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Abstract— The difficulty of many robot controls tasks
stems from stochasticity and partial observability coupled
with highly nonlinear dynamics. We propose to approxi-
mate nonlinear system dynamics using hybrid dynamics
models and extend the POMDP framework to hybrid
systems. To do this, we introduce a Bayesian inference
based hybrid state evolution model that can be used to
develop feasible motion plans under partial observability.

I. INTRODUCTION

One of the biggest challenges in robot motion plan-
ning is to develop feasible plans for systems having
highly nonlinear dynamics in the presence of partial
or noisy observations. However, many robotics tasks
have structure that allows them to be described as a
hybrid dynamics model using a set of linear dynamics
functions, of which only one is active at any given time.
While approximating nonlinear dynamics using hybrid
models greatly simplifies the motion planning problem,
having partial or noisy observations as feedback can
often lead to failure while executing these plans. Prob-
lems focused on planning under partial observability
are modelled as partially observable Markov decision
processes (POMDP). Planning using POMDPs have
been studied in literature for numerous application do-
mains using different approaches [1], [2], [3], [4], [5].
However, most of the approaches consider states that
either evolve only in discrete space or in continuous
spaces. Brunskill et al. [1] do consider a hybrid dynam-
ics based representation of the system states and have
proposed a point-based POMDP planning approach
considering hybrid model of the system dynamics.
However, the proposed approach places arbitrary con-
straints on the choice of possible local dynamics models
(discrete states) to maintain its closed form solution.
Another pomdp planning algorithm considering hybrid
system states was proposed by Agha-mohammadi et al.
[4] to solve health-aware stochastic motion planning
problem for quadrotors. But the proposed solution is

restricted only to the domains in which the discrete
and continuous states evolve independently.

We propose to extend the POMDP framework
to hybrid dynamics models and present a Bayesian
inference-based hybrid state evolution model which can
be combined with a POMDP solving algorithm for
developing feasible motion plans for complex control
tasks under partial observability. In this work, we use
the belief space planning algorithm proposed by Platt
et al.[3]. Initial plans in belief space are developed
using trajectory optimization by assuming maximum
likelihood observations and stabilized by designing a
belief space LQR controller. A hybrid Bayesian filter
is also proposed to reduce uncertainty over states using
continuous state observations. The proposed model is
used to develop motion plans for an autonomous robot
navigating under uncertainty on a spatially varying
terrain, results of which are included.

II. HYBRID DYNAMICS UNDER UNCERTAINTY
We extend the POMDP framework to hybrid systems

by defining a belief over the hybrid states of the system
and developing a belief evolution model using extended
deterministic state transition dynamics and a Bayesian
state estimator. Two parts of the belief evolution model,
prediction and observation based update, are discussed
in greater detail in the following sections.
A. Extended Hybrid Belief Dynamics

A belief state over the states of the hybrid system
can be defined as B = {bx, bq}, where bx and bq

correspond to belief distributions over the continuous
states x ∈ X = RN and discrete state q ∈ Q
respectively. Transition dynamics for the belief over
continuous states can be defined as
bxt+1 = p(xt+1|xt, ut)

=
∑
q′

p(xt+1|xt, ut, qt = q′) p(qt = q′|xt)

∀q′ ∈ Q

(1)



where xt+1 and xt represent the continuous states at
time t+1 and t respectively, while, qt and ut represent
the discrete state and continuous control input to the
system at time t.

Discrete state transitions of the system can be repre-
sented as a directed graph with each possible discrete
state q corresponding to a node and edges (e ∈ E ⊆
Q×Q) marking possible transitions between the nodes.
In hybrid systems, these transitions are conditioned on
the continuous states. A transition from the discrete
state q to another state q′ happens if the continuous
states x are in the guard set G(q, q′) of the edge eq

′

q

where eq
′

q = {q, q′}, G(·) : E → P (X) and P (X) is
the power set of X . Assuming the transitions of discrete
states are given by a directed graph with self-loops, we
can define the mode transition matrix Π at time t as
Πt = {πt(i, j) = p(qjt+1|qit, bxt+1) ∀qi, qj ∈ Q} as

πt(i, j) = η

∫
RN

1q
j

qi (x)bxt+1(s)ds, if ∃ eq
i

qj ,

= ε, otherwise

(2)

where 1q
j

qi (x) is an indicator function defined as

1q
j

qi (x) = 1, if x ∈ G(qi, qj)

= 0, otherwise
(3)

η is a normalization constant, given as η =∑|Q|
k=1 π(i, k) and ε is a small probability to handle

scenarios in which the received observations do not cor-
respond to any of the discrete states for a considerable
amount of time.

B. Belief Evolution Model: Prediction
At each time step t, a priori state estimate for

the continuous states is first obtain using Equation
1. Assuming a normal distribution to represent the
belief over continuous states bx, the current belief bxt is
first propagated through the system dynamics of each
discrete state, Fq′(xt, ut), individually. A weighted
sum of the propagated belief set is then taken to obtain
a prior of the belief at next time step bxt+1

b̂xt+1 =
∑
q′

Fq′(bxt , ut) b
qq′
t (4)

where bqq′t = p(qt = q′|xt) is q′-th component of bqt .
Continuous belief propagation is described in greater
detail in Section II-D.

Assuming the belief over discrete state b̂qt+1 is given
by a discrete distribution, a prior state estimate is
calculated using Equation 2 where the mode transition
matrix is updated using the continuous state prediction
obtained in the last step b̂xt+1.

C. Belief Evolution Model: Update

We propose a hybrid estimation algorithm based on
Bayesian filters to reduce the uncertainty over states
using noisy continuous state observations. The pro-
posed algorithm consists of two layers of filters: first
to estimate the continuous states of the system and
second to estimate the discrete state of the system.
Upon receiving observation zt+1, the continuous state
prior is updated by taking a weighted sum of a bank
of extended Kalman filters running independently, with
each discrete mode having an individual filter. The
weights for the sum is determined using the prior for
the discrete mode b̂qt+1. The complete update step for
continuous states can be written as

bxt+1 = b̂xt+1 +
∑
q′

(
Kq′

t+1(zt+1 −Hq′

t+1(b̂
x
t+1))

)
b̂
qq′
t+1

where Kq′

t+1 is the Kalman Gain for discrete state q′

at time t + 1 and b̂
qq′
t+1 is q′-th component of b̂qt+1.

Update for the discrete state can be obtained by using
a Bayesian filter update given as

bqt+1 = γMt+1 ◦ b̂qt+1 (5)

where Mt+1 = [P (zt+1|qt+1 = q′)]T ∀q′ ∈ Q,
◦ is the element-wise multiplication operator, γ is a
normalization constant and

P (zt+1|qt+1 = q′) = zt+1 ∼ Hq′

t+1(b
x
t+1)

where Hq′

t+1(.) is the observation function for state q′.

D. Gaussian Mixture Belief Model

The proposed belief evolution model for hybrid
states can be implemented for motion planning by
considering a suitable distribution over the continuous
states of the system. A unimodal Gaussian belief can
be effectively used to represent the belief for simple
robot control tasks. However, in the case of complex
tasks, a unimodal Gaussian might not be sufficient
to capture the belief distribution. Here, we explain
the state propagation by considering the belief over
continuous states of the system as composed of a
mixture of Gaussian distributions.

Let the belief over the continuous states of the
system is given by a weighted combination of L normal
distributions. Let ml

t and Σl
T represent the mean and

the co-variance matrix of the l-th Gaussian at time t re-
spectively. If the deterministic state transition dynamics
under discrete state q′ is given as

xt+1 = Aq′

t xt +Bq′

t ut + νq
′

t (6)



and the observation function given as

zt+1 = Cq′

t+1xt+1 (7)

where Aq′

t , Bq′

t and Cq′

t+1 are the corresponding system
matrices at time t and t + 1, νq

′

t is the process noise
for discrete state q′, xt and xt+1 are the system states
at time t and t+ 1 and ut is the control input at time
t. Then, under hybrid dynamics, the prediction for the
l-th Gaussian can be given as

m̂l
t+1 =

∑
q′

(Aq′ml
t +Bq′ut + νq

′

t ) b
qq′
t (8)

Σ̂l
t+1 =

∑
q′

(Aq′

t Σl
t(A

q′)Tt ) b
qq′
t (9)

where b
qq′
t = p(qt = q′|xt) is q′-th component of

bqt , m̂l
t+1 and Σ̂l

t+1 are the priors for the mean and
covariance of l-th Gaussian at time t + 1 respectively.
Prior for the discrete state of the system b̂qt+1 is obtained
using Equation 2 as described in the previous section.
Update in the prior for l-th Gaussian based on the
received observations zt+1 can be given as

ml
t+1 =

∑
q′

{m̂l
t+1 + Σ̂l

t+1(C
q′

t+1)
T (Cq′

t+1Σ̂
l
t+1(C

q′

t+1)
T+

W q′

t+1)
−1(zt+1 − Cq′

t+1m̂
l
t+1)} × b̂

qq′
t+1 (10)

Σl
t+1 =

∑
q′

[Σ̂l
t+1 − Σ̂l

t+1(C
q′

t+1)
T (Cq′

t+1Σ̂
l
t+1(C

q′

t+1)
T+

W q′

t+1)
−1Cq′

t+1Σ̂
l
t+1]× b̂

qq′
t+1 (11)

where Cq′

t+1 is the observation matrix and W q′

t+1 is the
observation error covariance matrix for q′ discrete state
at time t+1. Updates in the prediction for discrete state
can be done using Equation 5.

Mixing weights for the GMM can be updated based
on the received observations as

αl
t+1 = N (ν|0,Σl

t+1) (12)

where innovations ν is given as ν = zt+1 − ẑlt+1 and

ẑlt+1 =
∑
q′

Cq′

t+1m
l
t+1 × b̂

qq′
t+1

III. MOTION PLANNING IN BELIEF SPACE

The proposed belief evolution model for hybrid
dynamics can be combined with a motion planning
algorithm to generate motion plans for a control task.
In the current work, we use the belief space motion
planning algorithm proposed by Platt et al. [3]. Belief
space motion planning consists of two steps: developing

an initial plan using trajectory optimization and stabi-
lizing around it by using a belief space linear quadratic
Gaussian (LQG) controller [3]. For planning under
uncertainty, the algorithm uses an extended Kalman
Filter on the maximum likely observation (MLO) ob-
tained by propagating the current belief through the
system dynamics. In the current implementation of the
algorithm, a weighted combination of the dynamics
for continuous system states is considered only in the
trajectory optimization phase. Trajectory stabilization
using B-LQR chooses the most likely discrete state as
the governing dynamics for the system.

IV. EXPERIMENTS

Experiments were conducted for navigating a mobile
robot in a light-dark domain [3] where the quality of
observations improves proportionally with the amount
of light. Additionally, we consider the domain to have
spatially varying dynamics, which is analogous to a
real world scenario of off-road terrain with differ-
ent surfaces having different ground friction. Domain
({x, y} ∈ [−10, 10]) was considered to contain three
different linear dynamics functions, given as

f(xt,u) = xt + 0.5u, if x < 1

f(xt,u) = xt + u, if x ∈ [1, 4]

f(xt,u) = xt + [2u1, u2]T , ifx > 4

where xt = {xt, yt}T . Observation function was taken
as h(xt) = xt+w with zero-mean Gaussian observation
noise w ∼ N (·|0,W (x)) where

W (x) =
1

2
(5− xx)2 + const

Matrices defining the cost function over error in states,
control input, additional cost for final state error and
covariance were taken as Q = diag(0.5, 0.5), R =
diag(0.5, 0.5), Qlarge = 30 and Λ = 400 respectively.
For continuous state GMM belief, L = 1 was taken.

Fig. 1. Plots showing planned and actual robot trajectories
with baseline deterministic and our approach. Initial belief bt =
{2, 2, 5, 0}, True start position:={2.5,0, 0}, goal position:={0,0}.
Color indicates the local dynamics model, while brightness reflects
observation noise.



Figure 1 shows that the planning algorithm was able to
plan and stabilize around trajectories under uncertainty,
while adapting to changing local dynamics.
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