CS 343: Artificial Intelligence

Markov Decision Processes

Prof. Scott Niekum, The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Non-Deterministic Search
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action has the intended effect (if there is no wall there)
 - 20% of the time an adjacent action occurs instead. Ex: North has 10% chance of East and 10% chance of West
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)

- Goal: maximize sum of rewards
Grid World Actions

Deterministic Grid World

Stochastic Grid World
Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s' | s, a)$
 - Also called the model or the dynamics
 - A reward function $R(s, a, s')$
 - Sometimes just $R(s)$ or $R(s')$
 - A start state
 - Maybe a terminal state

- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - ...but with modification to allow rewards along the way
 - We'll have a new, more efficient tool soon
What is Markov about MDPs?

- “Markov” generally means that given the present state, the future and the past are independent.

- For Markov decision processes, “Markov” means action outcomes depend only on the current state.

\[
P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots S_0 = s_0) = P(S_{t+1} = s' | S_t = s_t, A_t = a_t)
\]

- This is just like search, where the successor function could only depend on the current state (not the history).

Andrey Markov (1856-1922)
In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal.

For MDPs, we want an optimal policy π^*: $S \rightarrow A$
- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent

Expectimax didn’t compute entire policies
- It computed the action for a single state only

Optimal policy when $R(s, a, s') = -0.03$ for all non-terminals s
Optimal Policies

R(s) = -0.01

R(s) = -0.03

R(s) = -0.4

R(s) = -2.0
Example: Racing
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward
Racing Search Tree
Each MDP state projects an expectimax-like search tree

\[(s,a,s')\] called a transition

\[T(s,a,s') = P(s' | s,a)\]

\[R(s,a,s')\]
Utilities of Sequences
Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? \([1, 2, 2]\) or \([2, 3, 4]\)
- Now or later? \([0, 0, 1]\) or \([1, 0, 0]\)
Discounting

- It’s reasonable to maximize the sum of rewards
- It’s also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

\[
\text{Worth Now} \quad 1 \quad \gamma \quad \gamma^2 \quad \text{Worth Next Step} \quad \text{Worth In Two Steps}
\]
Discounting

- **How to discount?**
 - Each time we descend a level, we multiply in the discount once

- **Why discount?**
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge

- **Example: discount of 0.5**
 - $U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3$
 - $U([1,2,3]) < U([3,2,1])$
Quiz: Discounting

- Given:
 - Actions: Left, Right, and Exit (only available in exit states a, e)
 - Transitions: deterministic

- Quiz 1: For $\gamma = 1$, what is the optimal policy?
- Quiz 2: For $\gamma = 0.1$, what is the optimal policy?
- Quiz 3: For which γ are Left and Right equally good when in state d?
Infinite Utilities?!

- **Problem:** What if the game lasts forever? Do we get infinite rewards?
- **Solutions:**
 - **Finite horizon:** (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g., life)
 - Gives nonstationary policies (π depends on time left)
 - **Discounting:** use $0 < \gamma < 1$
 \[
 U([r_0, \ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\text{max}}/(1 - \gamma)
 \]
 - Smaller γ means smaller “horizon” – shorter term focus
 - **Absorbing state:** guarantee that for every policy, a terminal state will eventually be reached (like “overheated” for racing)
Recap: Defining MDPs

- **Markov decision processes:**
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)

- **MDP quantities so far:**
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards
Solving MDPs
The value (utility) of a state s:
$V^*(s) = \text{expected utility starting in } s \text{ and acting optimally}$

The value (utility) of a q-state (s,a):
$Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally}$

The optimal policy:
$\pi^*(s) = \text{optimal action from state } s$
Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0
Discount = 1
Living reward = 0
Gridworld Q Values

Q-VALUES AFTER 100 ITERATIONS

Noise = 0
Discount = 1
Living reward = 0
Gridworld V Values

Noise = 0.2
Discount = 1
Living reward = 0
Gridworld Q Values

Noise = 0.2
Discount = 1
Living reward = 0
Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Q-VALUES AFTER 100 ITERATIONS
Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

- Recursive definition of (optimal) value:
 \[V^*(s) = \max_a Q^*(s, a) \]
 \[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]
 \[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]
Racing Search Tree
Racing Search Tree
- We’re doing way too much work with expectimax!

- Problem: States are repeated
 - Idea: Only compute needed quantities once

- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don’t matter if $\gamma < 1$
Key idea: time-limited values

- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it’s what a depth-k expectimax would give from s
k=0

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=1$

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=2$

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 2 ITERATIONS
k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 3 ITERATIONS
k=4

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=5

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=6

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=7

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=8$

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=9$

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=10

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=11

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 12 ITERATIONS
k=100

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Computing Time-Limited Values

\[V_4(\text{car}) \quad V_4(\text{car}) \quad V_4(\text{car}) \]
Value Iteration
Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one step of expectimax from each state:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]
- Repeat until convergence
- Complexity of each iteration: $O(S^2A)$
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do
Example: Value Iteration

V_0

\[
\begin{array}{ccc}
0 & 0 & 0 \\
\end{array}
\]

V_1

\[
\begin{array}{ccc}
2 & 1 & 0 \\
\end{array}
\]

V_2

\[
\begin{array}{ccc}
3.5 & 2.5 & 0 \\
\end{array}
\]

$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$

Assume no discount!
Next Time: Policy-Based Methods