
A Coupled Multi-ALU Processing Node for

a Highly Parallel Computer

by

Stephen William Keckler

Submitted to the

Department of Electrical Engineering and Computer Science

on May 7, 1992, in partial ful�llment of

the requirements for the Degree of Master of Science in

Electrical Engineering and Computer Science

Abstract

By 1995, improvements in semiconductor technology will allow as many as four high-

performance
oating-point ALUs and several megabits of memory to reside on a single chip.

Multiple arithmetic units can be organized into a single processor to exploit instruction-level

parallelism.

Processor Coupling is a mechanism for controlling multiple ALUs to exploit both instruction-

level and inter-thread parallelism. Processor Coupling employs both compile time and run-

time scheduling. The compiler statically schedules individual threads to discover available

intra-thread instruction-level parallelism. The runtime scheduling mechanism interleaves

threads, exploiting inter-thread parallelism to maintain high ALU utilization. ALUs are as-

signed to threads on a cycle by cycle basis, and several threads can be active concurrently.

This thesis describes the architecture of a Processor Coupled node and evaluates parameters

that a�ect performance. Processor Coupling is compared with a multiple ALU statically

scheduled machine model and a multiprocessor model in which threads are executed on

di�erent arithmetic units. The experiments address the e�ects of memory latencies, function

unit latencies, and communication bandwidth between function units. The instruction

scheduling compiler and the con�gurable simulator that were built to evaluate these di�erent

organizations are described. An implementation and feasibility study of a Processor Coupled

node is presented as well.

On four benchmark programs Processor Coupling runs in 60% fewer cycles than a stati-

cally scheduled node. Processor Coupling is more tolerant of latencies executing 75% fewer

cycles when memory delays are included, and 65% fewer cycles when
oating point laten-

cies are increased. On threaded code, the multiprocessor and Processor Coupled nodes

achieve nearly the same performance. On sequential sections of code, the multiprocessor

organization requires on average 2.9 times as many cycles as the Processor Coupled model.

Thesis Supervisor: Dr. William J. Dally

Title: Associate Professor of Electrical Engineering and Computer Science

Keywords: Instruction Level Parallelism, Compile Time Scheduling, Runtime Scheduling,

Multithreading, Parallel Computers.

Acknowledgments

Many people have contributed to this work and to my MIT experience. I would like to

thanks them all.

Thanks to Bill Dally, my mentor and thesis advisor. He provided the vision, encouragement,

and technical expertise that made this work possible. I am in debt to him for bringing me

to Cambridge and for sending me to Turkey and Australia.

Other members of the CVA group were of great help as well. Thanks to Rich Lethin for

being an excellent o�cemate both in his helpful suggestions to this work and in his attempts

at improving my social life (at least he did get me into sailing). Thanks to world traveler

Stuart Fiske who arrived back in Cambridge just in time to ask important questions and to

plow through drafts of the paper and this thesis. Thanks to Debby Wallach for her careful

review of early drafts of the paper. Although she probably does not want to known to be

a Latex and Postscript guru, her help was invaluable in getting the text tools to behave.

Thanks to Mike Noakes and Ellen Spertus for their eleventh hour proof reading. Finally, I

am grateful to the entire CVA group for their feedback and for providing both support and

skepticism.

Thanks go to those outside the CVA group as well. Thanks to Ricardo Telichevesky for

his help in formulating the LUD benchmark. Donald Yeung, in addition to being a good

housemate, provided formal and informal feedback. Thanks also to Bill Hall for dragging

me out of the lab to go sailing and skiing.

Most of all, thanks go to my family for all of their encouragement throughout the years.

Thanks Mom for laughing at my jokes and for being there when I needed you. Thanks Dad

for challenging me to be my best and for providing many words of wisdom. Without their

support this journey would have seemed so much further.

The research described in this thesis was supported in part by a National Defense Science

and Engineering Graduate Fellowship, by the Defense Advanced Research Projects Agency

under contracts N00014-88K-0738, N00014-87K-0825, F19628-92-C-0045, and N00014-91-J-

4038, and by a National Science Foundation Presidential Young Investigator Award, grant

MIP-865-7531, with matching funds from General Electric Corporation, IBM Corporation,

and AT&T.

4

Contents

1 Introduction 13

1.1 Instruction-level Parallelism : 13

1.2 Technological Advances : 14

1.3 Processor Coupling : 14

1.4 Processor Coupling Performance : 17

1.5 Thesis Overview : 18

2 Background 19

2.1 Superscalar Processors : 19

2.2 Compile Time Scheduling : 20

2.3 Multithreaded Architectures : 21

2.4 Multiple ALUs and Multiple Threads : 22

2.5 The M-Machine : 22

3 Architectural Overview 24

3.1 A Processor Coupled Node : 24

3.1.1 Node Organization : 24

3.1.2 Function Unit Components : 27

3.1.3 Instruction Format : 27

3.2 Intra-thread Synchronization : 29

3.3 Multiple Threads : 30

3.4 Memory System : 30

3.5 Summary : 31

4 Instruction Scheduling Compiler 32

4.1 PCTL : 34

4.1.1 Language Constructs : 34

4.1.2 Parallel Partitioning : 37

4.1.3 Synchronization Cues : 38

4.2 Compilation : 41

4.2.1 Parsing : 41

4.2.2 Generating Intermediate Code : 43

4.2.3 Optimization : 45

4.2.4 Data Dependency Analysis : 45

4.2.5 Scheduling : 46

5

4.2.6 Code Generation : 48

4.2.7 Output : 49

4.3 Flexibility : 50

4.3.1 Con�guration Information : 50

4.3.2 Compiler Switches : 52

4.4 Future Work : 54

4.5 Simulation Modes : 55

4.6 Summary : 56

5 Processor Coupling Simulation 57

5.1 Processor Coupling Simulator : 58

5.1.1 Simulator Structure : 58

5.1.2 Inputs : 59

5.1.3 Simulation Sequencing : 61

5.1.4 Function Unit Models : 62

5.1.5 Cluster Communication : 64

5.1.6 Memory System Model : 65

5.1.7 Threads : 66

5.1.8 Output : 67

5.2 Simulation Assumptions : 69

5.2.1 Thread Behavior : 69

5.2.2 Memory System : 71

5.2.3 Cluster Interconnection Network : 72

5.3 Summary : 72

6 Experiments 74

6.1 Benchmarks : 74

6.1.1 Matrix Multiply : 75

6.1.2 Fast Fourier Transform : 75

6.1.3 Model Evaluation : 76

6.1.4 Sparse Matrix LU Decomposition : 77

6.2 Baseline Comparisons : 78

6.2.1 Machine Hardware Resources : 78

6.2.2 Results : 79

6.3 Utilization : 81

6.4 Interference : 83

6.5 Variable Memory Latency : 84

6.6 E�ect of FPU Latency : 86

6.7 Restricting Communication : 88

6.8 Number and Mix of Function Units : 91

6.9 Methods of Expressing Parallel Loops : 93

6.9.1 Base Results : 94

6.9.2 Memory : 95

6.9.3 Communication : 95

6.10 Data Movement Strategy : 98

6

6.11 Summary : 100

7 Implementation Issues 102

7.1 Function Unit Pipeline Stages : 102

7.1.1 Operation Fetch : 104

7.1.2 Scoreboard Check : 104

7.1.3 Register Read : 106

7.1.4 Execution : 106

7.1.5 Write Back : 106

7.2 Operational Issues : 107

7.2.1 Scoreboard Update : 107

7.2.2 Comparison to Conventional Pipeline : : : : : : : : : : : : : : : : : 107

7.2.3 Thread Selection : 108

7.2.4 Intercluster Communication : 108

7.2.5 Intercluster Synchronization : 110

7.2.6 Memory System : 111

7.3 Single Chip Feasibility : 111

7.3.1 Area Calculations : 112

7.3.2 Register Organization : 112

7.4 Summary : 113

8 Conclusion 115

8.1 Summary : 115

8.2 Future Work : 117

A Benchmarks 119

A.1 Matrix Multiply : 119

A.1.1 vliw-matmul : 119

A.1.2 thr-matmul : 120

A.1.3 unrolled-vliw-matmul : 120

A.2 FFT : 121

A.2.1 vliw-fft : 121

A.2.2 thr-fft : 123

A.2.3 unrolled-vliw-fft : 124

A.3 Model Evaluation : 126

A.3.1 vliw-model : 126

A.3.2 thr-iter-model : 130

A.3.3 thr-model : 133

A.3.4 thr-auto-model : 136

A.4 LU Decomposition : 139

A.4.1 vliw-lud : 139

A.4.2 thr-iter-lud : 140

A.4.3 thr-lud : 142

A.4.4 thr-auto-lud : 143

B Experimental Data 146

7

B.1 Baseline Results : 146

B.2 Variable Memory Latency : 147

B.3 E�ect of FPU Latency : 149

B.4 Restricting Communication : 152

B.5 Number and Mix of Function Units : 155

B.6 Methods of Expressing Parallel Loops : 157

B.7 Data Movement Strategy : 161

8

List of Figures

1.1 Dynamic Interleaving of Instruction Streams : : : : : : : : : : : : : : : : : 15

1.2 Interleaving of Threads for Processor Coupling : : : : : : : : : : : : : : : : 15

1.3 VLIW and Multiprocessor Function Units Allocation : : : : : : : : : : : : : 17

3.1 Example Multi-ALU Node : 25

3.2 A Prototypical Cluster : 26

3.3 Statically Scheduled Instruction Stream : 28

3.4 Arithmetic Unit Architecture : 28

3.5 Operation Encoding : 29

4.1 Simulation Flow Diagram : 33

4.2 PCTL Jacobi Relaxation : 37

4.3 Barrier Synchronization Code : 39

4.4 Parallel Jacobi Relaxation : 40

4.5 Compiler Flow of Control : 42

4.6 Matrix-Vector Product : 43

4.7 Three Address Code Statement : 44

4.8 Intermediate Code for Matrix-Vector Product : : : : : : : : : : : : : : : : : 47

4.9 A PCS Assembly Operation : 49

4.10 Assembly Code for Matrix-Vector Product : : : : : : : : : : : : : : : : : : : 51

4.11 Compiler Con�guration File : 53

5.1 Simulator Inputs and Outputs : 58

5.2 Simulator Cluster Model : 59

5.3 Simulator Con�guration File : 60

5.4 Simulator Function Unit Pipeline : 62

5.5 Simulator Function Unit Model : 63

5.6 Interconnection Buses and Ports : 65

5.7 Thread State : 67

5.8 Simulator Output File : 68

5.9 Simulator Trace File : 70

6.1 Operational Ampli�er Circuit : 77

6.2 Baseline Cycle Count : 80

6.3 Function Unit Utilization : 82

6.4 Memory Latency E�ects : 85

9

6.5 E�ect of Floating Point Latency : 87

6.6 E�ect of Restricting Communication : 90

6.7 Cycle Counts for Di�erent Mixes of Units : : : : : : : : : : : : : : : : : : : 92

6.8 Baseline Cycle Counts with Di�erent Parallel Loops : : : : : : : : : : : : : 95

6.9 Memory Latencies on Model with Di�erent Parallel Loops : : : : : : : : : 96

6.10 Memory Latencies on LUD with Di�erent Parallel Loops : : : : : : : : : : 96

6.11 Restricting Communication on Model with Di�erent Parallel Loops : : : : 97

6.12 Restricting Communication on LUD with Di�erent Parallel Loops : : : : : 97

6.13 E�ect of Data Movement Strategy on Cycle Count : : : : : : : : : : : : : : 99

7.1 Function Unit Pipeline Stages : 103

7.2 Pipeline Events : 105

7.3 Pipeline Diagram : 108

7.4 Remote Bypassing : 109

7.5 The NOT DONE Signal : 110

7.6 Floorplan for a Four Cluster Multi-ALU Processing Node : : : : : : : : : : 113

10

List of Tables

3.1 Memory Synchronization Operations : 31

4.1 Synchronization Directives : 38

6.1 Benchmarks : 75

6.2 Experimental Machine Models : 79

6.3 Baseline Cycle Counts and Utilization : 80

6.4 E�ect of Interference Between Threads : 83

7.1 Cluster Area Estimates : 112

B.1 Baseline Cycle and Operation Counts : 146

B.2 Memory Latency on Matrix : 147

B.3 Memory Latency on FFT : 147

B.4 Memory Latency on Model : 148

B.5 Memory Latency on LUD : 148

B.6 Floating Point Unit Latency on Matrix : 149

B.7 Floating Point Unit Latency on FFT : 150

B.8 Floating Point Unit Latency on Model : 151

B.9 Floating Point Unit Latency on LUD : 151

B.10 Restricted Communication on Matrix : 152

B.11 Restricted Communication on FFT : 153

B.12 Restricted Communication on Model : 154

B.13 Restricted Communication on LUD : 154

B.14 Varying Number of Units for Matrix : 155

B.15 Varying Number of Units for FFT : 155

B.16 Varying Number of Units for Model : 156

B.17 Varying Number of Units for LUD : 156

B.18 Baseline Results with Di�erent Parallel Loops : : : : : : : : : : : : : : : : : 157

B.19 Memory Latencies on Model with Di�erent Parallel Loops : : : : : : : : : 158

B.20 Memory Latencies on LUD with Di�erent Parallel Loops : : : : : : : : : : 158

B.21 Restricting Communication on Model with Di�erent Parallel Loops : : : : 159

B.22 Restricting Communication on LUD with Di�erent Parallel Loops : : : : : 160

B.23 Di�erent Data Movement Strategies : 161

11

12

Chapter 1

Introduction

1.1 Instruction-level Parallelism

By 1995, improvements in semiconductor technology will allow multiple high performance

oating point units and several megabits of memory to reside on a single chip. One pos-

sible use of these multiple arithmetic units is to organize them in a single processor to

exploit instruction-level parallelism. Controlling multiple function units on a single pro-

cessor presents a challenge. Applications exhibit an uneven amount of instruction-level

parallelism during their execution [JW89]. In some parts of a program, all of the function

units will be used, while in others only some will be used since serial computations with little

instruction-level parallelism dominate. The amount of available parallelism depends upon

both the computation at hand and the accessibility of data. Long memory latencies can

sti
e opportunities to exploit instruction-level parallelism. Conditional branch operations

also reduce the amount of available instruction-level parallelism, especially in processors

which use only runtime mechanisms for scheduling.

The ideal multiple function unit processing node allows a task to use as many function

units as it needs, but also allocates unused units to other tasks. In addition to being e�ective

as a uniprocessor, such a node serves well in a parallel computing environment with many

available tasks. Furthermore, exploiting instruction-level parallelism in conjunction with

coarser grained algorithmic concurrency improves machine performance.

13

14 CHAPTER 1. INTRODUCTION

1.2 Technological Advances

Microprocessor performance has been increasing at an exponential rate since the mid-1970s.

Much of the speedup has been due to improvements in integrated circuit fabrication tech-

nology. The e�ective silicon area in �

2

available to circuit designers has been increasing

due to smaller feature sizes and larger die areas.

1

Single-chip microprocessors announced

in early 1992 have more than 3 million transistors [AN

+

92]. In 1995 CMOS chips will be

17.5mm on a side and have transistors with 0.5� gate lengths. In addition, they will have

3{4 layers of metal interconnect.

This expanse of chip area will provide opportunities for architects to create new, highly

integrated designs that have not yet been possible. At these densities 8Mbits of SRAM can

be built along with several integer and
oating point units, including interconnect. Inte-

grating these components on a single chip will allow experimentation with low latency in-

teraction between function units. Such exploration will likely yield new methods of building

high performance computers. Processor Coupling is intended to be one of those methods.

1.3 Processor Coupling

This thesis introduces Processor Coupling, a runtime scheduling mechanism in which mul-

tiple function units execute operations from multiple instruction streams and place results

directly in each other's register �les. Several threads may be active simultaneously, sharing

use of the function unit pipelines. Instruction-level parallelism within a single thread is

exploited using static scheduling techniques similar to those demonstrated in the Multi-

ow Trace system [CNO

+

88]. At runtime, the hardware scheduling mechanism interleaves

several threads, exploiting inter-thread parallelism to maintain high utilization of function

units.

Figure 1.1 demonstrates how Processor Coupling dynamically interleaves instruction

streams from multiple threads across multiple function units. The operations from threads

A, B, and C are scheduled independently at compile time as shown in the top of the

1

The parameter � is, to �rst order, process independent and is equivalent to one half of the minimum

feature size. For a 0:5�m process, � is 0:25.

1.3. PROCESSOR COUPLING 15

Thread B

B1 B2

B3 B4

B5 B7B6 B8

Thread C

C1 C2 C3 C4

C5 C6 C7 C8 C9

C10 C11 C12

Thread A

A6A5

A2A1

A3 A4

A7 A8

Runtime Interaction

3

4

5

2

1Cycle

B4

A7

C1 C2 C3 C4

C5 C6 C7 C8 C9

C10 C12

C11

A1 A2 B1 B2

B3

B5 B6 A5 A6

B8B7

A8

A4

A3

Figure 1.1: Interleaving of instruction streams. Threads A, B, and C are scheduled sepa-

rately and their instruction streams are shown at the top of the diagram. Each column is

a �eld for a particular function unit and each row holds those operations which are allowed

to execute simultaneously. The bottom box shows a runtime interleaving of these threads

in which some operations are delayed due to function unit con
icts.

Cycle 1

C

A

B

F1 F2 F3 F4

F5 F8F7F6

Cycle 2

A

B C

F1 F2 F3 F4

F5 F6 F7 F8

Figure 1.2: Two possible mappings of function units to threads. These mappings correspond

to the �rst two cycles shown in Figure 1.1.

16 CHAPTER 1. INTRODUCTION

�gure. Each column in a thread's instruction stream represents an operation �eld for a

single function unit. Each row holds operations that may be executed simultaneously. The

empty boxes indicate that there is insu�cient instruction-level parallelism to keep all of the

function units busy. During execution, arbitration for function units is performed on a cycle

by cycle basis. When several threads are competing for a given function unit, one is granted

use and the others must wait. For example, operations A3 and A4 are blocked during the

second cycle because thread C is granted those units instead. Figure 1.2 illustrates the

mapping of function units to threads, as a result of runtime arbitration, for the �rst two

cycles shown in Figure 1.1.

Note that operations scheduled in a single long instruction word need not be executed

simultaneously. Allowing the static schedule to slip provides for �ner grain sharing of

function units between threads. In Figure 1.1, operations A3-A6 are scheduled on the

same instruction word in thread A. Operations A3, A5, and A6 are all issued during cycle

3, while A4 is not issued until cycle 4. However, A4 must be issued before A7 and A8.

Figure 1.3 shows the allocation of function units to threads for a statically scheduled

VLIW machine and for a multiprocessor. A VLIW machine generally has a single thread

which is allowed to use all of the function units all of the time. Conventional threaded

machines with multiple pipelines also statically allocate function units to threads. A thread

is assigned to a particular function unit and may not use function units belonging to other

threads.

A compiler can be used to extract the statically available instruction-level parallelism

from a program fragment. However, compile time scheduling is limited by unpredictable

memory latencies and by some dependencies, such as data dependent array references,

which cannot be statically determined. Furthermore, although trace scheduling [Ell86]

and software pipelining techniques [Lam88] can be used, branch boundaries tend to limit

the number of operations that can be scheduled simultaneously. By interleaving multiple

threads, the hardware runtime scheduling mechanisms of Processor Coupling address the

limits of static scheduling due to dynamic program behavior.

1.4. PROCESSOR COUPLING PERFORMANCE 17

T

TT

T T T

F F

FFFF

F F

TT

T

F F

FFFF

F F

VLIW Multiprocessor

Figure 1.3: In a VLIW machine all of the function units are used by a single thread. The

compiler uses as many units as it can and does not share them with other threads. In a

purely multiprocessor organization, di�erent threads run on di�erent processing units and

cannot couple multiple units together.

1.4 Processor Coupling Performance

The experimental environment built to evaluate Processor Coupling includes both a com-

piler that schedules operations and generates assembly code, and a simulator that runs the

code and generates statistics. The compiler and the simulator can be con�gured to simulate

di�erent machine models including purely statically scheduled, multiprocessor, and Proces-

sor Coupled nodes. Four benchmarks are used to evaluate these di�erent con�gurations.

The base node used in simulation has four integer ALUs, four
oating point units, four

memory units, and one branch unit. With single cycle memory latencies Processor Coupling

executes in 60% fewer cycles than a statically scheduled node. For a probabilistic memory

model with variable memory latencies, Processor Coupling executes in 75% fewer cycles.

Processor Coupling is also more tolerant to function unit latencies. When the
oating point

unit latency is increased from 1 to 5 cycles, Processor Coupling only needs 10% more cycles,

while the statically scheduled node requires 90% more cycles.

On threaded code the multiprocessor and Processor Coupled nodes achieve nearly the

same performance. However, on sequential sections of code, the Processor Coupled node

18 CHAPTER 1. INTRODUCTION

is able to use all of the function units while the multiprocessor node is restricted to using

only those function units within a single cluster. In sequential sections the multiprocessor

organization requires on average 2.9 times as many cycles as the Processor Coupled model.

On the benchmark that has a sequential section, the multiprocessor node must execute 79%

more cycles than the coupled node.

1.5 Thesis Overview

This thesis describes Processor Coupling architecture and its implementation issues, the

compiler and simulator which comprise the experimental environment, and the evaluation

of Processor Coupling performance.

Chapter 2 describes work in related �elds that has contributed to the ideas in this thesis.

Chapter 3 presents an architectural overview of a Processor Coupled node, including the

partitioning of function units into clusters. Intra-thread synchronization, thread control,

and the requirements of the memory system are described as well.

The experimental environment consists of a compiler and a simulator. Chapter 4

presents ISC, a prototype compiler for Processor Coupling. ISC partitions source level

programs, schedules individual operations in wide instruction words, and produces simula-

tor assembly code. PCS, the simulator described in Chapter 5, runs the code and generates

statistics such as cycle counts and unit utilization data.

Chapter 6 describes the experimental process, including the benchmark suite, experi-

mental assumptions, and performance evaluation. The performance of statically scheduled,

multiprocessor, and Processor Coupled nodes is compared under conditions of variable mem-

ory latencies, di�erent
oating point unit latencies, and di�erent interconnection strategies

between function units. In addition, several methods of expressing parallel loops are eval-

uated for multiprocessor and Processor Coupled con�gurations. Di�erent mechanisms for

moving data between function units in a coupled node are explored as well.

Chapter 7 sketches an implementation of Processor Coupling, including a description of

the pipeline and synchronization mechanisms. It also presents a plan for building a Proces-

sor Coupled node on a single integrated circuit with 1995 technology. Finally, Chapter 8

summarizes the conclusions of this thesis and proposes directions for further research.

Chapter 2

Background

Processor Coupling is in
uenced by a variety of �ne grained parallelism methods, includ-

ing compile time scheduling techniques, superscalar designs, and multithreaded machines.

Fisher and Rau [FR91] summarize many means of exploiting instruction-level parallelism.

Processor Coupling integrates certain aspects of these techniques in order to achieve higher

instruction throughput and better function unit utilization without extreme hardware costs.

2.1 Superscalar Processors

Strict superscalar processors execute multiple instructions simultaneously by relying upon

runtime scheduling mechanisms to determine all data dependencies. Current superscalar

designs assume little aid from a compiler and are considered to be object code compatible

with their purely sequential counterparts. Much of the current work in superscalar technol-

ogy has stemmed from the dependency analysis and reservation stations used in the IBM

360/91
oating point processor [Tom67]. Many di�erent mechanisms to allow hardware to

discover instruction-level parallelism have since been developed and are discussed by John-

son in [Joh91]. Instructions within a limited size window are examined for dependencies

and are selected for issue. Register renaming hardware is used to resolve register resource

con
icts created by the compiler that are not related to data dependencies. Out of order

instruction issue complicates exception handling since it is di�cult to determine where to

restart the program. A history bu�er can be used to unroll the already executed instruc-

19

20 CHAPTER 2. BACKGROUND

tions to a point where computation can begin again. To achieve higher performance many

superscalar designs rely upon speculative execution. When a branch instruction is reached,

the hardware predicts which direction is taken and begins to execute instructions down

that path. If the wrong direction was selected, the state of the machine must be rolled back

before execution can continue.

The Meta
ow architecture is a current design that incorporates many of these super-

scalar techniques [PSS

+

91]. This design uses a complex instruction shelving mechanism

that analyzes dependencies, issues instructions out of order, predicts branches, commits

results to the register �le, and eliminates uncommitted registers to roll back mispredicted

branch code. Special register �les with several read and write ports are necessary. The

designers estimate that four chips will be necessary to implement this design.

The analysis by Wall [Wal91] shows that for an idealized machine with an ambitious

branch prediction scheme superscalar processors can only hope to achieve on average be-

tween 5 and 10 instructions per cycle. Considering the hardware complexity involved in

runtime dependency checking and instruction scheduling, this is not very promising. The

compile time techniques described in the next section have demonstrated that much more

instruction-level parallelism can be exploited by the compiler without the aid of runtime

scheduling hardware.

2.2 Compile Time Scheduling

Compile time scheduling has been used to enhance the amount of instruction-level paral-

lelism available in scienti�c programs. Assuming perfect static branch prediction, Nicolau

and Fisher [NF84] report �nding average instruction-level parallelism of 90 on a variety of

Fortran programs. Very Long Instruction Word (VLIW) processors such as the Multi
ow

Trace series [CHJ

+

90] employ only compile time scheduling to manage instruction-level

parallelism and resource use. No hardware synchronization logic is required as all resource

scheduling is done by the compiler. Compilation is performed using trace scheduling mech-

anisms based on those in the Bulldog compiler [Ell86]. This compiler represents a program

as a directed acyclic graph (DAG) of basic blocks. The scheduler traverses the graph, choos-

ing the most likely path using static branch prediction techniques. All of the instructions

2.3. MULTITHREADED ARCHITECTURES 21

in this path are scheduled and allocated to multiple function units as if they were in the

same basic block. The scheduler then chooses the most likely path through the remaining

blocks in the DAG. This continues until all blocks have been scheduled. The compiler must

generate compensation code for the o� trace blocks in the event of a mispredicted branch.

Trace scheduling uses loop unrolling to extract additional instruction-level parallelism.

Another compiler method for handling loop scheduling is software pipelining [Lam88].

In this technique, a loop is decomposed into resource independent blocks. The loop is

unrolled enough times to overlap execution of di�erent iterations of the original loop. If the

loop is meant to terminate in the middle of the pipeline, additional code is required to undo

the work of the extra iterations. This method complements trace scheduling well in that it

achieves excellent scheduling of loop code without the large increase in code size seen with

uncontrolled loop unrolling.

The weakness of the compiler scheduling the code without hardware interlocks involves

uncertainty in the latency of operations. In a distributed memory machine, a memory access

might require communication between remote nodes. Since the latencies cannot be known

until runtime, the compiler is unable to schedule resources without hardware assistance.

2.3 Multithreaded Architectures

Using multiple threads to hide memory latencies and pipeline delays has been explored in

several di�erent studies and machines. Gupta and Weber explore the use of multiple hard-

ware contexts in multiprocessors [GW89]. Their machine model switches threads whenever

a long latency memory reference occurs, such as a cache miss or a write-hit to shared data.

Their results show that multiple contexts are most e�ective when memory latencies are long

and context switch time is small. The Alewife machine [ALKK90] uses this type of coarse

grained multithreading to tolerate memory latencies in a shared memory environment.

MASA [HF88] as well as HEP [Smi81] use �ne grain multithreading to issue an in-

struction from a di�erent context on every cycle in order to mask pipeline latencies. An

instruction from one thread cannot be issued until its previous one has completed. Although

these approaches reduce the complexity of the processor by eliminating complicated schedul-

ing mechanisms, single thread performance is degraded by the number of pipeline stages.

22 CHAPTER 2. BACKGROUND

Processor Coupling with the capability, but not the requirement, of switching threads every

cycle achieves single thread performance comparable to that of a VLIW.

A data
ow approach described by Arvind and Culler [AC86] attempts to exploit paral-

lelism by decomposing programs into single instruction threads that are scheduled and

executed as their data dependencies are satis�ed. Because of the overhead associated

with scheduling each operation, other research such as Ianucci [Ian88] and Culler [CSS

+

91]

have suggested increasing the scheduling granularity by composing multiple operations into

groups. This composite then becomes the element that is scheduled by the hardware. They

do not, however, address instruction-level parallelism within a group.

2.4 Multiple ALUs and Multiple Threads

Daddis and Torng [DT91] simulate multiple instruction streams on superscalar processors.

They interleave instruction fetching between two active threads and dispatch instructions

for execution based upon dynamically checked data dependencies. Their speedup comes

from masking instruction cache miss latencies and data dependencies within one thread.

They report speedups of between 90 and 100 percent for two active threads.

The proposed XIMD [WS91] architecture employs compile time techniques to statically

schedule instructions as well as threads. The XIMD compiler determines the function unit

requirements of each thread. It then packs the threads into a schedule so that no two

threads require the same function unit simultaneously. Threads synchronize by blocking on

globally visible synchronization signals. Function units with blocked threads sit idle since

threads do not share function unit pipelines. Processor Coupling removes these constraints

by allowing runtime scheduling mechanisms to determine allocation of function units to

threads. Furthermore, Processor Coupling synchronizes through memory so that a function

unit can work on other threads when one thread is blocked.

2.5 The M-Machine

Processor Coupling is useful in machines ranging from workstations based upon a single

multi-ALU node to massively parallel machines such as the MIT M-Machine, which is cur-

2.5. THE M-MACHINE 23

rently being designed. The M-Machine will consist of thousands of multi-ALU Processor

Coupled nodes and will have many threads to be interleaved at each node. The machine

will thus take advantage of a hierarchy of parallelism, ranging from coarse-grained algorith-

mic parallelism to extremely �ne-grained instruction-level parallelism. However, as will be

demonstrated in Chapter 6, Processor Coupling can be e�ective even on a single node. This

thesis will consider only a single node instance of Processor Coupling.

Chapter 3

Architectural Overview

The architecture of a Processor Coupled node has two main components. First, the low

interaction latency between function units on a single chip is exploited for instruction-level

parallelism within a single thread. Multiple function units issue instructions from a com-

mon stream and place their results directly in each other's register �les. Secondly, multiple

threads run concurrently to increase function unit and memory bandwidth utilization. Re-

sources such as register �les and process state registers are duplicated to allow multiple

threads to be active simultaneously.

The architectural description in this chapter provides an overview of how a Processor

Coupled node functions and identi�es features not usually found in commercial micropro-

cessors, including mechanisms for synchronization through presence bits in registers and in

memory. Since this thesis neither de�nes a complete microarchitecture nor presents any

logic design, many details will not be addressed.

3.1 A Processor Coupled Node

3.1.1 Node Organization

A Processor Coupled node, as shown in Figure 3.1 consists of a collection of function

units, register �les, memory banks, and interconnection networks. A function unit may per-

form integer operations,
oating point operations, branch operations, or memory accesses.

Function units are grouped into clusters, sharing a register �le among them. The register

24

3.1. A PROCESSOR COUPLED NODE 25

Memory
Bank 0

Memory
Bank 1

Memory
Bank 2

Memory
Bank 3

Cluster 0

Register
File 0

Cluster 1

Register
File 1

Cluster 2

Register
File 2

Cluster 3

Register
File 3

Cluster Interconnection Network

Memory Interconnection Network

Figure 3.1: This sample machine consists of four clusters, each of which contains a register

�le and some number of function units. The clusters communicate with each other through

the Cluster Interconnection Network and through memory.

26 CHAPTER 3. ARCHITECTURAL OVERVIEW

Memory System

To Other Clusters

From
Other
Clusters

Register File

Memory

Unit

Unit

Floating

Point
Integer

Unit

Figure 3.2: The prototypical cluster contains three function units: a memory unit, an

integer arithmetic unit, and a
oating point unit. Each share access to a common register

�le. The memory unit communicates with the memory system. Each unit can send its

results to the local register �le as well as to the register �les of remote clusters.

�le may be divided into integer and
oating point partitions. A cluster can write to its

own register �le or to that of another cluster through the Cluster Interconnection Network.

Clusters access memory banks through the Memory Interconnection Network.

The cluster shown in Figure 3.2 has an integer unit, a
oating point unit, and a memory

unit all sharing access to a common register �le. The result of a function unit's computation

is written to the local register �le or is sent to another cluster's register �le. The memory

unit takes addresses and data from the register �le, accesses the memory system, and returns

the results to the appropriate cluster's register �le. A memory request can deliver data to

other clusters by using the Cluster Interconnection Network (CIN), or by telling the memory

system to route the result directly through the Memory Interconnection Network (MIN).

3.1. A PROCESSOR COUPLED NODE 27

3.1.2 Function Unit Components

A function unit may be an integer ALU, a
oating point ALU, a branch calculation unit, or

a memory access unit; a unit may be pipelined to arbitrary depth. As shown in Figure 3.3,

a thread's instruction stream can be considered as a sparse matrix of operations. Each

column in the matrix corresponds to a single function unit. To keep signal propagation

delays as short as possible, control is distributed throughout the clusters. Each function

unit contains an operation cache and an operation bu�er. When summed over all function

units the operation caches form the instruction cache. These components of an arithmetic

function unit are shown in Figure 3.4.

The operation bu�er holds a pending operation from each active thread. A cluster's

register �le is multi-ported to allow multiple read and write operations per cycle. Although

execution of a thread's instructions does not take place in lock step, function units are

loosely synchronized to prevent operations from issuing out of order. Chapter 7 discusses

implementation details such as function unit pipelining in further detail.

3.1.3 Instruction Format

An instruction in a Processor Coupled node consists of a vector of operations, one for each

function unit. Each operation speci�es an opcode, one or more destination register �elds,

and operand �elds. Operation encodings can be shared by di�erent function units since each

operation is generated by the compiler for a particular type of function unit. For example,

load and store operations will not be generated for an integer arithmetic unit.

Function units transfer data by specifying destination registers in other clusters' register

�les. Often a value will be needed by a unit in a remote cluster. Encoding multiple

destinations eliminates the operation required to move this data. Each destination register

speci�er is composed of two �elds: one identi�es the cluster register �le and the other

determines the particular register to be used. One destination speci�er might be reserved

for writes to the register �le within the cluster.

Each thread's instruction stream may have holes due to unused function units. If the

stream is encoded with explicit nops as placeholders, valuable space in the on-chip operation

caches will be wasted. A potentially more e�cient encoding has each operation specify the

28 CHAPTER 3. ARCHITECTURAL OVERVIEW

C1 C2 C3 C4

C5 C6 C7 C8 C9

C10 C11 C12

Figure 3.3: Three statically scheduled instructions from thread C of Figure 1.1 in Chapter 1.

Each column of the instruction stream is a �eld for one of the eight function units and each

row holds those operations which are allowed to execute simultaneously.

From
Other
Units

To Other Units

Operation
Pointers

Operation

Cache

Operation

Buffer

Register

File

ALU

Figure 3.4: The components of a general function unit are shown in this sample arithmetic

unit. Each thread has an operation pointer to access the operation cache. Fetched opera-

tions waiting for dependencies to be satis�ed are held in the operation bu�er. The register

�le is shown as a part of the function unit, but it is actually shared with other function

units in the cluster.

3.2. INTRA-THREAD SYNCHRONIZATION 29

destination 2destination 1

7 7

offset

3

opcode

5

operand 1 operand 2

5 5

register
file

register

2 5

Figure 3.5: This operation devotes 5 bits to the opcode and 3 bits to the o�set for the next

executable operation. Destinations are speci�ed using 2 bits to identify the cluster and 5

bits to identify the register. The two source registers are speci�ed using 5 bits each.

number of following nops that the function unit will encounter before �nding the next

available operation. A short o�set �eld in the operation encoding provides this capability.

Alternatively, an instruction can be stored densely in memory and be expanded with explicit

nops during operation cache re�lls.

Figure 3.5 shows how an operation can be encoded. This example displays a simple

operation in which the operands are both in registers and the result can be sent to two

di�erent registers. Two bits select the destination cluster and 5 bits are used to specify each

operand and destination register. The o�set �eld of 3 bits allows the operation to indicate

that as many as 7 implicit nops can be skipped before the next executable operation. The

opcode needs only 5 bits. Thus, each operation is encoded in 32 bits and two operations can

reside in a single 64 bit word. Standard techniques for encoding other instruction formats

can be used as well.

3.2 Intra-thread Synchronization

Processor Coupling uses data presence bits in registers for low level synchronization within

a thread. An operation will not be issued until all of its source registers are valid and all

operations from the previous instruction have been issued. When an operation is issued,

the valid bit for its destination register is cleared. The valid bit is set when the operation

completes and writes data back to the register �le. To move data between function units,

an operation may specify destination registers in other clusters. Thus registers are used to

30 CHAPTER 3. ARCHITECTURAL OVERVIEW

indicate data dependencies between individual operations and to prevent operations from

executing before their data requirements are satis�ed. Because di�erent function units may

have di�erent pipeline latencies, this discipline ensures in-order operation issue, but not

necessarily in-order completion.

3.3 Multiple Threads

Hardware is provided to sequence and synchronize a small number of active threads. Each

thread has its own instruction pointer and logical set of registers, but shares the function

units and interconnection bandwidth. A thread's register set is distributed over all of the

clusters that it uses. The combined register set in each cluster can be implemented as sep-

arate register �les or as a collection of virtually mapped registers [ND91]. Communication

between threads takes place through the memory on the node; synchronization between

threads is on the presence or absence of data in a memory location.

Each function unit determines independently, through examination of dynamic data

dependencies, the next operation to issue. That operation may be from any thread in

the active set; threads may have di�erent execution priorities. The function unit examines

simultaneously the data requirements for each pending operation by inspecting the valid bits

in the corresponding register �les. The unit selects a ready operation, marks its destination

registers invalid, and issues it to the execution pipeline stages.

A Processor Coupled system provides a set of thread management functions. If a thread

in the active set idles, it may be swapped out for another thread waiting to execute. The

process of spawning new threads and of terminating threads must occur with low latency

as well. Thread management issues are beyond the scope of this thesis.

3.4 Memory System

The memory system is used for storage, synchronization, and communication between

threads. Like the registers, each memory location has a valid bit. Di�erent
avors of

loads and stores are used to access memory locations. The capabilities of memory reference

operations are similar to those in the Tera machine [ACC

+

90] and are summarized in Ta-

3.5. SUMMARY 31

Reference Precondition Postcondition

unconditional leave as is

load wait until full leave full

wait until full set empty

unconditional set full

store wait until full leave full

wait until empty set full

Table 3.1: Loads and stores can complete if the location's valid bit satis�es the precondition.

When a memory reference completes, it sets the valid bit to the speci�ed postcondition.

ble 3.1. These mechanisms can be used to build producer-consumer relationships, atomic

updates, semaphores, and other types of synchronization schemes.

On-chip memory is used as a cache and is interleaved into banks to allow concurrent

access to multiple memory locations. Memory operations that must wait for synchronization

are held in the memory system. When a subsequent reference changes a location's valid

bit, waiting operations reactivate and complete. This split transaction protocol reduces

memory tra�c and allows memory units to issue other operations.

3.5 Summary

A multi-ALU node for Processor Coupling consists of several clusters of function units, an

on-chip cache, and switches between di�erent clusters and between clusters and memory

banks. Each cluster contains a small number of function units, a register �le, and the control

logic and state, such as the operation cache and the operation bu�er, needed to manage

several active threads. The operation bu�er is used to hold operations waiting to issue from

di�erent active threads.

The low interaction latency between function units allows di�erent clusters to partic-

ipate in the execution of the same thread and e�ciently deposit data directly into each

other's register �les. Within a thread, the data dependencies of an operation are checked

dynamically using the presence bits in the register �les. Multiple threads are active simul-

taneously to increase utilization of function unit and memory resources. Di�erent threads

communicate through the memory of the node using �ne grain synchronization bits on

individual memory locations.

Chapter 4

Instruction Scheduling Compiler

The simulation environment for testing Processor Coupling consists of two parts: the In-

struction Scheduling Compiler and the Processor Coupling Simulator. Figure 4.1 shows the

ow through the compiler and simulator. A program and a con�guration �le are used by

the compiler to generate assembly code and a simulator con�guration �le. After reading

the assembly code �le, the data �le, and the con�guration �le, the simulator executes the

compiled program and generates statistics about the runtime behavior. Optionally a trace

�le containing an exact history of the operations executed can be produced.

This chapter describes the Instruction Scheduling Compiler (ISC) that was developed

to generate test programs for a Processor Coupled node. ISC serves several purposes. First,

it provides a programming environment which allows benchmark programs to be developed

quickly. Secondly, it allows the programmer to easily experiment with di�erent partitioning

and synchronization strategies. Finally, ISC provides the
exibility to generate code for

machines with di�erent hardware parameters such as number of function units, function

unit latencies, and expected memory latencies. Chapter 5 describes the Processor Coupling

Simulator.

Each benchmark program is written in a simple source language called PCTL (Processor

Coupling Test Language) that has simpli�ed C semantics with Lisp syntax. PCTL includes

constructs for parallel execution of threads as well as explicit synchronization points on the

granularity of a single variable. Along with the source program, ISC expects a machine

con�guration �le which speci�es the number and type of function units, each function

32

33

PCS Configuration

File

PCS Assembly
Code

Processor
Coupling
Simulator

Statistics File Trace File

Data File

PCTL Program
Configuration

File

Diagnostic File

Instruction
Scheduling
Compiler

Figure 4.1: The
ow through the simulation environment. PCTL programs are compiled

into PCS assembly code by the Instruction Scheduling Compiler (ISC). PCS runs the pro-

gram using the input data provided by the Data File. ISC determines the machine param-

eters from the Con�guration File and produces a modi�ed PCS Con�guration File for the

simulator.

34 CHAPTER 4. INSTRUCTION SCHEDULING COMPILER

unit's pipeline latency, and the grouping of function units into clusters. The compiler uses

con�guration information to statically schedule thread operations. ISC is implemented in

Common Lisp [Ste90] and the source code can be found in [Kec92a].

Section 4.1 describes the source language PCTL, including its capabilities and its limits.

The operation of the Instruction Scheduling Compiler is outlined in Section 4.2. Section 4.3

discusses the parameters of the programming environment that provide a variety of com-

pilation strategies. Section 4.4 proposes enhancements that would improve operation and

execution of ISC. Finally, Section 4.5 identi�es the di�erent simulator modes used in the

experiments.

4.1 PCTL

The Processor Coupling Test Language (PCTL) is an imperative language much like C.

A pseudo-Lisp syntax is used in PCTL to eliminate parsing issues and grammatical am-

biguities, and to simplify the implementation of the compiler. PCTL provides a few data

types: integers,
oating point numbers, and one and two dimensional arrays of integers and

oats. There is no support for complex data structures. The language structures described

in Section 4.1.1 give explicit control of the hardware model to the programmer.

4.1.1 Language Constructs

Variable Declaration: Declarations are made using the declare statement. The decla-

ration section of a program is of the form:

(declare ((var-name-1 var-type-1)

.

.

.

(var-name-N var-type-N)))

E

body

)

The variable declarations are valid for the entire scope of E

body

. Variable types include int,

float, and array. Arrays are declared using the following statements:

(array i var-type)

(array (i j) var-type)

4.1. PCTL 35

The values i and j are integers indicating the dimension of the arrays while var-type deter-

mines whether the array elements are integers or
oating point numbers. Procedures are

speci�ed in the declaration block using the form:

(lambda (arg-list) E

body

)

where E

body

can include local variable declarations and expressions.

Control: The following structures de�ned in PCTL determine the program's control
ow.

(begin E

1

..E

n

) groups expressions E

1

through E

n

to be executed sequentially.

The execution order of operations is determined by data dependency analysis

in the compiler.

(begin-sync E

1

..E

n

) is similar to begin except that the enclosed operations are

not executed until all operations from previous blocks have been issued. The

use of begin-sync in synchronization is discussed in Section 4.1.3.

(parex E

1

..E

n

) groups expressions E

1

through E

n

to be executed in parallel. A

new thread is created for each element in the parex body.

(if (E

test

) E

cons

E

alt

) executes E

cons

if E

test

6= 0; otherwise E

alt

is evaluated.

(for (E

init

E

test

E

inc

) E

body

) is the PCTL version of a sequential for loop. E

init

,

E

test

, and E

inc

are the initialization, test, and increment expressions, respec-

tively. E

body

is executed once for each iteration of the loop.

(forall (E

init

E

test

E

inc

) E

body

) is similar to the for loop except that all itera-

tions are executed simultaneously as di�erent threads. The number of iterations

must be known at compile time.

(forall-iterate (E

init

E

test

E

inc

) E

body

) is another parallel for loop, but the

number of iterations can be determined at runtime. Unlike forall a new

asynchronously running thread is created for E

body

on each iteration of the

loop.

(while (E

test

) E

body

) executes E

body

sequentially for each iteration of the loop.

The loop terminates when E

test

evaluates to zero.

36 CHAPTER 4. INSTRUCTION SCHEDULING COMPILER

(fork E

body

) creates a new thread to asynchronously execute E

body

. The thread

issuing the fork instruction continues to execute as well.

(fork-if (E

test

) E

body

) evaluates E

test

and creates a new asynchronous thread for

E

body

if E

test

6= 0. This type of conditional execution reduces the number of

branch operations which limit instruction-level parallelism.

(call proc arg-list) emulates a procedure call by a macro-expansion that is inlined

in the code. Recursion is not permitted.

Synchronization: PCTL allows synchronization on the granularity of a single variable.

The keywords uncond, consume, produce, and leave can be used when accessing a variable

to alter its presence bit in memory. This will be further discussed in Section 4.1.3.

Assignment: Variables can be assigned values using the := operator. Executing

(:= var E

body

)

assigns the value of E

body

to var. One dimensional arrays are referenced using

(aref a-name index)

where a-name is the array and index is an integer variable or constant. Two dimensional

arrays are accessed as

(aref a-name (row column))

Arithmetic Operators: PCTL supports a standard set of arithmetic operators includ-

ing: +, -, *, /, and neg (arithmetic negation). Integer or
oating point operators are chosen

automatically and type-casting is transparent to the programmer. The shift operators, <<

(arithmetic shift left) and >> (arithmetic shift right), perform only on integers.

Relational and Logical Operators: Relational operators produce integral results from

comparisons on integer or
oating point operands. As in C, false is represented as the integer

0, and true is anything other than zero. The relational operators that PCTL supports are: <

(less than), <= (less than or equal), > (greater than), >= (greater than or equal), == (equal),

and != (not equal). The logical operators|and, or, and not|operate only on integers.

4.1. PCTL 37

(declare

((old-array (array 18 float))

(new-array (array 18 float))

(size int) (i int) (num-iter int)

(iter int))

(begin

(:= size 16)

(:= num-iter 4)

(for ((:= iter 0) (< iter num-iter) (:= iter (+ iter 1)))

(begin

(for ((:= i 1) (<= i size) (:= i (+ i 1)))

(begin

(:= (aref new-array i)

(/ (+ (aref old-array (- i 1))

(aref old-array (+ i 1)))

2))))

(for ((:= i 1) (<= i size) (:= i (+ i 1)))

(begin

(:= (aref old-array i)

(aref new-array i))))))))

Figure 4.2: This sample PCTL program performs Jacobi relaxation on a one dimensional

array of 16 elements. The algorithm uses evaluate and update phases. The program is

sequential and does not require synchronization.

Figure 4.2 shows a PCTL implementation of one dimensional Jacobi relaxation. The

arrays old-array and new-array contain 18 elements: 16 for the vector and 2 for the

end-point boundary conditions. The outer loop controls the number of iterations of the

relaxation while the two inner loops execute the evaluate and update phases. This version

is entirely sequential and requires neither partitioning nor synchronization.

4.1.2 Parallel Partitioning

The PCTL constructs to explicitly declare multithreaded parallelism were introduced in the

previous section and are described here in more detail. Parallel tasks that can be split into

threads and executed concurrently are created using the fork command. A new thread of

control that can be run concurrently with the other threads already executing is created for

each forked expression.

Other more complex constructs are built using fork. The parex operation creates a

38 CHAPTER 4. INSTRUCTION SCHEDULING COMPILER

Reference Directive Precondition Postcondition

uncond unconditional leave as is

load leave wait until full leave full

consume wait until full set empty

uncond unconditional set full

store leave wait until full leave full

produce wait until empty set full

Table 4.1: These directives can be used when accessing a variable to alter a memory presence

bit. The access will stall until the speci�ed precondition is met, and when complete will set

the presence bit to the postcondition.

thread for each of its subsidiary expressions. A forall loop can be used if the number of

iterations is known at compile time. It has the same semantics as a for loop, but it creates

one thread for each iteration of the loop, and executes all iterations concurrently. The

forall-iterate command can be used as a parallel loop when the number of iterations

is not known until runtime. The forall-iterate structure di�ers from a fork within a

for loop because it attempts to perform load balancing. The body of the loop is compiled

several times, each time with a di�erent function unit access pattern. At runtime each

thread selects a version of the compiled code so that threads spread their work over all of

the function units.

4.1.3 Synchronization Cues

PCTL provides the capability to create explicit synchronization points. The programmer

can specify synchronization on a single variable. Synchronization is performed using spe-

cialized read and write operations to alter the memory presence bits. Table 4.1 is an

augmentation of Table 3.1 in Chapter 3 showing the corresponding directives for precondi-

tions and postconditions set by memory operations. If no directive is speci�ed, the access

defaults to the uncond mode.

When a thread attempts to access a variable with an empty presence bit, it will stall

until the value is ready. Thus, the presence tags can be used to implement atomic up-

dates to variables, semaphores, and other more complex synchronization schemes. A simple

producer-consumer relationship between two threads uses the produce and consume direc-

4.1. PCTL 39

(:= sync-var (consume sync-counter))

(if (< sync-var num-threads)

(begin

(:= (produce sync-counter) (+ sync-var 1))

(:= sync-var (leave sync-start)))

(:= (produce sync-start) sync-var))

Figure 4.3: An example of the barrier synchronization code to be executed by each thread

requiring synchronization. The variable sync-counter is the counter for number of threads

to synchronize. If sync-counter is less than num-threads (the number of synchronizing

threads), then the thread increments sync-counter and tries to read sync-start. If all the

threads have in fact reached the barrier, the thread writes to sync-start to wake up the

stalled threads. The produce and consume tags ensure atomic updates to sync-counter.

The leave and produce tags make sync-start a broadcast variable.

tives when referencing a shared variable. A barrier synchronization point can be created

using a shared counter. When a thread reaches the barrier, it checks the value of the

counter. If the counter has a value less than the number of synchronizing threads it is

incremented and the thread suspends by attempting to reference an invalid synchronization

variable. When the last thread reaches the barrier it �nds that the counter has the proper

value and writes to the shared synchronization variable to meet the precondition of the

read accesses of all of the waiting threads, thus reactivating them. Figure 4.3 shows the

barrier synchronization code that each thread must execute. In order to scale well, barrier

synchronization should be implemented as a combining tree [YTL87].

The compiler assumes that all operations within a thread can be scheduled according to

data dependencies. In order to ensure a predictable sequential ordering of synchronization

operations, the programmer must use the begin-sync construct. The begin-sync state-

ment guarantees that no subsequent operations will be executed until all previous operations

have been issued. This can be used to indicate critical sections as well as synchronization

dependencies between memory accesses.

Figure 4.4 shows a parallel implementation of the sequential one-dimensional Jacobi

relaxation program of Figure 4.2. Like the sequential version, this program has evaluate

and update phases. Work is partitioned into four threads, each of which is responsible for

evaluating and updating a four element subarray. The threads are created using forall and

40 CHAPTER 4. INSTRUCTION SCHEDULING COMPILER

(declare

((old-array (array 18 float))

(new-array (array 18 float))

(size int) (i int) (num-iter int) (iter int) (temp1 int)

(in-sync int) (sync-counter int) (sync-start int)

(barrier (lambda (sync-var)

(begin (:= sync-var (consume sync-counter))

(if (< sync-var 4)

(begin

(:= (produce sync-counter) (+ sync-var 1))

(:= (uncond sync-var) (leave sync-start)))

(:= (produce sync-start) sync-var)))))

(evaluate (lambda (index)

(declare ((in-sync int) (base int) (j int))

(begin (:= base (+ (* index 4) 1))

(for ((:= j base) (< j (+ base 4)) (:= j (+ j 1)))

(begin

(:= (aref new-array j)

(/ (+ (aref old-array (- j 1))

(aref old-array (+ j 1))) 2))))

(begin-sync (call barrier in-sync))))))

(update (lambda (index)

(declare ((in-sync int) (base int) (j int))

(begin

(:= base (+ (* index 4) 1))

(for ((:= j base) (<= j (+ base 4)) (:= j (+ j 1)))

(begin (:= (aref old-array j)

(aref new-array j))))

(begin-sync (call barrier in-sync)))))))

(begin (:= size 16)

(:= num-iter 4)

(:= (uncond sync-start) 0)

(for ((:= iter 0) (< iter num-iter) (:= iter (+ iter 1)))

(begin (:= (uncond sync-counter) 0)

(:= temp1 (consume sync-start))

(:= temp1 (+ temp1 1))

(forall ((:= i 0) (< i 4) (:= i (+ i 1)))

(begin (call evaluate i)))

(begin-sync (call barrier in-sync))

(:= (uncond sync-counter) 0)

(:= temp1 (consume sync-start))

(:= temp1 (+ temp1 1))

(forall ((:= i 0) (< i 4) (:= i (+ i 1)))

(begin (call update i)))

(begin-sync (call barrier in-sync)))))))

Figure 4.4: A parallel version of the sequential Jacobi relaxation code shown in Figure 4.2.

4.2. COMPILATION 41

barrier synchronization is used after each evaluate and update phase. Three procedures|

barrier, evaluate, and update|are declared globally, and each can have its own local

variables.

4.2 Compilation

The Instruction Scheduling Compiler (ISC) discovers instruction-level parallelism in a

PCTL program and schedules its operations to make maximum use of multiple function

units. The input to ISC is a PCTL program and a con�guration �le. During the parse

and partition phase, the compiler uses the cues speci�ed in the program to partition it

into multiple threads and generate intermediate code. Each thread's code then proceeds

independently through the subsequent optimization, data dependency analysis, scheduling,

and code generation phases. Upon completion of compilation, ISC produces assembly code

for the Processor Coupling Simulator (PCS), a PCS con�guration �le, and a diagnostic

�le displaying the compiler
ags that were selected. The PCS con�guration �le contains

additional information indicating the number of registers and the amount memory required.

The compilation
ow of ISC is shown in Figure 4.5.

Figure 4.6 shows a simple matrix-vector product program, computing A�x = b, that will

be used to demonstrate the compilation steps discussed in subsequent sections. The matrix-

vector product code is partitioned into one master thread and four subsidiary threads. The

master thread forks the subsidiary threads at runtime; each subsidiary thread is responsible

for computing the dot-product of one row of a-mat with x-vec to produce one element of

b-vec. No synchronization is required since the computation of each element of b-vec is

independent.

4.2.1 Parsing

The parser �rst transforms the PCTL source program by desugaring complex expressions

into the core kernel language of the compiler and breaking complicated arithmetic expres-

sions into balanced trees. Then it partitions the result according to the program speci�ed

directives and creates an annotated parse tree for each thread. A global symbol table as

well as a symbol table for each thread is instantiated with declared variables. Global vari-

42 CHAPTER 4. INSTRUCTION SCHEDULING COMPILER

Thread 1 Thread N

Parse Tree

PCTL Program Configuration

File

Partition
Parse and

Generate
Intermediate

Code

Optimize

Analyze Data

Dependencies

Schedule

Generate
Code

Generate
Intermediate

Code

Optimize

Analyze Data

Dependencies

Schedule

Generate
Code

Diagnostic

File

PCS Configuration

File

PCS Assembly

Code

Figure 4.5: Compiler
ow of control. The program and con�guration �les are used by

the parser and partitioner which generate intermediate code. Each thread has its own

intermediate code which proceeds through the optimization, data dependency analysis,

scheduling, and code generation stages. The output is a new con�guration �le, the assembly

code, and a diagnostic �le.

4.2. COMPILATION 43

(declare

((a-mat (array (4 4) float))

(x-vec (array 4 float))

(b-vec (array 4 float))

(i int)

(dot-product

(lambda (a-mat x-vec b-vec index)

(declare

((j int) (temp float))

(begin

(:= temp 0)

(for ((:= j 0) (< j 4) (:= j (+ j 1)))

(begin (:= temp

(+ temp

(* (aref a-mat (index j))

(aref x-vec j))))))

(:= (aref b-vec index) temp))))))

(begin

(forall ((:= i 0) (< i 4) (:= i (+ i 1)))

(begin

(call dot-product a-mat x-vec b-vec i))))))

Figure 4.6: A parallel implementation of a 4�4 matrix-vector product, computing A�x = b.

The program is partitioned into four threads, each of which computes a dot-product of a

row of a-mat and x-vec.

ables are assigned absolute addresses while variables local to a thread are given o�sets to

be combined with a context pointer at runtime. Procedures are inlined and new names for

local variables are created to avoid false aliasing.

Rudimentary optimizations, including constant propagation and removal of unreachable

blocks are performed. Before completing, the parser makes a data structure for each thread

to hold its parse tree, symbol table, and slots for intermediate code generated in later stages.

Each thread proceeds independently through the subsequent phases of the compiler.

4.2.2 Generating Intermediate Code

The intermediate code generator transforms a parse tree into a sequence of basic blocks.

Basic block breakpoints are located by analyzing the control
ow structures such as loops

and conditionals. A basic block has one entry point, one exit point, and up to two pointers

to blocks that may follow it in the control
ow graph. Each basic block data structure

44 CHAPTER 4. INSTRUCTION SCHEDULING COMPILER

Operand 2

Up Dependendencies
Position

Destination
Operator

Operand 1
Down Dependencies

Anti−dependencies
Critical Path

4: * T3 T6 5 NIL(2 3) 2T2 =

Figure 4.7: Three address code statment computing T3�T6 = T2.

contains:

� An identi�cation number.

� A list of the variables it uses.

� A list of the variables it de�nes.

� A data structure for intermediate code.

� Pointers to subsequent blocks in the
ow control graph.

The simple three address code used as the intermediate form in ISC is generated directly

from the operations speci�ed in the parse tree. Figure 4.7 shows a sample of a three address

code statement. The position �eld indicates the location of the statement in the code vector

of its basic block. The operation is speci�ed by the destination, operator, and operand �elds.

Up dependency and anti-dependency �elds indicate the previous operations on which the

statement depends. The down dependency �eld shows the subsequent operations that

depend upon the result. Finally, the critical path �eld indicates how many operations lie

between the statement and the bottom of the basic block. The intermediate code generator

creates the code vector consisting of these three address statements, but the dependency and

critical path �elds are determined in the data dependency analysis phase. The intermediate

code for matrix-vector product is shown later in Section 4.2.4.

4.2. COMPILATION 45

4.2.3 Optimization

The optimizations performed on the three address code include constant propagation and

common subexpression elimination [ASU88]. Constant propagation beyond that performed

in the parser might be available due to binding of variables to constants during the mapping

from parse trees to three address code. Common subexpressions are recognized by compar-

ing the operator and operands of di�erent statements in the same basic block. Optimizations

between basic blocks are not performed.

In a multiple arithmetic unit processor, eliminating common subexpression may require

more data to be transferred between function units. For example the result from an address

calculation might be needed by several memory operations on di�erent clusters. If operands

are required in several function units, recomputing a value may be more e�cient that

transferring it. The analysis of the e�ciency of common subexpression elimination is not

examined in this thesis and not included in ISC.

4.2.4 Data Dependency Analysis

In order to schedule independent operations into long instruction words, the dependencies

between operations within a basic block must be determined. Data dependency analysis

is performed on a block by block basis by traversing a block's code vector in reverse or-

der. Each statement's operands are compared with the destinations of previous operations

to determine the direct dependencies. Anti-dependencies are discovered by comparing a

statement's destination with the operands and destinations of previous operations.

The data dependency graph is traversed to �nd the critical path. Operations with

no dependencies are labeled with a zero. Statements that generate values used by zero-

labeled operations are labeled one. This continues until all statements have been labeled. A

statement's critical path label indicates the maximum number of operations that lie between

it and the end of the basic block along the data dependency graph. These identi�ers are

used by the scheduler for e�cient operation scheduling along the critical path of the code.

Live variables are kept in registers between basic blocks, but operations are not moved

beyond basic block boundaries. Dependencies between blocks are maintained only within a

directed acyclic subgraph (DAG) [AHU83] of the thread's
ow control graph. Loops cause

46 CHAPTER 4. INSTRUCTION SCHEDULING COMPILER

all live variables to be saved to memory.

Figure 4.8 shows the intermediate three address code for one of the subsidiary threads

in the matrix-vector product program of Figure 4.6 after data dependency analysis. Basic

block 0 initializes the values before entering the loop body of basic block 1. The critical

path in basic block 1 starts with the address calculation for a-mat and terminates with the

branch statement. The element computed in the thread is stored in b-vec in basic block 2.

4.2.5 Scheduling

The scheduler maps the intermediate code from the data dependency analysis phase to the

physical machine. As in previous phases, work is performed on a block by block basis,

and the scheduler does not move operations across basic block boundaries. The instruction

schedule is a matrix whose width is equal to the number of function units, and whose length

is determined by the number of dependent operations in the basic block.

The scheduler �lls slots in the matrix by selecting and placing operations from the

intermediate code. Operations are selected according to their location in the critical path.

This method provides the most desirable locations in the schedule to critical operations and

guarantees that when an operation is selected its predecessors have already been scheduled.

Upon entry to a basic block, the scheduler �rst generates and places load operations to

load the variables not already in registers. Then for each operation in the intermediate code,

the scheduler performs the following analysis to determine where to place it in the matrix.

First the scheduler locates the operands and uses the function unit latencies speci�ed in

the con�guration �le to determine the �rst row of the matrix in which both operands will

be available. Then the scheduler examines that row to �nd all unscheduled function units

that can execute the selected operation. If it �nds several free function units, it tries to

select the one that minimizes data movement. For example if both operands are located in

a particular cluster and that cluster has a free function unit, then the scheduler will place

the operation there. If the operands reside in di�erent clusters or in a cluster with already

�lled function units, then the operands can be transferred to a cluster with a free function

unit.

Data can be moved between function units in two ways. In the �rst method, a value

4.2. COMPILATION 47

basic block 0

up = NIL

uses: NIL

0 : |i0| = 0 (NIL NIL) NIL NIL 0

1 : |temp5| = 0 (NIL NIL) NIL NIL 0

2 : |j4| = 0 (NIL NIL) NIL NIL 0

3 : branch FALSE 1 (NIL NIL) NIL NIL 0

definitions: (|i0| |j4| |temp5|)

next = bb1 branch = bb2

basic block 1

up = (bb1 bb0)

uses: (|i0| |j4| |temp5| A-MAT X-VEC)

0 : T5 = * 4 |i0| (NIL NIL) (1) NIL 5

1 : T4 = + T5 |j4| (0 NIL) (2) NIL 4

2 : T3 = aref A-MAT T4 (NIL 1) (4) NIL 3

3 : T6 = aref X-VEC |j4| (NIL NIL) (4) NIL 3

4 : T2 = * T3 T6 (2 3) (5) NIL 2

5 : T1 = + |temp5| T2 (NIL 4) (6) NIL 1

6 : |temp5| = T1 (5 NIL) NIL (5) 0

7 : T7 = + |j4| 1 (NIL NIL) (8) NIL 3

8 : |j4| = T7 (7 NIL) (9) (1 3 7) 2

9 : T0 = < |j4| 4 (8 NIL) (10) NIL 1

10: branch TRUE T0 (9 NIL) NIL NIL 0

definitions: (|j4| |temp5|)

next = bb2 branch = bb1

basic block 2

up = (bb1 bb0)

uses: (|i0| |temp5|)

0 : aref B-VEC |i0| = |temp5| (NIL NIL) NIL NIL 0

definitions: (B-VEC)

next = bb3 branch = NIL

basic block 3

up = (2)

uses: NIL

0 : exit (NIL NIL) NIL NIL 0

definitions: NIL

next = NIL branch = NIL

Figure 4.8: The intermediate code for one of the subsidiary threads of the matrix-vector

program after data dependency analysis.

48 CHAPTER 4. INSTRUCTION SCHEDULING COMPILER

generated in one function unit is sent directly to the register �le of another cluster. In the

second, an explicit move operation transfers data from one cluster to another. Transfer-

ring the data automatically is the fastest since data can be sent to other clusters without

executing any additional operations.

The scheduler tries to minimize the movement of data between units while still using as

many of the function units as possible. It uses its knowledge of the cost of moving data to

decide where to place an operation. If an explicit move is required to use a function unit

on the selected cycle, the following cycle is examined for a better slot. If no such slot is

available, then move code will be generated and the operation will be placed in the �rst

available location.

If multiple function units are available, the scheduler will select one according to a �xed

preference assigned to the thread. Each thread has a list of all function units sorted by

its compiler assigned preference. This priority is used to achieve spatial locality in the

access patterns of the function units. Thus the operations from a thread are not randomly

scattered over the function units, but instead are kept locally on those function units with

the highest priority. The compiler prioritizes the function units di�erently for each thread

in order to prevent all threads from having the same function unit access pattern. This

serves as a simple form of load balancing.

When an appropriate location for an operation has been found, the code generator is

called to generate the assembly code for the selected operation. The scheduler does not

backtrack so that once an operation has been placed, it will not be moved to another loca-

tion. Contention for register ports and write back buses is not considered by the compiler;

it assumes that all the resources will be available when necessary.

4.2.6 Code Generation

Code generation takes place concurrently with scheduling. The scheduler calls the code gen-

erator when it has selected a code statement and its schedule location. The code generator

chooses the correct opcode and determines the operation format, the number of registered

or immediate operands, the type of synchronization required, and the registers to be used.

After the code from all threads has been scheduled, a �nal pass of the code generator counts

4.2. COMPILATION 49

Operand 2
Operand 1

Function Unit
Opcode

Sync. Bit
Num. Rands

Dest. Cluster

Dest. Register

Cluster ID

0 add 0 1 U0 R2 −1 −1 R1 #1 cluster 0

Figure 4.9: The �elds of a PCS assembly operation.

instructions in order to determine the o�sets for branch and fork operations.

The code generator does not perform register allocation but instead assumes that an

in�nite number of registers are available. Simulation results show that the realistic machine

con�gurations all have a peak of fewer than 60 live registers per cluster for each of the

selected benchmarks. Averaging over the benchmarks, a cluster uses a peak of 27 registers.

However, ideal mode simulations in which loops are unrolled extensively by hand require as

many as 490 registers.

4.2.7 Output

The compiler produces Processor Coupling Simulator (PCS) assembly code, a diagnostic

�le, and a modi�ed con�guration �le with information concerning register and memory

requirements. An instruction for PCS is a vector of operations, one for each function unit

in the simulated machine. If the compiler cannot schedule an operation on a particular

function unit, an explicit nop is assigned there. The PCS assembly program is represented

by a dense matrix of operations.

Figure 4.9 shows a sample assembly operation, which adds 1 to the contents of R1 and

stores the value in R2 of cluster 0. The function unit speci�er determines the function

unit where the operation is executed. The function unit numbering scheme is common to

the compiler and the simulator. The synchronization bit is used to specify pre and post-

conditions for load and store operations, and the num-rands �eld tells the simulator which

50 CHAPTER 4. INSTRUCTION SCHEDULING COMPILER

operands are in registers. In this encoding, up to two destination registers may be speci�ed.

The -1 in the second destination �eld indicates that only one target register is used. The

cluster ID �eld shows the cluster where the operation will execute and is for user readability

only. Load and store operations add the contents of the operand 1 and operand 2 �elds to

determine the memory address used. Store operations specify the data to be written using

the �rst destination register speci�er. Branch operations test the value in the operand 1

slot and branch to the o�set speci�ed in the �rst destination register.

Figure 4.10 shows the user readable assembly code for the master thread and one sub-

sidiary thread of the matrix-vector program, generated directly from the intermediate code

of Figure 4.8. Di�erent instructions within a basic block are separated by spaces and the

explicit nops are not displayed. Each operation's encoding is similar to the example in

Figure 4.9. The master thread (Thread 0) forks the four subsidiary threads in basic block 0

and then exits in basic block 1. Thread 1 begins by storing the loop initialization variables

at o�sets to the context pointer R0. Basic block 1 executes the loop body once and branches

back to the top of the block if more iterations are necessary. Basic block 2 stores the result

of the dot product into the proper array slot of b-vec. The arrays a-mat, x-vec, and b-vec

are at absolute addresses of #1000, #1016, and #1020 respectively.

4.3 Flexibility

The Instruction Scheduling Compiler is capable of generating code for several machine con-

�gurations. The programmer can specify how compilation is performed using the con�gu-

ration �le and compiler switches. In addition, the programmer can explicitly partition the

program and create synchronization structures using the directives described in Section 4.1.

4.3.1 Con�guration Information

The con�guration �le provides information about the target machine to the compiler. The

scheduler uses this information to map the intermediate code to the hardware model, which

the code generator needs to format the assembly code appropriately. The con�guration �le

is broken up into three sections. The header speci�es the output �le names and indicates

the number of function units, the number of clusters, the number of register �les, and the

4.3. FLEXIBILITY 51

Thread 0:

bb0:

12 forka 0 0 -1 thread4 -1 -1 0 0 cluster 4

12 forka 0 0 -1 thread3 -1 -1 0 0 cluster 4

12 forka 0 0 -1 thread2 -1 -1 0 0 cluster 4

12 forka 0 0 -1 thread1 -1 -1 0 0 cluster 4

bb1:

12 exit 0 0 -1 -1 -1 -1 0 0 cluster 4

Thread 1:

bb0:

1 stor 0 1 -1 #0 -1 -1 R0 #1 cluster 0

4 stor 0 1 -1 #0 -1 -1 R0 #0 cluster 1

10 stor 0 1 -1 #0 -1 -1 R0 #2 cluster 3

12 bf 0 0 -1 bb2 -1 -1 #1 0 cluster 4

bb1:

1 load 0 1 U1 R3 U0 R1 R0 #1 cluster 0

4 load 0 1 U1 R1 -1 -1 R0 #0 cluster 1

10 load 0 1 U3 R1 -1 -1 R0 #2 cluster 3

0 add 0 1 U0 R2 -1 -1 R1 #1 cluster 0

1 load 0 1 U1 R6 -1 -1 R1 #1016 cluster 0

3 mul 0 1 U1 R2 -1 -1 R1 #4 cluster 1

0 lt 0 1 U4 R1 -1 -1 R2 #4 cluster 0

1 stor 0 4 -1 R2 -1 -1 R0 #1 cluster 0

3 add 0 2 U1 R4 -1 -1 R2 R3 cluster 1

4 load 0 1 U1 R5 -1 -1 R4 #1000 cluster 1

5 fmul 0 2 U3 R2 -1 -1 R5 R6 cluster 1

11 fadd 0 2 U3 R3 -1 -1 R1 R2 cluster 3

10 stor 0 4 -1 R3 -1 -1 R0 #2 cluster 3

12 bt 0 1 -1 bb1 -1 -1 R1 0 cluster 4

bb2:

1 load 0 1 U0 R1 -1 -1 R0 #2 cluster 0

4 load 0 1 U0 R2 -1 -1 R0 #0 cluster 1

1 stor 0 4 -1 R1 -1 -1 R2 #1020 cluster 0

bb3:

12 exit 0 0 -1 -1 -1 -1 0 0 cluster 4

Figure 4.10: Assembly code for matrix-vector product.

52 CHAPTER 4. INSTRUCTION SCHEDULING COMPILER

number of destination register slots in an instruction.

The middle section enumerates the components of each cluster, including register �les,

and function unit types. A cluster descriptor starts with the keyword cluster and is fol-

lowed by register �le regfile keyword and function unit descriptors. The allowed function

units are integer units (int),
oating point units (float), branch units (branch), memory

units (mem), and move units (mov). Each function unit entry includes an integer indicating

the number of execution pipeline stages in the unit.

The �nal section has entries indicating the starting memory address that can be used

by the compiler and the number of memory banks. The on-chip memory of a Processor

Coupled node is interleaved into banks so that multiple memory operations can access

memory concurrently. However, the current simulation environment ignores bank con
icts

and assumes that an operation will not be blocked from accessing any memory bank. The

sample con�guration �le of Figure 4.11 has �ve clusters. Four of the clusters are arithmetic

and contain an integer unit, a memory unit, and a
oating point unit. The �fth is a branch

cluster and contains only a branch unit. Each cluster has one register �le.

4.3.2 Compiler Switches

The user controlled compiler switches allow the programmer to specify how data is trans-

ferred between clusters and how the scheduler places operations on function units. The

use-moves switch determines whether or not the compiler will use move operations to

transfer data from one cluster's register �le to that of another. If *use-moves* is set, each

cluster must have a dedicated move unit speci�ed in the con�guration �le. When data must

be transferred between di�erent clusters' register �les, a move operation is generated and

scheduled on the appropriate move unit. If *use-moves* is not selected then data must

be transferred by an integer or
oating point unit. This option provides the capability to

evaluate the usefulness of explicit move units versus incorporating that function into the

arithmetic units.

The *mode* switch determines where a thread's operations can be scheduled. If *mode*

is set to single, all of the operations for a thread will be scheduled on the same cluster.

Thus a program without multithreading would be restricted to using only one cluster. If

4.3. FLEXIBILITY 53

mat-vec /* Prefix to be used for the output files */

13 /* Number of function units */

5 /* Number of clusters */

5 /* Number of register files */

2 /* Number of destination registers to be

specified in an instruction */

cluster /* Cluster 1 */

regfile

int 1

mem 1

float 1

cluster /* Cluster 2 */

regfile

int 1

mem 1

float 1

cluster /* Cluster 3 */

regfile

int 1

mem 1

float 1

cluster /* Cluster 4 */

regfile

int 1

mem 1

float 1

cluster /* Cluster 5 */

regfile

branch 1

1000 /* Starting memory address */

2 /* Number of memory banks */

1 /* Cache hit latency */

0 /* Cache miss rate */

1 /* Cache minimum miss penalty */

1 /* Cache maximum miss penalty */

Figure 4.11: A sample compiler con�guration �le. The machine speci�ed by this con�gu-

ration �le has �ve clusters, each with its own register �le. Two destination registers may

be targeted in each instruction. The arithmetic clusters have one integer unit, one
oating

point unit, and one memory unit while the last cluster has only a branch unit. There are no

pipeline latencies as each unit operates in a single cycle. The cache parameters are passed

on to the simulator.

54 CHAPTER 4. INSTRUCTION SCHEDULING COMPILER

mode is set to unrestricted, a thread's operations may be spread around the clusters by

the scheduler, allowing the thread to use as many or as few of the function units as it needs.

The *mode* switch allows the user to isolate threads to compare a multiprocessor model to

the Processor Coupling model which uses the low interaction latency between clusters.

4.4 Future Work

ISC is a good �rst cut at an instruction scheduling compiler and is useful in testing the

viability of Processor Coupling. However, further additions are required to make it a proper

programming system. Enhancements to improve performance and expressibility include:

� Better Synchronization Analysis: Little is done in ISC to optimize synchronization

points to allow for maximum instruction-level parallelism.

� Abstract Data Types: A new revision of the source language would need a method of

composing simple data types into more complex data structures. Building arbitrary

arrays of arrays would be su�cient.

� E�cient Scheduling: The current scheduler operates slowly and is good at analyzing

operations only within a single thread. E�cient scheduling heuristics and analysis of

operations between threads to reduce resource contention are open research topics.

� Dependency Analysis: The dependency analysis performed in ISC assumes that all

references to a given array are related. The capability to disambiguate or explic-

itly synchronize array references is necessary to increase the amount of available

instruction-level parallelism.

� Advanced Compiler Techniques: Using trace scheduling would provide a larger num-

ber of operations to schedule concurrently. Software pipelining would improve loop

performance without the code explosion of loop unrolling.

� Register Allocation: A register allocator which operates on a �xed number of registers

and generates spill code if necessary is needed for a real system.

4.5. SIMULATION MODES 55

� Subroutines: A proper subroutine calling convention allowing reentrant code and

recursion would provide better programming facilities to the user.

In order to make ISC a tool for a massively parallel computer, other enhancements

must be added. These include the ability to partition programs across multiple nodes, to

communicate with remote nodes, and to manage global names.

4.5 Simulation Modes

Since an input program speci�es the amount of threading and the compiler can adjust how

operations are assigned to clusters, �ve di�erent modes of operation are possible. Each

mode corresponds to a di�erent type of machine and is described below:

1. Sequential (SEQ): The program is written using only a single thread, and the compiler

schedules the operations on only one cluster. This is similar to a statically scheduled

machine with an integer unit, a
oating point unit, a memory unit, and a branch unit.

2. Statically Scheduled (STS): As in Sequential mode, only a single thread is used, but

there is no restriction on the clusters used. This approximates a VLIW machine

without trace scheduling.

3. Ideal: The program is single threaded, has its loops unrolled as much as possible, and

is completely statically scheduled. This mode is not available for those benchmarks

with data dependent control structures, as they cannot be statically scheduled.

4. Thread Per Element (TPE): Multiple threads are speci�ed, but each thread is re-

stricted to run on only one cluster. Static load balancing is performed to schedule

di�erent threads on di�erent clusters. A thread may not migrate to other clusters,

but the benchmark programs are written to divide work evenly among the clusters.

5. Coupled: Multiple threads are allowed and function unit use is not restricted.

Threading is speci�ed using the partitioning constructs in PCTL and the *mode* switch

determines where a thread's operations will be scheduled. These modes will be used in

Chapter 6 as the experimental machine models.

56 CHAPTER 4. INSTRUCTION SCHEDULING COMPILER

4.6 Summary

The Instruction Scheduling Compiler (ISC) translates PCTL (Processor Coupling Test Lan-

guage) programs into Processor Coupling Simulator (PCS) assembly code. The input to

ISC is a PCTL program and a hardware con�guration �le; the output is assembly code and

a PCS con�guration �le. PCTL is a simple language that includes primitive data structures

and allows the programmer to specify synchronization and program partitioning explicitly.

ISC optimizes the program using common subexpression elimination and constant fold-

ing, and uses data dependency analysis to discover instruction-level parallelism. The sched-

uler packs independent operations into wide instruction words, attempting to place oper-

ations to maximize instruction-level parallelism while minimizing data movement between

function units.

The hardware con�guration �le tells the compiler about the target machine including

the number and type of function units, the partitioning of function units into clusters, and

the number of destination registers that can be speci�ed in an operation. The programmer

can set the *use-moves* switch to tell the compiler how to transfer data between function

units. The *mode* switch determines how the scheduler assigns operations to clusters.

Operations from a thread can be restricted to a single cluster, or they can be spread across

the clusters to exploit instruction-level parallelism.

ISC does not perform trace scheduling or software pipelining and does not schedule

code across basic block boundaries. Loops must be unrolled by hand and procedures are

implemented as macro-expansions. Although a few modern compilers do perform trace

scheduling and software pipelining, ISC provides a good lower bound on the quality of

generated code. Using more sophisticated scheduling techniques should bene�t Processor

Coupling at least as much as other machine organizations.

The integrated experimental environment, including PCTL, ISC, and PCS (the Proces-

sor Coupling Simulator described in Chapter 5) is able to simulate a variety of machines. At

one extreme is a simple superscalar processor with one integer unit, one
oating point unit,

one memory unit, and one branch unit. At the other extreme is the coupled machine using

both compile time and runtime scheduling techniques to manage many function units. A

statically scheduled machine and a multithreaded multiprocessor can be simulated as well.

Chapter 5

Processor Coupling Simulation

This chapter describes the Processor Coupling Simulator (PCS), a
exible functional level

simulator that runs assembly code generated by the Instruction Scheduling Compiler (ISC).

ISC and PCS are linked through shared con�guration information; together they can model

machines with di�erent con�gurations of function units and clusters. Simulation is at a

functional level rather than at a register transfer level, but PCS is accurate in counting the

number of cycles and operations executed. Figure 5.1 shows a diagram of the simulator's

interfaces to the outside world. The inputs to PCS are a program data �le, an assembly code

�le, and a hardware con�guration �le. PCS executes the program and generates statistics

including cycle counts, dynamic operation counts, number of cache hits and misses, function

unit utilization, and an instruction-level parallelism histogram. PCS is implemented in

C++ [Str87] and the source code can be found in [Kec92b].

Section 5.1 describes the operation of PCS in further detail, including the simulator

inputs and outputs, as well as the models used for the function units, the communication

network, and the memory system. The PCS con�guration �le, the statistics �le, and the

trace �le are shown for the matrix-vector product program of Chapter 4. The assumptions

made by the simulator about the Processor Coupled machine are stated in Section 5.2.

Finally, Section 5.3 summarizes the simulator's capabilities.

57

58 CHAPTER 5. PROCESSOR COUPLING SIMULATION

PCS Configuration

File

PCS Assembly
Code

Processor
Coupling
Simulator

Statistics File Trace File

Data File

Figure 5.1: Simulator inputs and outputs.

5.1 Processor Coupling Simulator

5.1.1 Simulator Structure

PCS is implemented as a collection of modules; each function unit is a C++ object derived

from a common function unit type. The memory system and the Cluster Interconnection

Network (CIN) are individual modules as well. More accurate models with the same module

interface can easily be substituted. Figure 5.2 shows the simulator's model of a cluster with

an integer unit, a
oating point unit, and a memory unit. The registers can be accessed by

all three function units simultaneously. The memory system is shared by all clusters and

its interface consists of one request port and one reply port per memory unit. The CIN

interface has request and acknowledge signals; it performs arbitration internally.

A monitoring module contains counters for instructions, cycles, memory accesses, cache

hits and misses, and CIN con
icts. The function unit, memory, and interconnection modules

access these counters through special interface functions. For example, when an operation is

issued, its type and the function unit that issued it are logged by the monitor. If execution

tracing is on, the operation and its operand values are printed to the trace �le. When the

5.1. PROCESSOR COUPLING SIMULATOR 59

R
e

q
u

e
s
t

A
c
k

n
o

w
le

d
g

e

Local Register Write

Remote Register Write

Integer
Unit

Floating
Point Unit

Request Reply

Memory
Unit

Memory System
Module From Remote

Clusters

Register
File

Network Module
Cluster Interconnection

Figure 5.2: Simulator cluster model.

simulator completes, the monitor tabulates the statistics and prints them to the output �le.

5.1.2 Inputs

The inputs to PCS are the assembly code �le, the data �le, and the con�guration �le.

The data �le provides the simulator with input values, since neither input nor output is

supported by PCTL. The simulator �rst initializes memory with the values speci�ed in the

�le before executing any code. When simulation completes, the �nal contents of memory

are printed to the output �le.

The PCS con�guration �le is generated by augmenting the ISC con�guration �le. ISC

contributes an additional �eld to each register �le entry displaying the number of registers

needed. The compiler also provides the amount of node memory required for simulation,

the maximum amount of local memory needed by a thread, and the name of the assembly

code �le. The memory size, number of registers, and maximum number of threads are used

60 CHAPTER 5. PROCESSOR COUPLING SIMULATION

100 13 /* Number of threads, function units */

5 5 /* Number of clusters, register files */

2 /* Number of destination registers to be

specified in an instruction */

mat-vec.asm /* Assembly code file */

59 /* Number of assembly code instructions */

4 /* Number of local variables per thread */

cluster /* Cluster 1 */

regfile 7

int 1

mem 1

float 1

cluster /* Cluster 2 */

regfile 7

int 1

mem 1

float 1

cluster /* Cluster 3 */

regfile 7

int 1

mem 1

float 1

cluster /* Cluster 4 */

regfile 7

int 1

mem 1

float 1

cluster /* Cluster 5 */

regfile 2

branch 1

input /* Cluster communication specifier */

100 /* Number of global buses */

3 /* Total number of register ports */

1 /* Number of locally reserved register ports */

25 /* Number of necessary memory locations */

1000 /* Starting memory address */

2 /* Number of banks */

1 0 /* Cache hit latency, miss rate */

1 1 /* Minimum and maximum miss penalties */

mat-vec.trace /* Trace output file */

mat-vec.dat /* Data input file */

Figure 5.3: A sample PCS con�guration �le for a machine with �ve clusters. The physical

parameters are speci�ed �rst, followed by cluster descriptions, communication parameters,

and memory system parameters.

5.1. PROCESSOR COUPLING SIMULATOR 61

by the simulator to allocate internal memory e�ciently.

The user must designate the CIN and memory system parameters. These provide a

means to investigate the e�ects of restricted communication strategies and variable memory

latencies on the performance of di�erent machine models and can be changed without

recompiling the program. These con�guration options are discussed further in Sections 5.1.5

and 5.1.6. Finally the user must provide names for the data input �le and instruction trace

output �le.

Figure 5.3 shows the PCS con�guration �le produced by compiling the matrix-vector

product program in Chapter 4. The machine model has �ve clusters and �ve register �les.

Two destination registers may be targeted in each instruction. The �rst four clusters have

an integer unit, a
oating point unit, and a memory unit, while the last cluster has only

a branch unit. Each unit's execution pipeline is one stage deep and takes a single cycle.

Register �les in clusters 1{4 have 7 registers each, but cluster 5 only has 2 registers. Each

register �le has 3 register write ports with one reserved for local register writes. The 100

buses speci�ed ensures that communication is limited only by the availability of register

�le write ports. A memory operation that hits in the cache has a one cycle latency. The

miss rate is 0 percent so the minimum and maximum miss penalties are irrelevant. The

assembly code is located in the �le named mat-vec.asm while the trace output �le and the

input data �le are mat-vec.trace and mat-vec.dat respectively.

5.1.3 Simulation Sequencing

A PCS simulator cycle is divided into the three pipeline phases shown in Figure 5.4.

The �rst phase fetches an operation from the operation cache. The second performs the

operation in the function unit's execution pipeline. The third phase writes the result back to

the appropriate register �le. The top level simulation loop executes a phase by sequencing

the function units in order. All function units complete a phase before the next phase is

begun. Thus, PCS simulates the fetch-execute-write cycle as if it occurs synchronously and

concurrently on all function units.

The operation fetch and register write phases each take a single cycle. Since the num-

ber of execution pipeline stages of di�erent function units may vary, operations issued on

62 CHAPTER 5. PROCESSOR COUPLING SIMULATION

Fetch Execute Write

Fetch WriteExecute

Figure 5.4: The simulator function unit pipeline has three stages. The Fetch and Write

stages are one cycle each. The Execute stage shown is one cycle but it can be speci�ed by

the user. Results are bypassed from one Execute stage to the next so that one thread can

issue an operation on every cycle.

the same cycle may complete on di�erent cycles. For any given thread, all operations in

an instruction are fetched simultaneously and only after all operations from the previous

instruction have issued. There are no branch delay slots and a branch operation stalls

the branching thread until the target address is available. Other threads may continue to

execute.

5.1.4 Function Unit Models

As shown in Figure 5.5, the simulator's representation of a function unit contains an ALU

pipeline, a result register, an operation cache, and the functions to select and sequence

operations from active threads. The thread control functions access all of the active thread

data structures to determine which operation to issue to the pipeline. ALU results are

stored in the Result Register while waiting to be sent to the interconnection module.

During the fetch stage, a function unit fetches operations from each thread that has

successfully issued all operations from its previous instruction. Operations are retrieved

from the operation cache and placed in the operation bu�er.

During the execute phase a function unit examines each active thread's operation bu�er.

If an operation that has its register requirements satis�ed is found, it is issued to the

execution pipeline. If no valid operation if found, a nop is sent instead. The pipeline then

advances one stage. Threads are prioritized by time of creation so that the �rst thread

always has the best chance of issuing an operation.

5.1. PROCESSOR COUPLING SIMULATOR 63

Unit Control

Result Register

ALU

Pipeline

Register

File

Operation

Buffer

Operation

Pointer

Thread N

Shared

Operation

Cache

Thread 0

Register

File

Operation

Pointer

Operation

Buffer

Network Module
Cluster Interconnection

Figure 5.5: Simulator function unit model. Each function unit has an operation pointer

and an operation bu�er for each thread. The register �le for a thread is shared with other

function units in the cluster. The operation cache is shared by all active threads.

In the register write phase, the function unit attempts to send its result to the appro-

priate register �le. If the register write fails, then the function unit stalls until the resources

to perform the write can be obtained on a later cycle. Register writes that succeed can also

bypass the register �le so that operations requiring the data can issue immediately.

The compiler guarantees that each function unit will execute only appropriate opera-

tions. Function unit types are int, float, mem, mov, and branch. Each of these units is

described below.

� Arithmetic Units: The integer and
oating point units (int and float) execute arith-

metic and logical operations. In addition, the imov (integer unit move) and fmov

(
oating point unit move) operations allow an operand to pass through the ALU

unchanged so that it can be transferred to another cluster.

64 CHAPTER 5. PROCESSOR COUPLING SIMULATION

� Memory Unit: The memory unit (mem) issues requests to the memory system and

sends the results to the Cluster Interconnection Network. Only simple addressing

modes which can be expressed by adding two operands are allowed. Operands may

be immediate constants or they may reside in registers.

� Move Unit: The move unit (mov) is responsible for transferring data between di�erent

clusters' register �les. The compiler can be directed to use imov and fmov operations

in the arithmetic units instead, rendering the move unit unnecessary.

� Branch Unit: The branch unit (branch) executes
ow of control operations such as

conditional and unconditional branches as well as thread control operations such as

fork and exit. Branch operations cause the other function units to stall until the

target address is available. Optimizations such as branch prediction or delay slots are

not used.

5.1.5 Cluster Communication

The function units request register �le ports and bus access from the Cluster Interconnection

Network (CIN) module which arbitrates when con
icts occur. Di�erent con�gurations can

be selected to explore the e�ects of restricting interconnection bandwidth and the number of

register ports between clusters. After arbitration, the CIN module sends acknowledgments

to those units which are granted use of the buses and ports; it then routes the data to

the appropriate register �les. In some network con�gurations all of the function units may

write results simultaneously, while more restrictive schemes require blocked units to stall

until the ports or buses become available.

The communication speci�er in the PCS con�guration �le consists of four �elds: in-

terconnection type, number of global buses, number of total register ports, and number of

local register ports. The number of remote transfers that may take place simultaneously is

limited by the number of buses. The number of register ports speci�es the total number

of write ports for a register �le. The number of local register ports indicates how many

of the register �le write ports are reserved for use within the cluster. Figure 5.6 shows

a con�guration with two local buses, four register ports, and two locally reserved register

5.1. PROCESSOR COUPLING SIMULATOR 65

Register Write Ports

Global Buses

Local Register Write Ports

Cluster

Function

Units

Register File

Figure 5.6: Interconnection network buses and ports. Writes to the local register �le can

use any of the register �le ports. Remote writes may not use the local register write ports.

ports.

The three main interconnection types each have their own arbitration functions. The

type full speci�es that all function units are fully connected and there are no shared re-

sources. The type input indicates that register writes between function units must compete

for register �le ports but not for global buses. The type sharedbus is similar to input ex-

cept that writes must compete for access to shared buses and register �le ports. Function

units have identi�cation numbers generated from the con�guration �le and request resources

from the CIN in that order.

5.1.6 Memory System Model

The memory system module interface consists of a request and reply port for each memory

unit. On a memory read, a memory unit sends an address to the request port. Some

number of cycles later the result is returned on the reply port of the memory unit in the

destination cluster. The destination cluster may be local or remote. On a memory write,

a memory unit sends both address and data to the memory system via the request port;

66 CHAPTER 5. PROCESSOR COUPLING SIMULATION

no reply is necessary. The memory system module models memory latencies according to

the speci�cations in the con�guration �le and automatically queues synchronizing requests

if their preconditions are not met.

The con�guration �le speci�es the following memory system parameters: starting mem-

ory address, number of banks, cache hit latency, cache miss rate, and cache minimum and

maximum miss penalties. The compiler generates the number of memory locations required

by the program, the address where memory starts, and the number of memory banks. The

user can control the latency of memory operations by varying the other four cache param-

eters. Ideal cache behavior (no misses) can be selected by making the miss rate zero. If

misses are allowed, a random number of accesses, speci�ed by the miss rate, will incur a

miss penalty. The miss penalties are uniformly randomly distributed between the minimum

and maximum values �xed in the con�guration �le.

5.1.7 Threads

Each thread has its own instruction pointer and register set but shares the function units,

memory system, and cluster interconnection module. When a thread is forked, the simulator

creates a Context Pointer (CP) and a register �le in each cluster. An Operation Pointer

(OP) and an Operation Bu�er are created for each function unit within a cluster. Figure 5.7

shows the state associated with a thread. The CP resides in register 0 in all of the thread's

register �les and points to a context consisting of newly allocated local memory for the

thread. The entire program is loaded into the operation caches before execution, and the

OP indexes into the operation cache to fetch the the thread's operations. The operation

bu�er holds operations waiting for register synchronization before being issued. When a

thread completes, all of its state and local memory is reclaimed by the simulator.

When the simulator begins executing the program, the �rst thread is automatically

started. Subsequent threads are created when the branch unit executes a fork operation.

The new thread is allocated state registers and context memory, and is added at the end

of the thread priority queue. The global thread priority queue maintains a list of active

threads in the order in which they were created.

5.1. PROCESSOR COUPLING SIMULATOR 67

Context Pointer

Op BufferOP

Op BufferOP

Register File

Op BufferOP

Op BufferOP

Register File

Context

Local

Memory

Cluster 1

Cluster 2

Figure 5.7: The state associated with a thread. This thread is for a machine with two

clusters, each with two function units. The thread has a register �le in each cluster and an

Operation Pointer (OP) and Operation Bu�er in each function unit. The Context Pointer

(CP) points to the thread's local memory.

5.1.8 Output

Simulation terminates when all threads have completed or if no further progress can be

made. The program may deadlock if it has a synchronization error. By checking forward

progress, the simulator detects these occurrences and noti�es the user. Upon termination,

the simulator produces an output �le and optionally a trace �le.

Output File

The output �le is composed of three parts. The �rst enumerates the complete machine con-

�guration that was simulated, including function unit, memory system, and communication

network parameters. The second lists the �nal memory contents so the user can determine

if the program produced the correct result.

The last part gives the statistics tabulated during execution. Figure 5.8 shows sample

statistics generated from running the matrix-vector product program. The parallelism his-

68 CHAPTER 5. PROCESSOR COUPLING SIMULATION

Parallelism of 0 is 0 cycles and 0.00%

Parallelism of 1 is 6 cycles and 10.53%

Parallelism of 2 is 4 cycles and 7.02%

Parallelism of 3 is 2 cycles and 3.51%

Parallelism of 4 is 14 cycles and 24.56%

Parallelism of 5 is 11 cycles and 19.30%

Parallelism of 6 is 13 cycles and 22.81%

Parallelism of 7 is 4 cycles and 7.02%

Parallelism of 8 is 3 cycles and 5.26%

Parallelism of 9 is 0 cycles and 0.00%

Parallelism of 10 is 0 cycles and 0.00%

Parallelism of 11 is 0 cycles and 0.00%

Parallelism of 12 is 0 cycles and 0.00%

Parallelism of 13 is 0 cycles and 0.00%

Unit Type Ops Executed Utilization Bus Conflicts

0 int 16 28.07% 0

1 mem 34 59.65% 0

2 float 8 14.04% 0

3 int 16 28.07% 0

4 mem 34 59.65% 0

5 float 8 14.04% 0

6 int 16 28.07% 0

7 mem 34 59.65% 0

8 float 8 14.04% 0

9 int 16 28.07% 0

10 mem 34 59.65% 0

11 float 8 14.04% 0

12 branch 29 50.88% 0

Unit type # Operations % Utilization Ops Per Cycle

integer 64 0.2807 1.12

float 32 0.1404 0.56

moves unit moves 0

integer unit moves 0

FPU moves 0

loads 88 0.5965 2.39

stores 48

branches 29 0.5088 0.51

Number of memory references = 136

Total number of cache hits = 136

Total number of cache misses = 0

Average memory access latency = 1.0

Number of cycles executed = 57

Number of operations executed = 261

Average parallelism = 4.58

Utilization for entire machine = 35.22%

Figure 5.8: The simulator output �le for matrix-vector product containing only the statistics

generated during execution. A complete output �le includes con�guration information and

the contents of memory.

5.2. SIMULATION ASSUMPTIONS 69

togram shows the number of cycles in which a given number of function units are used. In

matrix-vector product, 14 cycles have parallelism of 4, while only 3 cycles have parallelism

of 8. The function unit operation counts and utilization percentages are shown next. The

bus con
ict �eld enumerates the number of times units were stalled due to contention for

register �le ports or buses. Function unit operation counts and utilization are categorized

by type and given in the subsequent table. The number of memory references, cache hits,

and cache misses shows the e�ect of the memory system model. Average memory access la-

tency is given in cycles. Finally, the total cycle count, operation count, average parallelism,

and overall utilization are tallied.

Trace �le

The trace �le contains a history of the operations executed during simulation. Figure 5.9

shows the �rst 8 cycles of the trace �le for the matrix-vector product program. The unit

and thread �elds of each entry show the function unit and the thread that executed the

operation. The address �eld displays the operation's absolute address in the assembly code

�le. Runtime values of registers instead of register numbers are found in the operand �elds.

The remaining �elds correspond to the assembly operations described in Section 4.2.7 of

Chapter 4.

5.2 Simulation Assumptions

Since simulation takes place at a functional, rather than a register transfer level, certain

simplifying assumptions were made. Many were mentioned in the description of the simu-

lator structure, but those that warrant further discussion are thread behavior, the memory

system, and the Cluster Interconnection Network.

5.2.1 Thread Behavior

Although threads can be created and destroyed dynamically, the simulator places no limit

on the number of active threads. For the benchmarks used in this experimental evaluation,

at most 20 threads are active, but examination of the trace �les shows that usually fewer

70 CHAPTER 5. PROCESSOR COUPLING SIMULATION

Unit Thread Address Opcode AccCd #Rands DestID Dest DestID Dest Op1 Op2

Clock cycle 1:

12 0 1000 forka 0 0 U-1 #38 U-1 R-1 #0 #38

Clock cycle 2:

1 1 1038 stor 0 1 U-1 R0 U-1 R-1 #0 #1027

4 1 1038 stor 0 1 U-1 R0 U-1 R-1 #0 #1026

7 1 1038 stor 0 1 U-1 R3 U-1 R-1 #3 #1025

12 0 1001 forka 0 0 U-1 #26 U-1 R-1 #0 #26

Clock cycle 3:

4 2 1027 stor 0 1 U-1 R0 U-1 R-1 #0 #1031

7 2 1027 stor 0 1 U-1 R0 U-1 R-1 #0 #1030

10 2 1027 stor 0 1 U-1 R2 U-1 R-1 #2 #1029

12 0 1002 forka 0 0 U-1 #14 U-1 R-1 #0 #14

Clock cycle 4:

1 3 1016 stor 0 1 U-1 R0 U-1 R-1 #0 #1035

7 3 1016 stor 0 1 U-1 R1 U-1 R-1 #1 #1033

10 3 1016 stor 0 1 U-1 R0 U-1 R-1 #0 #1034

12 0 1003 forka 0 0 U-1 #2 U-1 R-1 #0 #2

Clock cycle 5:

1 4 1005 stor 0 1 U-1 R0 U-1 R-1 #0 #1038

4 4 1005 stor 0 1 U-1 R0 U-1 R-1 #0 #1037

10 4 1005 stor 0 1 U-1 R0 U-1 R-1 #0 #1039

12 0 1004 exit 0 0 U-1 R-1 U-1 R-1 #0 #-1

Clock cycle 6:

12 1 1038 bf 0 0 U-1 #8 U-1 R-1 #1 #8

Clock cycle 7:

1 1 1039 load 0 1 U0 R1 U-1 R-1 #-1 #1025

4 1 1039 load 0 1 U0 R3 U1 R1 #-1 #1026

7 1 1039 load 0 1 U2 R1 U-1 R-1 #-1 #1027

12 2 1027 bf 0 0 U-1 #8 U-1 R-1 #1 #8

Clock cycle 8:

0 1 1040 mul 0 1 U0 R2 U-1 R-1 #3 #4

3 1 1040 add 0 1 U1 R2 U-1 R-1 #0 #1

4 1 1040 load 0 1 U0 R6 U-1 R-1 #-1 #1016

7 2 1028 load 0 1 U3 R3 U2 R1 #-1 #1030

10 2 1028 load 0 1 U3 R1 U-1 R-1 #-1 #1029

12 3 1016 bf 0 0 U-1 #8 U-1 R-1 #1 #8

Figure 5.9: The �rst 8 cycles of the simulator trace �le for matrix-vector product.

5.2. SIMULATION ASSUMPTIONS 71

than 6 threads are issuing operations during any one region of the code. Since all threads

are in the working set, no thread management, such as swapping an idle active thread for

an inactive thread, is necessary. The simulator creates thread state, allocates contexts,

and places the context pointer in register 0 instantaneously with no overhead. Likewise,

destroying a thread has no cost.

In a real implementation, the number of active threads and the cost of thread manage-

ment a�ects the performance of parallel programs. However, in this study the benchmarks

use a small number of threads, and thread management is ignored. Thread management for

a Processor Coupled node that may have multiple live threads is an open area of research.

5.2.2 Memory System

The PCS cache is divided into an in�nite number of banks; memory accesses cannot be

blocked by bank con
icts. The cache is modeled statistically by specifying the hit latency,

the miss rate, and a variable miss penalty in the con�guration �le. On each memory access,

a random number is generated to determine if the access misses in the cache. If a miss

occurs, the additional latency is randomly chosen between the minimum and maximum

miss penalties speci�ed in the con�guration �le. A miss on a load delays the return of the

data to a memory unit by the cost of the miss. A miss on a store delays the storing of

the data. Memory references are non-blocking so that a thread may proceed after issuing

a memory operation. Locality of reference is not modeled by the memory system module.

This memory model approximates the latencies that might be seen in a massively parallel

distributed memory machine and is su�cient for showing the e�ects of dynamic latencies

on Processor Coupling performance.

A memory cell has three �elds: a presence bit, a data word, and a queue. The memory

system provides �ne grain synchronization by using the queue to hold outstanding memory

requests. The thread identi�er and the destination speci�er for synchronization opera-

tions waiting for a previous access to complete are automatically placed in the location's

queue. The simulator performs enqueueing and dequeueing with no additional overhead.

An implementation would use a polling scheme or a software trap mechanism to create

synchronization structures.

72 CHAPTER 5. PROCESSOR COUPLING SIMULATION

When simulation begins, the entire program is loaded into the operation caches. In-

struction cache misses are not included in the simulation. Additionally, the instruction

streams are stored in the operation caches in unpacked form, meaning that a vacancy in a

thread's instruction is held by a nop. In an implementation, storing nops wastes space in

the operation caches; an encoding might be used to eliminate them.

5.2.3 Cluster Interconnection Network

The CIN module manages the shared register �le ports and intercluster buses speci�ed in

the con�guration �le. Arbitration proceeds sequentially with the requests serviced in the

function unit order declared in the con�guration �le. If an operation cannot be granted all

of the necessary resources, the requesting function unit must stall; writes from an operation

with two destination registers will not be split over multiple cycles. The CIN controller

does not perform perfect arbitration. Granting resources in a di�erent order might result

in better utilization.

Register �le write ports are divided into local and global categories. If an operation

writes back to the register �le in its own cluster, the arbiter �rst tries to schedule the access

using a local register �le port. If none are left, the arbiter will try to use a global register

�le port. Writes to register �les in other clusters must compete for remote register �le

write ports. In sharedbus mode, multiple register �le ports can share the same global bus.

Arbitration is idealized and performed without overhead.

Since multiple threads are running simultaneously in an unpredictable fashion, the com-

piler cannot statically schedule the threads to eliminate register port and bus con
icts. Even

single thread programs cannot be perfectly scheduled to eliminate con
icts because of the

uncertainty of memory latencies. Thus the CIN parameters are not used by the compiler.

5.3 Summary

The Processor Coupling Simulator (PCS) is able to test the viability of Processor Cou-

pling by providing a functional level simulation environment. The con�guration of function

units, clusters, and register �les can be varied. Function unit latencies, cache miss rates

and penalties, and the cluster interconnection con�guration can be set by the user as well.

5.3. SUMMARY 73

The simulator is dependent upon the Instruction Scheduling Compiler to produce the PCS

con�guration �le and assembly code. After compilation, the user can de�ne the memory

system and the CIN parameters. On completion, the simulator writes the �nal contents of

memory and the execution statistics to the output �le. Statistics include dynamic opera-

tion counts, cycle counts, function unit utilization, cache performance, and the number of

resource con
icts in the CIN.

The simulator assumes ideal behavior of several of its components. There is no limit

on the number of active threads, and management functions such as creating and disposing

of threads have no cost. The memory system is modeled statistically and it synchronizes

references and queues outstanding requests automatically. Arbitration for shared buses and

register ports is performed by the cluster interconnection module with no overhead cost.

Chapter 6

Experiments

This chapter presents the experimental performance results of Processor Coupling on the

benchmark suite. The simulation environment described in Chapters 4 and 5 is used to

generate performance results. First, the running time of the di�erent machine models are

compared. Further experiments explore the e�ects of interference between threads, variable

memory latencies,
oating point unit latencies, and restricted connectivity between function

units. The number and mix of integer and
oating point units are varied in another class

of experiments. Finally, the results of three di�erent methods of expressing parallel loops

and of changing the strategy for moving data between function units are described.

Section 6.1 presents four benchmarks used in the evaluation of Processor Coupling.

Sections 6.2 through 6.10 describe the experiments and present results comparing the per-

formance of a Processor Coupled node to that of the statically scheduled and multiprocessor

models.

6.1 Benchmarks

Table 6.1 summarizes the four simple benchmarks selected to test the e�ectiveness of Pro-

cessor Coupling. Single-threaded and multithreaded versions of each benchmark are imple-

mented. The code for each of the benchmarks can be found in Appendix A. Each program

solves a small and well contained problem, and together the benchmarks can be used as

building blocks for larger numerical applications. For example, the compute intensive por-

74

6.1. BENCHMARKS 75

Benchmark Description

Matrix 9� 9 matrix multiply

FFT 32 point complex valued fast Fourier transform

Model VLSI device model evaluation

LUD Direct method sparse matrix lower-upper decomposition

Table 6.1: The benchmarks used to evaluate Processor Coupling.

tions of a circuit simulator such as SPICE include a model evaluator and sparse matrix

solver [SV88].

6.1.1 Matrix Multiply

The Matrix benchmark multiplies two 9 � 9 matrices of
oating point numbers. The

matrices are represented as two dimensional arrays; the compiler generates the appropriate

index calculations to access the elements.

The sequential version iterates over the outer two loops and has its inner loop completely

unrolled. The threaded version executes all of the iterations of the outer loop in parallel as

nine independent threads. As in the sequential version, the inner loop is unrolled completely.

The Ideal version of Matrix has all of the loops unrolled and the entire computation is

statically scheduled by the compiler.

6.1.2 Fast Fourier Transform

The FFT benchmark performs a 32 point decimation-in-time fast Fourier transform of

complex numbers [OS75]. The algorithm consists of two phases. The �rst phase traverses

the input vector, ordering the input values by bit-reversing their indices. The second phase

has a logarithmic number of stages, each of which performs 16 butter
y computations to

compute 2-point FFTs. The input vector is represented as a linear array in which each

complex value vector element occupies two successive array locations.

The single-threaded and multithreaded versions of the FFT benchmark both use the

same sequential bit-reversal code. In the second phase of the program, the sequential version

has two loops. The outer loop iterates through the 5 stages while the inner loop performs

all of the butter
y computations within a stage.

76 CHAPTER 6. EXPERIMENTS

The multithreaded version also iterates sequentially through the stages. A new thread

is created to compute each 2-point FFT so that all butter
y computations within a stage

are performed concurrently. Barrier synchronization is used between iterations of the outer

loop to prevent the iterations from overlapping. Without the barrier, a stale array element

might be read by one iteration before the correct value is produced by the previous iteration.

In the Ideal version of FFT, the bit-reversal loop is unrolled completely. The �ve stages

of the second phase are still executed sequentially, but the inner loop is unrolled and all 16

of the butter
y computations are scheduled simultaneously.

6.1.3 Model Evaluation

Model is a model evaluator for a VLSI circuit simulator in which the change in current for

each node in the network is computed based upon previous node voltages. A model evalu-

ator is required in the Newton-Raphson solution of circuit equations for DC and transient

analysis [SV88].

A circuit may consist of resistors, capacitors, NMOS transistors, and PMOS transistors.

Resistors and capacitors are evaluated using the simple models found in [VS83]. Resistor

and capacitor models each have two terminals and a resistance or a capacitance value. The

MOS transistors have gate, drain, and source terminals, a channel width, and a channel

length. Transistors can operate in cuto�, triode, or saturation regions, each subject to

simple device equations [GM84].

A full model evaluator will also include routines to generate a Jacobian for the variable

parameters of the circuit elements, but Model only calculates the \right-hand side" of the

circuit equation. The input circuit is represented as an array of device parameters; node

voltages and incremental currents are represented by one-dimensional arrays. Each model

is evaluated by applying the appropriate device equation to the voltages at its terminals.

The device's contribution to the current at each node is then added to the proper entry in

the global current array.

The single threaded version performs each evaluation sequentially. Since control
ow

depends upon the circuit con�guration, loops are not unrolled. The multithreaded version

evaluates all models concurrently. The PCTL forall-iterate construct is used to create

6.1. BENCHMARKS 77

Iref

M12 M11

M1

M15

M13 M14 M3

Vdd

M2M17

M16

M4

M5 M6

M7

M8

Ccomp

Vss

Rcomp

M9

Cload

Vout

M10

Vin+Vin−

Figure 6.1: Operational Ampli�er circuit used in the model evaluation benchmark.

a new thread for each device. A lock on each value in the current array guarantees atomic

update. No global or barrier synchronization is necessary.

The input circuit is a high-gain, high bandwidth, two-stage CMOS operational ampli�er.

The circuit contains twenty elements including 9 NMOS transistors, 8 PMOS transistors, 2

capacitors and one resistor. Of the 17 transistors, 5 are in the triode region, 9 are saturated,

and 3 are cuto�. The operational ampli�er circuit diagram is shown in �gure 6.1.

6.1.4 Sparse Matrix LU Decomposition

The LUD benchmark solves a sparse system of linear equations using the lower-upper

decomposition technique. An o� line program performs Markowitz reordering and generates

�ll-ins for the input matrix. The PCTL program uses an overlapped-scattered array to store

78 CHAPTER 6. EXPERIMENTS

the matrix [SV89]. Data structures for the diagonal elements of the array as well as indices

for elements below and to the right of the diagonal are stored as dense arrays.

The LUD benchmark performs the decomposition using a source-row driven algorithm.

The outer loop iterates over all rows of the matrix, while the inner loop normalizes and

updates dependent target rows. On each iteration of the outer loop, a row is selected as the

source. Each row with a non-zero element under the diagonal position of the source row

is normalized and updated. After selecting a source row, all target row updates are inde-

pendent. The outer loop executes sequentially, but �ne grain synchronization on individual

matrix elements could be used to overlap iterations.

The sequential version of LUD executes all loops sequentially. Since the control
ow

depends upon the input matrix, loops are not unrolled; there is no Ideal version of LUD. The

multithreaded version performs all the target row normalizations and updates concurrently.

After the outer loop selects a source row, a thread to update each target row is created. The

forall-iterate statement is used to create a dynamically determined number of threads,

and to balance the work across the function units. Barrier synchronization sequentializes

iterations of the outer loop.

The input data used in the experiments is a 64� 64 adjacency matrix of an 8� 8 mesh.

This input is a sparse banded diagonal matrix with 24% non-zero entries after reordering

and generating �ll-ins.

6.2 Baseline Comparisons

6.2.1 Machine Hardware Resources

The baseline machine consists of four arithmetic clusters and a branch cluster. Each arith-

metic cluster contains an integer unit, a
oating point unit, a memory unit, and a shared

register �le, while a branch cluster contains only a branch unit and a register �le. The

branch cluster may be used by any thread. Although Processor Coupling does not preclude

multiple branch units, one branch cluster is su�cient for these simulations. Each function

unit has a single cycle execution pipeline stage.

In the baseline machine, an operation can specify at most two destination registers. A

6.2. BASELINE COMPARISONS 79

Machine Model Description

SEQ Single thread, restricted to one cluster

STS Single thread, no cluster restrictions

Ideal Single thread, loops unrolled and statically scheduled

TPE Multiple threads, each thread restricted to one cluster

Coupled Multiple threads, no cluster restrictions

Table 6.2: Machine models use in experiments.

function unit can write a result back to any cluster's register �le, each of which has enough

buses and ports to prevent resource con
icts. Memory units perform the operations required

for address calculations. Memory references take a single cycle and have no bank con
icts.

The machine models used throughout this chapter were described in detail in Chapter 4

and are summarized in Table 6.2.

6.2.2 Results

Assuming that the compiler produces the best possible schedule, the number of cycles ex-

ecuted by the Ideal version of a benchmark is a lower bound for a particular machine

con�guration. Sequential mode operation provides an upper bound since only the paral-

lelism within a single cluster can be exploited. Table 6.3 shows the cycle counts for each

machine model. Floating point utilization is calculated as the average number of
oating

point operations executed each cycle. Utilizations for the rest of the units are determined

similarly. Figure 6.2 displays the cycle counts graphically.

In the single threaded models, STS mode requires on average 1.7 times fewer cycles

than SEQ, since STS allows use of all the function units. Since the Ideal mode's program

is fully unrolled and statically scheduled, loop overhead operations and redundant address

calculations are eliminated. The fewer operations executed by the Ideal machine allows it

to complete in an average of 7 times fewer cycles than SEQ.

In threaded mode, the cycle count for Coupled and TPE are nearly equivalent for the

Matrix, LUD, and Model benchmarks, which have been stripped of nearly all sequential

execution sections, and are easily partitionable. TPE is as fast as Coupled since the load is

balanced across the its clusters. Processor Coupling will have an advantage in less intrin-

sically load balanced computations, as long as threads are not allowed to migrate between

80 CHAPTER 6. EXPERIMENTS

Compared Utilization

Benchmark Mode #Cycles to Coupled FPU IU Memory Branch

Matrix SEQ 1991 3.13 0.69 0.90 0.91 0.05

Matrix STS 1181 1.85 1.17 1.52 1.53 0.09

Matrix TPE 628 0.99 2.19 2.84 2.87 0.17

Matrix Coupled 637 1.00 2.16 2.80 2.83 0.17

Matrix Ideal 349 0.55 3.95 0.28 0.70 0.00

FFT SEQ 3376 3.07 0.24 0.61 0.55 0.05

FFT STS 1791 1.63 0.45 1.25 1.04 0.09

FFT TPE 1976 1.79 0.40 1.05 0.96 0.20

FFT Coupled 1101 1.00 0.73 2.03 1.72 0.36

FFT Ideal 401 0.36 2.00 2.55 2.68 0.02

Model SEQ 992 2.70 0.21 0.10 0.82 0.14

Model STS 770 2.09 0.28 0.13 1.04 0.18

Model TPE 394 1.07 0.54 0.65 1.77 0.60

Model Coupled 368 1.00 0.58 0.70 1.82 0.64

LUD SEQ 57974 2.69 0.14 0.45 0.98 0.08

LUD STS 33125 1.54 0.24 0.78 1.72 0.14

LUD TPE 22626 1.05 0.35 1.35 2.71 0.35

LUD Coupled 21542 1.00 0.37 1.42 2.85 0.37

Table 6.3: Cycle count comparison of di�erent types of machines. Floating point unit (FPU)

utilization is given as the average number of
oating point operations executed each cycle.

Integer, memory, and branch unit utilizations are calculated similarly.

||0

|500

|1000

|1500

|2000

|2500

|3000

|3500

|4000

 C
yc

le
s SEQ

STS

TPE

Coupled

Ideal

Matrix FFT Model LUD

|

| 0

| 10000

| 20000

| 30000

| 40000

| 50000

| 60000

| 70000

| 80000

Figure 6.2: Baseline cycle counts for the �ve simulation modes. Matrix, FFT, andModel,

are referenced to the left axis, while the scale for LUD is on the right. Ideal is only

implemented for Matrix and FFT.

6.3. UTILIZATION 81

clusters.

One advantage of Coupled over TPE is found in sequential code execution. For example,

FFT has a large sequential section that cannot be partitioned. Since each TPE thread can

execute on only one cluster, performance in the sequential section is no better than SEQ.

In fact, because of the dominance of the sequential section, TPE does not even perform as

well as STS on the entire benchmark. Coupled, on the other hand, performs as well as STS

on sequential code. The available instruction-level parallelism can be exploited by Coupled,

but not by TPE. Since asymptotic parallel speedup of a program is limited by the amount

of sequential code, single thread performance is important.

One of Processor Coupling's advantages over a statically scheduled scheme is the in-

creased unit utilization allowed by dynamic scheduling. This capability allows Coupled

mode to execute an average of 1.8 times fewer cycles than the statically scheduled STS

mode. TPE, with its multiple threads, also executes faster than STS for all benchmarks

but FFT. This reduced cycle count in TPE and Coupled is due to the �ne grained inter-

leaving of threads. The multiple threads of Coupled mode result in much higher function

unit utilization, and therefore a lower cycle count, than STS.

6.3 Utilization

Figure 6.3 shows for each benchmark the utilization of the
oating point units, integer

units, memory units, and branch units. In all benchmarks, unit utilization increases as the

simulation mode approaches Ideal. For Matrix the utilization of FPUs, IUs, and memory

units is similar in each mode except Ideal. In Ideal mode, the FPU utilization is 3.9, which

indicates that the compiler has �lled nearly every
oating point operation slot. Note that

since the compiler has eliminated loop overhead operations and common subexpressions in

array index calculations, very few integer and branch operations are required. Furthermore,

a signi�cant fraction of the memory operations have been replaced by register operations.

Aside from Ideal mode, the unit utilization in FFT is similar. The multiple active

threads available in TPE and Coupled modes drive memory unit utilization up. This rise

results from the many read and write operations performed by the butter
y calculations

of the inner loop. Memory utilization in the Ideal mode is still high because the compiler

82 CHAPTER 6. EXPERIMENTS

||0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

O
pe

ra
ti

on
s/

C
yc

le Branch Unit

FPU

IU

Memory Unit

SEQ STS TPE Coupled Ideal

Matrix

||0.0

|0.5

|1.0

|1.5

|2.0
|2.5

|3.0

|3.5

|4.0

O
pe

ra
ti

on
s/

C
yc

le Branch Unit

FPU

IU

Memory Unit

SEQ STS TPE Coupled Ideal

FFT

||0.0

|0.5

|1.0

|1.5

|2.0
|2.5

|3.0

|3.5

|4.0

O
pe

ra
ti

on
s/

C
yc

le Branch Unit

FPU

IU

Memory Unit

SEQ STS TPE Coupled

Model

||0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

O
pe

ra
ti

on
s/

C
yc

le Branch Unit

FPU

IU

Memory Unit

SEQ STS TPE Coupled

LUD

Figure 6.3: Function unit utilization.

6.4. INTERFERENCE 83

Compile Time Runtime Devices

Mode Thread Schedule Cycle Count Evaluated

STS 1 25 25.0 20

Coupled 1 23 28.0 8

Coupled 2 23 38.7 6

Coupled 3 23 77.3 3

Coupled 4 23 80.7 3

Table 6.4: Average cycle counts for each iteration of the inner loop of theModel benchmark

for STS and Coupled, with threads assigned di�erent priorities.

was unable to replace memory references with register references. The execution of the

Model and LUD benchmarks is dominated by memory reference operations. Thus, even

in Coupled and TPE mode, the integer and
oating point utilizations are still quite small.

6.4 Interference

For multithreaded versions of the benchmarks, the statically scheduled threads interfere with

one another, causing the runtime cycle count to be longer than the compile time schedule

would suggest. To demonstrate this dilation, a slightly modi�ed version of Model is used

in Coupled mode. Four threads are created when program execution begins. Each thread

accesses a common priority queue of devices to be evaluated, chooses a device, updates the

queue, and then evaluates the device. This loop is repeated by all threads until the queue

is empty. A new input circuit consisting of 20 identically operating NMOS transistors is

used. This allows the code evaluating the other device models to be removed so that every

operation speci�ed in the new source program is executed. This provides the capability to

compare runtime cycle count with the number of instructions generated by the compiler.

With the modi�ed benchmark, the e�ect of a thread's priority on its runtime schedule can

be seen more clearly. The Coupled benchmark is compared to a similarly altered version of

an STS mode program.

Table 6.4 shows the compile time schedule length and the average runtime cycle count

to evaluate one model for each of the four threads in Coupled mode. The higher priority

threads execute in fewer cycles. In STS mode, there is only one thread, and it runs in the

same number of cycles as the static schedule predicts.

84 CHAPTER 6. EXPERIMENTS

In Coupled mode even the highest priority thread requires more cycles than the schedule

predicts. This is due to contention between threads for the shared queue. Taking a weighted

average across the four threads, Coupled mode requires 46.5 cycles per device evaluation.

Although STS requires only 25 cycles per evaluation, the multiple threads of Coupled allows

evaluations to overlap such that the aggregate running time is shorter (274 cycles versus

505 for STS). On single threaded code, Coupled and STS perform equally well; on threaded

code, Coupled mode will execute in fewer cycles.

6.5 Variable Memory Latency

Long memory latencies due to synchronization or remote references degrade performance of

any machine. Statically indeterminate memory latencies are particularly damaging to single

threaded modes since delays stall the entire program's execution. Multithreaded machines

hide long memory latencies by executing other threads.

A �ve to ten percent miss rate is assumed for an on-chip cache, depending on its size

and organization. If a cache miss occurs, the memory reference must go o� chip. When the

requested data is in local memory, the reference might complete in 20 cycles. References to

physically remote nodes can take 100 or more cycles. The three models of memory system

performance used in simulations are:

� Min: single cycle latency for all memory references.

� Mem1: single cycle hit latency, 5%miss rate, and a miss penalty randomly distributed

between 20 and 100 cycles.

� Mem2: similar to Mem1 with a 10% miss rate.

Figure 6.4 shows how the cycle counts for di�erent machine models are a�ected by long

memory latencies. Since the compiler is able to use 490 registers in Ideal mode forMatrix,

very few memory references are needed. Thus long latencies hardly a�ect the Ideal machine's

cycle count. In FFT, however, the cycle count for Ideal mode increases dramatically because

many loads and stores are required, and each delayed memory reference halts computation.

Cycle count for STS mode rises in all benchmarks with increasing memory latency for

6.5. VARIABLE MEMORY LATENCY 85

||0

|1000

|2000

|3000

|4000

|5000

|6000

|7000

|8000

|9000

C
yc

le
s

STS

TPE
Coupled
Ideal

Min Mem1 Mem2
Matrix

�
� �

�

�

�

�

�

�

�

�
�

||0

|1000

|2000

|3000
|4000

|5000

|6000

|7000

C
yc

le
s

STS

TPE

Coupled

Ideal

Min Mem1 Mem2
FFT

�

�

�

�

�

�

�

� �

�

�

�

||0

|500

|1000

|1500
|2000

|2500

|3000

|3500

C
yc

le
s

STS

TPE
Coupled

Min Mem1 Mem2

Model

�

�

�

�

�

�

�

�

�

||0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

|220

|240

|260

C
yc

le
s

(t
ho

us
an

ds
) STS

TPE
Coupled

Min Mem1 Mem2

LUD

�

�

�

�

�

�

�

�

�

Figure 6.4: Cycle counts when memory latency is varied. Increased latency a�ects the

single-threaded modes (STS and Ideal) more than the multithreaded modes (Coupled and

TPE).

86 CHAPTER 6. EXPERIMENTS

similar reasons. Nearly 5.5 times as many cycles are needed on average for execution with

Mem2 parameters as with Min for STS.

The cycle count for Coupled does not increase as greatly in any of the benchmarks since

other threads are executed when one thread waits for a long latency reference. On average,

execution with Mem2 parameters requires twice as many cycles as Min. If the compiler

knew which references would cause long delays, it could create a schedule to try to mask

long latencies. However, since many memory latencies cannot be statically determined,

runtime scheduling techniques like those of Processor Coupling can be used to mask the

delay. Because memory latencies can be quite long in a distributed memory parallel machine,

latency tolerance is a major advantage of Coupled over STS.

TPE is a�ected only slightly more severely than Coupled by long memory latencies.

Execution in Mem2 mode requires 2.3 times as many cycles as Min. Like Coupled mode,

TPE has other threads to run while waiting for long latency memory references. However,

TPE threads are allocated statically to speci�c clusters. If only one thread is resident on a

cluster and it stalls waiting for a reference, the cluster resources go unused.

6.6 E�ect of FPU Latency

Function unit latencies can also reduce the amount of available instruction-level parallelism

by increasing the critical path through a basic block. However, if enough parallelism exists,

the compiler can schedule operations into the gaps created by the long latency function

units.

To demonstrate the e�ect of increasing function unit latencies, execution pipeline laten-

cies in all
oating point units are varied from 1 to 5 cycles. The rest of the machine remains

the same as the baseline con�guration. The
oating point latency is speci�ed in the con�g-

uration �les of both the compiler and the simulator. The compiler uses this information to

schedule operations into the vacancies left by long latency units.

The experimental cycle counts for STS, TPE, Coupled, and Ideal modes are shown in

Figure 6.5. Results for each benchmark are quite similar. In STS mode the cycle count

increases by an average of 90% when the
oating point latency is increased from 1 to 5

cycles. Ideal mode does extremely well onMatrix and FFT, increasing only 6%. TPE and

6.6. EFFECT OF FPU LATENCY 87

|
0

|
1

|
2

|
3

|
4

|
5

|0

|500

|1000

|1500

|2000

|2500

|3000

|3500

|4000

 C
yc

le
s

STS

TPE
Coupled

Ideal

FPU Latency

Matrix

� � � � �

�

�

�

�

�

� �
�

� �

� � �
�

�

|
0

|
1

|
2

|
3

|
4

|
5

|0

|500

|1000

|1500
|2000

|2500

|3000

 C
yc

le
s

STS

TPE

Coupled

Ideal

FPU Latency

FFT

� � � � �

�

� �

�

�

� � � � �

� � �
� �

|
0

|
1

|
2

|
3

|
4

|
5

|0

|300

|600

|900
|1200

|1500

 C
yc

le
s

STS

TPE
Coupled

FPU Latency
Model

�

�

�

�

�

� � � �
�

� � � � �

|
0

|
1

|
2

|
3

|
4

|
5

|0

|10

|20

|30

|40

|50

|60

C
yc

le
s

(t
ho

us
an

ds
)

STS

TPE
Coupled

FPU Latency
LUD

�

� �

�

�

� � � �
�

� � �
�

�

Figure 6.5: Cycle counts when
oating point unit latency is varied.

88 CHAPTER 6. EXPERIMENTS

Coupled fare much better than STS, requiring only 11% and 10% more cycles respectively.

Ideal mode performs well because its loops are unrolled, providing more operations to

the compiler's scheduler to place in gaps created by longer latency
oating point units.

In contrast, the basic block boundaries of STS limit the number of operations that can

be scheduled together. Unlike dynamically determined delays such as memory references,

statically known function unit latencies can be used during compilation. Trace scheduling

would pack instructions in STS more e�ciently since operations from multiple basic blocks

would be available.

The results from TPE and Coupled show that a similar e�ect can be attained using

multiple threads. Instead of packing the instructions at compile time, the gaps in the

instruction stream created by function unit latencies are �lled by operations from other

threads. Trace scheduling would not improve the performance of the multithreaded modes

as dramatically as for STS. However, advanced compiler technology would certainly help

TPE and Coupled as well.

6.7 Restricting Communication

Since a thread's register set is partitioned, data may need to be transferred between clusters.

When two independent operations executing simultaneously on di�erent clusters produce

results needed by a subsequent operation, at least one of the results must be transferred.

Thus data movement results from the compiler trying to exploit the maximum instruction-

level parallelism. Another source of intercluster communication are results that must be

used by multiple subsequent operations. One example is an eliminated common subex-

pression, such as redundant array index calculations. These values might be distributed to

multiple clusters.

Since the number of buses and register input ports required to support fully connected

function units is prohibitively expensive, some compromises must be made. Communica-

tion can be restricted between function units such that hardware cost is reduced without

signi�cantly a�ecting performance. The �ve di�erent communication con�gurations that

were simulated are described below:

6.7. RESTRICTING COMMUNICATION 89

1. Full: The function units are fully connected with no restrictions on the number of

buses or register �le write ports.

2. Tri-Port: Each register �le has three write ports. One port is used locally within a

cluster by those units sharing the register �le. The other two ports have their own

buses and may be used by a local or a remote function unit.

3. Dual-Port: Each register �le has two write ports. This is similar to Tri-Port, with

only one global register port.

4. Single-Port: Each register �le has a single write port with its own bus. Any function

unit can use the port without interfering with writes to other register �les.

5. Single-Bus: Each register �le has two write ports. One port is for use within a cluster,

while the other port is is connected a bus shared with all of the other register �les.

Arbitration is performed to decide which function unit may use the bus on a given

cycle.

Figure 6.6 demonstrates how Processor Coupled performance is a�ected by restricting

the amount of communication between function units. Since each arithmetic cluster has

three function units, if the local register �le has fewer than three ports, con
icts within a

cluster can occur. These internal con
icts account for some of the additional cycles for the

Dual-Port, Single-Port, and Single-Bus networks. In most cases, the Single-Bus network

performs better than Single-Port because of the dedicated local register port. Intra-cluster

con
icts are highlighted by the statically scheduled SEQ and STS modes. For example,

Matrix in SEQ mode requires many more cycles for Dual-Port than for Tri-Port. Dual-

Port and Single-Bus have e�ectively the same network if only one cluster is used, but using

Single-Port requires 50% more cycles. A better compiler could schedule around some of

these con
icts to achieve better utilization, but other con
icts due to statically unknown

memory latencies could still occur.

In TPE mode, since each thread is assigned to a di�erent cluster, local communication is

more important than intercluster communication. Thus, TPE requires the most cycles when

using the Single-Port network, while the Full, Tri-Port, and Dual-Port networks execute

90 CHAPTER 6. EXPERIMENTS

||0

|500

|1000

|1500

|2000

|2500

|3000

|3500

|4000

|4500

|5000

 C
yc

le
s Full

3-Port
2-Port
1-Port
1-Bus

SEQ STS TPE Coupled Ideal

Matrix

||0

|500

|1000

|1500

|2000
|2500

|3000

|3500

|4000

|4500

|5000

 C
yc

le
s Full

3-Port
2-Port
1-Port
1-Bus

SEQ STS TPE Coupled Ideal

FFT

||0

|200

|400

|600
|800

|1000

|1200

|1400

 C
yc

le
s Full

3-Port
2-Port
1-Port
1-Bus

SEQ STS TPE Coupled
Model

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

C
yc

le
s

(t
ho

us
an

ds
) Full

3-Port
2-Port
1-Port
1-Bus

SEQ STS TPE Coupled

LUD

Figure 6.6: Cycle counts for restricted communication schemes of Processor Coupling. Cycle

count increases dramatically when single buses and ports are used, but the Tri-Port scheme

is nearly as e�ective as the fully connected con�guration.

6.8. NUMBER AND MIX OF FUNCTION UNITS 91

a comparable number of cycles in all benchmarks except Matrix. With Dual-Port, the

unrolled inner loop and multiple threads per cluster in Matrix saturate the local register

�le ports, resulting in 60% more cycles than Full.

As expected, the number of cycles increases for Coupled mode when function units must

contend for buses and register ports. Matrix, FFT, and LUD, have high integer unit

utilization because they calculate many common array indices, and are sharply a�ected

when using a Single-Port or Single-Bus network in Coupled mode. Model exhibits less

instruction-level parallelism, has low unit utilization, and is hardly a�ected by changing

communication strategies. Since Coupled mode takes advantage of as many clusters as

possible, fast communication between clusters is necessary. Thus Single-Port with many

global buses is better than Single-Bus.

Any restricted communication scheme trades chip area for increased cycle count. For

Coupled mode, Tri-Port has the best performance of the restricted con�gurations examined,

requiring an average of only 4% more cycles than the fully connected con�guration. Tri-Port

can be implemented using only 2 global buses per cluster. The number of buses to implement

a fully connected scheme, on the other hand, is proportional to the number of function

units times the number of clusters. Furthermore, the completely connected con�guration

will require additional register ports. In a four cluster system the interconnection and

register �le area for Tri-Port is 28% that of complete interconnection. Dual-Port might be

an attractive alternative as well. This two write port con�guration uses 32% more cycles

than complete interconnection, but requires only 21% of the area.

6.8 Number and Mix of Function Units

To determine the proper ratio between di�erent types of units, Processor Coupled machine

con�gurations were simulated with up to four IUs and four FPUs, while keeping the number

of memory units constant at four. Simulations of these benchmarks show that a single

branch unit is su�cient. Figure 6.7 displays the cycle counts for all the benchmarks as a

function of the number of IUs and FPUs. The number of FPUs and IUs are on the X and

Y axes. Cycle count is displayed on the Z axis.

The function unit requirements depend greatly upon the application. ForMatrix, cycle

92 CHAPTER 6. EXPERIMENTS

Matrix

1
2

3
4

FPUs 1
2

3
4

IUs

0

500

1000

1500

Cycles

1
2

3
4

1
2

3
4

0

500

00

00

s

FFT

1
2

3
4

FPUs 1
2

3
4

IUs

0

600

1200

1800

2400

Cycles

1
2

3
4

1
2

3
4

0

600

00

00

00

s

Model

1
2

3
4

FPUs 1
2

3
4

IUs

0

100

200

300

400

Cycles

1
2

3
4

1
2

3
4

0

00

00

00

00

s

LUD

1
2

3
4

FPUs 1
2

3
4

IUs

0

10000

20000

30000

40000

Cycles

1
2

3
4

1
2

3
4

0

00

00

00

00

s

Figure 6.7: Cycle count as a function of number of Floating Point Units (FPUs) and Integer

Units (IUs). For a �xed number of function units, cycle count is minimized when equal

numbers of IUs and FPUs are used.

6.9. METHODS OF EXPRESSING PARALLEL LOOPS 93

count is highest when only one IU and one FPU are used, and decreases when more units

are added. For two or more IUs, if the number of IUs is held constant and the number of

FPUs is increased, the cycle count drops. The same holds true if the number of FPUs is

constant and the number of IUs is varied. One FPU will saturate a single IU, but two IUs

are needed to saturate a single FPU. Thus, even though each benchmark consists primarily

of
oating point operations, integer units can also be a bottleneck since they are used for

synchronization and loop control. With a �xed number of function units, cycle count is

minimized when the number of FPUs and IUs are equal.

The results for FFT are similar to those of Matrix. However, the cycle count for four

FPUs and one IU is greater than that of three FPUs and one IU. This is due to additional

IU operations required to move
oating point array indices to memory units in remote

clusters. Like Matrix, one FPU will saturate a single IU, but each additional IU improves

performance. LUD shows much the same behavior as FFT with cycle count increasing as

FPUs are added.

Model exhibits much less instruction-level parallelism and does not bene�t as greatly as

the other benchmarks from additional function units. Cycle count is still minimized when

four IUs and four FPUs are used.

For these benchmarks, the incremental bene�t in cycles decreases as more function units

are added. The results indicate that the performance of a Processor Coupled node does not

increase signi�cantly for the sample benchmarks when more than four IUs and four FPUs

are used.

6.9 Methods of Expressing Parallel Loops

This section shows how benchmark performance changes when di�erent methods are used

to express parallel loops. Model uses a parallel loop to evaluate each device model con-

currently. LUD has a parallel loop to update each target row once a source row has been

selected. Neither Model nor LUD can use forall since the number of threads needed

depends upon the input data. The three methods examined here are:

94 CHAPTER 6. EXPERIMENTS

� Fork: The compiler creates a for loop containing one version of the loop body. At

runtime a fork operation creates a new thread on each loop iteration. Since each

thread executes the same code, the function unit access patterns will be identical.

� Iter: The forall-iterate construct is used to tell the compiler to generate di�erent

versions of the loop body, each with a di�erent function unit access pattern. On each

iteration of the loop, a new thread is created, but the version of the code depends on

the loop iteration number. This attempts to balance the work across the clusters.

� Auto: The compiler generates code for four threads which will be created when the

program begins. Each thread retrieves a task from the head of a common work queue

and executes it. When a thread has completed its task, it gets another job from the

queue. Since each thread has a di�erent function unit access pattern, the work will

be balanced across the clusters. In Model the queue is a counter holding the index

of the next device to evaluate. Each thread atomically increments the counter and

evaluates the appropriate device. Threads exit when there are no more devices to

evaluate. LUD uses a counter to select all of the target rows to update.

In the previous experiments, Iter was used as the threaded version of the Model and

LUD benchmarks.

6.9.1 Base Results

Figure 6.8 shows the cycle counts for Model and LUD using the above parallel loop

techniques. In Coupled mode, Iter is slightly worse than Fork on both benchmarks due

to the additional time required to choose the version of the code to execute. The selection

overhead costs slightly more than the advantage gained from load balancing. Auto performs

better than both since the overhead to create threads has been eliminated and the workload

is well balanced.

In TPE mode, Fork requires between 1.5 and 3 times as many cycles as Iter andAuto.

Since Fork has no load balancing, all of the operations execute on a single cluster. The

performance of Iter is similar to Auto, but because of the code selection overhead, Iter is

slightly worse.

6.9. METHODS OF EXPRESSING PARALLEL LOOPS 95

||0

|100

|200

|300

|400

|500

|600

 C
yc

le
s Auto

Iter

Fork

Coupled TPE
Model

||0

|10
|20

|30

|40

|50

|60

C
yc

le
s

(t
ho

us
an

ds
)

Auto

Iter

Fork

Coupled TPE
LUD

Figure 6.8: Cycle counts for Model and LUD using di�erent parallel loops.

Aside from Fork, Coupled and TPE performance is quite similar for both Iter and

Auto. On Iter, Coupled has a slight advantage because the sequential work of the top level

thread can be distributed over multiple units. However for Auto, TPE has the advantage,

since each thread has its own cluster and does not interfere with threads on other clusters.

6.9.2 Memory

Figures 6.9 and 6.10 shows the e�ect of memory latencies when using the di�erent

parallel loops. For LUD the cycles required for Auto increases dramatically. The setup

code, including many memory references, is duplicated in each of the four threads; since

cache behavior does not model locality, more memory references cause more cache misses

to occur. Iter and Fork execute a similar number of memory operations and their cycle

counts track when memory latency is increased. Model exhibits similar behavior.

6.9.3 Communication

Figures 6.11 and 6.12 show the e�ect of restricting communication between clusters for

the di�erent forms of parallel loops. The behavior exhibited here is similar to that seen in

96 CHAPTER 6. EXPERIMENTS

||0

|200

|400

|600

|800

|1000

|1200

 C
yc

le
s

Fork
Iter

Auto

Min Mem1 Mem2

Coupled

�

�

�

�

�

�

�

�

�

||0

|200
|400

|600

|800

|1000

|1200

 C
yc

le
s

Fork

Iter
Auto

Min Mem1 Mem2

TPE

�

�

�

�

�

�

�

�

�

Figure 6.9: E�ect of memory latency on Model using di�erent parallel loops.

||0

|10

|20

|30

|40

|50

|60

|70

|80
|90

|100

C
yc

le
s

(t
ho

us
an

ds
)

Fork
Iter

Auto

Min Mem1 Mem2

Coupled

�

�

�

�

�

�

�

�

�

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

C
yc

le
s

(t
ho

us
an

ds
)

Fork

Iter

Auto

Min Mem1 Mem2

TPE

�

�

�

�

�

�

�

�

�

Figure 6.10: E�ect of memory latency on LUD using di�erent parallel loops.

6.9. METHODS OF EXPRESSING PARALLEL LOOPS 97

||0

|100

|200

|300

|400

|500

|600

 C
yc

le
s Auto

Iter

Fork

Full 3-Port 2-Port 1-Port 1-Bus

Model (Coupled)

||0

|100

|200
|300

|400

|500

|600

 C
yc

le
s Auto

Iter

Fork

Full 3-Port 2-Port 1-Port 1-Bus

Model (TPE)

Figure 6.11: Restricting communication on Model using di�erent parallel loops.

||0

|10

|20

|30

|40

|50

|60
|70

|80

C
yc

le
s

(t
ho

us
an

ds
) Auto

Iter

Fork

Full 3-Port 2-Port 1-Port 1-Bus

LUD (Coupled)

||0

|10

|20

|30

|40

|50

|60

|70

|80

C
yc

le
s

(t
ho

us
an

ds
) Auto

Iter

Fork

Full 3-Port 2-Port 1-Port 1-Bus

LUD (TPE)

Figure 6.12: Restricting communication on LUD using di�erent parallel loops.

98 CHAPTER 6. EXPERIMENTS

Section 6.7. In Coupled mode, the cycle counts of bothAuto and Iter are similarly a�ected

by all communication networks; neither has a signi�cant advantage. Fork is most a�ected

by communication restrictions, particularly by Single-Port. Because load balancing is not

performed, more operations execute within a single cluster and saturate the local register

write ports while bandwidth in other clusters goes unused. TPE exhibits similar behavior.

Iter and Auto have the same relative performance, while Fork is hardest hit when using

the Single-Port network.

6.10 Data Movement Strategy

This section shows the e�ect on cycle count from changing the way data is transferred

between clusters. Within a thread, data is moved by specifying a target register in another

cluster. Using multiple destination registers to deliver a result to two di�erent clusters

eliminates the move operation required if only one destination is allowed. When all of the

destination speci�ers in the operation generating the value have been �lled, the compiler

must use an explicit move operation. If dedicated data movement units are not included in

the hardware model, the compiler will schedule move operations on arithmetic units.

The experiments here vary the number of destination register speci�ers for con�gurations

with and without data movement units. The remaining machine resources are identical to

the baseline con�guration used in previous sections. The clusters are fully connected and

have enough register ports and buses so that function units are not stalled. Figure 6.13

shows the cycle count when the number of destination speci�ers in the operation is varied

from 1 to 4.

For both con�gurations, the most gain is achieved when going from 1 to 2 destination

speci�ers. In fact, with more than 2 targets, no move operations are required at all. The

cycle count for LUD and FFT decreases the most, largely because they have the most

common subexpressions, such as array indices and multiply used variables.

In Matrix, Model, and FFT, when 4 destination registers are used, the cycle count

actually increases even though the number of move operations is reduced. Since the schedul-

ing phase of the compiler has a cost model for moving operands, it may decide to schedule

an operation in the cluster where the data is already located, rather than transfer the data

6.10. DATA MOVEMENT STRATEGY 99

|
0

|
1

|
2

|
3

|
4

|0

|200

|400

|600

|800

|1000

|1200

 C
yc

le
s

With move units
Without move units

Target Registers
Matrix

� �

�
�

�
�

� �

�

�

�
�

|
0

|
1

|
2

|
3

|
4

|0

|300

|600

|900

|1200
|1500

|1800

|2100

 C
yc

le
s

With move units
Without move units

Target Registers
FFT

� �

�

�
�

�

� �

�

�

�

�

|
0

|
1

|
2

|
3

|
4

|0

|100

|200

|300

|400

|500
|600

|700

|800

 C
yc

le
s With move units

Without move units

Target Registers

Model

� �

� � � �

� �

� � � �

|
0

|
1

|
2

|
3

|
4

|0

|5

|10

|15

|20

|25

|30

|35

C
yc

le
s

(t
ho

us
an

ds
) With move units
Without move units

Target Registers

LUD

� �

�

� � �

� �

�

� � �

Figure 6.13: The e�ect of varying the number of target registers speci�ed in an operation

in Coupled mode both with and without dedicated move units.

100 CHAPTER 6. EXPERIMENTS

to another cluster. However, additional target registers allow the scheduler to spread the

data and operations over all of the function units; this may increase interference between

threads. The runtime behavior of this experiment is extremely sensitive to the assumptions

made in the compiler's scheduler. Additionally, although it is not modeled here, spreading

the data around increases contention for shared Cluster Interconnection Network resources.

Optimizing dynamic behavior using compile time analysis, especially when multiple threads

are permitted, is very much an open research question.

Only FFT with one target and Matrix with two targets display an advantage of using

dedicated move units. From these experiments, the best con�guration has two destination

register speci�ers, and does not need dedicated move units.

6.11 Summary

In this chapter, four simple benchmarks, Matrix, FFT, Model, and LUD, were run on a

variety of di�erent machine models. On these programs, a Processor Coupled node executes

60% fewer cycles, and achieves almost twice the utilization of a statically scheduled processor

without coupling. Processor Coupling is tolerant of variable memory and execution unit

latencies. In the experiments with variable memory latency, a Processor Coupled node

executes 75% fewer cycles than a statically scheduled processor. Processor Coupling is also

more tolerant of function unit latencies, executing only 10% more cycles when the
oating

point unit latency is increased from 1 to 5 cycles. The statically scheduled processor requires

90% more cycles for the same change in
oating point unit latency.

On threaded code TPE and Coupled modes achieve nearly the same performance. How-

ever, on sequential sections of code, Coupled is able to use all of the function units while

TPE is restricted to only those function units within a single cluster. In sequential sections

the TPE model requires on average 2.9 times as many cycles as Coupled. On FFT which

has a signi�cant sequential section, TPE executes 79% more cycles than Coupled.

The simulations show that the Cluster Interconnection Network greatly a�ects cycle

count. A scheme with only three write ports in each register �le achieves performance

approaching that of a fully connected network. One port is devoted to local register writes,

and the remaining ports are connected to buses that can be driven by function units in other

6.11. SUMMARY 101

clusters. This con�guration gives nearly the same performance as complete interconnection

(only 4% more cycles) for less cost (28% of the interconnect area for a four cluster machine).

A two write port con�guration executes 32%more cycles than complete interconnection, but

requires only 21% of the area. Performance also depends on the right balance of function

unit types. The simulations suggest a con�guration with four
oating point units, four

integer units, and one branch unit.

The experiments with parallel loops indicate that balancing workload across the clusters

without incurring runtime overhead is important. Autoscheduling accomplishes these goals

but seems to pay a penalty when memory latency is increased, due to additional memory

references. However the actual time to create threads would increase the cycle count for

Iter. A simulation system that models locality and the cost of creating threads would

provide better insight. Finally, the results from the data movement experiments indicate

that using arithmetic units to execute move operations and allowing an operation to specify

two destination registers is su�cient. However, the con�guration with only one destination

speci�er has performance within 15% of that with four destinations.

Chapter 7

Implementation Issues

This chapter describes some of the issues involved in building a Processor Coupled

node. Section 7.1 introduces the Processor Coupling pipeline, including the additional

synchronization stage required. Section 7.2 discusses further implementation issues such as

synchronization and communication between function units, the memory system, and multi-

threading. Finally, Section 7.3 discusses the chip area required for the di�erent components

of the processor and explores some of the tradeo�s in register �le design and intercluster

communication. This chapter is meant to demonstrate the feasibility of a Processor Coupled

node but does not present all of the details necessary to build one.

7.1 Function Unit Pipeline Stages

A block diagram of a function unit is shown in Figure 7.1. The function unit has a �ve-

stage pipeline consisting of operation fetch (OF), scoreboard check (SC), register read (RR),

execution (EX), and write back (WB) stages. Each active thread has an entry in the

operation pointer set, in the operation prefetch bu�er, and in the operation bu�er. The

operation bu�er shown has space for operations from four active threads. To keep the

pipeline full, the scoreboard is updated as an operation is sent from the SC stage to the

RR stage. The value of the result is written to the register �le during the WB stage. The

paths to the register �le and scoreboard from other clusters are not shown. Memory units

and branch units have additional interfaces and logic but use a similar �ve stage pipeline.

102

7.1. FUNCTION UNIT PIPELINE STAGES 103

OF

SC

RR

EX

WB

Operation

Buffer

ALU

WB Register

remote register files

Operation

Prefetch

Buffer

Operation

Cache

Register

File

Scoreboard

Operation

Pointer Set

V

V

V

V

Figure 7.1: A sample arithmetic unit with a single EX stage. OF fetches an operation from

the Operation Cache, SC checks the scoreboard to determine which of the source registers

are ready, RR reads the register �le, EX executes the operation, and WB writes back the

result.

104 CHAPTER 7. IMPLEMENTATION ISSUES

7.1.1 Operation Fetch

During the operation fetch (OF) stage, an active thread addresses the operation cache and

places an operation into the operation prefetch bu�er. The operation prefetch bu�er holds

fetched operations that are waiting to read the scoreboard and arrive in the operation

bu�er. The OF fetch logic determines which active thread accesses the operation cache by

examining the operation that issues to the execution pipeline. Thus, the thread that issues

an operation is allowed to fetch an operation. Linking the operation issue determined in

the SC stage with the operation fetch performed in the OF stage permits a single thread

to keep its pipeline full and issue an operation each cycle.

7.1.2 Scoreboard Check

The fetched operation accesses the scoreboard during the scoreboard check (SC) stage. The

scoreboard determines which of the source registers required by the operation are ready.

The operation, along with the register status obtained from the scoreboard, is deposited in

the operation bu�er. The operation bu�er can hold one pending operation from each active

thread.

The operation bu�er maintains the status for each pending operation to determine

when that operation is ready to issue. Its function is similar to that of a reservation

station [Tom67], except that operations are bu�ered before reading their registers instead

of after. An operation is enabled to issue when all of its source registers are ready and

when all operations from previous instructions in that thread have issued. Operation issue

is de�ned as sending a valid operation to the RR stage. A pending operation's status is

updated as source registers become available and as operations from previous instructions

complete. This update is performed in place and does not require access to the scoreboard.

An operation that �nds all of its registers ready when it accesses the scoreboard may move

directly from the SC stage to the RR stage without entering the operation bu�er.

Figure 7.2 shows the operations from two di�erent threads (T1 and T2) in the pipeline

of a function unit. The status of T1's register R4 is shown at the bottom of diagram; the

other source registers are valid, and their status is not shown. T1's operation is fetched

during cycle 1, and during cycle 2 it checks the scoreboard, �nds R4 invalid, and waits in

7.1. FUNCTION UNIT PIPELINE STAGES 105

OF

SC

RR

T1:

Check R3, R4

T2:

Check R1, R2

T2:

Read R1, R2

WB

Read R3, R4

T1:

Cycle 1 2 3 4 5 6 7

EX T2:

Execute

T1:

Execute

Write R5

T1:

T2: Fetch

R3 + R4R5

T1: Fetch

operation i+1

T2: Check

operation i+2

Fetch T2: T1: Fetch

operation i+2

operation i+1

T1: Check

R0 R1 + R2

Write R0

T2:

Write

T1:

9R4

T1:

R4 Valid

Register
Status T1: R4 = I T1: R4 = IT1: R4 = I T1: R4 = VT1: R4 = V

Figure 7.2: The procession through the pipeline of operations from two di�erent threads

(T1 and T2). T1's operation is fetched during cycle 1, and during cycle 2 it checks the

scoreboard and �nds R4 invalid. T2's operation is fetched in cycle 2, checks the scoreboard

during the cycle 3, and since both source registers are valid, issues to the RR stage during

cycle 4. T1's register R4 becomes valid at the end of cycle 4 and it follows T2's operation

into the RR stage in cycle 5.

the operation bu�er. T2's operation is fetched in cycle 2, checks the scoreboard during

cycle 3, and since both source registers are valid, issues to the RR stage in cycle 4. A

T1 operation from a remote cluster updates the scoreboard during cycle 4, allowing the

T1 operation waiting in the operation bu�er to issue to the RR stage. The value 9 is

forwarded to the start of the EX stage in cycle 6. When operation i is issued to the RR

stage, operation i+1 in the prefetch bu�er enters the SC stage and operation i+2 is fetched

into the prefetch bu�er. Thus on cycle 4 when T2's operation reads the registers, the two

subsequent operations enter the SC and OF stages.

The results of the T2 and T1 operations are written back to the register �le during

cycles 6 and 7 respectively. The remote T1 operation writes the value 9 into the register �le

106 CHAPTER 7. IMPLEMENTATION ISSUES

during cycle 6 as well, using one of the additional register write ports. The arrows between

pipeline stages show the progress of each thread. Because of the scoreboard synchronization

in the SC stage, thread 2 is able to pass thread 1 in the pipeline during cycle 3.

7.1.3 Register Read

During each cycle, the operation bu�er selects an enabled operation and forwards it to the

RR stage where it reads its source registers. These registers are guaranteed to be available

since only operations with all dependencies satis�ed are issued to the RR stage. Because the

presence bits used for synchronization are kept in the scoreboard and are accessed during

the SC stage, the RR stage is the only portion of the pipeline that uses the register read

ports. Values bypassed from execution stages will join the operation at the beginning of

the �rst EX stage.

7.1.4 Execution

The operation along with its arguments proceeds to the execution (EX) stage(s). All opera-

tions, including arithmetic operations, loads, stores, and branches, are executed during EX

stages. Depending on the type of operation performed, more than one cycle may be required

for execution. For example, a
oating point multiply may require 5 cycles to execute, while

an integer addition may only need 1. Some operations, such as memory references, take a

variable number of cycles to complete. Since the scoreboard manages data dependencies,

out of order completion of operations is permitted.

7.1.5 Write Back

The results of an operation are written to the destination register �le in the write back

(WB) stage. A destination register may reside in the local register �le or in a remote

register �le. Writes to the local register �le can use the local bypass paths to skip the WB

stage, allowing results to be used on the next cycle. Remote writes are bypassed to the

destination clusters but arrive one cycle later due to the communication delay. Scoreboard

update takes place before the operation completes so that the dependent operation can

issue and use the bypassed data. Allocating the communication resources for transmitting

7.2. OPERATIONAL ISSUES 107

data between function units during the WB stage is discussed in Section 7.2.4.

7.2 Operational Issues

7.2.1 Scoreboard Update

Two cycles before an operation is to complete, the destination register �le's scoreboard

is updated to indicate that the register is available. This allows an operation to issue in

time to use a result that is bypassed directly from the execution unit. Figure 7.3 shows

an operation pipeline with a one stage execution unit. The �rst operation updates the

scoreboard as soon as it issues to the RR stage at the beginning of cycle 3. This permits

the subsequent operation to issue in cycle 4, and use the result that arrives via the bypass

path shown from one EX stage to the next.

The scoreboard requires the same number of read ports and write ports as the register

�le. The read ports are used during the SC stage to check the status of operation source

registers while the write ports are used two cycles before WB to update the scoreboard to

re
ect subsequent register writes. Between di�erent function units, arbitration required for

access to register �le write ports is performed at the same time as the scoreboard update.

The data from a load operation is returned to the destination cluster where it is placed

directly in the register �le.

7.2.2 Comparison to Conventional Pipeline

The Processor Coupled function unit adds a scoreboard check stage to the conventional four-

stage execution pipeline. In a traditional pipeline, instructions check the availability of their

operands in parallel with the register read. Speculative register reads before dependencies

are satis�ed cause the pipeline to stall whenever a source register is not available. Because

the register read ports have been consumed by the stalled instruction, no other instruction

is available to proceed to the execution unit on the next cycle. Instead a bubble must be

inserted into the pipeline and resources are wasted.

In a Processor Coupled pipeline, dependencies are examined in the SC stage without

using the register read ports. Only operations that are enabled by having all dependencies

108 CHAPTER 7. IMPLEMENTATION ISSUES

1 2 3 4 5 6

Operation Issue

RR EX WBOF SC

OF SC RR EX WB

Figure 7.3: A �ve stage pipeline corresponding to the function unit in Figure 7.1. The �rst

operation updates the scoreboard as it issues to the RR stage, two cycles before the result

is ready. The next operation can issue immediately and use the bypassed result from the

EX stage.

satis�ed are issued to the RR stage. This early check permits an operation from another

thread to be issued from the operation bu�er if the operation just accessing the scoreboard

is not ready. The scoreboard check adds a stage to the pipeline and thus increases the

mispredicted branch penalty by one cycle. It does not increase arithmetic latency since the

scoreboard can be updated early to permit immediate use of bypassed arithmetic results.

7.2.3 Thread Selection

A Processor Coupled node interleaves a set of active threads. Every cycle, each function

unit's SC stage selects an enabled operation (if one exists) from the operation prefetch bu�er

or the operation bu�er for issue to the RR stage. If more than one operation is enabled,

selection is made using a �xed priority.

7.2.4 Intercluster Communication

An operation must read its source registers from the local register �le but may write its result

to a register in a di�erent cluster. An intercluster interconnection network is provided to

support this communication. Several alternative structures for this network were evaluated

in Chapter 6. For these networks, a single cycle is required to transport a result to a remote

7.2. OPERATIONAL ISSUES 109

1 2 3 4 5 6 7

Perform Arbitration

Source
Operation

Remote
Operation

Communication Delay

OF SC RR EX WB

OF SC EX WBRR C

Figure 7.4: Bypassing data from the EX stage of a source unit to the EX stage of a remote

unit. Arbitration for communication resources is performed during the RR stage. The

single cycle communication latency delays the result from arriving at the destination until

cycle 6.

cluster. In a real system, a result produced by the WB stage in cycle i can be used by

the execution unit in the local cluster during cycle i, but will not be available to a remote

cluster until cycle i+ 1.

Arbitration for shared communication resources is performed at the time of scoreboard

update, two cycles before the result is available. An operation that wins the arbitration

updates the scoreboard in the remote cluster immediately and uses the data paths granted

by the arbitration two cycles later to provide the result. An operation that loses the

arbitration stalls its pipeline and retries on subsequent cycles until the data paths are

granted. The networks discussed in Chapter 6 are designed so that all resources (paths

and register ports) are granted in a single arbitration cycle; multiple arbitrations which can

potentially lead to deadlock are not required.

Figure 7.4 shows the bypassing of an operand from a source function unit to a remote

unit. The compiler has statically scheduled the source operation to begin on cycle 1 and

the remote operation to begin on cycle 3. The source operation issues to the RR stage at

the beginning of cycle 3. Since the data will become available during cycle 5, arbitration for

communication resources is performed and the remote unit's scoreboard is updated during

cycle 3 as well. The remote operation can issue during cycle 5. By the time the registers

110 CHAPTER 7. IMPLEMENTATION ISSUES

Clock

1 2 3 4 5

Op_Issue1

Op_Issue2

NOT_DONE

Figure 7.5: The NOT DONE signal indicates when all of the operations scheduled in an in-

struction have been issued. The op issue waveforms are asserted when an operation issues

from the SC stage to the RR stage. NOT DONE remains asserted until both operation 1 and

operation 2 have issued.

have been read and the EX stage begins, the data from the EX stage of the source unit has

arrived.

7.2.5 Intercluster Synchronization

To provide in-order execution of operations from a given thread, a wired-or NOT DONE line

is provided for each active thread. If a function unit holds an unissued operation from a

thread's previous instruction, the unit will assert the corresponding NOT DONE line. When

all non-null operations in a particular thread's previous instruction have issued, this line is

deasserted. As long as the line remains deasserted, each function unit is capable of issuing

an operation from that thread every cycle. The OF and SC stages �ll the operation bu�er

with operations from each active thread independent of the state of the thread's NOT DONE

line. If there are holes in a function unit's operation stream due to implicit nops, the OF

logic will fetch operations ahead of where the thread is currently executing on other units.

The function unit can count the number of NOT DONE signals seen to determine when the

rest of the units have caught up. Each unit will then be able to issue an operation for a

thread as soon as the NOT DONE line is deasserted.

Figure 7.5 shows a timing diagram for two function units' operation issue events and the

7.3. SINGLE CHIP FEASIBILITY 111

corresponding NOT DONE signal. Both units issue operations from the SC to the RR stage in

cycle 1, enabling the next operations to be issued in cycle two. Although the operation in

unit 1 issues during cycle 2, the corresponding operation in unit 2 must wait until cycle 3

due to a dependency that is not shown. The NOT DONE line remains high until operation 2

has issued during cycle 3. The next operations waiting in the operation bu�ers are enabled

and can be issued during cycle 4.

7.2.6 Memory System

Each memory unit sees the memory system as a request port and a response port. A

memory unit sends read and write requests to the request port. Each request consists of an

address, as well as data (for writes) or a destination speci�er (for reads). Results of read

operations are directed to the destination cluster's response port. Each response updates

the scoreboard and stores its data into the speci�ed register.

The details of the memory system implementation are beyond the scope of this thesis.

An interleaved cache will be required on-chip to satisfy the bandwidth demands of the

arithmetic units. This on-chip cache will be backed up by a larger o�-chip memory and by

the global machine memory accessed over an inter-node interconnection network.

7.3 Single Chip Feasibility

In 1995, CMOS process technology will allow 0:5�m gate lengths and three layers of metal

interconnect. Chips 17:5mm on a side, providing 4:9�10

9

�

2

of area, will be economical.

The parameter � is, to �rst order, process independent and is equivalent to one half of the

minimum feature size [MC80]. For a 0:5�m process, � is 0:25. This section presents a plan

to implement a Processor Coupled node on such a chip. Resource requirements, such as

the number of registers and the amount of operation cache memory per function unit, are

still speculative and are subject to change based upon further design studies. Section 7.3.1

outlines the chip area calculations, while Section 7.3.2 examines the tradeo�s involved in

register �le design and intercluster communication.

112 CHAPTER 7. IMPLEMENTATION ISSUES

Component Area

64-bit FPU 8�10

7

�

2

Integer Unit 10

7

�

2

128 64-bit Registers (4 read and 2 write ports) 4�10

7

�

2

Operation Cache (512Bytes/thread, 4 threads) 2�10

7

�

2

Operation Bu�er 10

6

�

2

Scoreboard 5�10

6

�

2

Control 2�10

7

�

2

Total 1:8�10

8

�

2

Table 7.1: Cluster components with area estimates.

7.3.1 Area Calculations

A four cluster coupled multi-ALU processor (MAP) with resources for four active threads

is feasible with 1995 technology. Table 7.1 lists each component of a cluster, with its

corresponding area requirement. Area estimates are made using � design rules for current

technologies. Each cluster requires a total area of 1:8�10

8

�

2

. The register �le is divided

into an integer register bank and a
oating point register bank, each with 16 registers. The

clusters are connected by 8 64-bit buses. With 6� wire pitch, these 512 cluster interconnect

wires running the length of four clusters (5�10

4

�) consume 1:5�10

8

�

2

. Area for the 4 64-bit

buses to connect clusters to the on-chip cache is 8�10

7

�

2

. The remaining 4�10

9

�

2

is used

for 8Mbits of SRAM. Figure 7.6 shows a
oorplan for a MAP chip.

A multi-ALU node with multiple threads but without coupling requires the integer and

oating point ALUs, the register �les, and the operation caches. The additional components

required by each cluster to implement Processor Coupling are the scoreboard (5�10

6

�

2

),

the operation bu�er (10

6

�

2

), and approximately half of the control (10

7

�

2

). This overhead

is 1:6�10

7

�

2

per cluster for a total of 6:4�10

7

�

2

, which is 9 percent of the entire cluster

area, but less than 2 percent of the chip area.

7.3.2 Register Organization

In terms of speed and area, building register �les with more than six ports is ine�cient. A

32-port register cell requires at least 32 word lines and 32 bit lines. If a 6� wiring pitch

is used, the cell will be nearly 200� on a side with an area of 4�10

4

�

2

. The area of 512

7.4. SUMMARY 113

8 Mbits SRAM

λ
29

4 x 10

1.75cm x 1.75cm

0.5 CMOS chipµ

λ
29

4.9 x 10

FPU, IU and

Registers

λ
28

1.8 x 10

Communication and Control

C CCC

4 banks

each 32K x 64

Figure 7.6: Floorplan for a four cluster multi-ALU processing node.

64-bit registers (the same number speci�ed for a Processor Coupled node) organized in a

uni�ed 32-port register �le would be 1:3�10

9

�

2

. This is roughly one-quarter of the total

chip area. Furthermore, the long wires required by a single register �le are likely to induce

clock frequency limiting delays. Processor Coupling distributes the registers into individual

register �les local to a cluster. Partitioning a cluster's registers into integer registers and

oating point registers further reduces the number of ports required. The area of a six-

ported register cell is 5�10

3

�

2

. Building eight register �les of 64 64-bit registers requires

1:6�10

8

�

2

. With the function unit interconnect area of 1:5�10

8

�

2

needed to move data

from cluster to cluster, the total area required is 3:1�10

8

�

2

. This is less than seven percent

of the total chip area. Although distributing the register �les will require more operations

to be executed, cycle time is reduced and area for other important components becomes

available.

7.4 Summary

Processor Coupling employs a �ve stage pipeline. In addition to the four stages of a con-

ventional pipeline, one additional stage, scoreboard check (SC), is necessary to perform

114 CHAPTER 7. IMPLEMENTATION ISSUES

synchronization on registers and fast selection of threads. On each cycle a di�erent thread's

operation may be selected for execution from the operation bu�er. Arbitration for com-

munication channels between threads is performed concurrently with operation execution

two cycles before the operation's result is ready. If an operation cannot gain access to the

interconnection network wires, the pipeline on which it is executing will stall. A wired-

or NOT DONE line is used to synchronize a thread's operations across function units. The

NOT DONE line is asserted until all function units have issued their operation from that in-

struction. Once all operations from an instruction have been issued, operations from the

next instruction may begin to issue. The operation prefetch bu�er and operation bu�er are

organized so that a thread can issue one operation every cycle.

Processor Coupling can be realized in a single chip implementation. A multi-ALU

processor (MAP) consisting of four clusters, each with an integer unit, a memory unit, and

a
oating point unit, is feasible. The remaining area can be used for 8Mbits of SRAM. If

process technology allows, 16Mbits of DRAM may be substituted for the SRAM. A thread's

register set is distributed across multiple clusters to reduce the number of register �le ports

and limit the amount of register �le area required. If one global register �le with enough

ports to satisfy all of the function units were used, it would require one quarter of the entire

chip area.

Chapter 8

Conclusion

8.1 Summary

Processor Coupling combines compile time and runtime scheduling to exploit instruction-

level parallelism while maintaining high function unit utilization. A compiler schedules

each thread across multiple ALUs to exploit instruction-level parallelism. The schedules of

several active threads are interleaved at runtime by coupling threads to ALUs on a cycle-

by-cycle basis. This interleaving makes use of resources that would otherwise be left idle by

vacancies in a single thread's schedule and by stalls caused by synchronization and statically

indeterminate latencies. Processor Coupling combines the ability to exploit parallelism at

the level of a single operation as in a VLIW machine with the latency tolerance and high

utilization of a multithreaded architecture.

An experimental environment consisting of a compiler and a simulator was built to test

the viability of Processor Coupling and to compare coupling with statically scheduled and

multiprocessor machine models. Programs are written in PCTL (Processor Coupling Test

Language) and are compiled using ISC (Instruction Scheduling Compiler). A con�guration

�le provides the relevant machine parameters, such as the number and type of function units.

PCS (Processor Coupling Simulator) executes the code generated by ISC and produces

runtime statistics. The memory system model and intercluster communication parameters

are speci�ed in the PCS con�guration �le and can be changed by the user.

Four simple benchmarks (Matrix, FFT,Model, and LUD) were run on several types

115

116 CHAPTER 8. CONCLUSION

of simulated machines. On these particular benchmarks, a Processor Coupled node executes

in 60% fewer cycles and achieves almost twice the utilization of a statically scheduled pro-

cessor without coupling. Processor Coupling is more tolerant of both dynamic and static

latencies than a single-threaded statically-scheduled machine. In the experiments with

variable memory latency, a Processor Coupled node executes in 75% fewer cycles than a

statically scheduled processor. Processor Coupling is also more tolerant of statically known

function unit latencies, executing in only 10% more cycles when the
oating point unit

latency is increased from 1 to 5 cycles. The statically scheduled processor requires 90%

more cycles for the same change in
oating point unit latency.

Because Processor Coupling uses the low interaction latency available between function

units, it has an advantage over a multiprocessor machine model. On sequential sections

of code, Processor Coupling allows a thread to use all of the function units while the

multiprocessor restricts use to only those function units within a single cluster. In sequential

sections the multiprocessor model requires on average 2.9 times as many cycles as Processor

Coupling. On the FFT benchmark, which has a signi�cant sequential section, a total of

79% more cycles are required.

The simulations suggest the use of an interconnection scheme with three write ports on

each register �le. One port is devoted to intracluster communication, and the remaining

ports are connected to buses that can be driven by function units in any cluster. This

con�guration gives nearly the same performance as complete connection (only 4% more

cycles) for less cost (28% of the interconnect area for a four cluster machine). Performance

also depends on the right balance of function unit types. Simulations suggest a con�guration

with four
oating point units, four integer units, and one branch unit.

Processor Coupling is implemented by adding a scoreboard check (SC) stage contain-

ing an operation bu�er to a standard four-stage pipeline. The SC stage ensures that an

operation is enabled to issue only if all of its dependencies are satis�ed. This check avoids

wasting register bandwidth reading operands for instructions that are not ready. Adding

this stage to the pipeline adds one cycle to the penalty for an incorrectly predicted branch

but does not a�ect arithmetic latency. Preliminary circuit estimates indicate that since

the machine's cycle time will be dominated by arithmetic and memory latencies, Processor

8.2. FUTURE WORK 117

Coupling will not a�ect clock frequency.

A single-chip, four-cluster, multi-ALU processor is feasible with 1995 technology (0:5�

CMOS). Each cluster of such a chip consists of a
oating point unit, an integer unit,

registers, and control, occupying a total of 1:8�10

8

�

2

. The remaining area is allocated

to on-chip communication (2:3�10

8

�

2

) and 8Mbits of memory (4�10

9

�

2

). The additional

control logic required to implement Processor Coupling is less than 2% of the total area

cost of the chip.

8.2 Future Work

The results presented in this thesis suggest that Processor Coupling is an attractive method

for controlling multi-ALU processors. Because analysis is performed at an architectural

level, the simulation environment was designed to be
exible so that many aspects of the

design could be quickly evaluated. However many important details must be considered in

much further depth. To complement this examination of multi-ALU processor control, stud-

ies of high-bandwidth memory systems, mechanisms for thread management, and compiler

techniques are needed.

A high performance memory system is an extremely important aspect of Processor

Coupling. Multiple operation issue requires high instruction fetch bandwidth, while using

multiple threads increases the number of data references that need to be serviced. An

interleaved memory system and a split phase memory transaction protocol can both be

used to increase memory system performance. Segmentation can be used to provide a

level of protection between threads. Threads that need to communicate with one another

share segments. The cache must be organized to allow simultaneous requests and prevent

interference from multiple active threads from limiting performance.

Thread management mechanisms require further exploration as well. Two parameters

that must be studied are the number of threads in the active set and the number of active

threads reserved for fault handling and system functions. Mechanisms and strategies for

swapping threads in and out of the active set must be developed. The overhead to swap

threads will have a profound impact on the granularity of tasks and the amount of resources,

such as registers and cache memory, that will be required.

118 CHAPTER 8. CONCLUSION

Processor Coupling provides further opportunities to develop compiler technology. In

addition to scheduling instructions within a thread, a compiler can try to anticipate memory

latencies. For example if the compiler believes that a memory read will be local, it can

immediately schedule the operation using that data. If the latency is predicted to be long,

the compiler can schedule the consuming operation later in the pipe or even emit code

to suspend the thread. The hardware interlocks in Processor Coupling prevent incorrect

execution if the latency of a reference is mispredicted. Another class of optimizations are

those between threads. The compiler may be able to use some heuristics to balance the

load from several threads across all of the clusters.

As more powerful computers are built, advanced techniques for exploiting parallelism

must be employed. Although instruction-level parallelism techniques have appeared in

superscalar uniprocessors and in VLIW machines, these ideas have not been used in the

growing number of massively parallel computers. Since multiple threads are used to increase

utilization, a Processor Coupled multi-ALU chip is well suited as a node in a massively

parallel machine. The M-Machine currently being designed is intended to exploit a hierarchy

of parallelism, from the instruction-level parallelism techniques of Processor Coupling, to

the coarser grained concurrency that can be discovered in parallel algorithms.

Appendix A

Benchmarks

A.1 Matrix Multiply

The PCTL programs in this section implement a 9�9 matrix multiply. The program

vliw-matmul is used by the SEQ and STS modes described in Chapter 5. The threaded

modes (Coupled and TPE) use the program thr-matmul. The ideal statically scheduled

machine (Ideal) uses unrolled-vliw-matmul.

A.1.1 vliw-matmul

(declare

((a (array (9 9) float))

(b (array (9 9) float))

(c (array (9 9) float))

(temp1 float) (i int) (j int))

(for ((:= i 0) (< i 9) (:= i (+ i 1)))

(begin

(for ((:= j 0) (< j 9) (:= j (+ j 1)))

(begin

(:= temp1 (* (aref a (i 0)) (aref b (0 j))))

(:= temp1 (+ temp1 (* (aref a (i 1)) (aref b (1 j)))))

(:= temp1 (+ temp1 (* (aref a (i 2)) (aref b (2 j)))))

(:= temp1 (+ temp1 (* (aref a (i 3)) (aref b (3 j)))))

(:= temp1 (+ temp1 (* (aref a (i 4)) (aref b (4 j)))))

(:= temp1 (+ temp1 (* (aref a (i 5)) (aref b (5 j)))))

(:= temp1 (+ temp1 (* (aref a (i 6)) (aref b (6 j)))))

(:= temp1 (+ temp1 (* (aref a (i 7)) (aref b (7 j)))))

(:= temp1 (+ temp1 (* (aref a (i 8)) (aref b (8 j)))))

(:= (aref c (i j)) temp1)))))))

119

120 APPENDIX A. BENCHMARKS

A.1.2 thr-matmul

(declare

((a (array (9 9) float))

(b (array (9 9) float))

(c (array (9 9) float))

(temp float) (i int) (j int)

(inner-loop

(lambda (a b c i j)

(declare

((temp float))

(begin

(:= temp (* (aref a (i 0)) (aref b (0 j))))

(:= temp (+ temp (* (aref a (i 1)) (aref b (1 j)))))

(:= temp (+ temp (* (aref a (i 2)) (aref b (2 j)))))

(:= temp (+ temp (* (aref a (i 3)) (aref b (3 j)))))

(:= temp (+ temp (* (aref a (i 4)) (aref b (4 j)))))

(:= temp (+ temp (* (aref a (i 5)) (aref b (5 j)))))

(:= temp (+ temp (* (aref a (i 6)) (aref b (6 j)))))

(:= temp (+ temp (* (aref a (i 7)) (aref b (7 j)))))

(:= temp (+ temp (* (aref a (i 8)) (aref b (8 j)))))

(:= (aref c (i j)) temp)))))

(med-loop (lambda (a b c i)

(declare ((j int))

(begin

(for ((:= j 0) (< j 9) (:= j (+ j 1)))

(call inner-loop a b c i j)))))))

(begin

(forall ((:= i 0) (< i 9) (:= i (+ i 1)))

(call med-loop a b c i)))))

A.1.3 unrolled-vliw-matmul

(declare

((a (array (9 9) float))

(b (array (9 9) float))

(c (array (9 9) float))

(i int) (j int)

(inner-loop

(lambda (a b c i j)

(declare ((temp float))

(begin

(:= temp (* (aref a (i 0)) (aref b (0 j))))

(:= temp (+ temp (* (aref a (i 1)) (aref b (1 j)))))

(:= temp (+ temp (* (aref a (i 2)) (aref b (2 j)))))

(:= temp (+ temp (* (aref a (i 3)) (aref b (3 j)))))

(:= temp (+ temp (* (aref a (i 4)) (aref b (4 j)))))

(:= temp (+ temp (* (aref a (i 5)) (aref b (5 j)))))

(:= temp (+ temp (* (aref a (i 6)) (aref b (6 j)))))

(:= temp (+ temp (* (aref a (i 7)) (aref b (7 j)))))

(:= temp (+ temp (* (aref a (i 8)) (aref b (8 j)))))

(:= (aref c (i j)) temp)))))

(mid-loop (lambda (a b c i)

(begin

(call inner-loop a b c i 0)

A.2. FFT 121

(call inner-loop a b c i 1)

(call inner-loop a b c i 2)

(call inner-loop a b c i 3)

(call inner-loop a b c i 4)

(call inner-loop a b c i 5)

(call inner-loop a b c i 6)

(call inner-loop a b c i 7)

(call inner-loop a b c i 8)))))

(begin

(call mid-loop a b c 0)

(call mid-loop a b c 1)

(call mid-loop a b c 2)

(call mid-loop a b c 3)

(call mid-loop a b c 4)

(call mid-loop a b c 5)

(call mid-loop a b c 6)

(call mid-loop a b c 7)

(call mid-loop a b c 8))))

A.2 FFT

The code for the 32 point fast Fourier transform described in Chapter 6 appears below. The

program vliw-fft is used by SEQ and STS modes, while the threaded modes (Coupled

and TPE) use the program thr-fft. The ideal statically scheduled (Ideal) machines uses

unrolled-vliw-fft.

A.2.1 vliw-fft

(declare

((data (array 64 float))

(coeff (array 32 float))

(nn int) (tempnn int) (group-size int) (num-groups int)

(i int) (j int)

(swap (lambda (a b)

(declare ((temp float))

(begin

(:= temp a)

(:= a b)

(:= b temp)))))

(mod (lambda (result dividend divisor)

(declare ((temp int))

(begin

(:= temp (/ dividend divisor))

(:= temp (* temp divisor))

(:= result (- dividend temp))))))

(bit-reverse

(lambda (data nn)

(declare

((i int) (j int)

122 APPENDIX A. BENCHMARKS

(b0 int) (b1 int) (b2 int) (b3 int) (b4 int))

(begin

(for ((:= i 0) (< i nn) (:= i (+ i 1)))

(begin

(call mod b0 i 2)

(call mod b1 (>> i 1) 2)

(call mod b2 (>> i 2) 2)

(call mod b3 (>> i 3) 2)

(call mod b4 (>> i 4) 2)

(:= j (+ (+ (+ (* 16 b0)

(* 8 b1))

(+ (* 4 b2)

(* 2 b3)))

b4))

(if (> j i)

(begin

(call swap (aref data (* 2 j)) (aref data (* 2 i)))

(call swap (aref data (+ (* 2 j) 1))

(aref data (+ (* 2 i) 1)))))))))))

(comp-bfly

(lambda (data index group-size num-groups coeff)

(declare ((index-1 int) (index-2 int) (coeff-index int)

(wr float) (wi float) (tempr float) (tempi float)

(group int) (group-offset int))

(begin

(:= group-offset (/ index num-groups))

(:= group (- index (* group-offset num-groups)))

(:= coeff-index (* 2 (* group-offset num-groups)))

(:= index-1 (* 2 (+ (* group group-size)

group-offset)))

(:= index-2 (+ index-1 group-size))

(:= wr (aref coeff coeff-index))

(:= wi (aref coeff (+ coeff-index 1)))

(:= tempr (- (* wr (aref data index-2))

(* wi (aref data (+ 1 index-2)))))

(:= tempi (+ (* wr (aref data (+ 1 index-2)))

(* wi (aref data index-2))))

(:= (aref data index-2)

(- (aref data index-1) tempr))

(:= (aref data (+ 1 index-2))

(- (aref data (+ index-1 1)) tempi))

(:= (aref data index-1)

(+ (aref data index-1) tempr))

(:= (aref data (+ index-1 1))

(+ (aref data (+ index-1 1)) tempi)))))))

(begin

(call bit-reverse data nn)

(for ((:= i 1) (< i nn) (:= i (<< i 1)))

(begin

(:= group-size (* 2 i))

(:= num-groups (/ nn group-size))

(for ((:= j 0) (< j 16) (:= j (+ j 1)))

(begin

(call comp-bfly data j group-size

num-groups coeff))))))))

A.2. FFT 123

A.2.2 thr-fft

(declare

((data (array 64 float))

(coeff (array 32 float))

(nn int) (tempnn int) (group-size int) (num-groups int)

(i int) (j int) (temp1 int) (temp2 int)

(sync int) (sync-count int) (sync-start int)

(swap (lambda (a b)

(declare ((temp float))

(begin

(:= temp a)

(:= a b)

(:= b temp)))))

(mod (lambda (result dividend divisor)

(declare ((temp int))

(begin

(:= temp (/ dividend divisor))

(:= temp (* temp divisor))

(:= result (- dividend temp))))))

(bit-reverse

(lambda (data nn)

(declare

((i int) (j int)

(b0 int) (b1 int) (b2 int) (b3 int) (b4 int))

(begin

(for ((:= i 0) (< i nn) (:= i (+ i 1)))

(begin

(call mod b0 i 2)

(call mod b1 (>> i 1) 2)

(call mod b2 (>> i 2) 2)

(call mod b3 (>> i 3) 2)

(call mod b4 (>> i 4) 2)

(:= j (+ (+ (+ (* 16 b0)

(* 8 b1))

(+ (* 4 b2)

(* 2 b3)))

b4))

(if (> j i)

(begin

(call swap (aref data (* 2 j)) (aref data (* 2 i)))

(call swap (aref data (+ (* 2 j) 1)) (aref data (+ (* 2 i) 1)))))))))))

(comp-bfly

(lambda (data index group-size num-groups coeff)

(declare ((index-1 int) (index-2 int) (coeff-index int)

(wr float) (wi float) (tempr float) (tempi float)

(group int) (group-offset int) (in-sync int)

(loc-group-size int) (loc-num-groups int))

(begin

(:= loc-group-size (leave group-size))

(:= loc-num-groups (leave num-groups))

(:= group-offset (/ index loc-num-groups))

(:= group (- index

(* group-offset loc-num-groups)))

(:= coeff-index (* 2

(* group-offset loc-num-groups)))

124 APPENDIX A. BENCHMARKS

(:= index-1 (* 2 (+ (* group loc-group-size)

group-offset)))

(:= index-2 (+ index-1 loc-group-size))

(:= wr (aref coeff coeff-index))

(:= wi (aref coeff (+ coeff-index 1)))

(:= tempr (- (* wr (aref data index-2))

(* wi (aref data (+ 1 index-2)))))

(:= tempi (+ (* wr (aref data (+ 1 index-2)))

(* wi (aref data index-2))))

(:= (aref data index-2)

(- (aref data index-1) tempr))

(:= (aref data (+ 1 index-2))

(- (aref data (+ index-1 1)) tempi))

(:= (aref data index-1)

(+ (aref data index-1) tempr))

(:= (aref data (+ index-1 1))

(+ (aref data (+ index-1 1)) tempi))

(begin-sync

(:= in-sync (consume sync))

(if (< in-sync 16)

(begin

(:= (produce sync) (+ in-sync 1)))

(:= (produce sync-start) in-sync))))))))

(begin

(call bit-reverse data nn)

(:= (uncond sync-start) 0)

(for ((:= i 1) (< i nn) (:= i (<< i 1)))

(begin-sync

(:= (uncond sync) 0)

(:= temp1 (consume sync-start))

(:= temp1 (+ temp1 1))

(:= sync-count 0)

(:= (uncond group-size) (* 2 i))

(:= (uncond num-groups) (/ nn group-size))

(begin-sync

(forall ((:= j 0) (< j 16) (:= j (+ j 1)))

(begin

(call comp-bfly

data j group-size num-groups coeff))))

(begin-sync

(:= sync-count (consume sync))

(if (< sync-count 16)

(begin

(:= (produce sync) (+ sync-count 1))

(begin-sync

(:= (uncond sync-count) (leave sync-start))))

(:= (produce sync-start) sync-count))))))))

A.2.3 unrolled-vliw-fft

(declare

((data (array 64 float))

(coeff (array 32 float))

(nn int) (tempnn int) (group-size int) (num-groups int)

(i int) (j int)

A.2. FFT 125

(swap (lambda (a b)

(declare ((temp float))

(begin

(:= temp a)

(:= a b)

(:= b temp)))))

(mod (lambda (result dividend divisor)

(declare ((temp int))

(begin

(:= temp (/ dividend divisor))

(:= temp (* temp divisor))

(:= result (- dividend temp))))))

(bit-reverse-one

(lambda (data i)

(declare

((j int) (b0 int) (b1 int) (b2 int) (b3 int) (b4 int))

(begin

(call mod b0 i 2)

(call mod b1 (>> i 1) 2)

(call mod b2 (>> i 2) 2)

(call mod b3 (>> i 3) 2)

(call mod b4 (>> i 4) 2)

(:= j (+ (+ (+ (* 16 b0)

(* 8 b1))

(+ (* 4 b2)

(* 2 b3)))

b4))

(call swap (aref data (* 2 j)) (aref data (* 2 i)))

(call swap (aref data (+ (* 2 j) 1)) (aref data (+ (* 2 i) 1)))))))

(bit-reverse

(lambda (data nn)

(begin

(call bit-reverse-one data 1)

(call bit-reverse-one data 2)

(call bit-reverse-one data 3)

(call bit-reverse-one data 5)

(call bit-reverse-one data 6)

(call bit-reverse-one data 7)

(call bit-reverse-one data 9)

(call bit-reverse-one data 11)

(call bit-reverse-one data 13)

(call bit-reverse-one data 15)

(call bit-reverse-one data 19)

(call bit-reverse-one data 23))))

(comp-bfly

(lambda (data index group-size num-groups coeff)

(declare ((index-1 int) (index-2 int) (coeff-index int)

(wr float) (wi float) (tempr float) (tempi float)

(group int) (group-offset int))

(begin

(:= group-offset (/ index num-groups))

(:= group (- index (* group-offset num-groups)))

(:= coeff-index (* 2 (* group-offset num-groups)))

(:= index-1 (* 2 (+ (* group group-size)

group-offset)))

(:= index-2 (+ index-1 group-size))

126 APPENDIX A. BENCHMARKS

(:= wr (aref coeff coeff-index))

(:= wi (aref coeff (+ coeff-index 1)))

(:= tempr (- (* wr (aref data index-2))

(* wi (aref data (+ 1 index-2)))))

(:= tempi (+ (* wr (aref data (+ 1 index-2)))

(* wi (aref data index-2))))

(:= (aref data index-2)

(- (aref data index-1) tempr))

(:= (aref data (+ 1 index-2))

(- (aref data (+ index-1 1)) tempi))

(:= (aref data index-1)

(+ (aref data index-1) tempr))

(:= (aref data (+ index-1 1))

(+ (aref data (+ index-1 1)) tempi)))))))

(begin

(call bit-reverse data nn)

(for ((:= i 1) (< i nn) (:= i (<< i 1)))

(begin

(:= group-size (* 2 i))

(:= num-groups (/ nn group-size))

(call comp-bfly data 0 group-size num-groups coeff)

(call comp-bfly data 1 group-size num-groups coeff)

(call comp-bfly data 2 group-size num-groups coeff)

(call comp-bfly data 3 group-size num-groups coeff)

(call comp-bfly data 4 group-size num-groups coeff)

(call comp-bfly data 5 group-size num-groups coeff)

(call comp-bfly data 6 group-size num-groups coeff)

(call comp-bfly data 7 group-size num-groups coeff)

(call comp-bfly data 8 group-size num-groups coeff)

(call comp-bfly data 9 group-size num-groups coeff)

(call comp-bfly data 10 group-size num-groups coeff)

(call comp-bfly data 11 group-size num-groups coeff)

(call comp-bfly data 12 group-size num-groups coeff)

(call comp-bfly data 13 group-size num-groups coeff)

(call comp-bfly data 14 group-size num-groups coeff)

(call comp-bfly data 15 group-size num-groups coeff))))))

A.3 Model Evaluation

The code for the circuit simulation model evaluator described in Chapter 6 appears below.

The program vliw-model is used by the SEQ and STS modes, while the base threaded mode

program which performs load balancing for Coupled and TPE is thr-iter-model. The

threaded version that creates a new thread for each loop iteration without load balancing

is thr-model. The autoscheduling version is found in thr-auto-model.

A.3.1 vliw-model

(declare

((num-elements int) (element-index (array 100 int))

A.3. MODEL EVALUATION 127

(element (array 500 int))

(value-array (array 200 float))

(voltage (array 500 float))

(delta-t float)

(delta-diff float)

(Vtn float) (Kn float)

(Vtp float) (Kp float)

(current (array 500 float))

(element-address int)

(i int) (type int) (tempi int)

(error int)

(eval-res

(lambda (in-element)

(declare ((delta-c float)

(element int)

(e1 int) (e2 int) (e3 int))

(begin

(:= element in-element)

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= delta-c (/ (- (aref voltage e1)

(aref voltage e2))

(aref value-array e3)))

(:= (aref (produce current) e1)

(+ (aref (consume current) e1)

delta-c))

(:= (aref (produce current) e2)

(- (aref (consume current) e2)

delta-c))))))

(eval-cap

(lambda (in-element)

(declare ((delta-c float)

(delta-v float)

(conductance float)

(element int)

(e1 int) (e2 int) (e3 int))

(begin

(:= element in-element)

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= conductance (/ (aref value-array e3)

delta-t))

(:= delta-v (- (aref voltage e1)

(aref voltage e2)))

(:= delta-c (- (* delta-v conductance)

(* delta-v

(* delta-diff conductance))))

(:= (aref (produce current) e1)

(+ (aref (consume current) e1)

delta-c))

(begin-sync

(:= (aref (produce current) e2)

(- (aref (consume current) e2)

delta-c)))))))

128 APPENDIX A. BENCHMARKS

(eval-nfet

(lambda (in-element)

(declare ((drain int) (gate int) (source int) (Vg float)

(Vgst float) (Vd float) (Vs float) (Vds float)

(element int)

(Ids float) (KS float) (WoL float) (temp float)

(e1 int) (e2 int) (e3 int) (e4 int) (e5 int))

(begin

(:= element in-element)

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= Vd (aref voltage e1))

(:= Vs (aref voltage e3))

(:= Vg (aref voltage e2))

(if (> Vs Vd)

(begin

(:= drain e3)

(:= source e1)

(:= temp Vd)

(:= Vd Vs)

(:= Vs temp))

(begin

(:= drain e1)

(:= source e3)))

(:= Vgst (- Vg (+ Vs Vtn)))

(if (> Vgst 0)

(begin

(:= e4 (aref element 4))

(:= e5 (aref element 5))

(:= Vds (- Vd Vs))

(:= KS (* Kn (/ (aref value-array e4)

(aref value-array e5))))

(if (>= Vgst Vds)

(begin

(:= Ids (* KS (- (* 2 (* Vgst Vds))

(* Vds Vds)))))

(begin

(:= Ids (* KS (* Vgst Vgst)))))

(:= (aref (produce current) drain)

(+ (aref (consume current) drain) Ids))

(begin-sync

(:= (aref (produce current) source)

(- (aref (consume current) source) Ids)))))))))

(eval-pfet

(lambda (in-element)

(declare ((drain int) (gate int) (source int) (Vg float)

(Vgst float) (Vd float) (Vs float) (Vds float)

(element int)

(Ids float) (KS float) (WoL float) (temp float)

(e1 int) (e2 int) (e3 int) (e4 int) (e5 int))

(begin

(:= element in-element)

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

A.3. MODEL EVALUATION 129

(:= Vd (aref voltage e1))

(:= Vs (aref voltage e3))

(:= Vg (aref voltage e2))

(if (< Vs Vd)

(begin

(:= drain e3)

(:= source e1)

(:= temp Vd)

(:= Vd Vs)

(:= Vs temp))

(begin

(:= drain e1)

(:= source e3)))

(:= Vgst (- Vg (+ Vs Vtp)))

(if (< Vgst 0)

(begin

(:= e4 (aref element 4))

(:= e5 (aref element 5))

(:= Vds (- Vd Vs))

(:= KS (* Kp (/ (aref value-array e4)

(aref value-array e5))))

(if (<= Vgst Vds)

(begin

(:= Ids (* KS (- (* 2 (* Vgst Vds))

(* Vds Vds)))))

(begin

(:= Ids (* KS (* Vgst Vgst)))))

(:= (aref (produce current) drain)

(- (aref (consume current) drain) Ids))

(begin-sync

(:= (aref (produce current) source)

(+ (aref (consume current) source) Ids))))))))))

(begin

(for ((:= i 0) (< i num-elements) (:= i (+ i 1)))

(begin

(:= tempi (aref element-index i))

(:= type (aref element tempi))

(:= (uncond element-address) (+ element tempi))

(if (== type 2)

(begin

(call eval-nfet element-address))

(begin

(if (== type 3)

(begin

(call eval-pfet element-address))

(begin

(if (== type 0)

(begin

(call eval-res element-address))

(begin

(if (== type 1)

(begin

(call eval-cap element-address))

(begin

(:= error type))))))))))))))

130 APPENDIX A. BENCHMARKS

A.3.2 thr-iter-model

(declare

((num-elements int) (element-index (array 100 int))

(top-element (array 500 int))

(value-array (array 200 float))

(voltage (array 500 float))

(delta-t float)

(delta-diff float)

(Vtn float) (Kn float)

(Vtp float) (Kp float)

(current (array 500 float))

(i int) (sync int) (sync-temp int)

(error int)

(eval-res

(lambda (element)

(declare ((delta-c float)

(e1 int) (e2 int) (e3 int))

(begin

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= delta-c (/ (- (aref voltage e1)

(aref voltage e2))

(aref value-array e3)))

(:= (aref (produce current) e1)

(+ (aref (consume current) e1)

delta-c))

(begin-sync

(:= (aref (produce current) e2)

(- (aref (consume current) e2)

delta-c)))))))

(eval-cap

(lambda (element)

(declare ((delta-c float)

(delta-v float)

(conductance float)

(e1 int) (e2 int) (e3 int))

(begin

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= conductance (/ (aref value-array e3)

delta-t))

(:= delta-v (- (aref voltage e1)

(aref voltage e2)))

(:= delta-c (- (* delta-v conductance)

(* delta-v

(* delta-diff conductance))))

(:= (aref (produce current) e1)

(+ (aref (consume current) e1)

delta-c))

(begin-sync

(:= (aref (produce current) e2)

(- (aref (consume current) e2)

delta-c)))))))

A.3. MODEL EVALUATION 131

(eval-nfet

(lambda (element)

(declare ((drain int) (gate int) (source int) (Vg float)

(Vgst float) (Vd float) (Vs float) (Vds float)

(Ids float) (KS float) (WoL float) (temp float)

(e1 int) (e2 int) (e3 int) (e4 int) (e5 int))

(begin

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= Vd (aref voltage e1))

(:= Vs (aref voltage e3))

(:= Vg (aref voltage e2))

(if (> Vs Vd)

(begin

(:= drain e3)

(:= source e1)

(:= temp Vd)

(:= Vd Vs)

(:= Vs temp))

(begin

(:= drain e1)

(:= source e3)))

(:= Vgst (- Vg (+ Vs Vtn)))

(if (> Vgst 0)

(begin

(:= e4 (aref element 4))

(:= e5 (aref element 5))

(:= Vds (- Vd Vs))

(:= KS (* Kn (/ (aref value-array e4)

(aref value-array e5))))

(if (>= Vgst Vds)

(begin

(:= Ids (* KS (- (* 2 (* Vgst Vds))

(* Vds Vds)))))

(begin

(:= Ids (* KS (* Vgst Vgst)))))

(:= (aref (produce current) drain)

(+ (aref (consume current) drain) Ids))

(begin-sync

(:= (aref (produce current) source)

(- (aref (consume current) source)

Ids)))))))))

(eval-pfet

(lambda (element)

(declare ((drain int) (gate int) (source int) (Vg float)

(Vgst float) (Vd float) (Vs float) (Vds float)

(Ids float) (KS float) (WoL float) (temp float)

(e1 int) (e2 int) (e3 int) (e4 int) (e5 int))

(begin

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= Vd (aref voltage e1))

(:= Vs (aref voltage e3))

(:= Vg (aref voltage e2))

132 APPENDIX A. BENCHMARKS

(if (< Vs Vd)

(begin

(:= drain e3)

(:= source e1)

(:= temp Vd)

(:= Vd Vs)

(:= Vs temp))

(begin

(:= drain e1)

(:= source e3)))

(:= Vgst (- Vg (+ Vs Vtp)))

(if (< Vgst 0)

(begin

(:= e4 (aref element 4))

(:= e5 (aref element 5))

(:= Vds (- Vd Vs))

(:= KS (* Kp (/ (aref value-array e4)

(aref value-array e5))))

(if (<= Vgst Vds)

(begin

(:= Ids (* KS (- (* 2 (* Vgst Vds))

(* Vds Vds)))))

(begin

(:= Ids (* KS (* Vgst Vgst)))))

(:= (aref (produce current) drain)

(- (aref (consume current) drain) Ids))

(begin-sync

(:= (aref (produce current) source)

(+ (aref (consume current) source)

Ids)))))))))

(eval-ctl

(lambda (el-num sync)

(declare ((tempi int) (type int)

(element-address int) (local-i int))

(begin

(:= local-i (leave el-num))

(begin-sync

(:= (produce sync) 0)

(:= tempi (aref element-index local-i))

(:= type (aref top-element tempi))

(:= (uncond element-address) (+ top-element tempi))

(if (== type 2)

(begin

(call eval-nfet element-address))

(begin

(if (== type 3)

(begin

(call eval-pfet element-address))

(begin

(if (== type 0)

(begin

(call eval-res element-address))

(begin

(if (== type 1)

(begin

(call eval-cap element-address))

A.3. MODEL EVALUATION 133

(begin

(:= error type)))))))))))))))

(begin

(forall-iterate ((:= i 0) (< i num-elements) (:= i (+ i 1)))

(begin

(fork (call eval-ctl i sync))

(begin-sync

(:= sync-temp (+ (consume sync) 1))))))))

A.3.3 thr-model

(declare

((num-elements int) (element-index (array 100 int))

(top-element (array 500 int))

(value-array (array 200 float))

(voltage (array 500 float))

(delta-t float)

(delta-diff float)

(Vtn float) (Kn float)

(Vtp float) (Kp float)

(current (array 500 float))

(i int) (sync int) (sync-temp int)

(error int)

(eval-res

(lambda (element)

(declare ((delta-c float)

(e1 int) (e2 int) (e3 int))

(begin

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= delta-c (/ (- (aref voltage e1)

(aref voltage e2))

(aref value-array e3)))

(:= (aref (produce current) e1)

(+ (aref (consume current) e1)

delta-c))

(begin-sync

(:= (aref (produce current) e2)

(- (aref (consume current) e2)

delta-c)))))))

(eval-cap

(lambda (element)

(declare ((delta-c float)

(delta-v float)

(conductance float)

(e1 int) (e2 int) (e3 int))

(begin

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= conductance (/ (aref value-array e3)

delta-t))

(:= delta-v (- (aref voltage e1)

(aref voltage e2)))

134 APPENDIX A. BENCHMARKS

(:= delta-c (- (* delta-v conductance)

(* delta-v

(* delta-diff conductance))))

(:= (aref (produce current) e1)

(+ (aref (consume current) e1)

delta-c))

(begin-sync

(:= (aref (produce current) e2)

(- (aref (consume current) e2)

delta-c)))))))

(eval-nfet

(lambda (element)

(declare ((drain int) (gate int) (source int) (Vg float)

(Vgst float) (Vd float) (Vs float) (Vds float)

(Ids float) (KS float) (WoL float) (temp float)

(e1 int) (e2 int) (e3 int) (e4 int) (e5 int))

(begin

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= Vd (aref voltage e1))

(:= Vs (aref voltage e3))

(:= Vg (aref voltage e2))

(if (> Vs Vd)

(begin

(:= drain e3)

(:= source e1)

(:= temp Vd)

(:= Vd Vs)

(:= Vs temp))

(begin

(:= drain e1)

(:= source e3)))

(:= Vgst (- Vg (+ Vs Vtn)))

(if (> Vgst 0)

(begin

(:= e4 (aref element 4))

(:= e5 (aref element 5))

(:= Vds (- Vd Vs))

(:= KS (* Kn (/ (aref value-array e4)

(aref value-array e5))))

(if (>= Vgst Vds)

(begin

(:= Ids (* KS (- (* 2 (* Vgst Vds))

(* Vds Vds)))))

(begin

(:= Ids (* KS (* Vgst Vgst)))))

(:= (aref (produce current) drain)

(+ (aref (consume current) drain) Ids))

(begin-sync

(:= (aref (produce current) source)

(- (aref (consume current) source)

Ids)))))))))

(eval-pfet

(lambda (element)

(declare ((drain int) (gate int) (source int) (Vg float)

A.3. MODEL EVALUATION 135

(Vgst float) (Vd float) (Vs float) (Vds float)

(Ids float) (KS float) (WoL float) (temp float)

(e1 int) (e2 int) (e3 int) (e4 int) (e5 int))

(begin

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= Vd (aref voltage e1))

(:= Vs (aref voltage e3))

(:= Vg (aref voltage e2))

(if (< Vs Vd)

(begin

(:= drain e3)

(:= source e1)

(:= temp Vd)

(:= Vd Vs)

(:= Vs temp))

(begin

(:= drain e1)

(:= source e3)))

(:= Vgst (- Vg (+ Vs Vtp)))

(if (< Vgst 0)

(begin

(:= e4 (aref element 4))

(:= e5 (aref element 5))

(:= Vds (- Vd Vs))

(:= KS (* Kp (/ (aref value-array e4)

(aref value-array e5))))

(if (<= Vgst Vds)

(begin

(:= Ids (* KS (- (* 2 (* Vgst Vds))

(* Vds Vds)))))

(begin

(:= Ids (* KS (* Vgst Vgst)))))

(:= (aref (produce current) drain)

(- (aref (consume current) drain) Ids))

(begin-sync

(:= (aref (produce current) source)

(+ (aref (consume current) source)

Ids)))))))))

(eval-ctl

(lambda (el-num sync)

(declare ((tempi int) (type int)

(element-address int) (local-i int))

(begin

(:= local-i (leave el-num))

(begin-sync

(:= (produce sync) 0)

(:= tempi (aref element-index local-i))

(:= type (aref top-element tempi))

(:= (uncond element-address) (+ top-element tempi))

(if (== type 2)

(begin

(call eval-nfet element-address))

(begin

(if (== type 3)

136 APPENDIX A. BENCHMARKS

(begin

(call eval-pfet element-address))

(begin

(if (== type 0)

(begin

(call eval-res element-address))

(begin

(if (== type 1)

(begin

(call eval-cap element-address))

(begin

(:= error type)))))))))))))))

(begin

(for ((:= (uncond i) 0) (< i num-elements) (:= (uncond i) (+ i 1)))

(begin

(fork (call eval-ctl i sync))

(begin-sync

(:= sync-temp (+ (consume sync) 1))))))))

A.3.4 thr-auto-model

(declare

((num-elements int) (element-index (array 100 int))

(top-element (array 500 int))

(value-array (array 200 float))

(voltage (array 500 float))

(delta-t float)

(delta-diff float)

(Vtn float) (Kn float)

(Vtp float) (Kp float)

(current (array 500 float))

(index int)

(i int) (sync int) (sync-temp int)

(error int)

(eval-res

(lambda (element)

(declare ((delta-c float)

(e1 int) (e2 int) (e3 int))

(begin

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= delta-c (/ (- (aref voltage e1)

(aref voltage e2))

(aref value-array e3)))

(:= (aref (produce current) e1)

(+ (aref (consume current) e1)

delta-c))

(begin-sync

(:= (aref (produce current) e2)

(- (aref (consume current) e2)

delta-c)))))))

(eval-cap

(lambda (element)

(declare ((delta-c float)

A.3. MODEL EVALUATION 137

(delta-v float)

(conductance float)

(e1 int) (e2 int) (e3 int))

(begin

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= conductance (/ (aref value-array e3)

delta-t))

(:= delta-v (- (aref voltage e1)

(aref voltage e2)))

(:= delta-c (- (* delta-v conductance)

(* delta-v

(* delta-diff conductance))))

(:= (aref (produce current) e1)

(+ (aref (consume current) e1)

delta-c))

(begin-sync

(:= (aref (produce current) e2)

(- (aref (consume current) e2)

delta-c)))))))

(eval-nfet

(lambda (element)

(declare ((drain int) (gate int) (source int) (Vg float)

(Vgst float) (Vd float) (Vs float) (Vds float)

(Ids float) (KS float) (WoL float) (temp float)

(e1 int) (e2 int) (e3 int) (e4 int) (e5 int))

(begin

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= Vd (aref voltage e1))

(:= Vs (aref voltage e3))

(:= Vg (aref voltage e2))

(if (> Vs Vd)

(begin

(:= drain e3)

(:= source e1)

(:= temp Vd)

(:= Vd Vs)

(:= Vs temp))

(begin

(:= drain e1)

(:= source e3)))

(:= Vgst (- Vg (+ Vs Vtn)))

(if (> Vgst 0)

(begin

(:= e4 (aref element 4))

(:= e5 (aref element 5))

(:= Vds (- Vd Vs))

(:= KS (* Kn (/ (aref value-array e4)

(aref value-array e5))))

(if (>= Vgst Vds)

(begin

(:= Ids (* KS (- (* 2 (* Vgst Vds))

(* Vds Vds)))))

138 APPENDIX A. BENCHMARKS

(begin

(:= Ids (* KS (* Vgst Vgst)))))

(:= (aref (produce current) drain)

(+ (aref (consume current) drain) Ids))

(begin-sync

(:= (aref (produce current) source)

(- (aref (consume current) source)

Ids)))))))))

(eval-pfet

(lambda (element)

(declare ((drain int) (gate int) (source int) (Vg float)

(Vgst float) (Vd float) (Vs float) (Vds float)

(Ids float) (KS float) (WoL float) (temp float)

(e1 int) (e2 int) (e3 int) (e4 int) (e5 int))

(begin

(:= e1 (aref element 1))

(:= e2 (aref element 2))

(:= e3 (aref element 3))

(:= Vd (aref voltage e1))

(:= Vs (aref voltage e3))

(:= Vg (aref voltage e2))

(if (< Vs Vd)

(begin

(:= drain e3)

(:= source e1)

(:= temp Vd)

(:= Vd Vs)

(:= Vs temp))

(begin

(:= drain e1)

(:= source e3)))

(:= Vgst (- Vg (+ Vs Vtp)))

(if (< Vgst 0)

(begin

(:= e4 (aref element 4))

(:= e5 (aref element 5))

(:= Vds (- Vd Vs))

(:= KS (* Kp (/ (aref value-array e4)

(aref value-array e5))))

(if (<= Vgst Vds)

(begin

(:= Ids (* KS (- (* 2 (* Vgst Vds))

(* Vds Vds)))))

(begin

(:= Ids (* KS (* Vgst Vgst)))))

(:= (aref (produce current) drain)

(- (aref (consume current) drain) Ids))

(begin-sync

(:= (aref (produce current) source)

(+ (aref (consume current) source)

Ids)))))))))

(eval-ctl

(lambda ()

(declare ((tempi int) (type int)

(element-address int) (local-i int))

(begin

A.4. LU DECOMPOSITION 139

(:= local-i (consume index))

(:= (produce index) (+ local-i 1))

(while (< local-i num-elements)

(begin

(:= tempi (aref element-index local-i))

(:= type (aref top-element tempi))

(:= (uncond element-address) (+ top-element tempi))

(if (== type 2)

(begin

(call eval-nfet element-address))

(begin

(if (== type 3)

(begin

(call eval-pfet element-address))

(begin

(if (== type 0)

(begin

(call eval-res element-address))

(begin

(if (== type 1)

(begin

(call eval-cap element-address))

(begin

(:= error type)))))))))

(begin-sync

(:= local-i (consume index))

(:= (produce index) (+ local-i 1))))))))))

(begin

(:= (uncond index) 0)

(forall ((:= i 0) (< i 4) (:= i (+ i 1)))

(begin

(call eval-ctl))))))

A.4 LU Decomposition

The LU decomposition code described in Chapter 6 is listed in this section. The program

vliw-lud is used by the SEQ and STS modes, while the base threaded mode program

which performs load balancing for Coupled and TPE is thr-iter-lud. The threaded

version that creates a new thread for each loop iteration without load balancing is thr-lud.

The autoscheduling version is found in thr-auto-lud.

A.4.1 vliw-lud

(declare

((matrix (array 3600 float))

(nrows int) (offset (array 110 int))

(diag (array 500 int))

(r-in-c (array 1000 int))

(c-in-r (array 1000 int))

140 APPENDIX A. BENCHMARKS

(i int) (j int) (k int)

(diag-val float)

(elim-col-num int) (elim-col-index int)

(elim-row-num int) (elim-row-index int)

(index-i int) (index-j int) (index-k int)

(temp1-index int) (temp2-index int))

(begin

(for ((:= i 0) (< i nrows) (:= i (+ i 1)))

(begin

(:= diag-val

(/ 1 (aref matrix (+ i (aref offset i)))))

(:= elim-row-num (aref diag (* 4 i)))

(:= elim-row-index (aref diag (+ 1 (* 4 i))))

(:= elim-col-num (aref diag (+ 2 (* 4 i))))

(for ((:= j elim-row-num) (> j 0) (:= j (- j 1)))

(begin

(:= temp2-index (aref r-in-c elim-row-index))

(:= temp1-index (+ i (aref offset temp2-index)))

(:= (aref matrix temp1-index)

(* (aref matrix temp1-index) diag-val))

(:= elim-col-index (aref diag (+ 3 (* 4 i))))

(:= index-i i)

(:= index-j (aref r-in-c elim-row-index))

(for ((:= k elim-col-num) (> k 0) (:= k (- k 1)))

(begin

(:= index-k (aref c-in-r elim-col-index))

(:= (aref matrix

(+ index-k

(aref offset index-j)))

(- (aref matrix

(+ index-k

(aref offset index-j)))

(* (aref matrix

(+ index-i

(aref offset index-j)))

(aref matrix

(+ index-k

(aref offset index-i))))))

(:= elim-col-index (+ elim-col-index 1))))

(:= elim-row-index (+ elim-row-index 1)))))))))

A.4.2 thr-iter-lud

(declare

((matrix (array 3600 float))

(nrows int) (offset (array 110 int))

(diag (array 500 int))

(r-in-c (array 1000 int))

(c-in-r (array 1000 int))

(i int) (j int)

(diag-val float)

(elim-col-num int)

(elim-row-num int) (elim-row-index int)

(up-semaphore int) (sync int) (sync-count int)

(temp1 int) (sync-start int)

A.4. LU DECOMPOSITION 141

(mini-sync int)

(row-norm

(lambda (elim-row-index)

(declare ((index-i int) (index-j int)

(index-k int) (k int) (in-sync int)

(temp1-index int) (temp2-index int)

(elim-col-index int) (local-row-index int))

(begin

(:= local-row-index (consume elim-row-index))

(:= (produce up-semaphore) 1)

(:= temp2-index (aref r-in-c local-row-index))

(:= index-i (leave i))

(:= temp1-index (+ index-i (aref offset temp2-index)))

(:= (aref matrix temp1-index)

(* (aref matrix temp1-index) diag-val))

(:= elim-col-index (aref diag (+ 3 (* 4 index-i))))

(:= index-j (aref r-in-c local-row-index))

(for ((:= k (leave elim-col-num)) (> k 0) (:= k (- k 1)))

(begin

(:= index-k (aref c-in-r elim-col-index))

(:= (aref matrix

(+ index-k

(aref offset index-j)))

(- (aref matrix

(+ index-k

(aref offset index-j)))

(* (aref matrix

(+ index-i

(aref offset index-j)))

(aref matrix

(+ index-k

(aref offset index-i))))))

(:= elim-col-index (+ elim-col-index 1))))

(begin-sync

(:= in-sync (consume sync))

(if (< in-sync elim-row-num)

(begin

(:= (produce sync) (+ in-sync 1)))

(:= (produce sync-start) in-sync))))))))

(begin

(:= (uncond sync-start) 0)

(for ((:= (uncond i) 0) (< i nrows) (:= (uncond i) (+ i 1)))

(begin

(:= (uncond sync) 0)

(:= temp1 (consume sync-start))

(:= temp1 (+ temp1 1))

(:= sync-count 0)

(:= (uncond diag-val)

(/ 1 (aref matrix (+ i (aref offset i)))))

(:= (uncond elim-row-num) (aref diag (* 4 i)))

(:= (uncond elim-row-index) (aref diag (+ 1 (* 4 i))))

(:= (uncond elim-col-num) (aref diag (+ 2 (* 4 i))))

(forall-iterate

((:= j elim-row-num) (> j 0) (:= j (- j 1)))

(begin

(fork (call row-norm elim-row-index))

142 APPENDIX A. BENCHMARKS

(begin-sync

(:= mini-sync (+ 1 (consume up-semaphore)))

(:= (produce elim-row-index) (+ elim-row-index 1)))))

(begin-sync

(:= sync-count (consume sync))

(if (< sync-count elim-row-num)

(begin

(:= (produce sync) (+ sync-count 1))

(begin-sync

(:= (uncond sync-count) (leave sync-start))))

(:= (produce sync-start) temp1))))))))

A.4.3 thr-lud

(declare

((matrix (array 3600 float))

(nrows int) (offset (array 110 int))

(diag (array 500 int))

(r-in-c (array 1000 int))

(c-in-r (array 1000 int))

(i int) (j int)

(diag-val float)

(elim-col-num int)

(elim-row-num int) (elim-row-index int)

(up-semaphore int) (sync int) (sync-count int)

(temp1 int) (sync-start int)

(mini-sync int)

(row-norm

(lambda (elim-row-index)

(declare ((index-i int) (index-j int)

(index-k int) (k int) (in-sync int)

(temp1-index int) (temp2-index int)

(elim-col-index int) (local-row-index int))

(begin

(:= local-row-index (consume elim-row-index))

(:= (produce up-semaphore) 1)

(:= temp2-index (aref r-in-c local-row-index))

(:= index-i (leave i))

(:= temp1-index (+ index-i (aref offset temp2-index)))

(:= (aref matrix temp1-index)

(* (aref matrix temp1-index) diag-val))

(:= elim-col-index (aref diag (+ 3 (* 4 index-i))))

(:= index-j (aref r-in-c local-row-index))

(for ((:= k (leave elim-col-num)) (> k 0) (:= k (- k 1)))

(begin

(:= index-k (aref c-in-r elim-col-index))

(:= (aref matrix

(+ index-k

(aref offset index-j)))

(- (aref matrix

(+ index-k

(aref offset index-j)))

(* (aref matrix

(+ index-i

(aref offset index-j)))

A.4. LU DECOMPOSITION 143

(aref matrix

(+ index-k

(aref offset index-i))))))

(:= elim-col-index (+ elim-col-index 1))))

(begin-sync

(:= in-sync (consume sync))

(if (< in-sync elim-row-num)

(begin

(:= (produce sync) (+ in-sync 1)))

(:= (produce sync-start) in-sync))))))))

(begin

(:= (uncond sync-start) 0)

(for ((:= i 0) (< i nrows) (:= i (+ i 1)))

(begin

(:= (uncond sync) 0)

(:= temp1 (consume sync-start))

(:= temp1 (+ temp1 1))

(:= sync-count 0)

(:= (uncond diag-val)

(/ 1 (aref matrix (+ i (aref offset i)))))

(:= (uncond elim-row-num) (aref diag (* 4 i)))

(:= (uncond elim-row-index) (aref diag (+ 1 (* 4 i))))

(:= (uncond elim-col-num) (aref diag (+ 2 (* 4 i))))

(for ((:= j elim-row-num) (> j 0) (:= j (- j 1)))

(begin

(fork (call row-norm elim-row-index))

(begin-sync

(:= mini-sync (+ 1 (consume up-semaphore)))

(:= (produce elim-row-index) (+ elim-row-index 1)))))

(begin-sync

(:= sync-count (consume sync))

(if (< sync-count elim-row-num)

(begin

(:= (produce sync) (+ sync-count 1))

(begin-sync

(:= (uncond sync-count) (leave sync-start))))

(:= (produce sync-start) sync-count))))))))

A.4.4 thr-auto-lud

(declare

((matrix (array 3600 float))

(nrows int) (offset (array 110 int))

(diag (array 500 int))

(r-in-c (array 1000 int))

(c-in-r (array 1000 int))

(i int) (j int)

(diag-val float)

(elim-col-num int)

(elim-row-num int) (elim-row-index int)

(num-threads int) (index int)

(sync int) (sync-count int) (temp1 int) (sync-start int)

(row-norm

(lambda ()

(declare ((index-i int) (index-j int)

144 APPENDIX A. BENCHMARKS

(index-k int) (k int) (in-sync int)

(temp1-index int) (temp2-index int)

(local-index int)

(elim-col-index int) (local-row-index int))

(begin

(:= local-index (consume index))

(:= (produce index) (+ local-index 1))

(while (< local-index elim-row-num)

(begin

(:= local-row-index

(+ local-index elim-row-index))

(:= temp2-index (aref r-in-c local-row-index))

(:= index-i (leave i))

(:= temp1-index (+ index-i (aref offset temp2-index)))

(:= (aref matrix temp1-index)

(* (aref matrix temp1-index) diag-val))

(:= elim-col-index (aref diag (+ 3 (* 4 index-i))))

(:= index-j (aref r-in-c local-row-index))

(for ((:= k elim-col-num) (> k 0) (:= k (- k 1)))

(begin

(:= index-k (aref c-in-r elim-col-index))

(:= (aref matrix

(+ index-k

(aref offset index-j)))

(- (aref matrix

(+ index-k

(aref offset index-j)))

(* (aref matrix

(+ index-i

(aref offset index-j)))

(aref matrix

(+ index-k

(aref offset index-i))))))

(:= elim-col-index (+ elim-col-index 1))))

(:= local-index (consume index))

(:= (produce index) (+ local-index 1))))

(begin-sync

(:= in-sync (consume sync))

(if (< in-sync num-threads)

(begin

(:= (produce sync) (+ in-sync 1)))

(:= (produce sync-start) in-sync))))))))

(begin

(:= (uncond num-threads) 4)

(:= (uncond sync-start) 0)

(:= (uncond index) 0)

(for ((:= (uncond i) 0) (< i nrows) (:= (uncond i) (+ i 1)))

(begin

(:= (uncond sync) 0)

(:= temp1 (consume sync-start))

(:= temp1 (+ temp1 1))

(:= sync-count 0)

(:= (uncond diag-val)

(/ 1 (aref matrix (+ i (aref offset i)))))

(:= (uncond elim-row-num) (aref diag (* 4 i)))

(:= (uncond elim-row-index) (aref diag (+ 1 (* 4 i))))

A.4. LU DECOMPOSITION 145

(:= (uncond elim-col-num) (aref diag (+ 2 (* 4 i))))

(:= (uncond index) 0)

(begin-sync

(forall ((:= j 0) (< j 4) (:= j (+ j 1)))

(begin (call row-norm))))

(begin-sync

(:= sync-count (consume sync))

(if (< sync-count num-threads)

(begin

(:= (produce sync) (+ sync-count 1))

(begin-sync

(:= (uncond sync-count) (leave sync-start))))

(:= (produce sync-start) sync-count))))))))

Appendix B

Experimental Data

This appendix contains the experimental data used in the graphs seen in Chapter 6.

B.1 Baseline Results

Operation Counts

Benchmark Mode #Cycles FPU IU Memory Branch Total

Matrix SEQ 1991 1377 1800 1810 101 5088

Matrix STS 1181 1377 1800 1810 101 5088

Matrix TPE 628 1377 1782 1800 109 5068

Matrix Coupled 637 1377 1782 1800 109 5068

Matrix Ideal 349 1377 99 243 1 1720

FFT SEQ 3376 800 2070 1868 157 4895

FFT STS 1791 800 2230 1868 157 5055

FFT TPE 1976 800 2080 1894 397 5171

FFT Coupled 1101 800 2240 1894 397 5331

FFT Ideal 401 800 1021 1073 7 2901

Model SEQ 992 212 97 811 136 1256

Model STS 770 212 97 803 136 1248

Model TPE 394 212 257 696 236 1401

Model Coupled 368 212 257 668 236 1373

LUD SEQ 57974 7985 26000 57014 4761 95760

LUD STS 33125 7985 26000 57014 4761 95760

LUD TPE 22626 7985 30598 61294 7954 107831

LUD Coupled 21542 7985 30598 61294 7954 107831

Table B.1: Cycle and operation counts for the benchmarks on di�erent machine models.

146

B.2. VARIABLE MEMORY LATENCY 147

B.2 Variable Memory Latency

Memory Compared Cache

Benchmark Mode Mode #Cycles to Min Misses

Matrix SEQ Min 1991 1.00 0

Matrix SEQ Mem1 6305 3.17 97

Matrix SEQ Mem2 10388 5.22 180

Matrix STS Min 1181 1.00 0

Matrix STS Mem1 5142 4.35 97

Matrix STS Mem2 8299 7.03 180

Matrix TPE Min 628 1.00 0

Matrix TPE Mem1 1126 1.79 97

Matrix TPE Mem2 1397 2.22 179

Matrix Coupled Min 637 1.00 0

Matrix Coupled Mem1 953 1.50 97

Matrix Coupled Mem2 1113 1.75 179

Matrix Ideal Min 349 1.00 0

Matrix Ideal Mem1 459 1.32 13

Matrix Ideal Mem2 531 1.52 22

Table B.2: E�ect of memory latency on Matrix.

Memory Compared Cache

Benchmark Mode Mode #Cycles to Min Misses

FFT SEQ Min 3376 1.00 0

FFT SEQ Mem1 6110 1.81 99

FFT SEQ Mem2 8240 2.44 184

FFT STS Min 1791 1.00 0

FFT STS Mem1 4381 2.45 99

FFT STS Mem2 6327 3.53 184

FFT TPE Min 1976 1.00 0

FFT TPE Mem1 2927 1.48 100

FFT TPE Mem2 2905 1.47 186

FFT Coupled Min 1101 1.00 0

FFT Coupled Mem1 1782 1.62 100

FFT Coupled Mem2 1968 1.79 186

FFT Ideal Min 401 1.00 0

FFT Ideal Mem1 2062 5.14 60

FFT Ideal Mem2 2997 7.47 108

Table B.3: E�ect of memory latency on FFT.

148 APPENDIX B. EXPERIMENTAL DATA

Memory Compared Cache

Benchmark Mode Mode #Cycles to Min Misses

Model SEQ Min 992 1.00 0

Model SEQ Mem1 2398 2.42 48

Model SEQ Mem2 2960 2.98 80

Model STS Min 770 1.00 0

Model STS Mem1 2086 2.71 47

Model STS Mem2 3131 4.07 78

Model TPE Min 394 1.00 0

Model TPE Mem1 712 1.81 35

Model TPE Mem2 906 2.30 66

Model Coupled Min 368 1.00 0

Model Coupled Mem1 553 1.50 32

Model Coupled Mem2 710 1.93 60

Table B.4: E�ect of memory latency on Model.

Memory Compared Cache

Benchmark Mode Mode #Cycles to Min Misses

LUD SEQ Min 57974 1.00 0

LUD SEQ Mem1 167220 2.88 2722

LUD SEQ Mem2 274366 4.73 5546

LUD STS Min 33125 1.00 0

LUD STS Mem1 141710 4.27 2722

LUD STS Mem2 246180 7.43 5546

LUD TPE Min 22626 1.00 0

LUD TPE Mem1 49983 2.21 2944

LUD TPE Mem2 72348 3.20 5995

LUD Coupled Min 21542 1.00 0

LUD Coupled Mem1 40258 1.87 2944

LUD Coupled Mem2 55846 2.59 5995

Table B.5: E�ect of memory latency on LUD.

B.3. EFFECT OF FPU LATENCY 149

B.3 E�ect of FPU Latency

FPU Compared to

Benchmark Mode Latency #Cycles 1 Cycle Latency

Matrix SEQ 1 1991 1.00

Matrix SEQ 2 2234 1.12

Matrix SEQ 3 2558 1.28

Matrix SEQ 4 3206 1.61

Matrix SEQ 5 3854 1.94

Matrix STS 1 1181 1.00

Matrix STS 2 1910 1.62

Matrix STS 3 2072 1.75

Matrix STS 4 2720 2.30

Matrix STS 5 3449 2.92

Matrix TPE 1 628 1.00

Matrix TPE 2 663 1.06

Matrix TPE 3 705 1.12

Matrix TPE 4 753 1.20

Matrix TPE 5 782 1.25

Matrix Coupled 1 637 1.00

Matrix Coupled 2 655 1.03

Matrix Coupled 3 670 1.05

Matrix Coupled 4 718 1.13

Matrix Coupled 5 778 1.22

Matrix Ideal 1 349 1.00

Matrix Ideal 2 351 1.01

Matrix Ideal 3 354 1.01

Matrix Ideal 4 356 1.02

Matrix Ideal 5 361 1.03

Table B.6: E�ect of
oating point unit latency on Matrix.

150 APPENDIX B. EXPERIMENTAL DATA

FPU Compared to

Benchmark Mode Latency #Cycles 1 Cycle Latency

FFT SEQ 1 3376 1.00

FFT SEQ 2 3456 1.02

FFT SEQ 3 3616 1.07

FFT SEQ 4 3856 1.14

FFT SEQ 5 3936 1.17

FFT STS 1 1791 1.00

FFT STS 2 2031 1.13

FFT STS 3 2031 1.13

FFT STS 4 2271 1.27

FFT STS 5 2511 1.40

FFT TPE 1 1976 1.00

FFT TPE 2 1986 1.01

FFT TPE 3 1991 1.01

FFT TPE 4 2006 1.02

FFT TPE 5 2031 1.03

FFT Coupled 1 1101 1.00

FFT Coupled 2 1106 1.00

FFT Coupled 3 1106 1.00

FFT Coupled 4 1136 1.03

FFT Coupled 5 1141 1.04

FFT Ideal 1 401 1.00

FFT Ideal 2 406 1.01

FFT Ideal 3 396 0.99

FFT Ideal 4 416 1.04

FFT Ideal 5 431 1.07

Table B.7: E�ect of
oating point unit latency on FFT.

B.3. EFFECT OF FPU LATENCY 151

FPU Compared to

Benchmark Mode Latency #Cycles 1 Cycle Latency

Model SEQ 1 992 1.00

Model SEQ 2 1102 1.11

Model SEQ 3 1120 1.13

Model SEQ 4 1277 1.29

Model SEQ 5 1423 1.43

Model STS 1 770 1.00

Model STS 2 889 1.15

Model STS 3 948 1.23

Model STS 4 1078 1.40

Model STS 5 1239 1.61

Model TPE 1 394 1.00

Model TPE 2 400 1.02

Model TPE 3 400 1.02

Model TPE 4 411 1.04

Model TPE 5 427 1.08

Model Coupled 1 368 1.00

Model Coupled 2 374 1.02

Model Coupled 3 382 1.04

Model Coupled 4 388 1.05

Model Coupled 5 387 1.05

Table B.8: E�ect of
oating point unit latency on Model.

FPU Compared to

Benchmark Mode Latency #Cycles 1 Cycle Latency

LUD SEQ 1 57974 1.00

LUD SEQ 2 61711 1.06

LUD SEQ 3 65448 1.13

LUD SEQ 4 69185 1.19

LUD SEQ 5 76659 1.32

LUD STS 1 33125 1.00

LUD STS 2 40599 1.23

LUD STS 3 40599 1.23

LUD STS 4 48584 1.47

LUD STS 5 56569 1.71

LUD TPE 1 22626 1.00

LUD TPE 2 23045 1.02

LUD TPE 3 23568 1.04

LUD TPE 4 23905 1.06

LUD TPE 5 24877 1.10

LUD Coupled 1 21542 1.00

LUD Coupled 2 21527 1.00

LUD Coupled 3 21591 1.00

LUD Coupled 4 22246 1.03

LUD Coupled 5 23234 1.08

Table B.9: E�ect of
oating point unit latency on LUD.

152 APPENDIX B. EXPERIMENTAL DATA

B.4 Restricting Communication

Communication Compared Bus

Benchmark Mode Scheme #Cycles to Full Con
icts

Matrix SEQ Full 1991 1.00 0

Matrix SEQ Tri-Port 1991 1.00 0

Matrix SEQ Dual-Port 3206 1.61 1296

Matrix SEQ Single-Port 4826 2.42 4293

Matrix SEQ Single-Bus 3206 1.61 1296

Matrix STS Full 1181 1.00 0

Matrix STS Tri-Port 1424 1.21 243

Matrix STS Dual-Port 1748 1.48 1053

Matrix STS Single-Port 2963 2.51 3888

Matrix STS Single-Bus 2234 1.89 2187

Matrix TPE Full 628 1.00 0

Matrix TPE Tri-Port 628 1.00 0

Matrix TPE Dual-Port 1025 1.63 1456

Matrix TPE Single-Port 1586 2.53 4644

Matrix TPE Single-Bus 1385 2.21 3352

Matrix Coupled Full 637 1.00 0

Matrix Coupled Tri-Port 694 1.09 497

Matrix Coupled Dual-Port 1063 1.67 1992

Matrix Coupled Single-Port 1550 2.43 4760

Matrix Coupled Single-Bus 2096 3.29 5090

Matrix Ideal Full 349 1.00 0

Matrix Ideal Tri-Port 404 1.16 155

Matrix Ideal Dual-Port 527 1.51 528

Matrix Ideal Single-Port 696 1.99 917

Matrix Ideal Single-Bus 1056 3.03 2324

Table B.10: E�ect of restricting communication on Matrix.

B.4. RESTRICTING COMMUNICATION 153

Communication Compared Bus

Benchmark Mode Scheme #Cycles to Full Con
icts

FFT SEQ Full 3376 1.00 0

FFT SEQ Tri-Port 3456 1.02 80

FFT SEQ Dual-Port 3696 1.09 320

FFT SEQ Single-Port 4322 1.28 866

FFT SEQ Single-Bus 3696 1.09 160

FFT STS Full 1791 1.00 0

FFT STS Tri-Port 1791 1.00 0

FFT STS Dual-Port 2027 1.13 428

FFT STS Single-Port 3320 1.85 1286

FFT STS Single-Bus 3103 1.73 968

FFT TPE Full 1976 1.00 0

FFT TPE Tri-Port 1986 1.01 145

FFT TPE Dual-Port 2086 1.06 560

FFT TPE Single-Port 2367 1.20 2216

FFT TPE Single-Bus 2201 1.11 1435

FFT Coupled Full 1101 1.00 0

FFT Coupled Tri-Port 1181 1.07 505

FFT Coupled Dual-Port 1577 1.43 1678

FFT Coupled Single-Port 1910 1.73 2786

FFT Coupled Single-Bus 2348 2.13 3973

FFT Ideal Full 401 1.00 0

FFT Ideal Tri-Port 546 1.36 325

FFT Ideal Dual-Port 796 1.99 1060

FFT Ideal Single-Port 1641 4.09 1770

FFT Ideal Single-Bus 1316 3.28 1105

Table B.11: E�ect of restricting communication on FFT.

154 APPENDIX B. EXPERIMENTAL DATA

Communication Compared Bus

Benchmark Mode Scheme #Cycles to Full Con
icts

Model SEQ Full 992 1.00 0

Model SEQ Tri-Port 992 1.00 0

Model SEQ Dual-Port 992 1.00 0

Model SEQ Single-Port 1069 1.08 77

Model SEQ Single-Bus 992 1.00 0

Model STS Full 770 1.00 0

Model STS Tri-Port 770 1.00 0

Model STS Dual-Port 775 1.01 5

Model STS Single-Port 860 1.12 144

Model STS Single-Bus 787 1.02 40

Model TPE Full 394 1.00 0

Model TPE Tri-Port 394 1.00 3

Model TPE Dual-Port 395 1.00 62

Model TPE Single-Port 429 1.09 169

Model TPE Single-Bus 398 1.01 206

Model Coupled Full 368 1.00 0

Model Coupled Tri-Port 370 1.01 20

Model Coupled Dual-Port 402 1.09 140

Model Coupled Single-Port 437 1.19 358

Model Coupled Single-Bus 437 1.19 739

Table B.12: E�ect of restricting communication on Model.

Communication Compared Bus

Benchmark Mode Scheme #Cycles to Full Con
icts

LUD SEQ Full 57974 1.00 0

LUD SEQ Tri-Port 57974 1.00 0

LUD SEQ Dual-Port 57974 1.00 64

LUD SEQ Single-Port 81610 1.41 23828

LUD SEQ Single-Bus 61711 1.06 3865

LUD STS Full 33125 1.00 0

LUD STS Tri-Port 33125 1.00 0

LUD STS Dual-Port 37309 1.13 4184

LUD STS Single-Port 49798 1.50 16737

LUD STS Single-Bus 48648 1.47 26415

LUD TPE Full 22626 1.00 0

LUD TPE Tri-Port 22621 1.00 27

LUD TPE Dual-Port 22848 1.01 1491

LUD TPE Single-Port 29095 1.29 31184

LUD TPE Single-Bus 26353 1.16 20578

LUD Coupled Full 21542 1.00 0

LUD Coupled Tri-Port 21519 1.00 346

LUD Coupled Dual-Port 23792 1.10 8147

LUD Coupled Single-Port 33244 1.54 36558

LUD Coupled Single-Bus 35484 1.65 56725

Table B.13: E�ect of restricting communication on LUD.

B.5. NUMBER AND MIX OF FUNCTION UNITS 155

B.5 Number and Mix of Function Units

Number Number Compared

Benchmark Mode FPUs IUs #Cycles to Full

Matrix Coupled 1 1 1812 2.84

Matrix Coupled 1 2 1432 2.25

Matrix Coupled 1 3 1432 2.25

Matrix Coupled 1 4 1431 2.25

Matrix Coupled 2 1 1812 2.84

Matrix Coupled 2 2 939 1.47

Matrix Coupled 2 3 772 1.21

Matrix Coupled 2 4 759 1.19

Matrix Coupled 3 1 1812 2.84

Matrix Coupled 3 2 943 1.48

Matrix Coupled 3 3 697 1.09

Matrix Coupled 3 4 666 1.05

Matrix Coupled 4 1 1812 2.84

Matrix Coupled 4 2 944 1.48

Matrix Coupled 4 3 706 1.11

Matrix Coupled 4 4 637 1.00

Table B.14: E�ect of varying the number and mix of units for Matrix.

Number Number Compared

Benchmark Mode FPUs IUs #Cycles to Full

FFT Coupled 1 1 2605 2.37

FFT Coupled 1 2 1834 1.67

FFT Coupled 1 3 1642 1.49

FFT Coupled 1 4 1546 1.40

FFT Coupled 2 1 2590 2.35

FFT Coupled 2 2 1554 1.41

FFT Coupled 2 3 1312 1.19

FFT Coupled 2 4 1146 1.04

FFT Coupled 3 1 2590 2.35

FFT Coupled 3 2 1564 1.42

FFT Coupled 3 3 1312 1.19

FFT Coupled 3 4 1116 1.01

FFT Coupled 4 1 2735 2.48

FFT Coupled 4 2 1634 1.48

FFT Coupled 4 3 1337 1.21

FFT Coupled 4 4 1101 1.00

Table B.15: E�ect of varying the number and mix of units for FFT.

156 APPENDIX B. EXPERIMENTAL DATA

Number Number Compared

Benchmark Mode FPUs IUs #Cycles to Full

Model Coupled 1 1 409 1.11

Model Coupled 1 2 388 1.05

Model Coupled 1 3 390 1.06

Model Coupled 1 4 406 1.10

Model Coupled 2 1 387 1.05

Model Coupled 2 2 380 1.03

Model Coupled 2 3 373 1.01

Model Coupled 2 4 372 1.01

Model Coupled 3 1 381 1.04

Model Coupled 3 2 373 1.01

Model Coupled 3 3 373 1.01

Model Coupled 3 4 368 1.00

Model Coupled 4 1 382 1.04

Model Coupled 4 2 367 1.00

Model Coupled 4 3 373 1.01

Model Coupled 4 4 368 1.00

Table B.16: E�ect of varying the number and mix of units for Model.

Number Number Compared

Benchmark Mode FPUs IUs #Cycles to Full

LUD Coupled 1 1 33239 1.54

LUD Coupled 1 2 24213 1.12

LUD Coupled 1 3 23015 1.07

LUD Coupled 1 4 23401 1.09

LUD Coupled 2 1 34018 1.58

LUD Coupled 2 2 24650 1.14

LUD Coupled 2 3 22921 1.06

LUD Coupled 2 4 21982 1.02

LUD Coupled 3 1 34018 1.58

LUD Coupled 3 2 25513 1.18

LUD Coupled 3 3 22416 1.04

LUD Coupled 3 4 21892 1.02

LUD Coupled 4 1 39125 1.82

LUD Coupled 4 2 28002 1.30

LUD Coupled 4 3 23777 1.10

LUD Coupled 4 4 21542 1.00

Table B.17: E�ect of varying the number and mix of units for LUD.

B.6. METHODS OF EXPRESSING PARALLEL LOOPS 157

B.6 Methods of Expressing Parallel Loops

Parallelism Compared Operation

Benchmark Mode Type #Cycles to Fork Count

Model TPE Fork 586 1.00 1161

Model TPE Iter 394 0.67 1401

Model TPE Auto 282 0.48 1283

Model Coupled Fork 355 1.00 1133

Model Coupled Iter 368 1.04 1373

Model Coupled Auto 304 0.86 1272

LUD TPE Fork 58040 1.00 102402

LUD TPE Iter 22626 0.39 107831

LUD TPE Auto 19381 0.33 100946

LUD Coupled Fork 21235 1.00 102402

LUD Coupled Iter 21542 1.01 107831

LUD Coupled Auto 19552 0.92 100946

Table B.18: Cycle counts using three di�erent parallel loops for Model and LUD.

158 APPENDIX B. EXPERIMENTAL DATA

Parallelism Memory Compared Cache

Benchmark Mode Type Mode #Cycles to Min Misses

Model TPE Fork Min 586 1.00 0

Model TPE Fork Mem1 803 1.37 32

Model TPE Fork Mem2 1122 1.91 58

Model TPE Iter Min 394 1.00 0

Model TPE Iter Mem1 712 1.81 35

Model TPE Iter Mem2 906 2.30 66

Model TPE Auto Min 282 1.00 0

Model TPE Auto Mem1 734 2.60 49

Model TPE Auto Mem2 873 3.10 80

Model Coupled Fork Min 355 1.00 0

Model Coupled Fork Mem1 445 1.25 32

Model Coupled Fork Mem2 676 1.90 56

Model Coupled Iter Min 368 1.00 0

Model Coupled Iter Mem1 553 1.50 32

Model Coupled Iter Mem2 710 1.93 60

Model Coupled Auto Min 304 1.00 0

Model Coupled Auto Mem1 698 2.30 48

Model Coupled Auto Mem2 953 3.13 80

Table B.19: E�ect of memory latency on Model using di�erent parallel loops.

Parallelism Memory Compared Cache

Benchmark Mode Type Mode #Cycles to Min Misses

LUD TPE Fork Min 58040 1.00 0

LUD TPE Fork Mem1 75312 1.30 2892

LUD TPE Fork Mem2 90038 1.55 5893

LUD TPE Iter Min 22626 1.00 0

LUD TPE Iter Mem1 49983 2.21 2944

LUD TPE Iter Mem2 72348 3.20 5995

LUD TPE Auto Min 19381 1.00 0

LUD TPE Auto Mem1 56397 2.91 2872

LUD TPE Auto Mem2 89996 4.64 5838

LUD Coupled Fork Min 21235 1.00 0

LUD Coupled Fork Mem1 37531 1.77 2892

LUD Coupled Fork Mem2 52308 2.46 5893

LUD Coupled Iter Min 21542 1.00 0

LUD Coupled Iter Mem1 40258 1.87 2944

LUD Coupled Iter Mem2 55846 2.59 5995

LUD Coupled Auto Min 19552 1.00 0

LUD Coupled Auto Mem1 50499 2.58 2872

LUD Coupled Auto Mem2 82494 4.22 5838

Table B.20: E�ect of memory latency on LUD using di�erent parallel loops.

B.6. METHODS OF EXPRESSING PARALLEL LOOPS 159

Parallelism Communication Compared Bus

Benchmark Mode Type Scheme #Cycles to Full Con
icts

Model TPE Fork Full 586 1.00 0

Model TPE Fork Tri-Port 586 1.00 0

Model TPE Fork Dual-Port 585 1.00 15

Model TPE Fork Single-Port 622 1.06 399

Model TPE Fork Single-Bus 584 1.00 20

Model TPE Iter Full 394 1.00 0

Model TPE Iter Tri-Port 394 1.00 3

Model TPE Iter Dual-Port 395 1.00 62

Model TPE Iter Single-Port 429 1.09 169

Model TPE Iter Single-Bus 398 1.01 206

Model TPE Auto Full 282 1.00 0

Model TPE Auto Tri-Port 282 1.00 0

Model TPE Auto Dual-Port 294 1.04 14

Model TPE Auto Single-Port 299 1.06 70

Model TPE Auto Single-Bus 301 1.07 40

Model Coupled Fork Full 355 1.00 0

Model Coupled Fork Tri-Port 357 1.01 2

Model Coupled Fork Dual-Port 367 1.03 52

Model Coupled Fork Single-Port 507 1.43 322

Model Coupled Fork Single-Bus 433 1.22 134

Model Coupled Iter Full 368 1.00 0

Model Coupled Iter Tri-Port 370 1.01 20

Model Coupled Iter Dual-Port 402 1.09 140

Model Coupled Iter Single-Port 437 1.19 358

Model Coupled Iter Single-Bus 437 1.19 739

Model Coupled Auto Full 304 1.00 0

Model Coupled Auto Tri-Port 304 1.00 2

Model Coupled Auto Dual-Port 302 0.99 36

Model Coupled Auto Single-Port 356 1.17 204

Model Coupled Auto Single-Bus 374 1.23 266

Table B.21: Restricting communication on Model using di�erent parallel loops.

160 APPENDIX B. EXPERIMENTAL DATA

Parallelism Communication Compared Bus

Benchmark Mode Type Scheme #Cycles to Full Con
icts

LUD TPE Fork Full 58040 1.00 0

LUD TPE Fork Tri-Port 58040 1.00 0

LUD TPE Fork Dual-Port 58424 1.01 384

LUD TPE Fork Single-Port 78628 1.35 37598

LUD TPE Fork Single-Bus 58069 1.00 3820

LUD TPE Iter Full 22626 1.00 0

LUD TPE Iter Tri-Port 22621 1.00 27

LUD TPE Iter Dual-Port 22848 1.01 1491

LUD TPE Iter Single-Port 29095 1.29 31184

LUD TPE Iter Single-Bus 26353 1.16 20578

LUD TPE Auto Full 19381 1.00 0

LUD TPE Auto Tri-Port 19381 1.00 0

LUD TPE Auto Dual-Port 19517 1.01 581

LUD TPE Auto Single-Port 26912 1.39 24719

LUD TPE Auto Single-Bus 24301 1.25 20767

LUD Coupled Fork Full 21235 1.00 0

LUD Coupled Fork Tri-Port 21336 1.00 522

LUD Coupled Fork Dual-Port 24479 1.15 6124

LUD Coupled Fork Single-Port 42046 1.98 47745

LUD Coupled Fork Single-Bus 36030 1.70 26518

LUD Coupled Iter Full 21542 1.00 0

LUD Coupled Iter Tri-Port 21519 1.00 346

LUD Coupled Iter Dual-Port 23792 1.10 8147

LUD Coupled Iter Single-Port 33244 1.54 36558

LUD Coupled Iter Single-Bus 35484 1.65 56725

LUD Coupled Auto Full 19552 1.00 0

LUD Coupled Auto Tri-Port 19590 1.00 352

LUD Coupled Auto Dual-Port 20881 1.07 7098

LUD Coupled Auto Single-Port 30430 1.56 35410

LUD Coupled Auto Single-Bus 34713 1.78 63291

Table B.22: Restricting communication on LUD using di�erent parallel loops.

B.7. DATA MOVEMENT STRATEGY 161

B.7 Data Movement Strategy

Move Target Compared to Number of Move

Benchmark Mode Units Registers #Cycles 4 Targets Operations

Matrix Coupled yes 1 581 1.02 324

Matrix Coupled yes 2 595 1.04 162

Matrix Coupled yes 3 557 0.98 0

Matrix Coupled yes 4 571 1.00 0

Matrix Coupled no 1 578 1.01 81

Matrix Coupled no 2 637 1.12 0

Matrix Coupled no 3 557 0.98 0

Matrix Coupled no 4 571 1.00 0

FFT Coupled yes 1 1128 1.02 384

FFT Coupled yes 2 1074 0.97 192

FFT Coupled yes 3 1042 0.94 0

FFT Coupled yes 4 1106 1.00 0

FFT Coupled no 1 1246 1.13 252

FFT Coupled no 2 1101 1.00 160

FFT Coupled no 3 1042 0.94 0

FFT Coupled no 4 1106 1.00 0

Model Coupled yes 1 384 1.03 40

Model Coupled yes 2 379 1.01 20

Model Coupled yes 3 374 1.00 0

Model Coupled yes 4 374 1.00 0

Model Coupled no 1 381 1.02 20

Model Coupled no 2 368 0.99 0

Model Coupled no 3 372 1.00 0

Model Coupled no 4 372 1.00 0

LUD Coupled yes 1 25494 1.18 4695

LUD Coupled yes 2 21783 1.01 447

LUD Coupled yes 3 21719 1.00 0

LUD Coupled yes 4 21622 1.00 0

LUD Coupled no 1 24717 1.15 3737

LUD Coupled no 2 21542 1.00 0

LUD Coupled no 3 21467 1.00 0

LUD Coupled no 4 21502 1.00 0

Table B.23: E�ect of di�erent data transfer strategies.

162

Bibliography

[AC86] Arvind and David E. Culler. Data
ow architectures. Annual Reviews in Com-

puter Science, 1:225{53, February 1986.

[ACC

+

90] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan

Porter�eld, and Burton Smith. The Tera computer system. In Proceedings

of the International Conference on Supercomputing, pages 1{6, June 1990.

[AHU83] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. Data Structures and

Algorithms. Addison Wesley, 1983.

[ALKK90] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL:

A processor architecture for multiprocessing. In Proceedings of the 17th Annual

International Symposium on Computer Architecture, pages 104{114. ACM, 1990.

[AN

+

92] Fuad Abu-Nofal et al. A three-million-transistor microprocessor. In Proceedings

of the IEEE International Solid-State Circuits Conference, pages 108{109, 1992.

[ASU88] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Tech-

niques and Tools. Addison Wesley, 1988.

[CHJ

+

90] Robert P. Colwell, W. Eric Hall, Chandra S. Joshi, David B. Papworth, Paul K.

Rodman, and James E. Tornes. Architecture and implementation of a VLIW

supercomputer. In Proceedings of Supercomputing '90, pages 910{919. IEEE

Computer Society Press, November 1990.

[CNO

+

88] Robert P. Colwell, Robert P. Nix, John J. O'Donnell, David B. Papworth, and

Paul K. Rodman. A VLIW architecture for a trace scheduling compiler. IEEE

Transactions on Computers, 37(8):967{979, August 1988.

[CSS

+

91] David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and

John Wawrzynek. Fine-grain parallelism with minimal hardware support: A

compiler-controlled threaded abstract machine. In Proceedings of the Fourth

International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 164{175. ACM Press, April 1991.

[DT91] George E. Daddis and H. C. Torng. The concurrent execution of multiple instruc-

tion streams on superscalar processors. In Proceedings of the 1991 International

Conference on Parallel Processing, pages 76{83, August 1991.

163

164 BIBLIOGRAPHY

[Ell86] John R. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press, Cam-

bridge, MA, 1986.

[FR91] Joseph A. Fisher and B. Ramakrishna Rau. Instruction-level parallel processing.

Science, 253:1233{1241, September 1991.

[GM84] Paul R. Gray and Robert G. Meyer. Analysis and Design of Analog Integrated

Circuits. John Wiley and Sons, second edition, 1984.

[GW89] Anoop Gupta and Wolf-Dietrich Weber. Exploring the bene�ts of multiple hard-

ware contexts in a multiprocessor architecture: preliminary results. In Proceed-

ings of the 16th Annual International Symposium on Computer Architecture,

pages 273{280. IEEE, May 1989.

[HF88] Robert H. Halstead and Tetsuya Fujita. MASA: A multithreaded processor

architecture for parallel symbolic computing. In Proceedings of the 15th Annual

International Symposium on Computer Architecture, pages 443{451. IEEE, 1988.

[Ian88] Robert A. Ianucci. Toward a data
ow/Von Neumann hybrid architecture. In

Proceedings of the 15th Annual International Symposium on Computer Archi-

tecture, pages 131{140. IEEE, 1988.

[Joh91] William M. Johnson. Superscalar Microprocessor Design. Prentice Hall, Engle-

wood Cli�s, NJ, 1991.

[JW89] Norman P. Jouppi and David W. Wall. Available instruction-level parallelism

for superscalar and superpipelined machines. In Proceedings of the Third Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems, pages 272{282. ACM Press, April 1989.

[Kec92a] Stephen W. Keckler. ISC: Instruction Scheduling Compiler listing. Concurrent

VLSI Architecture Memo 43, Massachusetts Institute of Technology, Arti�cial

Intelligence Laboratory, May 1992.

[Kec92b] Stephen W. Keckler. PCS: Processor Coupling Simulator listing. Concurrent

VLSI Architecture Memo 42, Massachusetts Institute of Technology, Arti�cial

Intelligence Laboratory, May 1992.

[Lam88] Monica Lam. Software pipelining: An e�ective scheduling technique for VLIW

machines. In ACM Sigplan '88 Conference on Programming Language Design

and Implementation, pages 318{328, 1988.

[MC80] Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison Wesley,

1980.

[ND91] Peter R. Nuth and William J. Dally. A mechanism for e�cient context switching.

In Proceedings of the International Conference on Computer Design, pages 301{

304. IEEE, October 1991.

BIBLIOGRAPHY 165

[NF84] Alexandru Nicolau and Joseph A. Fisher. Measuring the parallelism available

for very long instruction word architectures. IEEE Transactions on Computers,

C-33(11):968{976, November 1984.

[OS75] Alan V. Oppenheim and Ronald W. Schafer. Digital Signal Processing. Prentice

Hall, Englewood Cli�s, NJ, 1975.

[PSS

+

91] Val Popescu, Merle Schultz, John Spracklen, Gary Gibson, Bruce Lightner, and

David Isaman. The Meta
ow architecture. IEEE Micro, June 1991.

[Smi81] Burton J. Smith. Architecture and applications of the HEP multiprocessor

computer system. SPIE, 298:241{248, 1981.

[Ste90] Guy L. Steele. Common Lisp. Digital Press, second edition, 1990.

[Str87] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, 1987.

[SV88] P. Sadayappan and V. Visvanathan. Circuit simulation on shared-memory mul-

tiprocessors. IEEE Transactions on Computers, 37(12):1634{1642, December

1988.

[SV89] P. Sadayappan and V. Visvanathan. E�cient sparse matrix factorization for

circuit simulation on vector supercomputers. IEEE Transactions on Computer

Aided Design, 8(12):1276{1285, December 1989.

[Tom67] R.M. Tomasulo. An e�cient algorithm for exploiting multiple arithmetic units.

IBM Journal, 11:25{33, January 1967.

[VS83] Jiri Vlach and Kishore Singhal. Computer Methods for Circuit Analysis and

Design. Van Nostrand Reinhold Company, 1983.

[Wal91] David W. Wall. Limits of instruction-level parallelism. In Proceedings of the

Fourth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 176{188. ACM Press, April 1991.

[WS91] Andrew Wolfe and John P. Shen. A variable instruction stream extension to

the VLIW architecture. In Proceedings of the Fourth International Conference

on Architectural Support for Programming Languages and Operating Systems,

pages 2{14. ACM Press, April 1991.

[YTL87] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing hot-

spot addressing in large-scale multiprocessors. IEEE Transactions on Comput-

ers, 36(4):388{395, April 1987.

