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Abstract

Data-parallel programs are both growing in importance
and increasing in diversity, resulting in specialized proces-
sors targeted at specific classes of these programs. This pa-
per presents a classification scheme for data-parallel
program attributes, and proposes micro-architectural
mechanisms to support applications with diverse behav-
ior using a single reconfigurable architecture. We focus
on the following four broad kinds of data-parallel pro-
grams — DSP/multimedia, scientific, networking, and
real-time graphics workloads. While all of these pro-
grams exhibit high computational intensity, coarse-grain
regular control behavior, and some regular memory ac-
cess behavior, they show wide variance in the computation
requirements, fine grain control behavior, and the fre-
quency of other types of memory accesses. Based on
this study of application attributes, this paper pro-
poses a set of general micro-architectural mechanisms
that enable a baseline architecture to be dynamically tai-
lored to the demands of a particular application. These
mechanisms provide efficient execution across a spec-
trum of data-parallel applications and can be applied to
diverse architectures ranging from vector cores to con-
ventional superscalar cores. Our results using a baseline
TRIPS processor show that the configurability of the ar-
chitecture to the application demands provides harmonic
mean performance improvement of 5%–55% over scal-
able yet less flexible architectures, and performs competi-
tively against specialized architectures.

1. Introduction

Data-parallel programs are growing in importance, in-
creasing in diversity, and demanding increased perfor-
mance from hardware. Specialized hardware is com-
monplace in the real-time graphics, signal processing,
network processing, and high-performance scientific com-
puting domains. Modern graphics processors can sustain

as high as 20 GFlops (at 450Mhz) on programmable hard-
ware [6], which suggests they have at least forty 32-bit
floating point units. Software radios for 3G wireless base-
band receivers are being developed for digital signal
processors and require 15 Gops to deliver adequate per-
formance [29]. Each arithmetic processor in the Earth
Simulator contains forty eight vector pipelines and de-
livers peak performance of up to 8 GFlops. While these
domains of data-parallel applications have many com-
mon characteristics, they typically show differences in
the types of memory accesses, computation require-
ments, and control behavior.

Most data-parallel architectures target a subset of data-
parallel programs, and have poor support for applications
outside of that subset. Vector architectures provide effi-
cient execution for programs with mostly regular memory
accesses and simple control behavior. However, the vec-
tor model is less effective on programs that require com-
putation across multiple vector elements or access mem-
ory in an unstructured or irregular fashion. SIMD architec-
tures provide support for communication between execution
units (thereby enabling computation across multiple data el-
ements), but are also globally synchronized and hence pro-
vide poor support for applications with conditional execu-
tion and data dependent branches. MIMD architectures have
typically been constructed of coarse-grain processors and
operate on larger chunks of data using the single-program,
multiple data (SPMD) execution model, with poor support
for fine-grain synchronization. Emerging applications, such
as real-time graphics, exhibit control behavior that requires
fine grain MIMD execution and fine-grain communication
among execution units.

Many data-parallel applications which consist of com-
ponents that exhibit different characteristics are often
implemented on specialized hardware units. For exam-
ple, most real-time graphics processing hardware use
specialized hardware coupled with the programmable com-
ponents for MPEG4 decoding. The TMS320C6416 DSP
chip integrates two specialized units targeted at con-
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volution encoding and forward error correction pro-
cessing. While many of these specialized accelerators
have been dedicated to a single narrow function, ar-
chitectures are now emerging that consist of multiple
programmable data-parallel processors that are special-
ized in different ways. The Sony Emotion Engine includes
two specialized vector units–one tuned for geometry pro-
cessing in graphics rendering and the other specialized for
behavioral and physical simulation [19]. The recently an-
nounced Sony Handheld Engine integrates a DSP core,
a 2D graphics core and an ARM RISC core on a sin-
gle chip, each targeted at a distinct type of data-parallel
computation.

Integrating many such specialized cores leads to in-
creased design cost and area, since different types of pro-
cessors must be designed and integrated together. Our goal
is to determine an underlying set of mechanisms that can
be combined in different ways to tailor a data parallel ar-
chitecture based on application demands. In this paper, we
identify and characterize the application demands of differ-
ent data parallel program classes. While these classes have
some common attributes, namely high computational inten-
sity and high memory bandwidth, we show that they also
have important differences in their memory access behavior,
instruction control behavior and instruction storage require-
ments. As a result, different applications can demand dif-
ferent hardware capabilities varying from simple enhance-
ments, like efficient lookup tables, to different execution
models, such as SIMD or MIMD.

Based on the program attributes identified, we propose a
set of general microarchitectural mechanisms for augment-
ing the memory system, instruction control, and execution
core to build a flexible data-parallel architecture. We show
that these mechanisms can be combined together in differ-
ent ways to dynamically adapt the architecture, providing
support for a broad spectrum of data-parallel applications.
While the mechanisms are universal, since they support
each type of DLP behavior determined in our characteriza-
tion of the application space, and can be applied to diverse
architectures ranging from vector processors to superscalar
processors, this paper uses the TRIPS architecture [32] as a
baseline for performance evaluation. We also show a rough
comparison of the performance of these mechanisms to cur-
rent best-of-breed specialized processors across the applica-
tion domain space.

The TRIPS processor is well suited for data-parallel ex-
ecution with its high functional unit density, efficient ALU-
ALU communication, high memory bandwidth, and tech-
nology scalability. The dataflow style ISA design provides
several relevant capabilities, including the ability to map
various communication patterns and statically placed dy-
namically issued execution, that enable a straight-forward
implementation of the mechanisms. No major changes to

the ISA or programming model is required. Furthermore,
since the execution core provides local operand storage at
the ALUs and distributed control, the only major modifica-
tions required to integrate the mechanisms are the addition
of a few extra hardware registers and status bits to main-
tain local state, and storage tables where necessary. In our
previous work we proposed and evaluated one configura-
tion (named S-morph) of the TRIPS processor targeted at
data level parallelism (DLP).

The remainder of this paper is organized as follows.
Section 2 discusses the behavior and attributes of differ-
ent classes of data-parallel applications. Section 3 reviews
the classic data-parallel architectures and mapping of ap-
plications to architectures. Section 4 describes the microar-
chitectural mechanisms for supporting data-parallel execu-
tion. Section 5 evaluates the performance improvements
provided by these mechanisms and compares this perfor-
mance to specialized architectures. Section 6 discusses re-
lated work and Section 7 concludes.

2. Application Behavior
Data-parallel workloads can be classified into domains

based on the type of data being processed. The nature of
computation varies within a domain and across the different
domains. The applications vary from simple computations
on image data converting one color space to another (com-
prising 10s of instructions), to complex encryption routines
on network packets (comprising 100s of instructions). Four
broad categories cover a significant part of this spectrum:
digital signal processing, scientific, network/security, and
real-time graphics. In this section, we first describe the be-
havior of these applications categorized by three parts of the
architecture they affect: memory, instruction control, and
execution core. We then describe our suite of data-parallel
programs and present their attributes.

2.1. Program Attributes

At an abstract programming level, data-parallel pro-
grams consist of a loop body executing on different parts
of the input data. In a data parallel architecture this loop
body is typically executed on different execution units, op-
erating on different parts of memory in parallel. We re-
fer to this loop body as a kernel. Typically the iterations of
a loop are independent of each other and can execute con-
currently. Kernels exhibit different types of memory ac-
cesses and control behavior, as well as varying computation
needs. One example of data-parallel execution is the com-
putation of a 2D discrete cosine transform (DCT) on 8x8
blocks of an image. In this case, parallelism can be ex-
ploited by processing the different 8x8 blocks of the image
on different computation nodes concurrently. The process-
ing of each instance of the kernel is identical and can be
performed in a globally synchronous manner across differ-
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Read record

Write record

Instructions x
   C0 = C0 ^ (D1 << i);
   ...
}
write(C0);

C0=D1;
read (D0, D1, x);

for (i = 0; i < x; i++) {

Read record

Write record

Instructions 10

C0=D1;

   ...
}
write(C0);

for (i = 0; i < 10; i++) {

read (D0, D1);

   C0 = C0 ^ (D1 << i);
write(Y, I, Q)
Q = K6 * r + K7 * g + K8 * b;
I = K3 * r + K4 *g + K5 * b;
Y = K0 * r + K1 * g + K2 * b;
read (r, g, b)Read record

Write record

Instructions

a) Sequential c) Data dependent branchingb) Static loop bounds

Figure 1. Kernel control behavior.

ent computation nodes. A more complex data-parallel com-
putation is a technique called skinning which is used for
animation in graphics processing. A dynamically vary-
ing number of matrix-vector multiplies are performed at
each polygon vertex in a 3D model. The different ver-
tices in the model can be operated upon in parallel, com-
pletely independent of each other, but the amount of com-
putation varies from vertex to vertex.

2.1.1. Memory behavior The memory behavior of data-
parallel applications can be classified into four different
types: (1) regular memory accesses, (2) irregular memory
accesses, (3) named constant scalar operands, and (4) in-
dexed constant operands. In characterizing DLP programs
we are interested in the frequency of occurrence of each of
the four types of accesses in a kernel. The four types of ac-
cesses are not exclusive and a kernel may make accesses
from all four categories.

� Regular memory: Data-parallel kernels typically read
from memory in a very structured manner (strided ac-
cesses for example). We use the term record to refer
to a group of elements on which a single iteration of
a kernel operates. In image processing, for example,
a record may consist of 3 elements, corresponding to
3 primary color components. Because of the regular-
ity of these accesses, microarchitectures can pipeline
accesses or amortize the address calculation and other
overheads associated with accessing memory, by issu-
ing one instruction to fetch one or more full records.

� Irregular memory: Some data-parallel kernels access
some parts of memory in a random access fashion sim-
ilar to conventional sequential programs. One exam-
ple of such behavior is texture accesses in graphics
programs. Unlike regular memory accesses, the over-
heads of these accesses cannot be amortized by aggre-
gating them. Typical texture data structures for graph-
ics scenes require several megabytes of storage.

� Scalar constants: Many operations in data parallel ker-
nels use runtime constants that are unmodified through
the full execution of the kernel, such as the constants
used in convolution filters applied to an image. The
number of coefficients is often small and can thus be
stored in machine registers rather than memory.

� Indexed constants: Many DLP applications require
small lookup tables with the index determined at run-
time. Encryption kernels use such lookup tables with
between 256 and 1024 8-bit entries to substitute one
byte for another byte during computation. These ac-
cesses can be frequent in some kernels, reducing per-
formance if they have long access latencies. Storing
these tables in the level-1 data caches consumes little
storage space, but tremendous cache bandwidth.

2.1.2. Control behavior: The complexity of the control
structure in the kernel determines the type of synchroniza-
tion and instruction sequencing required. Figure 1 shows the
three different types of control behavior possible.

� Sequential instructions: The simplest kernels contain a
sequence of instructions with no internal control flow.
A degenerate case is a single vector operation, but the
2D DCT can be transformed into this model by un-
rolling all of the internal computations of the 8x8 ker-
nel. Each iteration of these kernels executes in the ex-
act same fashion, so these kernels are well-suited for
vector or SIMD control. Figure 1a shows this type of
control behavior with example RGB to YIQ color con-
version kernel pseudo-code.

� Simple static loops: A slightly more complex type of
control behavior occurs when the kernel contains loops
with static loop bounds. Figure 1b shows this type of
control behavior with an example encryption kernel
pseudo-code. Like the simple instruction sequences,
each iteration of the kernel is the same and can be ex-
ecuted in a vector or SIMD style. Such kernels can
be unrolled at compile time increasing the code size
of the kernel, although for some kernels this transfor-
mation results in prohibitively large instruction stor-
age requirements. Architectures that lack any branch-
ing support (like some graphics fragment processors)
must rely on complete unrolling to execute such loops.

� Runtime loop bounds: Figure 1c shows the most
generic of control behavior: data dependent branch-
ing. Such kernels would require masking instructions
to execute on vector and SIMD machines, and are ide-
ally suited to fine-grain MIMD machines, since
each processing element can be independently con-
trolled according to the local branching behavior.
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Benchmark Description Benchmark Description
Multimedia processing Network processing, security (1500 byte packets)

convert RGB to YIQ conversion. MD5 MD5 checksum.
dct A 2D DCT of an 8x8 image block. Rijndael Rijndael (AES) packet encryption.
highpassfilter A 2D high pass filter. Blowfish Blowfish packet encryption.

Scientific codes
FFT 1024-point complex FFT.
LU Decomposition LU decomposition of a dense 1024x1024 matrix.

Real-time graphics processing. See [11].
vertex-simple Basic vertex lighting with ambient, diffuse, specular and emissive lighting.
fragment-simple Basic fragment lighting with ambient, diffuse, specular and emissive lighting.
vertex-reflection Vertex shader for a reflective surface.
fragment-reflection Fragment shader rendering a reflective surface using cube maps.
vertex-skinning A vertex shader used for animation with multiple transformation matrices.
anisotropic-filtering A fragment shader implementing anisotropic texture filtering [28].

Table 1. Benchmark description.

Runtime conditionals, such as simple and nested
if-then-else statements, can make any of these
loop control templates more complex. Data-parallel ar-
chitectures have traditionally implemented conditionals
by using predication, conditional streams [15], or vec-
tor masks [33]. Finer partitioning of control, such as
provided by a fine-grain MIMD architecture can re-
duce or eliminate these overheads that conditionals have in
highly synchronized architectures.

2.2. Benchmark attributes

Table 1 describes a suite of DLP kernels selected from
four major application domains. Table 2 characterizes these
kernels according to the computation, memory and control
criteria presented previously. The two computation columns
list the number of instructions and inherent ILP within the
kernel (ILP is the number of instructions in one iteration
of a kernel, divided by the dataflow graph height; when
the loop bound was variable, the kernel was completely
unrolled). The first memory column lists the size of the
record (in 64-bit words) that each kernel reads and writes,
the second column gives the number of irregular memory
accesses, and the third and fourth memory columns de-
scribe the use of static coefficients within the kernel and
the size of the lookup table for indexed constants, if one is
needed. The control column indicates the number of loop
iterations within the kernel (if any) and whether the loop
bounds are variable across kernel instances, in which case
the kernels exhibit data dependent control and prefer a fine
grain MIMD execution model. In the anisotropic-filter ker-
nel, for example, the number of instructions executed varies
from about 150 to 1000 for each instance. In vector or SIMD
architectures, which lack support for fine grain branching,
each instance would execute all 1000 instructions, using
predication or other techniques for nullifying unwanted in-
structions. Collectively, the benchmarks exhibit wide varia-
tion in each of the attributes, demonstrating diversity in the
fundamental behavior of DLP applications. We used this ap-
plication study to drive an identification of attributes and
complementary microarchitectural mechanisms.

Ctrl
Inst.

Ctrl
Inst.

Ctrl
Inst.

Memory

Memory

PE PE PE

Inst.
Ctrl

Memory

PE PE PE

MIMD

Ctrl
Inst.

PE PE PE

Register File
Vector

Vector SIMD

Figure 2. Vector, SIMD and MIMD architectures.

3. Classic data-parallel architectures
Traditionally, different DLP architectures were con-

structed for applications that exhibited different char-
acteristics. This section gives a brief overview of the
basic DLP architecture models and highlights their dif-
ferences, as shown in Figure 2. These architectures differ
principally in their implementations of instruction con-
trol and communication between memory and the ALUs.
We use a running example of the 2D DCT to illus-
trate the differences between the architectures.

Vector: Vector architectures, examples of which include
the Cray-1 [31], VectorIRAM [17], T0 [2], and Taran-
tula [9], use global control with a single instruction fetch
and decode unit. A vector register file (VRF) serves as a
staging area for values from memory into the ALUs and
back, while a centralized control unit sequences the vector
elements between the VRF and the ALUs. Vector architec-
tures provide efficient regular memory access with the VRF,
but without chaining hardware all communication between
vector iterations must take place in the VRF. The global syn-
chronization of the ALUs precludes data dependent branch
control flow at the ALU level. On a vector machine, the 2D
DCT is decomposed into a 1D DCT on the columns, a trans-
position in the VRF, and then a second 1D DCT on the rows.

SIMD: SIMD architectures, examples of which include
the CM-2 [7] and the Maspar MP1 [3], use global control
with a single instruction fetch and decode. However, unlike
vector architectures, either private memories are present at
each node or values are broadcast in a regular manner from a
centralized memory. SIMD machines often provide mecha-
nisms for point-to-point communication between neighbor-
ing ALUs, but lack vector register files and efficient trans-
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Computation Memory Control

Benchmark # Inst ILP Record # Irregular # Constants # Indexed Loop
size (words) memory scalar bounds
read/write accesses constants

convert 15 5 3/3 - 9 - -
dct 1728 6 64/64 - 10 - 16
highpassfilter 17 3.4 9/1 - 9 - -
fft 10 3.3 6/4 - 0 - -
lu 2 1 2/1 - 0 - -
md5 680 1.63 10/2 - 65 - -
blowfish 364 1.98 1/1 - 2 256 16
rijndael 650 11.8 2/2 - 18 1024 10
vertex-simple 95 4.3 7/6 - 32 - -
fragment-simple 64 2.96 8/4 4 16 - -
vertex-reflection 94 7.1 9/2 - 35 - -
fragment-reflection 98 6.2 5/3 4 7 - -
vertex-skinning 112 6.8 16/9 - 32 288 Variable
anisotropic-filter 80 2.1 9/1

�����
6 128 Variable

Table 2. Benchmark attributes.

position support in the memory system. A more severe limi-
tation for the early SIMD machines was the lack of efficient
support for irregular indexed memory accesses. To execute
a 2D DCT on an 8x8 block, the image is decomposed evenly
among the different processing elements. Each ALU per-
forms some part of the DCT on the piece it owns and then
exchanges values with its neighbors to complete the full 2D
DCT. SIMD execution has appeared in conventional high
performance microprocessors in the form of sub-word par-
allelism using multimedia extensions like MMX, SSE, Al-
tivec and VIS, newer DSP-oriented processors like Imag-
ine [30] and Intrinsity [27], as well as fragment processing
in modern real-time graphics hardware [22, 25].

MIMD: MIMD machines use memory organizations
similar to SIMD machines. The processing elements are in-
dependently controlled using local instruction control and
private instruction memories at each processing element.
MIMD processors have appeared in a variety of granular-
ities ranging from iWarp [4] to coarse grained multiproces-
sors such as the CM-5 [8] or modern SMPs such as the IBM
Regatta system [35]. Communication and synchronization
have also typically been coarse grained through message
passing, shared memory, or dedicated synchronization net-
works. Modern real-time graphics hardware has moved to-
wards providing a fine grain MIMD execution model for
vertex processing [26]. Individual ALUs are locally con-
trolled, and operate in parallel on different vertices. DLP
applications, such as the 2D DCT can exploit MIMD execu-
tion on a sufficiently fine grained architecture. The 2D DCT
MIMD computation is similar to SIMD execution, except
that the instructions in the different processing elements are
not synchronized at the instruction level. Explicit synchro-
nization instructions are used while exchanging values.

Applications and architectures: The architecture best
suited for each application varies. While applications with

regular memory accesses and static loops bounds or no con-
trol flow prefer a vector or SIMD architecture, the pres-
ence of irregular memory accesses or accesses to indexed
scalar constants significantly reduces performance on con-
ventional SIMD/vector machines. When the application ex-
hibits data dependent branching as seen in vertex-skinning
or anisotropic-filtering, a fine-grain MIMD architecture is
the best choice. A universal data-parallel architecture is one
that both supports the execution of applications from every
data parallel domain and supports each type of behavior de-
scribed in this section.

4. Data-Parallel Microarchitectural Mecha-
nisms

Figure 3 shows a block diagram of an abstract microar-
chitecture. Data-parallel architectures have the following
basic requirements: a) an execution substrate with a large
number of functional units, b) efficient communication be-
tween the functional units to shuffle data, and c) technology
scalability. Furthermore, in the previous section we identi-
fied the attributes of data-parallel programs affecting each
of the main microarchitecture components. The first col-
umn of Table 3 summarizes these attributes. The second
column lists the proposed mechanisms targeted at differ-
ent microarchitecture components as shown in the third col-
umn. The last column lists the benchmarks that benefit from
each mechanism. Two mechanisms are implemented in the
memory system: (1) a software managed streamed memory
subsystem is used to support high bandwidth regular mem-
ory accesses, and (2) a hardware managed cached mem-
ory subsystem is used to support efficient irregular mem-
ory accesses. The execution core is enhanced with addi-
tional local operand storage to efficiently support named
scalar operand accesses, and an additional software man-
aged local data storage for accessing indexed named con-
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Attributes Mechanisms Implemented at Benchmarks that benefit
Regular memory access Software managed streamed memory L2 Memory All
Irregular memory access Cached memory subsystem L1 Memory fragment-simple, fragment-reflection
Scalar named constants Local operand storage

(Operand revitalization)
Execution core,
Register file

convert, dct, highpassfilter, md5, rijndael,
all graphics programs

Indexed named constants Software managed L0 data store at ALUs Execution core blowfish, rijndael, vertex-skinning
Tight loops Local instruction storage

(Instruction revitalization)
Execution core,
Instruction fetch

All

Data dependent branching Local program counter control Instruction fetch,
Execution core

vertex-skinning,
anisotropic-filtering

Table 3. Data-parallel program attributes and the set of universal microarchitectural mechanisms. Mechanisms
in parenthesis indicate TRIPS specific implementations.
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Figure 3. Microarchitecture block diagram.

stants. Finally examining control behavior, instruction stor-
age at each ALU in the execution core is added for support-
ing short simple loops, and a local program counter at each
ALU is added to provide data dependent branching behav-
ior. The next sub-sections describe these microarchitectural
mechanisms in detail and their implementation.

4.1. Baseline data-parallel architecture

Several architectures have been proposed with large
number of functional units targeted at a subset of data-
parallel applications, or to exploit instruction-level paral-
lelism, including the Imagine architecture [30], the RAW
architecture [34] and Tarantula [9]. The TRIPS proces-
sor using the Grid Processor Architecture family provides
a high-performance technology-scalable execution sub-
strate [24, 32]. In this paper we use this processor as the
baseline architecture to describe and evaluate the set of mi-
croarchitectural mechanisms, and conclude this section
with a discussion on applying these mechanisms to other ar-
chitectures.

The TRIPS processor consists of an array of ALUs con-
nected using a lightweight routed network. Each ALU in
the array contains local instruction storage and data stor-
age buffers. Banked instruction and data storage caches are
placed around the array of ALUs backed by partitioned sec-
ondary level cache banks. The processor follows a block-
atomic model of execution where an entire block of in-
structions is fetched and mapped onto the execution ar-
ray. A dataflow style ISA that encodes each instructions’s
placement and its consumers, allows a statically placed but
dynamically issued (SPDI) execution model. The dataflow
style ISA and the distributed control and local storage in-
herently provided by the architecture makes the implemen-
tation of the mechanisms straight-forward.

4.2. Memory system mechanisms
Software managed cache: Figure 4a shows the configura-
tion of the memory system that provides a high-bandwidth
memory system for regular accesses. Portions of the
secondary-level cache banks can be reconfigured as a
fully software managed cache (SMC). In this configura-
tion, the hardware replacement scheme and tag checks in
these cache banks are disabled. The SMC banks each con-
tain a DMA engine that is explicitly programmed by
software. These banks are exposed to and are fully man-
aged by the programmer or compiler. Only the regular
memory accesses (statically identifiable by the com-
piler) use the SMC, and they also bypass the L1-cache
since temporal locality is poor. The programming abstrac-
tion and interface used in Imagine’s Stream Register File
(SRF) [16] may be used to manage this SMC.
Wide loads: Overhead and latency to access the SMC can
be reduced by using a LMW (load multiple word) instruction
for reads. An LMW instruction issued by one ALU fetches
multiple contiguous values and sends them to many ALUs
in a single row inside the array. To reduce the write port
pressure, a store buffer coalesces stores from different nodes
together before writing them back to the SMC.
High-bandwidth streaming channels: To deliver these
operands at a fast rate to the execution core, dedicated chan-
nels are provided from the SMC banks to a corresponding
row of ALUs. The array based design provides a natural par-
titioning of the cache banks to rows of ALUs.
Cached L1-memory: Irregular memory accesses can be
efficiently handled by using the level-1 cache and those
banks in the level-2 not configured as SMC banks. In ap-
plications such as graphics rendering, such a caching mech-
anism for the irregular texture lookups can provide low la-
tency access [13].

4.3. Instruction Fetch and Control Mechanisms
The branching behavior of data-parallel kernels dictate

instruction fetch and control requirements which are: (1) re-
peated fetching and mapping of kernel instructions to reser-
vation stations, resulting in instruction cache pressure and
dynamic cache access power, and (2) MIMD processing
support for kernels that exhibit fine grain data dependent
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Figure 4. Microarchitectural mechanisms. a) Memory system. b) Instruction, operand revitalization and L0-data
storage. c) Local PC and L0-instruction store to provide MIMD execution.

branching. To avoid repeatedly fetching instructions of a
loop, the ALUs are enhanced to reuse instructions for suc-
cessive iterations reading from a local storage. To efficiently
support data dependent branching, each ALU is augmented
with a local program counter (PC).

Instruction revitalization: In the TRIPS processor, the
ALUs already contain local instruction storage. To effi-
ciently support the execution of loops, we augment the
ALUs with support for re-using instruction mappings for
successive iterations of a loop. This mechanism, which we
call instruction revitalization, works as follows: before the
start of a kernel, a setup block executes a repeat instruction
specifying the run-time loop bounds of the kernel which is
saved to a special hardware count register CTR. Then the in-
structions of the kernel are mapped to the execution core
and execute their first iteration. When the iteration com-
pletes (determined by the block control logic), the CTR reg-
ister is decremented. If the counter has not yet reached zero,
the block control logic broadcasts a global revitalize signal
to all the nodes in the execution array - which resets the sta-
tus bits of the instructions in the reservation stations, prim-
ing them for executing another iteration. When the CTR reg-
ister reaches zero, the next kernel’s execution commences.

To amortize the cost of the global revitalize broadcast de-
lay, blocks are unrolled as much as possible, as determined
by the number of the reservations stations, so as to reduce
the number of revitalizations. Figure 4b shows the datap-
ath and control path modifications added by this mecha-
nism. The shaded regions next to the reservation stations
indicate the status bits required for revitalization. In the
TRIPS processor, using instruction revitalization provides
a vector/SIMD-like architecture model.

Local program counters: To support fine grain data de-
pendent branching, the execution core is configured as a
MIMD processing array by adding local PCs at the ALUs.
To simplify the datapath we also add a separate L0 instruc-
tion storage from which instructions are fetched and exe-
cuted sequentially. (A slightly more complex, but area effi-

cient implementation is to re-use the local instruction stor-
age already present in the ALUs and use the PC to read
this storage.) Prior to executing kernels in a MIMD mode,
their instructions are loaded into this store by executing a
setup block, which copies instructions from memory into
this storage and resets the local PC to zero at every ALU.
Once this setup block terminates, the array of ALUs begin
executing in MIMD fashion. Each node independently se-
quences itself by fetching from its local instruction store.
The operand storage buffers are used as read/write regis-
ters, providing a simple in-order fetch/register-read/execute
pipeline. Figure 4c shows a schematic of the modified ALU
datapath to support such a MIMD model. While this MIMD
model has a one time startup delay, instruction revitalization
incurs a revitalization delay between every iteration.

Multiple nodes can be aggregated together to execute
one iteration of a kernel in this MIMD model, providing
a logical wide-issue machine for each iteration of the ker-
nel, using the inter-ALU network for fine-grain ALU-ALU
synchronization. In this configuration the ALU array can
thus be partitioned into multiple dynamically issued cores.
Another mode of operation is to execute different kernels
on the ALUs, passing values using between them through
the inter-ALU network. In real-time graphics processing
for example, a rendering pipeline can be implemented by
partitioning the ALUs among vertex processing, rasteriza-
tion, and fragment processing kernels. Since the ALUs are
homogeneous and fully programmable, the partitioning of
ALUs can be dynamically determined based on scene at-
tributes. This strategy overcomes one of the limitations of
current graphics pipelines in which the vertex, rasterization
and fragment engines are specialized distinct units.

4.4. Execution core mechanisms

Efficient scalar operand and indexed scalar operand ac-
cess must be supported for data-parallel execution. For
large, statically unrolled loops, reading values from the reg-
isters for each iteration of the loop is expensive in terms
of power, register file bandwidth, and other overheads of
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register file access. Using the memory system for indexed
scalar operands incurs cache access overheads and con-
sumes cache bandwidth. Two mechanisms implemented at
the execution core support these two types of accesses effi-
ciently.

Operand revitalization: This mechanism reuses register
values once they have been received at an ALU, providing
persistent register-file like storage at each reservation sta-
tion. Successive iterations of the loop reuse the values from
the reservation stations instead of accessing the global reg-
ister file. To implement operand revitalization we add status
bits to the reservations stations, as shown in Figure 4b.

L0 data storage: A software managed L0 data storage
at each ALU provides support for indexed scalar constants
(one example is the lookup tables used in encryption ker-
nels). Figures 4b and 4c show the L0 data store, which is
accessed using an index computed by some instruction with
the result being written to the reservation stations. The index
to read the L0 data store is provided by the ALUs and the re-
sults are written back into the local registers as shown. For
the applications we examined, 2KB was sufficient to store
all such constants.

4.5. Summary
While we described these mechanisms using the TRIPS

processor as the baseline, they are universal and applica-
ble to other architectures. The SMC, store buffer and the
LMW instructions can be added in a straightforward manner
to conventional wide-issue centralized or clustered super-
scalar architectures by adding direct channels from the L2-
caches to the functional units and augmenting the pipeline
to wakeup instructions dependent on the loads when their
operands arrive from the SMC. The Tarantula architecture
provides similar such support for transfers from the L2
memory to the vector register file, using hardware tech-
niques to generate conflict free addresses to different banks
in memory, in contrast to our approach of packing all the
regular accesses in a single bank. To support indexed scalar
access and irregular memory accesses in this architecture,
the L1-cache memory must be addressable using special
scatter/gather instructions. Most conventional superscalar
processors provide good support for L1-cache memories.

The reservation stations in TRIPS have a one-to-one cor-
respondence to reservation stations in superscalar archi-
tectures and both the instruction and operand revitaliza-
tion mechanisms can be applied to provide instruction and
operand re-use. Many DSP processors have implemented
zero-overhead branches in different ways to support tight
loops. To provide MIMD support local PCs are added and
the local ALU control logic modified to fetch from a lo-
cal instruction store buffer. Conventional SIMD and vec-
tor cores conversely have no local storage and thus must be
augmented with a local PC and storage buffers to provide a
MIMD model of execution.

5. Results
This section presents the compilation strategy, simula-

tion methodology, and the performance evaluation of the
mechanisms. The results focus on evaluating and measur-
ing the following: (1) performance improvement provided
by each mechanism, (2) benefit from different mechanisms
for each application, (3) performance of a flexible architec-
ture constructed using a combination of the mechanisms,
and (4) this flexible architecture’s performance relative to
specialized architectures.

5.1. Simulation methodology
The baseline TRIPS processor executes hyperblocks

constructed using the IMPACT compiler, scheduled us-
ing our software schedulers. We use an event-driven tim-
ing simulator to model the microarchitecture. The different
mechanisms were integrated into this simulator for the per-
formance experiments. All the programs were hand-coded
in the TRIPS instruction set to exploit these data-parallel
mechanisms and then simulated. Where possible we stati-
cally unrolled the kernels to fill up the instruction storage
across the ALUs. The results show relative speedup (mea-
sured in terms of execution cycles) between the baseline
and the different machine configurations. The simula-
tions assumed that all data was resident in the software
managed cache (SMC) or L2 storage for all applica-
tions. Except for lu, the datasets of all applications fit
entirely in the SMC.

5.2. Baseline TRIPS performance
Our baseline configuration is a mesh interconnect 8x8 ar-

ray with 64KB SMC banks, one per each row of the proces-
sor, a total of 2MB of L2 cache, and a partitioned 64KB L1
data and instruction cache. The functional unit and cache
access latencies are configured to match an Alpha 21264.
Each node in the processor consists of an integer ALU, in-
teger multiplier, and an FPU with add, multiply, and divide
capability. We assumed a 100nm technology with a 10FO4
clock rate, making the hop delay between adjacent ALUs
half a cycle.

Table 4 shows the performance of the baseline mea-
sured in terms of number of useful computation opera-
tions sustained per cycle, not including overhead instruc-
tions like address compute and load and store instructions1.
Only the DSP programs sustain a reasonably high compu-
tation throughput, averaging about 11 ops/cycle, while all
other applications sustain low throughputs, averaging about
4 ops/cycle.

Since the baseline TRIPS processor is optimized for ILP,
converting the data level parallelism in these applications

1 Since we did not have sufficient infrastructure and datasets for a real-
istic simulation of anisotropic-filtering, we exclude it from all our per-
formance tables and figures.
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Benchmark Ops/cycle Benchmark Ops/cycle
convert 14.1 fragment-reflection 4.0

dct 10.4 fragment-simple 2.6
highpassfilter 7.4 vertex-reflection 5.2

fft 3.7 vertex-simple 3.6
lu 0.7 vertex-skinning 5.6

md5 2.8
blowfish 5.1
rijndael 7.5

Table 4. Performance on baseline TRIPS.

Config. L0 store Revitalization Architecture model
Inst. Data Inst. Ops.

S N N Y N SIMD
S-O N N Y Y SIMD+

scalar constant access
S-O-D N Y Y Y SIMD+

scalar constant access+
lookup table

M Y N N N MIMD
M-D Y Y N N MIMD+lookup table

Table 5. Machine configurations.

to ILP results in inefficiencies for DLP programs which in-
clude. For example, loops cannot be sufficiently unrolled
to provide large enough blocks to efficiently utilize the ar-
ray of ALUs, and every scalar operand or memory refer-
ence must proceed through shared structures such as the L1
cache and the common register file. Since many DLP pro-
grams have large demands on these resources, the limited
bandwidth prevents the architecture from achieving its po-
tential performance.

5.3. Mechanism Evaluation

The mechanisms described in Section 4 can be combined
in different ways according to application requirements to
produce as many as 20 different run-time machine configu-
rations of a single flexible architecture. The frequency of
each type of memory access, the control behavior of the
kernels and the instruction size of kernels, measured in Ta-
ble 2 determines the ideal combination of mechanisms on
the TRIPS processor. In this paper we focus on five ma-
chine configurations, shown in Table 5, that cover the appli-
cation set we examined.

In all five configurations, one memory bank per row is
configured to be used as a software managed cache. The
SMC banks use the store buffers and the high speed chan-
nels to communicate with the execution core. Combining
this memory system with an instruction revitalization mech-
anism creates a baseline model that is similar to SIMD
and vector machine. This baseline machine (S) can be aug-
mented with operand revitalization to create the S-O ma-
chine. The S-O-D machine adds local L0 data storage to
each ALU of the S-O machine. Combining the memory sys-
tem with local PCs creates a baseline MIMD machine (M),
and local L0 data storage in addition creates the M-D ma-
chine.

Figure 5 shows the application speedups obtained by
these different machine configurations relative to the base-
line. The following paragraphs classify the applications by
their preferred configurations. Two benchmarks preferred
the S, seven preferred the S-O and four preferred M-D con-
figuration.

� SIMD execution (S): fft and lu are vector-oriented
benchmarks and require high memory bandwidth and
high instruction fetch rate. Compared to the baseline
a four-fold speedup is achieved because of the higher
ALU utilization and higher memory bandwidth of the
S configuration. Adding other mechanisms does not
improve performance further, and the routing overhead
of MIMD execution degrades performance slightly.

� SIMD + scalar operand access (S-O): The perfor-
mance of many applications is dictated by the fre-
quency of scalar operand access (35 constants in
vertex-reflection for example). These perform best on
the S-O machine configuration as shown by the set of
7 programs in Figure 5.

� SIMD + scalar operand + lookup table access (S-O-
D): Blowfish, and rijndael which use reasonably large
lookup tables show speedups of 27% and 80% respec-
tively over the S-O configuration, but perform poorer
than the M-D machine.

� MIMD (M): The baseline MIMD configuration de-
grades performance somewhat relative to S-O-D for
all applications except vertex-skinning. This degrada-
tion arises because in the MIMD model the load in-
structions from each ALU must be routed through the
network to reach the memory interface. In the previ-
ous three SIMD configurations, synchronized at block
boundaries, a multi-word load instruction could be
placed near the memory interface, to behave like a vec-
tor fetch unit. Since each node operates independently
in the MIMD model, such a schedule is not possible.

� MIMD + lookup table access (M-D): The MIMD
machine with lookup table support performs best for
md5, blowfish, rijndael, and vertex-skinning. With lo-
cal looping control, these programs require far less in-
struction storage and hence can be unrolled more ag-
gressively providing more parallelism. Because ver-
tex skinning uses data dependent branching, the over-
heads of predicated execution (or conditional vectors)
are also removed.

� Flexibility: The last single bar labeled Flexible in Fig-
ure 5 shows the harmonic mean of speedups achieved
by a flexible architecture when a subset of mechanisms
are combined according to application needs (running
fft and lu on S, convert through vertex simple light on
S-O, and the rest on M-D). Averaged across the dif-
ferent applications, this flexible dynamic tuning pro-
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Performance
Benchmark TRIPS (clock normalized) Specialized hardware Reference Hardware Units

convert 19016 960 MPC 7447, 1.3Ghz iterations/sec
highpassfilter 2820 907 (DSP processor) iterations/sec

dct 33.9 8.2 Imagine [30] ops/cycle
(multimedia processor)

fft 14.4 28 Tarantula [9] ops/cycle
lu 10.6 15 (vector core) ops/cycle

md5 14.6 - Cryptomaniac [36] cycles/block
blowfish 6 80 cycles/block
rijndael 12 100 cycles/block

fragment-reflection 86 - Nvidia QuadroFX 450Mhz million fragments/sec
fragment-simple 193 1500 (graphics processor) million fragments/sec
vertex-reflection 434 - Benchmarked on million triangles/sec

vertex-simple 418 64 2.4Ghz Pentium4 million triangles/sec
vertex-skinning 207 - million triangles/sec

Table 6. Performance comparison of TRIPS with DLP mechanisms to specialized hardware.
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Figure 5. Speedup using different mecha-
nisms, relative to baseline architecture. Programs
grouped by best machine configuration.

vides 55% better performance over a fixed S configu-
ration, 20% better than fixed S-O and 5% better than a
fixed M-D machine.

5.4. Comparison against specialized architectures

Table 6 shows the results of a rough comparison be-
tween the performance of the configurable TRIPS architec-
ture to published performance results on specialized hard-
ware. Columns 2 and 3 show performance, column 4 de-
scribes the specialized hardware, and column 5 shows the
performance metrics (which vary). For each of the appli-
cations we picked the best combination of the mechanisms
on the TRIPS baseline. When appropriate, we normalized
the clock rate of TRIPS to that of the specialized hardware.
Scaling the clock does not violate any microarchitecture as-
sumptions, since the TRIPS processor is designed for po-
tentially faster clock rates than conventional designs.

On the signal processing codes, the TRIPS core in the
S-O configuration, is 3–20 times faster than the MPC 7447,
with the improvement coming from the 16X higher issue-
width (4 vs 64). An 8x8 TRIPS core contains roughly
four times the number of functional units as the Imag-
ine architecture and performs roughly four times better on

dct. On the scientific codes, the TRIPS S configuration is
store bandwidth limited and about a factor of two worse
than the Tarantula architecture. On the network process-
ing programs, exploiting the extensive data level parallelism
in network flows, the TRIPS S-O and S-O-D configura-
tions perform an order of magnitude better than special-
ized hardware, where the packets are processed serially
(smaller numbers in the table for these programs indicates
better performance). In the vertex-simple graphics applica-
tion, TRIPS outperforms the dedicated hardware primarily
because of the much higher issue width and functional unit
count. On fragment-simple on the other hand the specialized
hardware outperforms TRIPS by roughly 8X. Although the
exact details on the number of functional units (fixed point
+ floating point units) on the QuadroFX are not publicly dis-
closed, we believe part of this high performance can be at-
tributed to the larger number of functional units. The other
graphics processing kernels are more complex (using more
instructions, more constants, and data dependent branching
in one case) than the two we benchmarked, and will per-
form at best as well as the other kernels, and likely poorer.

6. Related work
Classic vector processors were built using expensive

SRAMs for high-speed memory and large vector register
files [31, 23, 14]. These machines were designed for pro-
grams with regular control and data behavior, but could tol-
erate some degree of irregular (but structured) memory ac-
cesses using scatter and gather operations. Programs with
frequent irregular memory references or accesses to lookup
tables performed poorly. A number of architectures have
been proposed or built to overcome the limitations of the
rigid vector execution model and to allow for dynamic in-
struction scheduling [10, 18, 9]. Removing these limitation
still did not make these architectures widely applicable as
they provided support only for a subset of data parallel pro-
grams. Short vector processing has found its way into com-
mercial microprocessors in the form of instruction exten-
sions such as MMX, SSE2, Altivec and VIS. These archi-
tectures have similar requirements of regular control and
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data access, and have further restrictions on data alignment.
Some of the ISA extensions, such as MMX and SSE2, have
poor support for scalar-vector operations, only operating on
one sub-word of a MMX/SSE2 register when using a scalar
register as one operand.

The early fine-grain SIMD machines like the CM-2 [7]
and MasPar MP-1 [3] provided high ALU density but
lacked support for fine-grain control and latency toler-
ance to irregular memory accesses. Addressing some of
these problems, the recently announced Intrinsity proces-
sor includes a SIMD array with a traditional cache memory
system [27]. These architectures provide some of the sup-
port provided by the mechanisms we propose, but are not
complete data-parallel architectures.

Imagine dubbed a stream processor, is a SIMD/vector
hybrid using a SIMD control unit coupled with a mem-
ory system resembling a vector machine [30]. Other forms
of stream processing are more similar to MIMD execu-
tion in which streams of data are pipelined across multi-
ple processors in a highly structured fashion. Examples in-
clude graphics pipelines [1] and video processing [5]. Mark
et al. describe the motivation and application requirements
for MIMD processing in real-time graphics [21]. New fine-
grained on-chip MIMD architectures such as Smart Memo-
ries [20] and RAW [34] are emerging, targeting this style of
stream processing.

7. Conclusions
This paper presents the first comprehensive treatment

of programs covering a large spectrum of the DLP appli-
cation space, including signal processing, scientific, net-
work/security, and real-time graphics applications. While
there may be DLP applications outside these domains, the
four studied in this paper provide comprehensive coverage
over the application space. We identified the key memory,
control, and computation demands of DLP applications and
characterized the behavior of the DLP application suite.

We then proposed a set of complementary universal mi-
croarchitectural mechanisms targeted at the memory sys-
tem, instruction control, and execution core, that can sup-
port each type of DLP behavior. For the memory system,
we proposed a streamed software managed cache mem-
ory along with a hardware managed level-1 cache. For the
execution core and instruction control we proposed local
operand storage, local instruction storage, a software man-
aged local storage, and local program counters at each ALU
site. These mechanisms can be combined in different ways
based on application demand and are powerful enough to
provide both a SIMD and MIMD execution model on the
same substrate. We found the approach of customizing the
architecture resulted in 5%–55% better performance than a
fixed yet scalable architecture. The approach in this paper
of customizing the architecture to the application has simi-

larities to the philosophy of custom-fit processors [12], but
the customization we propose enables different execution
models on the same substrate and can be performed after
fabrication. When compared to application-specific proces-
sors in each of the domains, the architecture built using the
mechanisms in this paper achieves performance in a simi-
lar range, when normalizing for clock rate and ALU count.
While each application specific processor performs well in
its own domain, none have significant flexibility to perform
well on DLP applications outside its domain.

The mechanisms that we propose are not strictly limited
to the TRIPS processor described in this paper. For example
the hybrid of SIMD and fine-grain MIMD execution models
is a reasonable goal for other DLP architectures. Future sys-
tems that must execute multiple classes of DLP applications
will benefit by implementing all of the mechanisms and dy-
namically configuring the architecture based on application
needs. However, when only a subset of DLP behavior needs
to be supported, the flexibility can be sacrificed for simplic-
ity by implementing a subset of the mechanisms on a fixed
architecture by matching the mechanisms to the application
attributes. Finally, using either of these approaches, we fore-
see the appearance of these mechanisms in general purpose
processors, targeted at identifying and accelerating applica-
tions outside the DLP space, but that exhibit DLP behav-
ior.

While this paper focused on the design and performance
evaluation of the DLP mechanisms, we see several direc-
tions for future work. First these mechanisms can be eval-
uated using more detailed metrics, including cycle time,
power, and area. Heterogeneous architectures which inte-
grate multiple specialized data-parallel processors, each tar-
geting a distinct type of workload, present a competing de-
sign philosophy. Comparison and evaluation of the DLP
mechanisms in this paper against heterogeneous architec-
tures should yield useful and interesting results.
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