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Much of the improvement in computer performance over the last
twenty years has come from faster transistors and architectural
advances that increase parallelism. Historically, parallelism has
been exploited either at the instruction level with a grain-size of
a single instruction or by partitioning applications into coarse
threads with grain-sizes of thousands of instructions. Fine–grain
threadsfill the parallelism gap between these extremesby enabling
tasks with run lengths as small as 20 cycles. As this fine–grainpar-
allelism is orthogonal to ILP and coarse threads, it complements
both methods and provides an opportunity for greater speedup.
This paper describes the efficient communication and synchro-
nization mechanisms implemented in the Multi-ALU Processor
(MAP) chip, including a thread creation instruction, register com-
munication, and a hardware barrier. These register-based mech-
anisms provide 10 times faster communication and 60 times faster
synchronization than mechanisms that operate via a shared on-
chip cache. With a three-processor implementation of the MAP,
fine–grain speedups of 1.2–2.1 are demonstrated on a suite of
applications.
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Modern computer systems extract parallelism from problems at
two extremes of granularity: instruction-level parallelism (ILP)
and coarse-thread parallelism. VLIW and superscalar processors
exploit ILP with a grain size of a single instruction, while multipro-
cessors extract parallelism from coarse threads with a granularity
of many thousands of instructions.

The parallelism available at these two extremes is limited. The
ILP in applications is restricted by control flow and data dependen-
cies [17], and the hardware in superscalar designs is not scalable.
Both the instruction scheduling logic and the register file of a
superscalar grow quadratically as the number of execution units
is increased. For multicomputers, there is limited coarse thread
parallelism at small problem sizes and in many applications.�

The research described in this paper was supportedby the Defense AdvancedRe-
search Projects Agency and monitored by the Air Force Electronic Systems Division
under contract F19628-92-C-0045.

This paper describes and evaluates the hardware mechanisms
implemented in the MIT Multi-ALU Processor (MAP chip) for
extracting fine–thread parallelism. Fine–threads close the paral-
lelism gap between the single instruction granularity of ILP and
the thousand instruction granularity of coarse threads by extract-
ing parallelism with a granularity of 50-1000 instructions. This
parallelism is orthogonal and complementary to coarse-thread par-
allelism and ILP. Programs can be accelerated using coarse threads
to extract parallelism from outer loops and large co-routines, fine–
threads to extract parallelism from inner loops and small sub–
computations, and ILP to extract parallelism from subexpressions.
As they extract parallelism from different portions of a program,
coarse–threads, fine–threads, and ILP work synergistically to pro-
vide multiplicative speedup.

These three modes are also well matched to the architecture
of modern multiprocessors. ILP is well suited to extracting par-
allelism across the execution units of a single processor. Fine–
threads are appropriate for execution across multiple processors at
a single node of a parallel computer where the interaction latencies
are on the order of a few cycles. Coarse-threads are appropriate for
execution on different nodes of a multiprocessor where interaction
latencies are inherently 100s of cycles.

Low overhead mechanisms for communication and synchro-
nization are required to exploit fine–grain thread level parallelism.
The cost to initiate a task, pass it arguments, synchronize with
its completion, and return results must be small compared to the
work accomplished by the task. Such inter-thread interaction re-
quires 100s of cycles (  1 ! s) on conventional multiprocessors,
and 1000s of cycles (  10 ! s) on multicomputers. Because of
these high overheads, most parallel applications use only coarse
threads, with many thousandsof instructions between interactions.

The Multi-ALU Processor (MAP) chip provides three on-chip
processors and methods for quickly communicating and synchro-
nizing among them. A thread executing on one processor can
directly write to a register on another processor. Threads synchro-
nize by blocking on a register that is the target of a remote write
or by executing a fast barrier instruction.

Microbenchmark studies show that with these register-based
mechanisms, a thread can be created in 11 cycles, and individual
communication and synchronization actions can be performed in
1 cycle. Communication is 10 times faster and synchronization
is 60 times faster than their corresponding memory mechanisms
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Figure 1: Block diagram of the MAP chip, containing 3 clusters
(processors) connected to the memory system and each other via
the Memory and Cluster switches.

that use the on-chip cache. The MAP’s integrated mechanisms
are orders of magnitude faster than those that operate via global
memory. A study using several parallel applications shows that
these mechanisms allow speedups of up to 2.1 using 3 on-chip
processors when exploiting parallelism with a granularity of 80–
200 cycles. If the register communication provided by the MAP
is replaced with memory operations, fine–grain threads yield sub-
stantially less speedup, and sometimes slowdown.

The next section describes the architecture and implementation
of the MAP chip and details its mechanisms that support fine–grain
threads. The raw performance of these mechanisms is evaluated in
Section 3 and compared to memory-based mechanisms. Section 4
explores the granularity of several parallel applications and the
speeduprealized by exploiting fine–grain threads with and without
the MAP chip mechanisms. Related research that addresses fine–
grained and on–chip parallelism is described in Section 5, and
concluding remarks are found in Section 6.
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The Multi-ALU Processor (MAP) chip, designed for use in the
M-Machine Multicomputer, is intended to exploit parallelism at
a spectrum of grain sizes, from instruction level parallelism to
coarser grained multi-node parallelism [5]. It employs a set of
fast communication and synchronization mechanisms that enable
execution of fine–grain parallel programs.

Figure 1 shows a block diagram of the MAP chip containing
three execution clusters, a unified cache which is divided into two
banks, an external memory interface, and a communication sub-
system consisting of network interfaces and a router. Two crossbar
switches interconnect these components. Clusters make memory
requests to the appropriate bank of the interleaved cache over the
142-bit wide (51 address bits, 66 data bits, 25 control bits) 3 4 2
Memory Switch. The 88-bit wide (66 data bits, 22 control bits)
7 4 3 Cluster Switch is used for inter-cluster communication and to
return data from the memory system. Each cluster may transmit on
the Memory Switch and receive on the Cluster Switch one request
per cycle. An on-chip network interface and two-dimensional
router allow a message to be transmitted from a cluster’s regis-
ter file into the network. Multiple MAP chips can be connected
directly together in a two-dimensional mesh to construct an M-
Machine multicomputer. This paper focuses on the parallelism
that can be exploited within a single MAP chip. Future studies
will analyze application performance on the M-Machine.
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Each of the three MAP clusters is

a 64-bit, three-issue, pipelined processor consisting of two integer
ALUs, a floating–point ALU, associated register files, and a 4KB
instruction cache1. Each integer register file has 14 registers per
thread, while the floating–point register file has 15 registers per
thread. Each thread also has 16 condition code (CC) registers to
hold boolean values. Writes to a subset of the condition code regis-
ters are broadcast to the remote clusters. One of the integer ALUs
in each cluster serves as the interface to the memory system. Each
MAP instruction contains 1, 2, or 3 operations. All operations
in a single instruction issue together but may complete out of or-
der. No hardware branch prediction is performed on the MAP, and
branches have three delay slots, due to the three pipeline stages
before execution. However, since all operations may be condi-
tionally executed based on the one-bit value of a condition code
register, many branches can be eliminated. In addition, branch
delay slots can be filled with operations from both sides of the
branch as well as with operations from above the branch.

The execution units are 5-way multithreaded with the register
files and pipeline registers of the top stages of the pipeline repli-
cated. A synchronization pipeline stage holds instructions from
each thread until they are ready to issue and decides on a cycle-
by-cycle basis which thread will use the execution unit. While
this enables fast, zero-overhead interleaving on each cluster, the
remainder of this paper uses only one thread per cluster.

(G'�HI?9E�JLK�J:D�>�'�HMF
As illustrated in Figure 1, the 32KB unified

on–chip cache is organized as two 16KB banks that are word-
interleaved to permit accesses to consecutive addresses to proceed
in parallel. The cache is virtually addressed and tagged. The
cache banks are pipelined with a three-cycle read latency, including
switch traversal. Each cluster has its own 4KB instruction cache
which fetches instructions from the unified cache when instruction
cache misses occur.

The external memory interface consists of the synchronous
DRAM (SDRAM) controller and a 64 entry local translation looka-

1 In the silicon implementation of the MAP architecture, only cluster 0 has a
floating–pointunit, due to chip area constraints. The simulation studies performedin
this paper include floating–point units for each of the three clusters.
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Operation Latency (cycles)

Cache hit 3
Cache miss 8–15
Branch penalty 3
FP Multiply 4
FP Add 2
FP Divide 20

Table 1: MAP chip latencies.

side buffer (LTLB) used to cache local page table entries. Pages
are 512 words (64 8-word cache blocks) in size. The SDRAM
controller exploits the pipeline and page modes of the external
SDRAM and performs single error correction and double error
detection on the data transferred from external memory. Each
MAP word in memory is composed of a 64-bit data value, one
synchronization bit, and one pointer bit. A set of special load and
store operations specify a precondition and a postcondition on the
synchronization bit and are used to construct fine–grain synchro-
nization and atomic read–modify–write memory operations.

Table 1 shows the nominal hardware latencies of the MAP
execution units and cached memory system. The cache latencies
assume no switch conflicts to or from the memory system. The
miss latency can vary depending on which of the pipeline or page
modes can be used to access the SDRAM.

NPO3QSRUTWV�X:Y�Z)[]\�^�_�V`\Aa
Invoking a thread on a remote processor is typically an expensive
operation, requiring thousands of instructions to set up a stack and
initialize system data structures. Remote procedure call times are
typically in the microsecond range. The MAP chip implements a
fast hfork instruction which invokes a thread on a remote cluster
by automatically writing a remote program counter and updating
the thread control registers. The example below starts a thread on
cluster 1, using the address contained in local integer register i8
as the instruction pointer. If cluster 1 is already executing, then
false, indicating failure of the instruction, is returned via the
Cluster Switch to condition code register cc0.

hfork i8, #1, cc0;

Combined with the ability to write directly to the registers of the
remote cluster, the hfork instruction allows a remote procedure
to be started in 11 cycles, which includes time to fetch the code and
prime the pipeline at the remote cluster. If still faster invocation is
required, a standby handler thread can be started in a remote cluster,
which waits to be signalled to execute. When an instruction pointer
is written to a specific register in the remote cluster, the handler
jumps to the code and begins executing.

NPO Nb[c\Adedef9^�g�h�Y�_�g�\A^
In coarse grained multiprocessors,communication between threads
is exposed to the application as memory references or messages,
both of which require many cycles to transmit data from one chip
to another. In the MAP chip, threads on separate clusters may

communicate either through the shared memory, or through regis-
ters. Since the data need not leave the chip to be transferred from
one thread to another, communication is fast and well suited to
fine–grain threads.

The on-chip cache allows large quantities of common storage
to be readily available to each thread. Any of these locations
can be used to communicate data, and the producer and consumer
need not be running in near synchrony. In the MAP, a value can
be communicated in memory via a load and store. The latency
between the producer and consumer of the data can be as little
as 10 cycles, if both accesses hit in the cache, or as long as 36
cycles, if both miss. Additional overhead is required to construct
or retrieve the addresses used to communicate.

The MAP chip also implements register–register communica-
tion between clusters, allowing one cluster to write directly into the
register file of another cluster, via the Cluster Switch. Register–
register transfers are extremely fast, requiring only one more cycle
to write to a remote register than to a local register. The result
of any arithmetic operation may be sent directly to a remote reg-
ister, without interfering with memory references or polluting the
cache. Since the size of the register file limits the storage for com-
municated values, register communication is particularly suited to
passing small amounts of data quickly, such as transferring signals,
arguments, and return values between threads. One drawback is
that register communication requires an additional synchroniza-
tion between the consumer and the producer to prevent values in
the destination cluster from being illegally overwritten.

N�O i�j�k�^�h<TWV�\�^�g�l�Y�_�g�\�^
In a concurrent system, synchronization must be used to indicate
when a task is to be started, when it is complete, or when two
running threads must communicate. The MAP chip allows syn-
chronization through memory, registers, and a hardware barrier
instruction, each of which has different costs and benefits.

mGX�dI\9V�k)jPkn^�h<T9V`\A^�g�l�Y�_�g�\A^Po
In the MAP chip, every memory

location has a single synchronization bit that exists both in the
off-chip DRAM and in the cache, enabling locking on a location-
by-location basis. Special load and store operations allow atomic
testing and setting of the bit.

The code fragment below shows how a spin-lock may be im-
plemented using the memory synchronization bits. The load and
synchronize operation (ldsu) loads the value at the address held
in register i8, into i9. In the memory system the synchronization
bit is compared to the precondition pre 1. If they are the same,
the operation succeeds: the synchronization bit is set to post 0,
the contents of the location are returned to i9, and the valuetrue
is returned to condition code register cc0. Otherwise, the memory
contents remain unchanged, and false is returned to the condi-
tion code register. The subsequent branch will cause the loop to
spin until the operation succeeds.

_loop:
ldsu pre_1, post_0, i8, i9, cc0;
cf cc0 br _loop:

A similar sequence is used to store a value and set the synchro-
nization bit. This synchronization mechanism can be incorporated
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Figure 2: Preliminary plot of the MAP chip, measuring 18 pGp on
a side and containing approximately 5 million transistors.

with memory communication between threads, allowing synchro-
nization on a word by word basis. However, a consumer thread
waiting for a producer will continue to make memory requests
while spinning, which can slow down other threads trying to ac-
cess the memory system. An alternative to spinning that can be
implemented in the MAP is to invoke a software handler to retry
the memory access when a synchronization failure is detected in
the memory system.

qsr<tWu�v�w�r�xzyP{�|9x�r�}W|9~�x��s�
The MAP chip uses full/empty bits in a

register scoreboard to determine when values in registers are valid.
When an operation issues, it marks the scoreboard for its destina-
tion register invalid, and when the result is written, the destination
register’s scoreboard is marked valid. Any operation that attempts
to use the register while it is empty will stall until the register is
valid. To reduce the amount of interaction between physically dis-
tant clusters, an operation that writes to a remote cluster does not
mark its destination register invalid. Instead, the consumer must
execute an explicit empty instruction to invalidate the destination
register prior to receiving any data. When the data arrives from
a remote register write, the scoreboard is marked valid and any
operation waiting on the register is allowed to issue. However, the
producer must not write the data before the empty occurs. The
empty can be guaranteed to execute first by placing it prior to an
unrelated write from the consumer to the producer, or by placing
a barrier between the empty and the transfer from the producer.
Using register–register communication fuses synchronization with
data transfer in a single operation and allows the consumer to stall
rather than spin.

��~�x�x`u�rnx�u3��v�w�x���{�w�u�|����
The simplest synchronization mechanism

implemented by the MAP is the cluster barrier instruction cbar.

Area % of
Component ( pBp 2) total area

Integer Units (3) 55.9 16.7
Memory Units (3) 42.4 12.7
16KB Data Cache Banks (2) 36.9 11.0
Floating–point Unit 33.4 10.0
NIF/Router 26.8 8.1
I/O Pads 26.6 8.0
Instruction Caches (3) 17.7 5.3
EMI + 64 entry TLB 8.3 2.5
Clock drivers 5.7 1.7
Switch drivers 3.1 0.9
Misc. Control/Wiring 23.1

Table 2: Area costs for the components of the MAP chip.

The cluster barrier instruction stalls a thread’s execution until the
threads on the other two clusters have reached a cbar instruction.
Threads waiting for cluster barriers do not spin or consume any
execution resources. The cbar instruction is implemented using
six global wires per thread to indicate whether a cbar has been
reached, and whether it has been issued. Six wires per thread
are necessary in order to guarantee that successive barriers stay in
synchrony across all three clusters.

��� � �+�����3�e�9� r��Irn��w�~�w�u�|A�
A preliminary layout plot of the entire MAP chip is shown in Fig-
ure 2. The chip is 18mm square and consists of approximately 5
million transistors in a 5 metal layer, 0.7 � m drawn (0.5 � m effec-
tive) process. The cluster datapath and control modules occupythe
bottom 60% of the chip, the network interface (NIF) and router are
in the middle 15%, and the memory system is in the top 25%. The
Cluster Switch runs horizontally in metal-4 at the midpoint of the
clusters and consumes only 8% of the metal-3 and metal-4 routing
in the cluster region. However, the wiring congestion near the
Cluster Switch is significant since the switch runs over the cluster
pipeline control modules. The Memory Switch is below the cache
banks in the memory system region and occupies about 6% of the
metal-3 and metal-4 routing resources there. Table 2 summarizes
the area costs for the different components of the chip. The target
clock rate for the MAP chip is 100MHz. All of the datapath cir-
cuits meet that clock rate, but static timing analysis shows a clock
rate of 40MHz for the control logic. The clock rate was reduced
in order to avoid performing logic optimizations for speed. The
final routing of the chip is currently being completed and tapeout
is scheduled for April 1998.

� �Bu�{<x`|A}Wrn��{<�9�I~�x���v

Specific microbenchmarks are used to directly evaluate the fine–
grain thread control, communication, and synchronization mecha-
nisms of the MAP chip. The microbenchmarks are written in MAP
assembly code and run on both MSIM and the MAP chip register
transfer level (RTL) simulator. MSIM is a functional simulator of
the MAP implemented in C, and executes 400–1000 MAP cycles
per second, depending on how many clusters are active. The RTL

4



master call master return

slave invoke

slave return

Master

Slave

Figure 3: Components of thread invocation and return.

is the logic design of the MAP chip, implemented in Verilog. It
is used for all verification, is exactly cycle accurate to the silicon,
and runs less than 10 MAP cycles per second. MSIM was used to
verify the logic design in the RTL and is within 5% of the cycle
accuracy of the RTL over the 663 verification programs in the
MAP regression suite.
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Three methods for starting a thread on a remote cluster, including
one cold start and two standby, are examined. The cold start
method uses the hfork instruction, which starts the remote thread
automatically with a single instruction executedby the master. The
standby methods already have a slave thread running in the remote
cluster waiting for a new task from the master. The two standby
methods differ in how the master and slave communicate with one
another, using either registers or memory.

Figure 3 shows the four components of a null thread call and
return. The master call overhead is the number of cycles that
the master must spend executing instructions to create the new
thread. The slave invoke latency is the time from the beginning
of the master call to the execution of the slave’s first instruction.
The slave return latency is the time for the slave to signal to the
master. Finally the master return is the overhead for the master to
resynchronize with the slave.

Table 3 summarizes the components of latency for each of the
three methods. The hfork instruction and the standby register
method are the most efficient, with only 1 cycle of overhead for
the master at the call and return. Standby register is a little faster
overall as the slave invocation time is shorter. Standby memory is
more than three times worse than the register version because of
the memory spin loops the master and slave use to synchronize.

�P� ¦b¡c¤A§e§e¨9¥�£�©���¢�£�¤A¥
Communication latency and overhead are evaluated by using a
producer-consumer microbenchmark. Both memory and regis-
ter mechanisms are examined by passing a value back and forth
between two clusters. The memory version uses two memory loca-
tions, one for each communication direction. Spin locks using the
MAP’s memory synchronization bits implement synchronization
between the threads. The producer stores its value to the target
location, and marks the memory location full, while the receiver
spins on the location, waiting for the data to arrive. The register
version uses the empty instruction and remote register writes.
The producer empties its receiving register and writes the value to
the consumer’s register file. The consumer stalls on the register

Master Slave Slave Master
Operation Call Invoke Return Return Total

hfork 1 11 2 1 14
memory 3 21 6 9 36
register 1 7 2 1 10

Table 3: Latencies for thread invocation. The total time is end–
to–end latency of a null remote invocation. Using the hfork
instruction or register communication yields an overhead three
times smaller than using memory operations.

Producer Transfer
Operation Overhead Latency

Memory (cache hit) 3 10
Register 1 2

Table 4: Communication latencies between threads.

until the value is written and the scoreboard is marked full.
There are two components to the efficiency of cross cluster

communication. The producer overhead is the number of cycles
that the producer must spend initiating the transfer. The transfer
latency is the total time from the producer initiation to the use
by the consumer, and includes the producer overhead. Table 4
shows the producer overhead and transfer latency for memory and
register communication. Before transferring the data, the memory
version must first compute the address of the communication lo-
cation, which takes 3 cycles. In the register version, the remote
location for the data is encoded in the instruction performing the
transfer, resulting in only a single cycle producer overhead. The
memory version also has a 10 cycle transfer latency, including the
producer overhead and two memory latencies, one each by the
producer and consumer. If either memory access misses in the
cache, the transfer latency will be significantly longer. Register
communication has only one additional cycle of latency for the
Cluster Switch traversal, and the consumer is able to use the data
immediately.

��� � ª��n����£����
Not all synchronization can be easily expressed using a producer-
consumer model. A barrier can be used to conglomerate several
synchronizations into a single action. Fast barriers reduce the
overhead of using parallelism, which is vital if the parallelism
to be extracted has short task execution times between synchro-
nizations. Four implementations of barriers across three clusters
are examined: memory, register, condition-code, and CBAR. The
memory implementation uses four memory locations; one location
holds the barrier counter, and each thread has its own location on
which to spin. Upon reaching the barrier, each thread performs
a fetch and increment on the counter, using the MAP’s memory
synchronization bits to atomically lock and unlock the counter. If
the barrier count is less than 2, the thread begins spinning on its
own memory location. Otherwise, the other threads have reached
the barrier, the count is reset to zero, and the spinning threads’
memory locations are marked full, releasing them.
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Barrier Method Latency

Memory (cache hit) 61
Register 6
Condition Code 5
CBAR 1

Table 5: Latency to executea barrier across all three clusters. Even
with an on-chip cache, synchronizing using memory is more than
ten times as expensive as using registers or the cbar instruction.

The register barrier microbenchmark consists of an even phase
barrier, followed by an odd phase barrier. Upon reaching the
barrier in an even phase, a thread empties its odd phase registers,
and writes into the even phase registers of both of its neighbor
threads. It then reads from its own even phase registers, stalling
until they have been written by the neighbors. Two registers per
phase are necessary to allow each of the neighbors to communicate
independently. The Condition Code barrier is similar except that
with the broadcast condition code registers, only one instruction is
required to signal to both neighbor threads. The CBAR barrier uses
the cbar instruction, without requiring any registers or auxiliary
instructions to be executed.

Each mechanism is implemented in a simple program that does
100 successive barriers. The time per barrier in the steady state
is measured and shown in Table 5. The cbar instruction is the
fastest and can complete a barrier every cycle. The register and
condition code barriers are similar, with Condition Code being one
cycle faster since only one write is necessary to communicate with
both neighbors. The memory barrier requires 61 cycles, even with
all accesses hitting in the cache. For each thread, approximately
20 cycles are needed for the control overhead of testing the barrier
counter, while the remaining cycles are consumed contending for
the on-chip cache and waiting for the other threads to arrive at the
barrier. In order to exploit fine–grain parallelism with task lengths
in the 10s of cycles, long latency memory-based barriers cannot
be used.

«P¬ ­¯®P°n±�²�³�´:²�µ�¶G·�´n±�¶<³9¸I¹�º�»
A synthetic benchmark was developed to further examine the effect
of the interthread register and memory communication latencies
of the MAP chip. With fast mechanisms for thread invocation
and communication, extremely fine–grain thread parallelism can
be exploited. If slower mechanisms are employed, such as com-
municating using on-chip memory, fine–grain parallelism can still
be exploited, but the granularity of the tasks must be larger.

The synthetic benchmark, shown schematically in Figure 4,
consists of a single loop containing three function calls, each of
which may be run in parallel. Varying sub num changes the time
to execute each of the function calls (affecting both grain size and
problem size), and the number of outer loop iterations is dictated
by global num.

In the parallel versions, the master thread invokes one instance
of sub loop on each of the neighboring clusters, using a parallel
procedure call (PPC), and executes the third instance itself. The
slave threads operate in standby mode waiting to be signalled by
the master. When a slave completes, it returns its result to the

for(i=0; i<global_num; i++) {
res1 = sub_loop(sub_num, const);
res2 = sub_loop(sub_num, const);
res3 = sub_loop(sub_num, const);
total_res = res1 + res2 + res3;

}

Figure 4: Pseudocode for synthetic benchmark. Each instance
of sub loop is executed on a different cluster for the parallel
measurements.

Synthetic Program Description

SEQ Baseline sequential
PPC REG Parallel with register synchronization
PPC MEM Parallel with memory synchronization

Table 6: Synthetic benchmarks.

master, which performs a join before beginning another iteration
of the outer loop. The versions to be compared are enumerated in
Table 6.

Figure 5 shows the time for one iteration of the outer loop as
a function of the granularity of the inner loops, normalized to the
sequential execution time. The granularity, in turn, is a function of
the number of inner loop iterations, which is varied from 0 to 30.
When no iterations are executed within sub loop, the procedure
call overhead and test inside the procedure still requires 19 cycles.
Each increment in grain size corresponds to an additional loop
iteration in each subroutine. At the smallest grain size, PPC REG
is 1.6 times faster than SEQ, while PPC MEM is 1.2 times slower,
due to the additional cost for the master to store the arguments
into memory and the slave to retrieve them. Both PPC REG and
PPC MEM improve substantially as more work is done inside
the inner loops, but their execution time relative to sequential
flattens out above granularities of 110 cycles as they approach
the maximum of 3 times speedup. PPC REG still maintains an
advantage over PPC MEM, but that diminishes as the granularity
increases.

The most significant component of the overhead is in starting
the slave threads. As shown in Figure 6, the cost to pass each
additional argument from the master to a slave is not substantial.
For PPC REG, approximately two cycles are required for each
additional argument, one cycle for each slave thread. PPC MEM
requires almost four cycles per additional argument, two cycles for
each slave to perform an address calculation and a store.

­ ¼B¹�¶<º`½5¾�¿9¿WÀ µ�¶�¹�²�µ�½A±�Á

As shown with the microbenchmarks, the communication and syn-
chronization mechanisms of the MAP chip allow threads to be in-
voked quickly and communicate efficiently with one another. This
section explores the utility of these mechanisms in applications us-
ing inner–loop and outer–loop parallelism. Inner–loop parallelism
is discovered by examining the inner loops of the applications to
find subroutines and expressions that can be executedconcurrently.
Outer–loop parallelism comes from the outer loops of the appli-
cations, mainly by dividing the data set across the processors and
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Figure 5: Outer loop iteration time as a function of inner loop
grain size, normalized to sequential. At the smallest grain size
(19 cycles of work in slave threads) PPC REG is 1.6 times faster
than SEQ. PPC MEM becomes faster than SEQ at grain sizes of
greater than 30 cycles.

assigning independent loop iterations to them. The experiments in
this section show that inner–loop parallelism exploits concurrency
in different parts of the program than outer–loop parallelism, and
that the granularity of the inner–loop tasks is substantially smaller
than outer–loop tasks.

ÂsÃ3Ä¯Å�Æ�Ç�È<ÉWÊIËnÌÎÍ�Ï
The applications in this study are compiled using MMCC, the
MAP C compiler, a derivative of the Multiflow C compiler [9].
The compiler is able to compile a sequential program across all
three arithmetic clusters. However, for the experiments reported in
this paper, MMCC produces sequential single cluster code, using
all three execution units within a cluster as a 3 instruction wide
statically scheduled machine. MARS, the runtime system for the
M-Machine, is used to provide system services, including memory
allocation, terminal I/O, and file I/O [7]. While both MARS and
the MAP support virtual memory, all experiments were run in a
physical address space, with no TLB miss handling required.

Outer-loop parallelism is explicit in the applications and ex-
ploits concurrency at outer loops with data dependent phases sep-
arated by barriers. Inner-loop parallelism is implemented by en-
capsulating independent expressions and function calls inside pro-
cedures. The applications are detailed below and summarized in
Table 7.

FFT solves a 1-dimensional partial differential equation us-
ing forward and inverse FFTs. With outer-loop parallelism, each
processor is assigned a subsection of the array, and computes one
level of the butterfly on its subarray before placing its result into a
temporary array. After a barrier, each processor copies its section
of the temporary array to the global array and barriers again. Inner-
loop parallelism is extracted by executing inner-loop expressions
and subroutines concurrently. The size of the array is varied from
4 to 128 complex numbers.

EM3D simulates electromagnetic interactions and consists of
alternating phases of computation on e-nodes and h-nodes.
To exploit outer–loop parallelism, each processor is assigned a
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Figure 6: Outer loop iteration time as a function of the number
of arguments passed from master to slave with a grain size of 27
cycles. PPC REG requires two additional cycles per argument,
one cycle for each slave thread. PPC MEM requires almost four
cycles per additional argument, two cycles for each slave.

subset of the nodes and at each timestep computes new values for
itse-nodes, barriers, computes new values for itsh-nodes, and
barriers again. Inner–loop parallelism is exploited by computing
all of the interactions for a given node concurrently. The EM3D
initialization routines are not included in any results. The problem
size is varied from 6 e-node/h-node pairs to 30 pairs, and each
node is connected to 5 other nodes.

MG is a solution to a 3D Poisson partial differential equa-
tion and is based on the multigrid kernel from the NAS parallel
benchmarks and SPEC95. The outer–loop parallel code assigns
a subset of the three dimensional data space to each processor,
and the different computation phases are separated by barriers.
The inner–loop version parallelizes only the innermost loop of the
Relax (relaxation) subroutine. Each of these inner loop iterations
consists of a weighted sum of different array elements. These op-
erations are forked to other clusters and the results are combined
by the master before the next iteration begins. The volume of the
cubic space to be solved is varied from 64 to 2744 double precision
floating-point numbers.

CG implements a Modified Incomplete Cholesky Conjugate
Gradient method for 3-D boundary value problems. The outer–
loop parallelism profile forms a wavefront across the central diag-
onal of a cube that forms the problem space. At each iteration, a
processor computes its assigned portion of the wavefront, and then
executes a barrier. The inner–loop version only parallelizes the in-
nermost computation loop which consists of a set of arithmetic op-
erations combined with boundary checks to handle corners, edges,
and faces of the cube. The volume of the cube is varied from 27
to 1728 double precision floating-point numbers.

EAR is from the SPEC92 suite and simulates the propagation
of sound in the human cochlea (inner ear). The application consists
of a sequential outer loop, containing sequences of parallel inner
loops. Only the inner loops are parallelized as no outer-loop
parallelism is available. Ten time steps are simulated and the
size of the input vector is varied from 10 to 100 double precision
floating-point numbers.
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Benchmark Source Problem Size

FFT Alewife [3] 4–128 complex doubles
EM3D UC Berkeley [4] 6–30 node pairs
MG Alewife [3] 64–2744 doubles
CG Yeung [18] 27–1728 doubles
EAR Spec92 [15] 10–100 doubles

Table 7: Benchmark Summary.
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In each of the benchmarks, inner–loop parallelism is exploited
by manually identifying independent expressions, function calls,
and loop iterations inside an application’s inner loop. A master
thread forks the parallel work to a free cluster at runtime via
a parallel procedure call (PPC) and waits only when the return
value is needed, similar to a future [8]. To reduce overhead,
assembly inlining in the compiled code is used to execute the
special instructions needed to invoke a thread on a remote cluster,
and to synchronize when complete. To evaluate the utility of the
register interaction mechanisms, the arguments passed from the
master to the slave using either registers or the on-chip cache.
When using registers to communicate between the master and a
slave, the master thread reserves and empties a register for the
return value prior to forking the slave. At the join, the master
stalls on the empty register until the slave writes into it. A slave
empties its registers and stalls on them until the master delivers the
function arguments. When using the on-chip cache, the memory
synchronizationbits are used to signal between master and slave to
indicate that data is being transferred between them. The consumer
spins on a memory location until the producer writes the data.

Figure 7 shows the inner-loop task granularity for all five ap-
plications as a function of problem size on a log–log plot. The
granularity for inner-loop parallelism is defined as the average
time for the slave threads to execute their parallel tasks. The
problem sizes are indicative of the relative amount work for each
benchmark, but cannot be compared across different applications.
FFT, EM3D, and CG all exploit parallel expressions within their
inner loops. Thus the granularity remains constant and small (less
than 300 cycles) across the different problem sizes. EAR and MG
each have inner loops that can be parallelized. As the problem size
increases, so does the amount of work per parallel task.

Figure 8 shows the execution time for FFT across all of the
problem sizes, normalized to the sequential execution time on a
single MAP cluster. The Cache line shows the relative execution
time when using the on-chip cache to communicate between the
master and the slave threads, while Register uses the MAP’s reg-
ister communication mechanisms. Optimal is a measure of the
execution time if all of the communication between the master
and slaves occurs instantaneously. All three versions of the ap-
plication improve relative to the sequential code as the problem
size increases, with a 1.5 times speedup for Register at the largest
data set. This is due to the application spending more time in
the parallel section of the code relative to the sequential sections.
Register communication is approximately 20% faster than using
the on-chip cache for all problem sizes. However, the speedup
of using multiple clusters is limited by the amount of parallelism
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Figure 7: Inner–loop task length versus problem size. The task
length is the average time for the slaves to execute their parallel
tasks. FFT, CG, and EM3D exploit expression oriented paral-
lelism in the inner loop, with granularity independent of problem
size. EAR and MG exploit inner loop level parallelism and have
granularities that increase with problem size.
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Figure 8: Normalized execution time versus problem size for
Inner-loop FFT. The higher interaction latencies of Cache cause it
to be consistently 20% slower than Register.

in the application and the method of extracting it, rather than by
the communication overhead. Even when communication is free
(Optimal), only an additional 15% of performance improvement
is attained. The speedup for FFT is minimal at small problems
sizes and improves as the size of the data set increases. With a 4
element input vector, FFT executes only 6 iterations of its inner
loop, and the total execution time is dominated by the sequential
component of the application.

Figure 9 illustrates these limitations by decomposing the run-
ning time of FFT with a problem size of 128 into execution and
overhead components. The cycle breakdown is shown for a single
cluster (SEQ) as well as the parallel versions using the on-chip
cache and registers for communication. For the parallel versions,
both the master (M) and two slaves (S1, S2) are shown. The pri-
mary factor that limits the overall speedup is the load imbalance
seen in the parallel versions, as there is significant sequential work
performed only by the master. The communication overhead using
registers is less than one half that of using the cache, but the overall
impact on performance is only 20%.
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Outer–loop parallelism is exploited using the shared-memory mul-
tiprocessor parallelizations of each of the applications, in which
outer parallel loops are identified and executed concurrently on
each of the three MAP clusters. The three clusters communi-
cate using the shared memory system and can synchronize either
through memory, or using the cbar instruction. Figure 10 shows
the outer–loop task granularity on the same scale as the inner–loop
granularity of Figure 7. Outer–loop task granularity is defined as
the number of cycles spent between barriers. The gap in grain size
between the inner and outer loop parallelizations is more than a
factor of 10 for EM3D, MG, and CG, even on the smallest problem
size, and it widens to a factor of 550 at a problem size of 1728
for CG. FFT exhibits the narrowest range, with a factor of 6 at
vector length 4, to a factor of 70 at vector length 128. The large
task lengths of the coarse grained applications stem from their
original implementation on a shared memory multiprocessor, with
interaction latencies in the thousands of cycles. Exploiting par-
allelism in the 80-200 cycle range would be infeasible with such
high interaction costs.

The effect of this increasing granularity can be seen in Fig-
ure 11, which shows the execution time of FFT as a function of
problem size, normalized to the sequential execution time. Cache
shows the execution time when the barrier is implemented using
the on-chip cache, while CBAR shows the execution time when
the barrier instruction is used. CBAR is equivalent to an opti-
mal barrier since the cbar instruction is so efficient. Outer–loop
parallelism results in shorter execution times than inner–loop, as
more of the code is parallelized and the larger grain size requires
less communication and synchronization. FFT improves from no
speedup on a 4 element vector to 2.4 times speedup on a 128 ele-
ment vector. The improvement in speedup is a direct result of both
the increasing granularity and the larger fraction of time spent in
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Figure 10: Outer–loop task length versus problem size. The task
length is the average time between barriers. The outer-loop parallel
tasks are much larger than inner-loop and increase dramatically
with data set size.
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Figure 11: Normalized execution time versus problem size for
Outer-loop FFT. As problem size increases, the difference between
synchronizing via off-chip memory (Memory), the on-chip cache
(Cache) and the barrier instruction (CBAR) diminishes.

the parallel sections as the problem size increases. Another con-
sequence of the coarse granularity is that the performance of the
fast barrier CBAR and the memory barrier Cache are practically
indistinguishable. Since so much time is spent between synchro-
nizations, the cost of the barrier is inconsequential.

The coarse grained applications see substantial speedupson rel-
atively small problem sizes for two reasons. First, synchronization
cost is low, even using memory locks, because all of the accesses
are local. Second, all of the data for the threads is shared either in
the on-chip cache or in local memory. However, in a traditional
multiprocessor, the communication costs are significantly higher.
Inter-node barriers are more expensive and any shared data must
be passed from node to node. The Memory curve in Figure 11 is
intended capture some of the effect of additional synchronization
cost by increasing the barrier overhead to 1000 cycles.
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Figure 12 summarizes the execution time for all 5 benchmarks.
The applications can be partitioned based on their task granularity
into fine, medium, and coarse grain. On the MAP chip, fine–grain
tasks are typically less than 300 cycles, medium grain tasks are
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Figure 12: Normalized execution time of all 5 applications, including inner and outer–loop parallelization, across all problem sizes. The
penalties for interacting using on-chip cache can be substantial, depending on the task granularity.

between 300 and 1500 cycles, and coarse grain tasks are greater
than 1500 cycles. The task granularity is a function of the method
of parallelization (inner–loop versus outer–loop), as well as prob-
lem size. The dark caps on the execution time bars signify the
penalty for using the on-chip cache instead of the integrated com-
munication and synchronization mechanisms of the MAP chip. As
is evident from the graph, in order to exploit fine-grain tasks, the
integrated mechanisms are a necessity. Medium grain tasks can be
exploited using only the on-chip cache for communication and syn-
chronization. Coarse grain tasks require no special mechanisms
for synchronization since interaction frequency is small.

When outer-loop parallelism is available, it generally yields
faster executiontimes than inner-loop parallelism, as demonstrated
in Figure 13. However, some applications such as EAR have no
outer-loop parallelism and require additional hardware support for
communication and synchronization to improve performance. In
addition, since inner and outer loop parallelism exploit concur-
rency in different components of the program, they can be used in
concert to further improve application performance.

The experiments in this section demonstrate that there is con-
siderable fine–grain thread parallelism in typical applications and
that register-based communication and synchronization provides
sufficiently low overhead to exploit this parallelism efficiently. The
MAP’s fast interaction mechanisms (10 cycle thread invocation,
1 cycle communication and synchronization) enable application
speedups of up to 2.1 on three processors, using only inner–loop
parallelism. The granularity of this fine-thread parallelism is typ-
ically between 80 and 200 instructions and is largely independent
of problem size. Conventional multiprocessor mechanisms with
long interaction latencies are unable to exploit fine threads at all.
The coarse–thread parallelism that can be exploited in multipro-
cessors has a granularity of 103 to 105 instructions and is strongly
dependent on problem size. Based on examination of the code,
we expect that fine–thread parallelism will continue to scale with
more processors and that more aggressive parallelization can yield
both greater concurrency and smaller grain sizes.

ù úÛû�ü ý�þ�û<ÿ��������

The study of synchronization cost performed in [2] explored a
spectrum of granularities including instruction, statement, and
loop level parallelism. They found that statement oriented par-

allelism was far more sensitive to synchronization overhead than
loop level parallelism. However, even with substantial synchro-
nization overhead the statement level parallelism still yielded 4 to
20 times speedup over sequential. This study suggests that the
amount of fine-thread parallelism available in applications is con-
siderably greater than what we have exploited so far using simple
approaches to parallelization, and that it scales well beyond three
processors. It also shows, as we have, that to extract this paral-
lelism requires very low-overhead synchronization.

Architectures that support fine–grain threads in a multiproces-
sor typically implement fast thread creation and dispatch mecha-
nisms. The *T architecture, whose threads are in the range of 15
instructions, implements

�
fork, join, and next instructions that

interact with a memory task queue, and a synchronization copro-
cessor to allow threads on different processors to communicate
with one another [11]. Like the MAP chip, the Tera Computer
System [1] also exploits fine-grain threads using a multithreaded
multiprocessor architecture. In a Tera machine, interaction be-
tween threads takes place only through memory, and full/empty
bits are provided on each memory location to enable fast synchro-
nization. Tera’s architecture also penalizes single threaded code as
it has no support for data locality and uses a hardware scheduling
policy which prohibits a single thread from using the execution
resources on every cycle.

The Hydra and Simultaneous Multithreading (SMT) architec-
tures also aim to scale on-chip parallelism beyond the limits of ILP.
The Hydra architecture explores the design tradeoffs of building a
single-chip multiprocessor, focusing on the memory system [10].
Coarse grained tasks execute independently and communicate via
a level-1 or level-2 cache. SMT adds multithreading to a tra-
ditional superscalar to exploit both instruction and thread level
parallelism [16]. Execution resources are dynamically assigned to
different threads, and instructions from them may execute simulta-
neously. Both Hydra and SMT provide only memory-based mech-
anisms for communication and synchronization between threads
and are thus limited to using relatively coarse-grain threads. Our
work is complementary to these projects in that register-based
mechanisms could easily be incorporated into these architectures,
extending the granularity of parallelism they are able to exploit.

The Multiscalar architecture attempts to deduce fine–grain par-
allelism at runtime [14]. Basic blocks of the program are assigned
dynamically to different execution units and hardware is responsi-
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Figure 13: Normalized execution time for all applications comparing inner to outer loop parallelization.

ble for enforcing the data dependencies among the blocks. Com-
munication takes place via a unidirectional ring to which each
thread can read or write. This promising approach to extract-
ing speculative fine-thread parallelism is well matched to imple-
mentations using register-based mechanisms in lieu of the special
hardware suggested in [14].

The Cray X-MP implemented two central processing units with
a bank of shared address, scalar data, and semaphore registers that
could be accessed by either processor [12]. These registers were
typically used for self scheduling of loops. The registers were
not general purpose and values were copied to a processor’s local
register set prior to using the data.

	�
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Instruction-level parallelism (1 cycle tasks) and coarse-grained
concurrency (10,000 cycle tasks) dominate today’s parallelism
landscape. The more than 4 orders of magnitude between their
granularities expose a parallelism gap that can be filled with 100
cycle tasks. However, the development of fine–grain programs
has been a chicken–and–egg proposition. Fine–grain applications
are not prevalent because there are no machines with fine–grain
mechanisms, and vice versa.

The MAP chip architecture and silicon implementation intro-
duce fast on-chip interprocessor mechanisms such 10 cycle thread
invocation, 1 cycle communication latency, and a single cycle bar-
rier instruction, Microbenchmark studies show that these mecha-
nisms allow communication that is 10 times faster and synchro-
nization that is 60 times faster than mechanismsthat use an on-chip
cache. With these low overhead operations, tasks of less than 100
cycles are now feasible. In the MAP chip, the cost of these mecha-
nisms is small, as they are implemented by augmenting the existing
cluster to memory communication paths.

Exploiting fine–grain thread parallelism using register-based
mechanisms is also well matched to the wire-limited nature of
future semiconductor processes. As technology advances, gate
delay decreases but wire delay increases [13]. By 2007, forty
500ps clock cycles are expected to be needed to send a signal
across the diagonal of a single chip. This trend motivates architec-
tures that minimize global communication and the large latencies

they imply. Structuring a future microprocessor as a number of
superscalar processors that communicate and synchronize via reg-
isters keeps most communication local to individual processors.
Global communication is made explicit in the processor microar-
chitecture allowing advanced circuit designs to target these long
wires without affecting the processor’s design. This partitioning
will be even more useful as communication and synchronization
can be pipelined to permit scaling to large numbers of on-chip
processors.

In this study, the MAP’s fast communication mechanisms are
used to implement a parallel procedure call (PPC), in which a
master thread dynamically assigns work to the slave threads on the
other execution units. Parallelizing the inner loops of several ap-
plications using PPC yields performance improvements of 1.2–2.1
times even on small problem sizes. The register communication
mechanismsresult in a 20% improvement over communication via
the on-chip cache. The measured speedup is limited by both the
overhead of thread control, and by the sequential components of
the program which are not accelerated.

For the last 15 years, single microprocessor performance has
increased by 50% per year with about half the improvement com-
ing from faster devices and the rest due to increased parallelism.
Today’s 4–8 issue superscalar processors are nearing the limits of
ILP. To remain on this performance curve, parallelism beyond ILP
must be exploited on a single chip. Fine–grain thread parallelism
is well suited to fill this performance gap, and well matched to
the cluster organizations of future microprocessors. Most appli-
cations, even those with small problem sizes, have considerable
fine-thread parallelism, and this parallelism, because of its limited
extent, has a smaller cache footprint than coarse-thread alterna-
tives [6].

Discovering fine–grain parallelism in expression oriented pro-
grams is a major challenge. Aside from hand parallelization,
compilers may be able to analyze and partition inner loop itera-
tions, procedure calls, and expressions. Other avenues, such as
pipelining dependent loop iterations across the on-chip proces-
sors, or speculatively executing components of the program in
parallel are possible as well. Regardless of the technique, fine–
grain threads enable a different and orthogonal type of parallelism
than that found in outer loops. Reducing the synchronization and
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communication costs between parallel tasks will enable fine–grain
parallelization of programs, and allow existing problems, such
as personal or business applications, to be solved faster without
scaling their size.
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