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Abstract

One way to exploit more ILP and improve the performance of a sin-
gle threaded application is to speculatively execute multiple code re-
gions on multiple cores. In such a system, communication of operands
among in-flight instructions can be power intensive, especially in su-
perscalar processors where all result tags are broadcast to a small
number of consumers through a multi-entry CAM. Token-based point-
to-point communication of operands in dataflow architectures is highly
efficient when each produced token has only one consumer, but in-
efficient when there are many consumers due to the construction of
software fanout trees. lThis paper evaluates a compiler-assisted hy-
brid instruction communication model that combine tokens instruction
communication with statically assigned broadcast tags. Each fixed-
size block of code is given a small number of architectural broadcast
identifiers, which the compiler can assign to producers that have many
consumers. Producers with few consumers rely on point-to-point com-
munication through tokens. Selecting the mechanism statically by the
compiler relieves the hardware from categorizing instructions at run-
time. At the same time, a compiler can categorize instructions better
than dynamic selection does because the compiler analyzes a larger
range of instructions. The results show that this compiler-assisted hy-
brid token/broadcast model requires only eight architectural broad-
casts per block, enabling highly efficient CAMs. This hybrid model re-
duces instruction communication energy by 28% compared to a strictly
token-based dataflow model (and by over 2.7X compared to a hybrid
model without compiler support), while simultaneously increasing per-
formance by 8% on average across the SPECINT and EEMBC bench-
marks, running as single threads on 16 composed, dual-issue EDGE
cores.

1 Introduction

Improvement of the single thread performance highly relies on
the amount of ILP that can be exploited. Conventional su-
perscalar processor can not scale well because of the com-
plexity and power consumption of large-issue-width and huge-
instruction-window processor. One way to solve this problem is
to partition the code into regions, and execute multiple regions
speculatively on multiple cores. This method increases both the
issue width and the instruction window size dramatically, thus

more ILP can be extracted. In such a system, communicating
operands between instructions is one of the performance bottle-
necks. In addition, communicating operands between instruc-
tions is a major source of energy consumption in modern pro-
cessors. A wide variety of operand communication mechanisms
have been employed by different architectures. For example
in superscalar processors, to wake up all consumer instructions
of a completing instruction, physical register tags are broadcast
to power-hungry Content Addressable Memories (CAMs), and
operands are obtained from a complex bypass network or by a
register file with many ports.

A mechanism commonly used for operand communication in
dataflow architectures is point-to-point communication, which
we will refer to as “tokens” in this paper. Tokens are highly
efficient when a producing instruction has a single consumer;
the operand is directly routed to the consumer, often just re-
quiring a random-access write into the consumer’s reservation
station. If the producer has many consumers, however, dataflow
implementations typically build an inefficient software fanout
tree of operand-propagating instructions (that we call move in-
structions).

These two mechanisms are efficient under different scenar-
ios: broadcasts should be used when there are many consumers
currently in flight (meaning they are in the instruction window),
tokens should be used when there are few consumers, and reg-
isters should be used to hold values when the consumers are not
yet present in the instruction window.

Several approaches [3, 4, 6, 9, 10] have proposed hybrid
schemes which dynamically combine broadcasts and tokens to
reduce the energy consumed by the operand bypass. These ap-
proaches achieve significant energy consumption compared to
superscalar architectures. In addition, because of their dynamic-
nature, these approaches can adapt to the window size and pro-
gram characteristics without changing the ISA. On the other
hand, these approaches use some additional hardware structures
and keep track of various mechanisms at runtime.

The best communication mechanism for an instruction de-
pends on the dependence patterns between that instruction and
the group of consumer instructions currently in the instruction
window. This information can be calculated statically at com-



pile time and conveyed to the microarchitecture through unused
bit in the ISA.

Using this observation, this paper evaluates a compiler-
assisted hybrid instruction communication mechanism that aug-
ments a token-based instruction communication model with a
small number of architecturally exposed broadcasts within the
instruction window. A narrow CAM allows high-fanout instruc-
tions to send their operands to their multiple consumers, but
only unissued instructions waiting for an architecturally speci-
fied broadcast actually perform the CAM matches. The other
instructions in the instruction window do not participate in the
tag matching, thus saving energy. All other instructions, which
have low-fanout, rely on the point-to-point token communica-
tion model. The determination of which instructions use tokens
and which use broadcasts is made statically by the compiler and
is communicated to the hardware via the ISA. As a result, this
method does not require instruction dependence detection and
instruction categorization at runtime. However, this approach
requires ISA support and may not automatically adapt to mi-
croarchtectural components such as window size.

Our experimental vehicle is TFlex [7], a composable mul-
ticore processor, which implements an EDGE ISA [12]. We
extend the existing token-based communication mechanism
of TFlex with this hybrid approach and evaluate the benefits
both in terms of performance and energy. On a composed
16-core TFlex system (running in the single-threaded mode),
the proposed compiler-assisted hybrid shows a modest perfor-
mance boost and significant energy savings over the token-only
baseline (which has no static broadcast support). Across the
SPECINT2K and EEMBC benchmarks, using only eight archi-
tectural broadcasts per block, performance increases by 8% on
average. Energy savings are more significant, however, with
a 28% lower energy consumption in operand communication
compared to the token-only baseline. This energy saving trans-
lates to a factor of 2.7 lower than a similar hybrid policy imple-
mentation without full compiler support.

2 System Overview
TFlex is a composable lightweight processor in which all mi-
croarchitectural structures, including the register file, instruc-
tion window, predictors, and L1 caches are distributed across
a set of cores [7]. Distributed protocols implement instruc-
tion fetch, execute, commit, and misprediction recovery without
centralized logic.

TFlex implements an EDGE ISA which supports block-
atomic execution. Thus, fetch, completion, and commit proto-
cols operate on blocks rather than individual instructions. The
compiler [14] breaks the program into single-entry, predicated
blocks of instructions.At runtime, each block is allocated to one
core and is fetched into the instruction queue of that core. The
union of all blocks running simultaneously on distributed cores

i:  add c, b, a 
j:  sub e, c, d 
k:  st  e, c  

(a) Initial representation

i:  add <j, op1> <k, op2> 
j:  sub <k,op1>  
k:  st  

(b) Dataflow representation

Figure 1: A baseline code example.

constructs a large contiguous window of instructions. Inter-
block communication for long dependences occur through dis-
tributed register files using a lightweight communication net-
work [7].

Register and memory communication is used for inter-block
communication. Within blocks, instructions run in dataflow
order. A point-to-point bypass network performs producer-
consumer direct communication using tokens. When an instruc-
tion executes, the address of its target is used to directly index
the instruction queue.

In this dataflow representation, each instruction explicitly en-
codes its target instructions in the same block using the offsets
of the target instructions from the beginning of the block. For
each instruction, its offset from the beginning of its block is the
instruction ID of that instruction. An example of the initial in-
termediate code and its converted dataflow representation are
shown in Figures 1(a) and 1(b), respectively. Instruction i adds
values a and b and sends the output to operand1 and operand2

of instructions j and k, respectively. Instruction j subtracts that
value from another value d, and sends the output to operand2

of instruction k. Finally, instruction k stores the value computed
by instruction i at the address computed by instruction j.

The aforesaid dataflow encoding eliminates the need for an
operand broadcast network. When an instruction executes, the
address of its target is used to directly index the instruction
queue. Because of this direct point-to-point communication, the
instruction queue has a simple 128-entry SRAM structure in-
stead of large, power-hungry CAM structures used for instruc-
tion queues in superscalar processors. Figure 2 illustrates in-
struction encoding used by the EDGE ISA. Because the max-
imum block size is 128 instructions, each instruction ID in
the target field of a instruction requires seven bits. The target
field also requires two bits to encode the type of the target be-
cause each instruction can have three possible inputs including
operand1, operand2 and predicate.

opcode  xop  target1  target2 

7 bits  9 bits 

type  Des5na5on ID 

2  7 bits 

9 bits 7 bits 

Figure 2: TFlex Instruction Encoding.



Although token based point-to-point communication is very
power-efficient for low-fanout instructions but similar to other
dataflow machines, it may not be very performance-efficient
when running high-fanout instructions since the token needs to
travel through the fanout tree to reach all the targets.

3 Hybrid Operand Communication
Mechanism

This section proposes an approach for hybrid operand commu-
nication with compiler assistance. The goal of the new approach
is to achieve higher performance and energy efficiency by al-
lowing the compiler to choose best communication mechanism
for each instruction during the compilation phase. The section
discusses the implementation of the new approach, which con-
sists of three parts: (1) heuristics to decide the operand com-
munication mechanism during compilation; (2) ISA support
for encoding the compiler decision, broadcast tags or point-to-
point tokens; and (3) microarchitectural support for the hybrid
communication mechanism. This section concludes with a dis-
cussion of design parameters and power trade-offs and perfor-
mance implications of the proposed approach.

3.1 Overview

Since each block of code is mapped to one core, the hybrid
mechanism explained in this section is used to optimize the
communication between instructions running within each core.
This means that no point-to-point or broadcast operand crosses
core boundaries. For cross-core (i.e. cross-block) communica-
tion, TFlex uses registers and memory [11], which are beyond
the scope of this article. Of course extending hybrid commu-
nication to cross-core communication is an interesting area and
can be considered future work of this work.

Different from dynamic hybrid models, the compiler-assisted
hybrid model relies on the ISA to convey information about
point-to-point and broadcast instructions into the microarchtec-
ture. The involvement of the ISA leads provides some oppor-
tunities for the compiler while causing some challenges at the
same time. Assuming a fixed instruction size, using tokens can
lead to construction of fanout move trees and manifests itself
at runtime in form of extra power consumption and execution
delay. On the other hand, categorizing many instructions as
broadcast instructions requires the hardware to use a wide CAM
in the broadcast bypass network, which can become a major en-
ergy bottleneck. The main role of the compiler is to pick the
right mixture of the tokens and broadcast such that the total en-
ergy consumed by the move trees and the broadcast network
becomes as small as possible. In addition, this mixture should
guarantee an operand delivery delay close to the one achieved
using the fastest operand delivery method (i.e. the broadcast

network). One challenge, however, is to find enough number of
unused bits in the ISA to encode broadcast data and convey it to
the microarchitecture.

3.2 Broadcast Tag Assignment and Instruction
Encoding

One primary step in designing the hybrid communication model
is to find a method to distinguish between low- and high-fanout
instructions. In the compiler-assisted hybrid communication
approach, the compiler detects the high-fanout instructions and
encodes information about their targets via the ISA. In this sub-
section, we first give an overview of the phases of the TFlex
compiler. Then we explain the algorithm for detecting high-
fanout instructions and the encoding information inserted by the
compiled in the broadcast sender and receiver instructions.

The original TFlex compiler [14] generates blocks containing
instructions in dataflow format by combining basic blocks using
if-conversion, predication, unrolling, tail duplication, and head
duplication. In each block, all control dependencies are con-
verted to data dependencies using predicate instructions. As a
result, all intra-block dependencies are data dependencies, and
each instruction directly specifies its consumers using a 7-bit
instruction identifier. Each instruction can encode up to two tar-
get instructions in the same block. During block formation, the
compiler identifies and marks the instructions that have more
than two targets. Later, the compiler adds move fanout trees for
those high-fanout instructions during the code generation phase.

The modified compiler for the hybrid model needs to accom-
plish two additional tasks, selecting the instructions to perform
the broadcast, and assigning static broadcast tags to the selected
instructions. The compiler lists all instructions with more than
one target and sorts them based on the number of targets. Start-
ing from the beginning of the list, the compilers assigns each in-
struction in the list a tag called broadcast identifier (BCID) out
of a fixed number of BCIDs. For producers and consumers send
or receive BCIDs needs to be encoded inside each instruction.
Therefore, the total number of available BCIDs is restricted
by the number of unused bits available in the ISA. Assuming
there are at most MaxBCID BCIDs available, then the first
MaxBCID high-fanout instructions in the list are assigned a
BCID.

After the broadcast sender instructions are detected and
BCIDs are assigned, the compiler encodes the broadcast in-
formation inside the sender and receiver instructions. Fig-
ure 3 illustrates the ISA extension using a sample encoding for
MaxBCID equal to eight. Each sender contains a broadcast
bit, bit B in the figure, enabling broadcast send for that instruc-
tion. The compiler also encodes the BCID of each sender inside
both the sender and the receiver instructions of that sender. For
the sender, the target bits are replaced by the three send BCID
bits and two broadcast type bits. Each receiver can encode up



i1:  add c, a, b 
i2:  sub e, c, d 
i3:  add f, c, g 
i4:  st d, c 
i5:  st f, e 

(a) Initial representation

i1:  add <i2, op1> <i1a, op1>  
I1a:  mov <i3, op1> <i4 op1>  
i2:  sub <i5, op2>  
i3:  add <i5, op1>  
i4:  st 
i5:  st 

(b) Dataflow representation

i1:  add [SBCID=1, op1] 
i2:  sub [RBCID=1] <i5, op1> 
i3:  add [RBCID=1] <i5, op1> 
i4:  st [RBCID=1] 
i5:  st 

(c) Hybrid dataflow/broadcast representation

Figure 4: A sample code and corresponding code conversions in the modified compiler for the hybrid model.

opcode  xop  target1  target2 

7 bits  9 bits 

type  S‐BCID 

2  3 
bits 

9 bits 

4 bits 

7bits 

R‐BCID2 R‐BCID1  B 

1
3 
bits 

3 bits 

Figure 3: TRIPS Instruction Encoding with Broadcast Support.
S-BCID, R-BCID and B represents send BCID, receive BCID
and the broadcast enable flag.

to two BCIDs with six bits, and so it can receive its operands
from two possible senders. Although this encoding uses two
BCIDs for each receiver instruction, the statistics show that a
very small percentage of instructions may receive broadcasts
from two senders. For the other instructions that are not receiver
of any broadcast instructions, the compiler assigns the receive
BCIDs to 0, which disables the broadcast receiving mechanism
for those instructions.

Figure 4 illustrates a sample program (except for stores,
the first operand of each instruction is the destination), its
equivalent dataflow representation, and its equivalent hybrid to-
ken/broadcast representation generated by the modified com-
piler. In the original dataflow shown code in Figure 4(b), in-
struction i1 can only encode two of its three targets. Therefore,
the compiler inserts a move instruction, instruction i1a, to gen-
erate the fanout tree for that instruction. For the hybrid com-
munication model shown in Figure 4(c), the compiler assigns a
BCID (BCID of 1 in this example) to i1, the instruction with
high fanout, and eliminates the move instruction. The compiler
also encodes the broadcast information into the i1 and its con-
suming instructions (instructions i2, i3 and i4). The compiler
use tokens for the remaining low-fanout instructions. For ex-
ample, instruction i3 has only one target (instruction i5) so i3
still uses token-based communication. In the next subsection,
we explain how these fields are used during the instruction ex-
ecution and what additional optimizations are possible in the
proposed hardware implementation.

3.3 Microarchitectural Support

To implement the broadcast communication mechanism in the
TFlex substrate, a small CAM array is used to store the re-
ceive BCIDs of broadcast receiver instructions in the instruc-
tion queue. When instructions are fetched, the receive BCIDs
are stored in a CAM array called BCCAM . Figure 5 illus-
trates the instruction queue of a single TFlex core when run-
ning the broadcast instruction i1 in the sample code shown in
Figure 4(c). When the broadcast instruction executes the broad-
cast signal, bit B in Figure 3 is detected, then the sender BCID
(value 001 in this example) is sent to be compared against all
the potential broadcast receiver instructions. Notice that only a
subset of instructions in the instruction queue are broadcast re-
ceivers and the rest of them need no BCID comparison. Among
all receiving instructions, the tag comparison will match only
for the CAM entries corresponding to the receivers of the cur-
rent broadcast sender (instructions i2, i3 and i4 in this example).
Each matching entry of the BCCAM will generate a write-
enable signal to enable a write to the operand of the correspond-
ing receiver instruction in the RAM-based instruction queue.
The broadcast type field of the sender instruction (operand1
in this example) is used to select the column corresponding to
the receivers’ operand, and finally all the receiver operands of
the selected type are written simultaneously into the instruction
window.

It is worth noting that tag delivery and operand delivery do
not happen at the same cycle. Similar to superscalar operand
delivery networks, the tag of the executing sender instruction
is first delivered at the right time, which is one cycle before
instruction execution completes. At the next cycle, when in-
struction result is ready, the result of the instruction is written
simultaneously into all waiting operands in the instruction win-
dow.

Figure 6 illustrates a sample circuit implementation for the
compare logic in each BCCAM entry. The CAM tag size is
three bits which represents a MaxBCID parameter of eight. In
this circuit, the compare logic is disabled if one of the following
conitions is true:

• If the instruction corresponding to the CAM entry has been
previously issued.
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Figure 5: Execution of a broadcast instruction in the IQ.

• If the receiver BCID of the instruction corresponding to
the CAM entry is not valid, which means the instruction is
not a broadcast receiver. For example instruction i5 in the
example shown in Figures 5 and 4.

• If the executed instruction is not a broadcast sender.

This hybrid broadcast model is more energy-efficient than
the instruction communication model in superscalar proces-
sors for several reasons. First, because of the MaxBCID
limit on the maximum number of broadcast senders, the
size of the broadcast tag, which equals to the width of the
CAM, could be reduced from Log(InstructionQueueSize)
to Log(MaxBCID). A broadcast consumes significantly less
energy because it drives a much narrower CAM structure. Sec-
ond, only a small portion of bypasses are selected to be broad-
cast and the majority of them use the token mechanism, since
the compiler only selects a portion of instructions to perform
broadcasts. Third, only a portion of instructions in the instruc-
tion queue are broadcast receivers and perform BCID compari-
son during each broadcast. Both of these design aspects are con-
trolled by the MaxBCID parameter. This parameter directly
controls the total number of broadcast senders in the block. On
the other hand, as we increase the MaxBCID parameter, the
number of active broadcast targets is likely to increase, but the
average number of broadcast targets per broadcast is likely to
shrink.

Different values of MaxBCID represent different design
points in a hybrid broadcast/token communication mechanism.
MaxBCID of zero represents a pure token-based commu-
nication mechanism and fanout trees using move instructions.
MaxBCID of 128 means every instruction with fanout larger
than one will be a broadcast sender. In other words, the com-
piler does not analyze any global fanout distribution to select
right communication mechanism for each instruction. Instead,
all fanout instruction in each block use broadcast operation.
This model is close to a TFlex implementation of a dynamic

match 

= = = 

RBCID 

Send 
BCID 

B 

RBCIDv 

Issued 

3 

Figure 6: Compare logic of BC CAM entries.

hybrid point-to-point/broadcast communication model [6]. It
is worth mentioning that even with MaxBCID equal to 128,
there are still many instructions with just one target and those
instructions still use token-based communication. As we vary
the MaxBCID form zero to 128, more fanout trees are elimi-
nated, and more broadcasts are added to the system. By choos-
ing an appropriate value for this parameter, the compiler is able
to minimize total power consumed by fanout trees and broad-
casts while achieving a decent speedup in performance as a re-
sult of using broadcasts for high-fanout instructions.

4 Evaluation and Results

In this section we evaluate the energy consumption and perfor-
mance of the compiler-assisted hybrid operand communication
model. We first describe the experimental methodology fol-
lowed by statistics about the distribution of broadcast producers
and consumers. This distribution data will indicate the fraction
of all instructions in the window that have a high fan-out value.
The distribution also suggests the minimum MaxBCID and
BCCAM bit-width needed for assigning broadcast tags to all
of those high-fanout instructions. Then, we report performance
results and power breakdown of fanout trees or broadcast in-
structions for different MaxBCID values. These results show



Table 1: Single Core TFlex Microarchitecture Parameters [7]
Parameter Configuration
Instruction Supply Partitioned 8KB I-cache (1-cycle hit); Local/Gshare Tournament predictor (8K+256 bits, 3 cycle latency) with speculative updates;

Num. entries: Local: 64(L1) + 128(L2), Global: 512, Choice: 512, RAS: 16, CTB: 16, BTB: 128, Btype: 256.
Execution Out-of-order execution, RAM structured 128-entry issue window, dual-issue (up to two INT and one FP) or single issue.
Data Supply Partitioned 8KB D-cache (2-cycle hit, 2-way set-associative, 1-read port and 1-write port); 44-entry LSQ bank; 4MB decoupled

S-NUCA L2 cache [8] (8-way set-associative, LRU-replacement); L2-hit latency varies from 5 cycles to 27 cycles depending on
memory address; average (unloaded) main memory latency is 150 cycles.

Simulation Execution-driven simulator validated to be within 7% of real system measurement

that by intelligently picking a subset of high-fan out instructions
for broadcast, the compiler is able to reduce the total power sig-
nificantly without losing much performance than if it picked all
high-fanout instructions.

The results show that this compiler-assisted hybrid model
consumes significantly lower power than the pure broadcast
mechanism used by superscalar processors. With this hybrid
communication model, we explore the full design space rang-
ing from a very power efficient token-based dataflow commu-
nication model to a high-performance broadcast model similar
to that used in superscalar machines. The results show that the
compiler assistance is more reliable than dynamically choosing
the right operand communication mechanism for each instruc-
tion. Given the compiler assistance, not only are we able to
achieve a higher energy efficiency than pure dataflow, but at the
same time we are also able to achieve better performance in this
design space.

4.1 Methodology

We augment the TFlex simulator [7] with the support for the
hybrid communication model explained in the previous section.
In addition we modify the TFlex compiler to detect high-fanout
instructions and to encode broadcast identifiers in those instruc-
tions and their targets. Each TFlex cores is a dual-issue, out-
of-order core with a 128-instruction window. Table 1 shows the
microarchitectural parameters of each TFlex core. The energy
consumed by move instructions during the dispatch and issue
phases is already incorporated into original TFlex power mod-
els [7]. We augment the baseline TFlex models with the power
consumed in the BCCAM entries, modeled using CACTI
4.1 [5], when tag comparisons are made during a broadcast.

The results presented in this section are generated using runs
on several SPEC INT [2] and EEMBC [1] benchmarks running
on 16 TFlex cores. We use seven integer SPEC benchmarks
with the reference (large) dataset simulated with single Sim-
Points [13]. The SPEC FP benchmarks achieve very high per-
formance when running on TFlex, so the speedups are less im-
portant and interesting to this work. We also use 28 EEMBC
benchmarks which are small kernels with various characteris-
tics. We test each benchmark varying the MaxBCID from 0
to 128 to measure the effect of that parameter on different as-
pects of the design.

4.2 Distribution of Producers and Operands

Figure 7 shows the average cumulative distribution of the num-
ber of producers and the operands for different fanout values
for SPEC INT benchmarks. The cumulative distribution of pro-
ducers converges much faster that the one of operands does,
which indicates a small percentage of producers corresponds to
a large number of operands. For example, for fanouts larger
than four, only 8% of producers produce 40% of all operands.
It indicates that performing broadcasts on a small amount of
producers could improve operand delivery for a large number
of operands. The information shown in this graph is largely in-
dependent from the microarchitecture and reflects the operand
communication behaviors of the programs. To choose the right
mechanism for each producer, one also must consider the hard-
ware implementation of each mechanism. This graph shows
that 78% of all instructions have fanout equal or less than two.
For these instructions, given the TFlex microarchitecture, it is
preferred to use efficient token-based communication. For the
rest of instructions, finding the right breakdown of instructions
between broadcasts and move trees also depends on the cost of
each of these mechanisms.

Figure 8 shows the breakdown ratio of broadcast producers,
instructions sending direct tokens, and the move instructions
to all instructions for the SPEC benchmarks when using the
compiler-assisten model proposed in this paper. The number
of broadcast instructions (producers) increases dramatically for
smaller MaxBCID values, but levels off as the MaxBCIDs
parameter approaches 32. At the same time, the ratio of move
instructions decreases from 35% to 5%. As a result, the total
number of instructions drops to 79%. This observation indi-
cates that the compiler can detect most of the high-fanout de-
pendences inside a block and replace the software fanout tree by
using only up to 32 broadcasts. The data shown in Figure 8 also
indicates that even with the unlimited number of broadcasts, at
most 25% of the instructions use broadcast communication and
the rest of them use tokens for communicating. This is almost
one fourth of the number of broadcasts used by a superscalar
machine because in a superscalar machine all instructions must
use the broadcast mechanism. Another observation is that the
total number of instructions decreases 15% with only 8 broad-
casts, which indicates that a small number of broadcasts could
give us most of the benefits of unlimited broadcasts.
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Figure 8: The ratio of broadcast, move and other instructions.

4.3 Energy Tradeoff
Figure 9 illustrates the energy breakdown into executed move
and broadcast instructions for a variety of MaxBCID values
on the SPEC benchmarks. The energy values are normalized
to the total energy consumed by move instructions when in-
structions communicate only using tokens (MaxBCID = 0).
When only using tokens, all energy overheads are caused by the
move instructions. Allowing one or two broadcast instructions
in each block, MaxBCIDs of 1 and 2, we observe a sharp
reduction in the energy consumed by move instructions. As dis-
cussed in the previous section, the compiler chooses the instruc-
tions with highest fanout first when assigning BCIDs. Con-
sequently, high number of move instructions are removed for
small MaxBCIDs which results in significant reduction in the
energy consumed by move instructions. For these MaxBCIDs
values, the energy consumed by broadcast instructions is very
low.

As we increase the total number of broadcast instructions, the
energy consumed by broadcast instructions increases dramat-
ically and fewer move instructions are removed. As a result,
at some point, the broadcast energy becomes dominant. For
high numbers of MaxBCID, the broadcast energy is orders

of magnitude larger than the energy consumed by move instruc-
tions. The key observation in this graph is that for MaxBCID
equal to 4 and 8, in which only 4 to 8 instruction broadcast
in each block, the total energy consumed by moves and broad-
cast is minimum. For these MaxBCIDs, the total energy is
about 28% lower than the energy consumed by a fully dataflow
machine (MaxBCID = 0) and about 2.7x lower than when
MaxBCID is equal to 128. These results show that the com-
piler is able to achieve a better trade-off in terms of power break-
down by selecting a critical subset of high-fanout instructions
in each block. We also note that for MaxBCIDs larger than
32, the energy consumed by move instructions is at a minimum
and does not change. In an ideal setup where the overhead of
broadcast is ignored, these points give us the best possible en-
ergy savings. This energy is four time lower than the total en-
ergy consumed when using MaxBCID equal to 8, which is the
point with the lowest total power. The energy breakdown chart
for EEMBC benchmarks is similar to SPEC benchmarks except
that MaxBCID of 4 results in lower total power consumption
than MaxBCID of 8.

Figure 9 also shows the lower bound energy consumption val-
ues derived using an analytical model. This analytical model
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Figure 9: Averaged energy breakdown between move instructions and broadcasts for various MaxBCIDs for SPEC benchmarks.

Max BCID 1 2 4 8 16 32 64 128
Compiler-assisted 2 5 8 13 19 28 31 31
Ideal 35 35 35 14 14 14 6 6

Table 2: Percentage of broadcast producers for real and ideal
models.

gives us the best communication mechanism for each producer
in an ideal environment. In order to choose the best commu-
nication mechanism for each instruction, the analytical model
measures the energy consumption of a single move instruction
and that of broadcast CAMs of different bit widths. The en-
ergy consumption of software fanout tree mainly comes from
several operations, such as writing/reading move instructions in
the instruction-queue, writing/reading operands in the operand
buffer, generating control signals, driving the interconnection
wires which includes the activities on the wire networks when
fetching, decoding, executing of the move instruction and trans-
mitting the operand. On the other side, the energy consump-
tion of the broadcast operations mainly comes from driving the
CAM structure, the tag-matching and writing the operands in
the operand buffer. The energy consumed by each of these op-
erations is modeled and evaluated with CACTI4.1 [5] and the
power model in the TFlex simulator [7], and used by the analyt-
ical model. For a specific MaxBCID x, the analytical model
estimates the lower bound of energy consumption of the hybrid
communication model assuming an ideal situation in which that
there are unlimited number of broadcast tags and each broadcast
consumes as little energy as a broadcast using a CAM width
logx. Based on this assumption, the analytical model finds the
break even point between moves and broadcast instructions in
which the total energy consumed by broadcasts is the same as
the total energy consumed by moves.

As can be seen in Figure 9, for small or large values of

MaxBCID, the real total power consumed by moves and
broadcasts is significantly more than the ideal energy estimated
by the analytical model. This difference seems to be minimum
when MaxBCID equals 8, which the total consumed power is
very close to the optimum power at this point. Table 2 reports
the percentage of broadcast producer instructions for different
BCIDs achieved using ideal analytical model and compiler-
assisted approach. With small MaxBCIDs, the large differ-
ence between real energy and ideal energy is because there is
not enough tags to encode more broadcasts. On the other hand,
when using large MaxBCIDs the more than enough num-
ber of broadcasts are encoded, which increases the energy con-
sumption. Finally, with MaxBCIS of eight, the percentage of
broadcast is very close to that achieved using the ideal analytical
model.

We also measured the total energy consumption of the while
processor (including SDRAMs and L2 caches) with variable
MaxBCID. The compiler-assisted hybrid communication
model achieves 6% and 10% total energy saving for SPEC INT
and EEMBC benchmarks, respectively. The energy reduction
mainly comes from two aspects: (1) replacing software fanout
trees with broadcasts which reduces the energy of instruction
communication; (2)reducing the total number of instructions ,
so there are fewer number of I-Cache access (and misses) and
less overhead for executing the move instructions.

4.4 Performance Improvement
In terms of performance, full broadcast has the potential to
achieve highest performance. The reasons are that there is only
one cycle latency between the broadcast instructions with its
consumers, while communicating the operands though move
tree results in more than one cycle latency. However, large num-
ber of broadcast causes large amount of energy consumption.
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Figure 10: Average speedups achieved using various MaxBCIDs for SPEC and EEMBC benchmarks.
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Figure 11: Speedups achieved using various MaxBCIDs for individual SPEC benchmarks.

There is an important tradeoff between the performance and the
energy efficiency when using viable value of MaxBCID. This
subsection evaluates the performance improvement for different
parameters. The key observation from the evaluation is that 8
broadcasts per-block could be the best tradeoff between the per-
formance and energy efficiency. It achieves most of the speedup
reached by the unlimited broadcast, at the same time, it saves
most of the energy as discussed in last subsection.

Figure 10 shows the average performance improvement over
TFlex cores with no broadcast support (MaxBCID = 0) for
the SPEC and EEMBC benchmarks.

The average speedup reaches its maximum as MaxBCID
reaches 32 and remains almost unchanged for larger values. As
shown in Figure 8, with MaxBCID equal to 32, most of high-
fanout instructions are encoded. The speedup achieved using
MaxBCID of 32 is about 8% for SPEC benchmarks. Again,
for the EEMBC benchmarks MaxBCID of 32 achieves very
close to the best speedup, which is about 14%. On average,
the EEMBC benchmarks gain higher speedup using the hy-
brid approach, which might be because of larger block sizes
in EEMBC applications, which provide more opportunity for

broadcast instructions. Most EEMBC benchmarks consist of
parallel loops, whereas the SPEC benchmarks have a mixture of
small function bodies and loops. In addition, the more complex
control flow in SPEC benchmarks results in relatively smaller
blocks.

Figure 11 shows the performance improvement over TFlex
cores with no broadcast support (MaxBCID = 0) for individ-
ual SPEC benchmarks. The general tend for most benchmarks
is similar. We do not include the individual EEMBC bench-
marks here because we notice similar trends in EEMBC too.
For gcc, the trend of speedups is not similar to other bench-
marks for some MaxBCID values. We attribute this to the
high misprediction rate in the memory dependence predictors
used in the load/store queues.

Although MaxBCID of 32 achieves the highest speedup,
but Figure 9 shows it may not be the most power-efficient design
point compared to the power-efficiency of full dataflow commu-
nication. When designing for power-efficiency, one can choose
MaxBCID of 8 to achieve the lowest total power, while still
achieving a decent performance gain. Using MaxBCID of
8 the speedup achieved is about 5% and 10% for SPEC and



EEMBC benchmarks, respectively, and the power is reduced by
28%.

5 Conclusions
This paper proposes a compiler-assisted hybrid operand com-
munication model. Instead of using dynamic hardware-based
pointer chasing, this method relies on the compiler to cate-
gorize instructions for token or broadcast operations. In this
model, the compiler took a simple approach: broadcasts were
used for operands that had many consumers, and dataflow to-
kens were used for operands that had few consumers. The
compiler can analyze the program in a bigger range to select
the best operand communication mechanism for each instruc-
tion. At the same time, the block-atomic EDGE model made
it simple to perform that analysis in the compiler, and allocate
a number of architecturally exposed broadcasts to each instruc-
tion block. By limiting the number of broadcasts, the CAMs
searching for broadcast IDs can be kept narrow, and only those
instructions that have not yet issued and that actually need a
broadcast operand need to be performing CAM matches. This
approach is quite effective at reducing energy; with eight broad-
cast IDs per block, 28% of the instruction communication en-
ergy is eliminated by eliminating many move instructions (ap-
proximately 55% of them), and performance is improved by 8%
on average due to lower issue contention, reduced critical path
height, and fewer total blocks executed. In addition, the re-
sults show that the power savings achieved using this model are
close to the minimum possible power savings using a near-ideal
operand delivery model.
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