecture, and circuit design. Chang received an
MS from the Massachusetts Institute of Technology.

Contact the authors at {wslee, billd, skeckler, achang,
npcarter}@cva.stanford.edu.

November 1998 75

