Compiling Quantum Programs Using Genetic
Algorithms

Rodney Van Meter
Graduate School of Science and Technology,
Keio University
3-14-1 Hiyoushi, Kohoku-ku, Yokohama-shi,
Kanagawa 223-8522, Japan

rdv@tera.ics.keio.ac.jp

Quantum computer architectures have special characteristics
that complicate the process of compiling efficient programs for
them. We are exploring the use of genetic algorithms as one
method for the storage assignment (and gate execution location
assignment) phase of a compiler back end.

Many proposed quantum computer technologies have the fea-
ture that quantum bits, or qubits, are stored in specific, static
locations, and the quantum gates that form a circuit, or algo-
rithm, come to where the qubits are in the form of e.g. mi-
crowave pulses. Thus, quantum circuit design is more like
classical program compilation than circuit design.

On many of these technologies, two-qubit gates (or, if you
prefer, two-operand instructions) can only have neighboring
qubits as operands. When two operands that are not next to
each are scheduled to be arguments to an instruction, they must
be brought together by swapping qubit values (or variables)
with their neighbors until the arguments are next to each other,
and the algorithmically specified gate can be performed. The
swap instructions are pure overhead, to be optimized away
whenever possible.

The topology in which the qubits are physically laid out has a
big impact on the performance [6]. Many of these technolo-
gies, including the all-silicon NMR device [4], permit only a
one-dimensional line of qubits. Some, such as the optical lat-
tice [1], are two-dimensional arrays. Oskin et al’s proposed ar-
chitecture based on Kane’s technology supports a loose lattice
of lines with occasional four-way intersections. The scalable
ion trap computer [3] is one of the only proposals in which
storage areas and interaction areas are separated; ions carrying
qubits are literally shuffled around using magnetic fields.

Other researchers have begun exploring GAs to find the analog
microwave pulse sequences to implement specific gates [5],
but our interest lies at a slightly higher level, the assignment
of application-level variables and gates to locations in the ma-
chine.

The assignment problem is more than simply storage location
assignment; the location of variables changes over the course
of the execution of the program, as we shuffle qubits around.
Our compilation problem, then, is effective assignment of the
instruction execution locations. For example, consider a pro-

Kevin Binkley
Graduate School of Science and Technology,
Keio University
3-14-1 Hiyoushi, Kohoku-ku, Yokohama-shi,
Kanagawa 223-8522, Japan

kbinkley@soft.ics.keio.ac.jp

gram consisting of one thousand instructions on ten qubits.
The assignment problem is not assigning the ten variables to
ten locations, which would be a maximum of 10! possibilities.
Rather, the problem is assigning each of the thousand instruc-
tions to one of the ten locations, a search space of 101090,

We have begun working on this assignment problem and the
associated back-end compilation using a genetic algorithm (GA)
[2]. Preliminary results are that a GA run in a few seconds on a
PC produces a better layout than hand-compiled programs for
a 90-instruction program on 32 qubits.

We suspect that adequate heuristics for this problem exist for
the one-dimensional line topology, without the need to intro-
duce stochastic mechanisms such as GAs. However, for the
more complex topologies, including the lattice and especially
the scalable ion trap, we suspect no adequate heuristics will be
easily found.

1. REFERENCES

[1] G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch.
Quantum logic gates in optical lattices. Physical Review Letters,
82(5):1060-1063, Feb. 1999.

[2] D. Goldberg. Genetic Algorithmsin Search, Optimization and
Machine Learning. Addison-Wesley, 1989.

[3] D. Kielpinski, C. Monroe, and D. J. Wineland. Architecture for a
large-scale ion-trap quantum computer. Nature, 417:709-711,
2002.

[4] T.D. Ladd, J. R. Goldman, F. Yamaguchi, Y. Yamamoto, E. Abe,
and K. M. Itoh. All-silicon quantum computer. Physical Review
Letters, 89(1), July 2002.

[5] M.J. Rethinam, A. K. Javali, E. C. Behrman, J. E. Steck, and
S. R. Skinner. A genetic algorithm for finding pulse sequences for
NMR quantum computing. http://arXiv.org/quant-ph/0404170,
Apr. 2004.

[6] R.Van Meter. Communications topology and distribution of the
quantum Fourier transform. In Proc. Tenth Symposium on
Quantum Information Technology (QIT10), pages 19-24, May
2004.



