
Formal Verification In a Commercial Setting

R. P. Kurshan
Bell Laboratories

Murray Hill, NJ 07974
k@research.bell-labs.com

Abstract

This tutorial addresses the following questions:

� why do formal verification?

� who is doing it today?

� what are they doing?

� how are they doing it?

� what about the future?

Introduction

Formal methods long have been touted as a means to produce
“provably correct implementations”. It is only recently, however,
with rather more modest claims, that one formal method: model-
checking, has been embraced by industry. In stark contrast with its
two-decade development, only the last two years have laid witness
to its commercial viability. Nonetheless, in this very short time, this
technology has blossomed from scattered pilot projects at a very
few commercial sites, into implementations in at least five commer-
cially offered Design Automation tools. This acceleration of ac-
tivity has even caught the attention of the investment community.
Happy graduate students of this technology are basking in an unex-
pected competition for their talents in an otherwise lack-luster job
market.

We will examine how this rather astonishing rapid acceptance
of a new technology came about, where it is now, and where it
may lead. First, why? It is with some annoyance that the present-
day practitioners of model-checking view the extravagant claims
for general formal methods: these claims were (rightfully!) never
broadly accepted in the first place, and served mainly to undercut
the credibility of the field. Indeed, even the concept of “provably
correct hardware” is nonsensical: one cannot prove anything about
a physical object. “Proof” can be applied only to a mathematical

Design Automation Conference R

Copyright c
 1997 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Re-
quest permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or per-
missions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

model of a physical object, and as such necessarily excludes most
of the physical details of the physical object. Moreover, on account
of this intrinsic abstraction, it is of questionable value to undertake
a tedious, detailed proof process, when it is not so certain what it
really means in physical terms when the process is successful.

Instead, model-checking today is seen by the hardware design
industry not as a means to “Bless the Fleet”, but merely as a new
and uncommonly effective debugging tool. With the debugging po-
tential afforded by model-checking, designs not only can be made
much more reliable than ever before, but (and this may be the real
reason for all the excitement) model-checking is seen to acceler-
ate the design process, significantly decreasing the time to market.
Increased reliability comes from the ability of model-checking to
check “corner-cases”, which are hard or infeasible to test through
simulation. These include especially complex scenarios unantici-
pated by the designer. Decreased time to market comes from the
ability to apply model-checking earlier in the design cycle and thus
find bugs sooner than is possible with simulation. Since model-
checking is relatively easier to apply than simulation which needs
test vectors and a test bed, model-checking may be used when the
design is fluid or only partially defined. Finding bugs early in the
design cycle is a well-known accelerant of design development.

Between 1980 and 1990, there were several commercial appli-
cations of model-checking in AT&T Bell Labs pilot projects. There
were a few similar pilot projects in France, Holland and the UK,
and undoubtedly some others of which I am unaware. But the to-
tal number of commercial applications (by which I mean ones in
which verification was actually inserted in a commercial develop-
ment process– not just practiced on the side) was pitifully small.
This was in spite of the technology having “proved” itself in a
number of these projects. Around 1990, other serious commer-
cial projects began ramping up, notably in Intel but also at IBM,
Motorola and somewhat more speculatively at a number of other
companies. But the applications remained largely in pilot projects,
and although there was heightened interest, the general attitude re-
mained “wait and see”. Today, only a few years later, one can pur-
chase verification tools from Abstract Hardware Ltd. (CheckOff–
core technology developed at Siemens), Chrysalis (Design Veri-
fyer), Compass (VFormal– core technology developed at BULL),
IBM (RuleBase– core technology developed at CMU), and Lucent
Technologies (FormalCheck). [All of the above names are trade-
marks of the respective companies.] Although the main tools of
Chrysalis and Compass are equivalence-checkers (to check the log-
ical equivalence of two designs), they each have model-checkers
under development. In addition to these, Intel has very substantial
in-house model-checking support and Motorola also has in-house
support, in both cases based on core technology developed at CMU.
IBM has an in-house equivalence-checker called Verity, which was
briefly offered as a commercial tool called BoolesEye. There also

is a small industrial effort focused on software verification, notably
Telelogic’s SDT/SDL tool for the protocol specification language
SDL. This involves a different execution semantics than is used
with hardware (an asynchronous interleaving of local events) [7],
which I will not address further.

So what happenedbetween 1990 and now to cause a technology
so recently held in circumspect reserve, to suddenly be the focus of
such intense commercialization? There is no single answer, but a
number of clear and compelling ones, which not singly but all to-
gether provided the stimulus.

In the beginning of the decade, a number of companies per-
ceived the need for something better than simulation test, under-
stood the promise of model-checking and even accepted the sig-
nificance of the success of several pilot projects. However, it re-
mained a major step to commit the resources necessary to support
(much less commercialize) a mainstream tool. There were all the
lurking uncertainties of whether the technology really would gen-
eralize, would be viable in the hands of non-experts, and would pay
for its own support. But designs were becoming untestable, the cost
of bugs was sky-rocketing and the need in the hardware design in-
dustry for some new testing technology was becoming painfully ap-
parent. Like runners tensed at a starting line, a number of forward-
looking companies were waiting for some signal. They wanted nei-
ther to chase windmills nor to be also-rans. The signal came not as
a seminal event, but a course of events. Equivalence-checkers had
paved a path, showing the utility of even this weak form of model-
checking. Bugs were becoming news items even before the notori-
ous Pentium bug. Computers ever faster, memory ever larger and
BDD-based algorithms [3, 9] made the application of verification
technology simpler and simpler: what needed days and advanced
techniques only a few years earlier, now could be done automati-
cally in a few hours. The race was on.

The what, the how and the future are the subjects of the follow-
ing sections.

DISCLAIMER: to the best of my knowledge, the foregoing
and following discussion of various companies’practices is correct.
However, all my information has been obtained from second-hand
sources, and hence there could be inaccuracies, for which I apolo-
gize in advance.

Paradigms

Formal verification, even verification applied in commercial
projects spans a spectrum from the highly expressive but not-
so-automated automated theorem-provers, to the significantly re-
stricted but highly automated model-checkers [2, 5]. The theorem-
provers have been around for over 35 years, and definitely have their
staunch adherents. They have been used extensively in government
pilot projects, notably in NASA using SRI’s PVS system, but even
much earlier with famous theorem-provers like Gypsy. The Boyer-
Moore theorem-prover may have been the first to be commercial-
ized, by Computational Logic, Inc.

In spite of impressive demonstrations in the hardware domain
and elsewhere, the theorem-provers never achieved the broad level
of acceptance for which their advocates had hoped. The reason un-
doubtedly lies in the need for expert users, and an application cycle
which evolves generally slower than a normal product design cycle,
so even just keeping up with the project development schedule is a
problem. More than that is the difficulty to “sell” the technology to
designers. If you tell a designer you have just “verified” her design,
she likely will yawn with a (justified!) combination of disbelief and
uncertainty of what it means (if I pull the plug, will it keep work-
ing??). On the other hand, show her a bug in her new design, and
she immediately understands the value of your tool, although she
may have little idea how the bug was discovered. Model-checkers
automatically produce error tracks when the property under check is

found by the tool to fail. Theorem-provers by construction are gen-
erally incapable of doing that. This is a major practical difference
in the two technologies.

On the other hand, model-checking cannot even attempt to
verify that a recursively defined FFT algorithm is correct. This
is a feasible undertaking for a theorem-prover, at least conceptu-
ally. The domain of model-checking is mainly limited to control-
intensive designs– ones that commonly are described in terms of
state machines. Among these are cache coherence protocols, bus
controllers, telephone switches, arbiter circuits and communication
protocols.

Within model-checking, there are two main approaches: logic-
based, and more recently, automaton-based. These two are not
at all orthogonal and each can be described in terms of the other.
However, the primary logic-based paradigm, based on the logic
CTL [4] and the primary automaton-based paradigm, based on !-
automata [8], are to a large extent incompatible with one another,
and their differences are important and fundamental. CTL, forming
the basis of the CMU and Siemens core technologies mentioned in
the Introduction, utilizes a very useful existential path quantifier,
which enables a designer to check, for example, if it is always pos-
sible for his design to be reset. Such a property cannot be posed
using !-automata. On the other hand, !-automaton reduction al-
gorithms and refinement methodologies often are necessary to deal
with commercial-sized designs. These algorithms are intrinsically
incompatible with existential path quantification, and thus not vi-
able with CTL-based technologies.

In practice, it is possible to bridge these difficulties both in CTL-
based tools and in !-automaton-based tools. In CTL, some weaker
forms of reduction are possible, and if the logic is weakened by re-
moving the existential path quantifier, the automaton-based reduc-
tions are largely possible too. For !-automata, important existen-
tial properties such as the reset property, can be offered as a “sanity”
check of a reduced design, without the need to require that the prop-
erty be inherited by the original (unreduced) model. Nonetheless,
the two methodologies remain quite distinct. Developing a design
through stepwise refinement, with a hierarchy of increasingly more
detailed design models is an important strategy for complex design
development, and may be implemented using !-automata; but it is
not feasible in the CTL approach. Conversely, the flexibility in CTL
to express properties through a general logic formula, is absent with
!-automata.

Reduction

If we focus on verification as it is practiced today in hardware design
industries, then what we see is model-checking. What makes this
technology so attractive to industry is its high degree of automation:
the tools can be used by mainstream designers, undiverted by a great
deal of thought about the verification process. However, this works
only so far as the algorithms actually can handle the size designs
the designers need to verify. Even with the best model-checking
technology available today, compromises are necessary. One can-
not even think about entering a whole microprocessor, much less
an entire circuit board design into a verification tool. In fact, al-
though the maximum size design that may be verified is growing
literally month by month, the upper limit for verification today is
toward the lower limit of a moderate-sized RTL level block. We
have succeeded to check designs with 5 K latches and 100 K com-
binational variables (counting busses and enumerated types as sin-
gle variables), but for some properties even 500 latches and 50 K
variables is more than we can handle. In the latter cases, in keep-
ing with the need to remain highly automated, we simply pass over
these properties, focusing instead on the ones which can be handled
automatically. This is in contrast to the academic community, which
may dwell on such difficult-to-verify designs, apply advanced ad

hoc techniques and ultimately succeed.
There is another model for the verification process, in which

verification experts dwell on such hard-to-check properties. How-
ever, at Lucent Technologies we have not been successful with this
model: as the verification experts commonly are not conversant
with the details of the design, they find it hard to keep up with the
product development pace. (This is reminiscent of the same lesson
in the realm of automated theorem-proving.)

Thus, it is of paramount importance that the tool be able to re-
duce the model automatically relative to the property under check,
to the greatest extent possible. Most commercial model-checkers
have built-in utilities for doing this to some extent. However, there
is a great variability in the success of these utilities. Since these
utilities determine the extent to which a tool will be able to check a
range of designs, they could be considered the most critical aspect
of a model-checking tool.

Most of the reductions tend to be property-dependent localiza-
tion reductions [8], in which the parts of the design model which
are irrelevant to the property being checked, are (automatically)
abstracted away. In COSPAN [6], the verification engine of For-
malCheck, localization reduction is applied dynamically as illus-
trated in Fig. 1. At each step of the algorithm, the model is adjusted
by advancing its “free fence” of induced primary inputs, in order to
discard spurious counterexamples to the stated query [8].

pruned

active

SYSTEM
free fence

QUERY

Figure 1: The COSPAN Localization Reduction algorithm, through
which a design model is reduced dynamically, relative to the query
being checked.

Interfaces

A vital part of any commercial verification tool is its user interface.
Until recently, the issue of the user interface was largely ignored by
the academic community (it was boring research!) and to a great
extent, this retarded the acceptance of model-checking by industry.
Ironically, now that industry itself has focused on the interface as a
critical issue and in fact has been the leader in interface construc-
tion, university resources are belatedly and thus possibly unadvis-
edly being applied to this problem.

For years, the academic community split hairs over proposals
for the most sublime hardware description language. This pursuit
not only reached no consensus, it actually diverged, as its councils
grew. Meanwhile, for largely base reasons related more to prac-
tice and government sanctions than technical justification, the two
arguably poor hardware description languages VHDL and Verilog
became industry standards. VHDL was mandated by certain gov-
ernment contracts. Verilog was supported by a growing number of
CAD tools (more for historical reasons than an infatuation with the

language). If verification were to be broadly used in industrial ap-
plications, it became clearer and clearer that the hair-splitting over
hardware description languagesmust give way to a pragmatic adop-
tion of VHDL or Verilog (or preferably, both) as the input language
to the verification tool. Today, there is little argument over this view.
The moral of the story may be that language crafting is like the
proverbial tar-baby which will suck you in, when you’d better be
out chasing rabbits.

At the back end of a model-checker, where design bugs are
demonstrated through error tracks, there was a spontaneousconsen-
sus to represent an error track through the classical simulation test
representation of a waveform as shown in Fig. 2.

Figure 2: The FormalCheck error track waveform panel.

In the FormalCheck tool, a back-referencing utility illustrated in
Fig. 3 permits the user to click on an error in the error track wave-
form, and get a pop-up window of the VHDL or Verilog source, with
the cursor on the assignment which gave the indicated variable the
indicated value.

Figure 3: The FormalCheck Back-Referenceutility through which a
click on an error in the waveform pops up the source with the cursor
on the line which caused the error.

The hardest and most individual part of the user interface re-
lates to that single aspect of model-checking which is unlike any
established practice in design development: defining the property
to be checked. With the exception of FormalCheck (and naturally,
the equivalence checkers), all the commercial model-checkers use
some form of CTL to define properties. The idea of using a logic
was discarded by the FormalCheck team, on the premise that this

would be alien and therefore unacceptable to many hardware de-
signers. Instead, in FormalCheck, each property is defined using
one of a small set of templates, each with a clear, intuitive and
simple semantics, and collectively as expressive as the class of !-
automata. The template shown in Fig. 4 defines a property which
checks that after each time the designated enabling condition is en-
abled, the designated fulfilling condition holds continuously unless
the discharging condition becomes true. Of course, what is gained
in simplicity is lost in flexibility, and there always will remain those
who prefer to specify properties in a logic. In FormalCheck, design
constraints are defined using a companionset of templates (property
templates and constraint templates are paired), and each check of a
design model is performed in the context of a set of properties and
constraints termed a query.

Figure 4: A FormalCheck Property panel through which a property
to be checked may be posed simply, without the need for a logic.

Support

Critical to the success of a model-checker, or any commercial tool,
is support. This includes documentation, tutorials, an active help-
line and of course timely bug fixes in the tool itself. Unlike most
other tools, however, an industrial model-checking tool must keep
up with a still rapidly evolving technology. This requires a highly
competent staff capable of implementing new ideas as the technol-
ogy develops, as well as originating new algorithms internally. As
much of this technology is being patented, commercial players need
to be active participants.

Examples of Practice

To be most effective, model-checking should be introduced into the
design process at the same time that the first behavioral models are
written. The designer is the one who can apply the tool most ef-
fectively, as it is the designer who best knows the areas of the de-
sign which need the most checking, how to interpret an error track
waveform, and what is wrong in an invalid waveform. Today, “be-
havioral” tends to mean RTL. However, there is a strong movement
toward more abstract designs. For now, these too can be represented
in VHDL or even Verilog, with the addition of nondeterminism as
an abstraction mechanism [8]. There are several ways to introduce
nondeterminism, but the most direct may be through an added pri-
mary input (which then implements a nondeterministic choice oper-
ator). Using this simple stratagem, designs at any level of abstrac-
tion may be defined, verified and then refined in a logically consis-

tent manner to a more detailed level of specification. Repeating this
process gives rise to a classical “top-down” design strategy, imple-
mented as step-wise refinement. The model-checker can verify the
consistencyof each level with the previous level, thereby guarantee-
ing that properties checked at one level of abstraction are inherited
by all subsequent levels. When an automata-theoretic framework is
used, the consistency of constraints also may be verified from one
level to the next.

In spite of the availability of this technology today, few design-
ers are using it, preferring instead to produce flat designs specified
and verified at the synthesizable RTL level (meaning, without us-
ing nondeterminism as abstraction). However, this is sure to change
quickly, as soon as the current set of designer-verifiers become more
comfortable with their verification tools. In fact, the tools them-
selves are frequently automatically performing such abstractions in-
ternally (cf. localization reduction, discussed above).

Although verification can be advantageously applied to global
systems such as cache coherenceprotocols, this often requires some
expertise concerning which parts of an otherwise too-large system
to include in the verification process. More commonly, industrial
practice today is limited to more local “boring” (but nonetheless
problematic) controllers such as DMA controllers, bus controllers,
MPEG, and arbiters. These alone provide a significant assortment
of important applications, more than enough to justify the practice
of model-checking, and yet sufficiently limited that the current gen-
eration of tools can handle them fairly automatically.

Future

The practice of verification already is evolving in two directions:
upward into more abstract behavioral models, and outward into a
larger panorama of designs which may be verified automatically.
For an overview of current verification practices, see the lecture
notes posted from last year’s week-long DIMACS tutorial on veri-
fication [10].

The upward direction embraces not only abstraction and top-
down (“object-oriented” of course!) design development as de-
scribed in the previous section, but also a new notion of code reuse:
at the design level [8]. An abstract verified design may be imple-
mented into several different instantiations, saving not the coding
time, but the verification time to check the design.

In the outward direction, strides already have been made at
CMU in word-level model-checking [5], permitting the verification
of arithmetic units long thought to be beyond the reach of model-
checking. Intel (naturally!) has embraced this new technology and
reportedly is using it in its current suite of verification tools.

Timing verification [1] is an area in which the technology has
advanced well beyond current practice. However, with a renewed
interest in asynchronous design, applications may soon be found.
Moreover, as designers gain confidence in verification, they may
dare to implement prospective design efficiencies that depend upon
timing, armed with the confidence that the soundness of these de-
pendencies may be verified.

Another direction actively pursued at CMU, Bell Labs and else-
where is a graceful integration of some possibly limited theorem-
proving capabilities into the model-checking paradigm. While suc-
cesses in this direction have been too limited to be able to predict
much promise for this direction, the potential is large, and research
in this direction is welcome.

Finally, as the field evolves, it undoubtedly will expand its influ-
ence on the evolution of the hardware description languages, lead-
ing to ones more suitable and attractive for verification. The very
strong interest in software verification, as yet without a firm footing,
may find its base in the hardware/software (“co-design”) interface,
where a number of researchers currently are working.

REFERENCES

[1] R. Alur, R. P. Kurshan, Timing Analysis in COSPAN, Springer
LNCS 1066 (1996) 220–231.

[2] B. Brock, M. Kaufmann, J S. Moore, ACL2 Theorems about
Commercial Microprocessors, in M. Srivas and A. Camilleri
(eds) Proceedings of Formal Methods in Computer-Aided De-
sign (FMCAD’96), Springer-Verlag, 1996.

[3] J. R. Burch, E. M. Clarke, D. Long, K. L. McMillan, D. L. Dill,
Symbolic Model Checking for Sequential Circuit Verification,
IEEE Trans. Computer Aided Design, 13 (1994) 401–424.

[4] E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic Veri-
fication of Finite-State Concurrent Systems Using Temporal
Logic Specifications, ACM Trans. Prog. Lang. Syst. 8, 1986,
244–263.

[5] E. M. Clarke, R. P. Kurshan, Computer-Aided Verification,
IEEE Spectrum, June 1996, 61–67.

[6] R. H. Hardin, Z. Har’El, R. P. Kurshan, COSPAN, Springer
LNCS 1102 (1996) 423–427.

[7] G. J. Holzmann, Design and Validation of Computer Proto-
cols, Prentice Hall, 1991.

[8] R. P. Kurshan, Computer-Aided Verification of Coordinating
Processes, Princeton Univ. Press, 1994.

[9] K. L. McMillan, Symbolic Model Checking, Kluwer, 1993.

[10] http://dimacs.rutgers.edu/Workshops/SYLA-
Tutorials/program.html

