CS 343: Artificial Intelligence

Perceptrons

Prof. Scott Niekum — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Error-Driven Classification
Errors, and What to Do

- Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just $99.99* - the regular list price is $499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the...

...To receive your $30 Amazon.com promotional certificate, click through to
http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click...
What to Do About Errors

- Problem: there’s still spam in your inbox

- Need more **features** – words aren’t enough!
 - Have you emailed the sender before?
 - Have 1M other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?

- Naïve Bayes models can incorporate a variety of features, but tend to do best when homogeneous (e.g. all features are word occurrences) and/or roughly independent
Linear Classifiers
Hello,
Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just

\[
\begin{align*}
\text{Hello,} \\
\text{Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just} \\
\end{align*}
\]

Hello,
Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just

\[
\begin{align*}
\text{Hello,} \\
\text{Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just} \\
\end{align*}
\]

\[
\begin{align*}
\text{Hello,} \\
\text{Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just} \\
\end{align*}
\]

\[
\begin{align*}
\text{Hello,} \\
\text{Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just} \\
\end{align*}
\]
Some (Simplified) Biology

- Very loose inspiration: human neurons
Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

\[\text{activation}_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x) \]

- If the activation is:
 - Positive, output +1
 - Negative, output -1
Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

\[
\begin{align*}
\text{weights} \quad \begin{cases}
\text{# free} : 4 \\
\text{YOUR_NAME} : -1 \\
\text{MISSPELLED} : 1 \\
\text{FROM_FRIEND} : -3 \\
\cdots
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{features} \quad \begin{cases}
\text{# free} : 2 \\
\text{YOUR_NAME} : 0 \\
\text{MISSPELLED} : 2 \\
\text{FROM_FRIEND} : 0 \\
\cdots
\end{cases}
\end{align*}
\]

Dot product $w \cdot f$ positive means the positive class

\[
\begin{align*}
\text{Dot product} \quad w \cdot f \quad \text{positive} \quad \text{means the positive class}
\end{align*}
\]
Decision Rules
Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to $Y=+1$
 - Other corresponds to $Y=-1$

$$w$$

<table>
<thead>
<tr>
<th>BIAS</th>
<th>free</th>
<th>money</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$f \cdot w = 0$$

$+1 = \text{SPAM}$

$-1 = \text{HAM}$
Weight Updates
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

 - If correct (i.e., $y=y^*$), no change!

 - If wrong: adjust the weight vector
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

 $y = \begin{cases}
 +1 & \text{if } w \cdot f(x) \geq 0 \\
 -1 & \text{if } w \cdot f(x) < 0
 \end{cases}$

 - If correct (i.e., $y = y^*$), no change!
 - If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y^* is -1.

 $w = w + y^* \cdot f$
Examples: Perceptron

- Separable Case
If we have multiple classes:

- A weight vector for each class:

 $$w_y$$

- Score (activation) of a class y:

 $$w_y \cdot f(x)$$

- Prediction highest score wins

 $$y = \arg\max_y w_y \cdot f(x)$$

Binary = multiclass where the negative class has weight zero
Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights
 \[y = \arg \max_y w_y \cdot f(x) \]
- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer
 \[w_y = w_y - f(x) \]
 \[w_{y^*} = w_{y^*} + f(x) \]
Properties of Perceptrons

- **Separability**: true if some parameters get the training set perfectly correct.
- **Convergence**: if the training is separable, perceptron will eventually converge (binary case).
- **Mistake Bound**: the maximum number of mistakes (binary case) related to the *margin* or degree of separability.

\[
\text{mistakes} < \frac{k}{\delta^2}
\]
Examples: Perceptron

- Non-Separable Case
Improving the Perceptron
Problems with the Perceptron

- Noise: if the data isn’t separable, weights will thrash
 - Averaging weight vectors over time can help (averaged perceptron)

- Mediocre generalization: finds a “barely” separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting
Fixing the Perceptron

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to w

$$\min_w \frac{1}{2} \sum_y ||w_y - w'_y||^2$$

$$w_{y^*} \cdot f(x) \geq w_y \cdot f(x) + 1$$

- The $+1$ helps to generalize

* Margin Infused Relaxed Algorithm
Minimum Correcting Update

\[\min_w \frac{1}{2} \sum_y ||w_y - w'_y||^2 \]

\[w_{y^*} \cdot f \geq w_y \cdot f + 1 \]

\[\min_{\tau} ||\tau f||^2 \]

\[w_{y^*} \cdot f \geq w_y \cdot f + 1 \]

\[(w'_{y^*} + \tau f) \cdot f = (w'_y - \tau f) \cdot f + 1 \]

\[\tau = \frac{(w'_y - w'_{y^*}) \cdot f + 1}{2f \cdot f} \]

\[w_y = w'_y - \tau f(x) \]

\[w_{y^*} = w'_{y^*} + \tau f(x) \]

\[w_{y^*} \cdot f \geq w_y \cdot f + 1 \]

\[\tau = 0 \]

min not \(\tau = 0 \), or would not have made an error, so min will be where equality holds
Maximum Step Size

- In practice, it’s also bad to make updates that are too large
 - Example may be labeled incorrectly
 - You may not have enough features
 - Solution: cap the maximum possible value of τ with some constant C

$$
\tau^* = \min \left(\frac{(w'_y - w'_y^*) \cdot f + 1}{2f \cdot f}, C \right)
$$

- Corresponds to an optimization that assumes non-separable data
- Usually converges faster than perceptron
- Usually better, especially on noisy data
Linear Separators

- Which of these linear separators is optimal?
Maximizing the margin: good according to intuition, theory, practice

- Only support vectors matter; other training examples are ignorable
- Support vector machines (SVMs) find the separator with max margin
- Basically, SVMs are MIRA where you optimize over all examples at once

\[
\begin{align*}
\text{MIRA} & \quad \min_w \frac{1}{2}||w - w'||^2 \\
& \quad w_{y^*} \cdot f(x) \geq w_y \cdot f(x) + 1
\end{align*}
\]

\[
\begin{align*}
\text{SVM} & \quad \min_w \frac{1}{2}||w||^2 \\
& \quad \forall i, y \ w_{y^*} \cdot f(x_i) \geq w_y \cdot f(x_i) + 1
\end{align*}
\]
Classification: Comparison

- **Naïve Bayes**
 - Builds a model training data
 - Gives prediction probabilities
 - Strong assumptions about feature independence
 - One pass through data (counting)

- **Perceptrons / MIRA:**
 - Makes less assumptions about data
 - Mistake-driven learning
 - Multiple passes through data (prediction)
 - Often more accurate
Apprenticeship
Pacman Apprenticeship!

- Examples are states \(s \)

- Candidates are pairs \((s, a)\)
 - “Correct” actions: those taken by expert
 - Features defined over \((s, a)\) pairs: \(f(s, a)\)
 - Score of a q-state \((s, a)\) given by:
 \[
 w \cdot f(s, a)
 \]

- How is this VERY different from reinforcement learning?
Video of Pacman Apprentice
Web Search
Extension: Web Search

- Information retrieval:
 - Given information needs, produce information
 - Includes, e.g. web search, question answering, and classic IR

- Web search: not exactly classification, but rather ranking

\[x = \text{“Apple Computers”} \]
Feature-Based Ranking

\[f(x, \text{"Apple Computer"}) = [0.3 \ 5 \ 0 \ 0 \ \ldots] \]

\[f(x, \text{"Apple Inc."}) = [0.8 \ 4 \ 2 \ 1 \ \ldots] \]

\[x = \text{"Apple Computer"} \]
Perceptron for Ranking

- Inputs \(x \)
- Candidates \(y \)
- Many feature vectors: \(f(x, y) \)
- One weight vector: \(w \)
 - Prediction:
 \[
 y = \arg \max_y \ w \cdot f(x, y)
 \]
 - Update (if wrong):
 \[
 w = w + f(x, y^*) - f(x, y)
 \]