
 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
1 unconJS.slides

Software Engineering:
An Unconsummated Marriage

David Lorge Parnas, P.Eng
 Software Engineering Research Group

 DEPARTMENT OF COMPUTING AND SOFTWARE
 Faculty of Engineering

 McMaster University, Hamilton, Ontario, Canada L8S 4K1

Abstract

Although the first of many conferences on “Software Engineering”
was held in Munich nearly three decades ago, communication
between those who study the problem of building software and those
who teach Engineering or work as Engineers has not been effective.
Today, the majority of Engineers understand very little of the
“science of programming”. On the other side, the scientists who study
programming understand very little about what “Engineer” means,
why we have a self-regulating profession, how the profession is
organized, and how engineers are educated. In spite of this mutual
ignorance, today’s engineers spend much of their time writing and
using software, and an increasing number of people trained in
computer science or mathematics are doing what work that meets the
legal definition of Engineering.

This talk attempts to explain each field to the other and to suggest
why, and how, the two groups should work together. The benefits of
developing a new branch of Engineering, based on Software Science,
will be described.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
2 unconJS.slides

A Little Histor y

The Software Crisis began 4 decades ago and
continues today.

NATO sponsored two conferences in the late 60s.

The organisers called the topic “Software
Engineering” in the hope of provoking interest from
the Engineers.

It took thirty years, but they have finally shown
interest.

A Bit Of P ersonal Histor y

Educated as an engineer and taught engineering.

Wrote software to help in teaching logic design.

Interested in programming, almost self-taught.

Asked to teach programming course.

Shocked by the fact that we did not and could not
teach how to program the way we could and did
teach how to design hardware.

Set out to correct that problem.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
3 unconJS.slides

Under standing the Pr oblem

1. Why we have an Engineering Profession.

2. The growing role of Software.

3. Why we developed a “Science of Software”.

4. Early History, Anecdotes and Lessons.

5. The Essence of an Engineering Education.

6. The Essence of Software Science.

7. Requirements: An example of where Engineering
can help Computer Science.

8. Program Functions: An example of where
Computer Science can help Engineering.

9. They recall cars, why not programs?

10. Software Engineering as part of Engineering.

11. What should we do?

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
4 unconJS.slides

Software Engineering
What should it be?

Just as Chemical Engineering is a marriage of
Chemistry with a lot of Engineering areas such as
thermodynamics and fluid dynamics, Software
Engineering field should be a marriage of two fields:

• the science of Software, and

• the profession of Engineering.

Unfortunately,
The two fields hardly know each other.

A marriage without communication is sterile.

Currently, NSERC and NSF and other such agencies
treat Software Engineering as part of Computer
Science and not as a branch of Engineering.

We need a speciality within Engineering whose
scientific basis is Computer Science.

Everyone who understands the structure of English
should see that “Software Engineering”should denote
a speciality within Engineering”.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
5 unconJS.slides

Why is Engineering a Regulated Pr ofession?

• Bridges collapse; engines explode!

How do we know who is qualified to build them?

How do we know what a qualified designer should
know?

How do we know if an institution teaches the required
material?

Today, where bridges, engines, aircraft, power plants
and medical devices are designed and/or controlled by
software, these are exactly the needs in the field of
software design.

Engineers in North America have:
• A registration system for individuals.

• An accreditation system for institutions.

• A way of keeping Engineers aware of their responsibilities.

• A mechanism for changing (albeit very slowly).

Software developers have none of the above.

If software developers and engineering educators
consummate the marriage, the software
development field will benefit!

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
6 unconJS.slides

The Pervasiveness of Software

Some figures from Philips in Eindhoven:
• A “High End” TV has 600 Kbytes of program.
• A VCR has 265 Kbytes.
• A hand-held telephone has 512 K.
• A car radio has from 64 - 256 kbytes.

If you flew here, your life depended on software.

If you have an ABS system, your brakes depend on
software.

In modern cars, engines are controlled by software.

Nuclear plants are controlled by software.

Medical devices are controlled by software.

The dynamics of bridges are predicted by software.

These products are all products that traditionally
would have been developed by qualified engineers.

Who is qualified to write that software?
• Nobody. There are no software engineers!

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
7 unconJS.slides

Today’s Situation in Software De velopment?

Anyone can build and sell software!

Some institutions feel that they can offer “Software
Engineering” programswithout accreditation.

There is no general agreement on what a person
involved in software development should know.

There are no software engineers!

There is a huge gap in understanding between
academic computer researchers and those who
actually develop software.

There are few researchers trying to fill that gap.

Much “Software Engineering” research is either
camouflaged theory or project management research.
There is also some psychological analysis of
programmers and some (poorly controlled)
experimentation. It is not Engineering research. It
does not focus on design and analysis of the product.

We can talk about product and process standards, but
teachers, students, and practitioners ignore them.

Software development is not a profession. There is
little professional awareness.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
8 unconJS.slides

Incompetent Software De veloper s

We have known how to write programs so that data
representations areeasy to change for more than 25
years.

Methods are included in many textbooks and taught
in many courses.

The year 2000 was predicted.

Millions of lines of code have been written in which
the representation of dates:

• will not work in the year 2000

• Is very hard to change.

Nobody made sure that basic methods were taught.

Anyone could declare themselves a programmer.

There was no licensing or certification.

There was no accreditation of educational
programmes.

There is no standard that allows us to say that these
programmers were negligent.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
9 unconJS.slides

Licensing: Wh y we ha ve it in Engineering
and not in Science

Scientists’ work is usually judged by peers:
• Research papers and proposals are peer reviewed.

• Work in laboratories is reviewed.

• Scientific work is often replicated in separate
experiments.

• Scientific results are usually used by other scientists
and by engineers who are able to detect problems.

Engineers’ work is not always subject to such review:
• Results are built, not published.

• Results are often confidential

• Engineers often work alone.

• Engineers often deal directly with the public or their
non-engineer representatives. Public safety and well
being is affected.

That this is also true of software development; it
was noted 20 years ago in another context. See:
Richard A. DeMillo, Richard J. Lipton, Alan J.
Perlis: Social Processes and Proofs of Theorems
and Programs. POPL 1977: 206-214. Also
published in CACM 22, 5, May 1979, 271-280

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
10 unconJS.slides

Accreditation: Wh y we ha ve it in
Engineering and not in Science

The accreditation process that we have in
engineering would be considered an unacceptable
violation of freedom by teachers in science.

• Scientists need not be licensed.

• Scientists can be specialists.

• There is no agreed “core body of knowledge”.

• Major differences in what physicists or computer
scientists know is not considered remarkable.

• “Model curricula remain suggestions.

• Evaluations are shallow and half-hearted.

Many Scientists and Computer Scientists seem
unaware of the Engineering accreditation process.

• large visiting teams

• detailed evaluation procedure - about a week

• reading of class notes and student work

• critical to survival

The CS accreditation has “no rigid standards”.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
11 unconJS.slides

The Engineering Style Of Education?

1. It is quite rigid - students have little choice.

2. Course contents are often prescribed - Professors
have little choice.

3. It deals with rapidly changing fields by teaching
fundamentals.

4. When teaching math and science, the emphasis
is on how to apply,not extend, knowledge.

5. Stress on how to design.

6. Stress on professional responsibility and ethics.

7. Things are never taughtjust because they are
elegant. Students expect to be shown how to use
what to learn.

8. Theory (math) and practice are integrated.

There is a set of things that you can expect every
<*>engineer to know.

Safetydemands this style of education.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
12 unconJS.slides

The Engineering Style Of Education?

An Engineer’s education isnot specialised!

•Chemical Engineers must know much more than
Chemistry - fluid dynamics, thermodynamics,...

•There is often a shared first year for all branches.

There is solid agreement on the core material.
Everyone has something that they want to add, but
they all agree on the core that is now required.

Engineers learn that they must do “dog work”, that
they must be disciplined and thorough.

Systematic Analysis is stressed, case analysis

Classical Subjects such as:
differential equations, probabalistic analysis,
optimization, numerical methods, testing,
experimentation, information theory,...

Something is missing!
• Where is software?

• This was not important 30 years ago. Today it is
pervasive.

• Teaching a language is not enough.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
13 unconJS.slides

Why do we ha ve “Software Science”?

In the 60s, we began to speak of a “software crisis”.

We began to realise that we could not really teach
software design. We taught syntax and showed
programs, but did not teach design.

Some could design programs well, some could not. It
was an art, not a teachable skill.

Everything depended on intuition. Math was only
used for numerical issues, and by a few specialists.

A thirty year long “crisis” was beginning.

A world-wide research effort also began.

Today. the situation is quite different.

We have a Science of Programming.

We know a great deal about how to design and
document software, but...

The “Software Crisis” continues unabated!
Incorrect software is the norm.

We must ask why!

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
14 unconJS.slides

Who Writes Software?

In a word,everyone!
• all kinds of engineers (mechanical, electrical, chemical,...)

• scientists (social and physical)

• psychologists

• mathematicians

• commerce/business majors

• computer science graduates

• . kindergarten teachers, lawn cutters,...

Who kno ws the Science of Software?

Bluntly, few of the above. Even CS graduates might
not know it! (no core body of knowledge)

The software crisis continues because the
communication between Computer Scientists and
those who write software, including the Engineers,
has been very poor.

Current software standards, are weak, superficial,
and are not based on software science.

Process oriented “standards” are empty because
there are no product/document standards.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
15 unconJS.slides

Computer Science Education?

(1) It is not rigid - students have lots of choice.

(2) Course contents are not prescribed, vary widely.

(3) Fundamentals are far removed from practice and
practical courses ignore them.

(4) It is very important to be “current”.

(5) Little stress on how to design. (this varies)

(6) Little stress on professional responsibility.

(7) Thingsare taught just for their beauty.

(8) There is nothing that you can expect every
Computer Scientist to know.

This is not an Engineering Education.

It shouldn’t be an engineering education. We need
Computer Scientists.

We also need engineers with a solid understanding of
certain parts of Software Science.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
16 unconJS.slides

Science Education compared to
Engineering Education

Scientists must learn:

• what is true (an organised body of knowledge),

• how toconfirm what is true, and

• how toextend knowledge in their field.

In other words, scientists learn science and scientific
methods.

Engineers must learn:

• what is true, (an organised body of knowledge)

• how toapply that body of knowledge,

• how toapply a broader area of knowledge necessary
to build complete products that must function in a
real environment, and

• the design and analysis discipline that must be
followed to fulfil the responsibilities incumbent
upon those who build products for others.

The latter are often called “engineering principles”.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
17 unconJS.slides

These diff erences make sense!

If you are going to be doing specialised research,
extending science,

• you can afford to be narrow but,

• you cannot afford to be out-of-date.

If you are going to be applying science to build
reliable products,

• you rarely need thevery latest research results, but

• you must have a broad understanding that allows you
to take many factors into account when designing
your product.

• Engineers must take responsibility for the
correctness of their own designs.

• Engineers often have responsibility for the whole
product and so must have some knowledge outside
their speciality and the ability to work with other
engineers.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
18 unconJS.slides

Some Illustrations of the Gap

Two views of Finite Automata

The (Computer) Engineering view:
• Finite State Machines (FSMs) as a design tool

• How do you find the right state table?

• How do you minimise state tables?

• How do you design machines/programs from a
description of a state table?

The CS view
• FSMs as a model of computation.

• What languages can an automata recognise?

• What problems can an automata solve?

• Which types of automata are equivalent in
computational power?

Both views are valid but they are different!
Some Anecdotes:

• reviewing a book on algebraic automata theory.

• reducing the size of “minimal machines”.

• Dave Parnas’ “recent research results”, FSMs.

• My 1965 office-mate.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
19 unconJS.slides

More Illustrations of the Gap

Two vie ws of Logic

CS: Logic embodies the rules of thought.

Eng: Logic is a way to describe discrete systems.

CS: Logics are defined by proof-rules. If you don’t
have proof rules it isn’t formal.

Eng: Logics can be precisely defined by giving
evaluation rules.

CS: Logic should be monotonic or strict.

Eng:Logic should be compact, predicates total.

CS: Endless debate about whether f(a) = f(a).

Eng: Who cares? 1/0 = 1/0 isn’ttrue.

Both views are valid, valuable but different!

Engineers (other than Computer Engineers) often do
not knoweither form of logic.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
20 unconJS.slides

How Do We Chose Resear ch Problems?

Engineers: What problems do Engineers encounter in
practice? How can they best be solved? How can we
use our knowledge to design? Does it work in the “real
world?”

Computer Scientists: What’s a nice model (language)?

What properties of this model (language) can we
prove? How should the world be? What would it be
like if the world were this way? How can we simplify
the world so that we can publish results?

Both views are valid but they are different and they
lead to grave misunderstandings.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
21 unconJS.slides

How Do We Chose Resear ch Problems?

Some illustrative anecdotes

1. Concurrency
CS: Philosophy about the nature of time
Eng: What really happens when two eventsappear

to be simultaneous? What should we do?

2. Specification Languages
Eng: What information is needed in a specification?
CS: How can we make the language more

powerful?
Eng: How can we make the documents easy to read

and check.
CS: Are there differences in expressive “power”?

Is the language the object of study?

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
22 unconJS.slides

Some Over simplifications:

• Scientists extend our knowledge of the world.

• Engineers apply knowledge by designing products.

• Engineering researchers extend our knowledge of how
to design.

• Engineers find their problems in practice, their
solutions in the literature.

• Computer scientists find their problems in the
literature, and often find their solutions in new (bigger,
faster) products on the market.

However, these things aren’t central!
The most important issue is education: science
education is, for good reasons, different from
engineering education.

What kind of education should software developers
receive?

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
23 unconJS.slides

Analogy: T wo Views of Mathematics

Inspiration: the work of N.G. de Bruijn

Why is the mathematics used in Engineering and
Applied Mathematics so different from that used in
pure mathematics, logic, and Computer Science?

Math and CS: Mathematics is a structure on its own.
Everything must follow from explicit statements.

Eng: Mathematics is a means of describing the
world. General properties of the world need
not be stated and stated and stated.

Again, both views are valid but,if we want our work to
influence practice, shouldn’t researchers be thinking
about the Engineering view, be looking for compact
notation? Shouldn’t we be able to argue in context of
accepted assumptions? Shouldn’t we be checking
mathematical results against reality?

Anecdotes: Lipton: “It doesn’t matter that the hypothesis
is false, the theorem is true.” “It has to be obtuse to be
formal.”

This attitude is alive in many fields.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
24 unconJS.slides

Something that Engineering and Computer
Science Share:

An excessively narrow view of Engineering

Engineering is the use of science and technology to
construct products that will be used by other people.

Engineering is no longer limited to building bridges,
tools, or other physical products. Software is a
product that is used by other people.

I am working with both the engineers and computer
scientists on these issues. Engineers cannot imagine
a branch of engineering that is not based on physics.
Computer Scientists question whether software
developers need to know physics or chemistry.

Those who work on information systems should be
considered engineers as well, and educated
accordingly.

Our health, wealth, and happiness depends on
information systems as much as it does on more
traditional engineering products.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
25 unconJS.slides

Things Lots of Engineer s Don’t Kno w

1. Discrete mathematics and how to use it.

2. The Science of the Artificial (Simon).

3. Use of logic, modern algebra in programming.

4. Advantages of processes, process design.

5. Scheduling theory.

6. Synchronisation.

7. Meaning of “structured programming”.

8. Modularisation via abstraction.

9. Recursion.

10. How to use graph theory.

11. Data structures/ data structure design.

12. Software hierarchies.

13. Loop invariants, monotonically decreasing
quantities.

14. How to specify a program without writing one.

15. Information processing with perfect information but
lots of it.

Engineers who write programs need this
knowledge.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
26 unconJS.slides

Things Lots of Computer Scientists Don’t Kno w?

1. Control theoretic approaches, using time functions.

2. The role of a physical model of the environment.

3. Information theory - bit vs. binary digit.

4. Minimisation and optimization.

5. Dealing with noisy data.

6. Experimental validation of mathematical models.

7. The importance of reviews.

8. The responsibility to document.

9. When existence proofs are not of interest.

10. How to write for an engineering audience?

11. How to find the right mathematical model for some
investigation? What does “right” mean?

12. When and what to test?

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
27 unconJS.slides

Engineering can help Computer Science

How can we document system requirements?

Identify monitored variables (m1, m2, •••, mn)
Identify controlled variables (c1, c2, •••, cp)
For each scalar variable, x, denote the time-function
describing its value by “xt”
The value of x attime t is denoted “xt (t)”
The vector of time-functions

(vt
1, v

t
2, ..., vt

n)
will be denoted by “vt”

continued on next slide

NOTE:
• Conventional Mathematics does deal with real time.

• Continuous Models are often simpler than discrete (approxi-
mate) models.

• Studies of “air conditioner control”, cruise control, etc. in CS,
neglect fundamental properties of the physical “plant”.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
28 unconJS.slides

How can we document system
requirements (cont’ d)?

Describe the following relations:
RELATION NAT

• domain(NAT) is a set of vectors of time-functions containing
only the instances ofmt allowed by the environmental con-
straints,

• range(NAT) is a set of vectors of time-functions containing only
the instances ofct allowed by the environmental constraints,

• (mt, ct) ∈ NAT if and only if the environmental constraints allow
the controlled quantities to take on the values described byct

when the values of the monitored quantities are described bymt.

RELATION REQ
• domain(REQ) is a set of vectors of time-functions containing the

instances ofmt allowed by environmental constraints,

• range(REQ) is a set of vectors of time-functions containing only
those instances ofct considered permissible,

• (mt, ct) ∈ REQ if and only if the computer system may permit the
controlled quantities to take on the values described byct when
the monitored variables are described bymt.

We just took ideas familiar to Engineers and
described them in terms familiar to CS people.
Result: Few really understood!

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
29 unconJS.slides

One way that Computer Science can help
Engineer s

Program-function tables.

• The program sets two program variables called “j” and
“present”.

• There is one row for each variable set.
• There is one column for each case that must be

distinguished.
• A “|” in the vertical header indicates that the variable’s value

must satisfy a predicate.
• When “=” appears, the expression gives a value, not a

predicate.
• NC indicates variables that may not be changed.

• Predicate values are distinguished from the values of boolean
variables by font.

Many CS people tell me this is trivial, but most
Engineers and Software Developers can’t read it.

 Specification of a search program
(∃ i, B[i] =x) (∀ i, ((1 ≤ i ≤ N) ⇒

B[i] ≠ x))

j’ | B[j’] = x true
present’= true false ∧ NC(x, B)

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
30 unconJS.slides

How can Engineer s be Pr ofessional T oday?

A Professional Engineer must vouch for the safety
and correctness of a product, but...

They design that product using software that they
did not write.

That software was not produced by a Professional
Engineer.

They do not know the qualifications of the designer.

A software product usually carries a disclaimer
where other products have a warranty.

What should they do?
• Should they do their calculations by hand?

• Should they write their own software?

• Should we have real Software Engineers?

Solving this problem would be reason enough to
have software engineering programmes.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
31 unconJS.slides

Professional Practice in the Next Millennium

Sample future professional practice exam questions

1. Antenna System Design
The President of a company sues the developer of field-strength
prediction software because he missed a critical phone call with his
new microcellular system. The antennae placement program
predicted that there would be adequate field-strength throughout the
building, but it was wrong. The program contained no check for
convergence. Who was liable?

2. Conveyer Control Design
The program controlling a conveyer for molten metal goes into an
infinite loop and the molten steel does a lot of damage. The Engineer
is asked how she checked the loop for termination conditions. Was
she negligent?

3. Remote Communications Controllers
A network of remote data collection stations gets into a deadlock
situation requiring expensive visits to each of the stations. This
repeats about every 5 months but did not happen in testing. Analysis
shows that each controller has 10 “modes” and that a state-table
analysis would have revealed the deadlock possibility, which could
have been easily corrected. Who pays the costs?

4. Impellor Design
20,000 Impellor blades, distributed around the world. All must be
replaced because the mesh size used in the design software was too
large. The designer had trusted the software, did not know the method
that it used, and did not check the mesh size. Is this required standard
practice?

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
32 unconJS.slides

They recall car s, wh y not pr ograms?

In Canada and the U.S., there are many car
“recalls”. If something wasn’t right - it is fixed.

If I discover a defect in my operating system, I am
told to buy the new version or subscribe to
“maintenance”.

Why the difference?

Most Software Designers would not know how to
guarantee a program, either through proof or
statistical testing.

A customer who demanded a guarantee would get a
laugh. Programmers don’t understand professional
responsibility. Today’s Engineers don’t understand
programs and how to certify them fit for use.

Being able to stand behind your project is not
magic. It has a scientific basis. Software Engineers
could do it too, but there are none.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
33 unconJS.slides

Software Engineering as par t of Engineering

In the U.S. there is a movement to try to establish
Engineering as a profession on its own.

Canada also has disputes between programming
groups and engineering societies over who can
determine the qualifications of Software people.

This is the wrong approach:

We have to convince the Engineering Societies that
Software Engineering is a (new) branch of
engineering - Computer Scientists must work with
them not against them.

The first step is to build mutual understanding.

Computer Scientists think that because Software
Engineering is based on Computer Science it is
Computer Science. That makes EE Physics.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
34 unconJS.slides

Mathematics and Software Engineering

Some computer science pundits say, “Software
Engineers don’t use/like/understand mathematics”.

If we believe them, it follows that:
Software Engineers arenot Engineers

because
Engineersdo use mathematics.

Moreover, Every programmer uses “formal
methods” because programs are formal and
programming is formalisation.

However, in software we use different mathematics!

We need discrete mathematics and notations suited
for piecewise continuous functions (tabular
expressions).

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
35 unconJS.slides

Why We Need Both,
a Computer Science Pr ogramme and,

a Computer -Science Based Engineering
Programme

Many CS professors do not accept the need for a
software engineering programme. They think that
they are teaching software engineering now.

Many engineering professors say that you can
program without knowing much computer science.

Computer science has becomemature enough that it
is routinely applied to new tasks of importance to
the public. We need an engineering programme for
the students who will do that.

Computer science is still ayoung field with many
open issues. We need computer science graduates to
extend and refine our understanding, to build new
tools, and in general to explore the characteristics of
computer systems and explain how to build them.

There are distinct career paths, two distinct sets of
students, and we need two distinct programmes.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
36 unconJS.slides

Why The Distinction Is Har d To See?

Nature abhors a vacuum! (Spinoza)
There have been no Engineering Programmes
specialising in software, but the need for such
programmes was great.
There have been several responses:

• Engineers and others have learned about software in
ad hocways after graduation.

• Various educational programmes have included
some software courses in their programmes and
software has also been taught as part of other courses

• Computer Science departments have tried to fill the
gap by including so-called “systems” or “applied
computer science” courses in their course offerings.

Many see a degree in Computer Science as the best path
towards such careers. There is no other choice.

Today’s computer science programmes are rarely pure
science programmes, but neither are they programmes
that could win accreditation as Engineering programmes.
They are compromises thatdo neither job well.

Accreditation is not important to CS departments. It will
be important for Software Engineering departments.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
37 unconJS.slides

Misuse of the Name

In 1967 and 1969 a group of researchers tried to
stimulate the interest of Engineers and Engineering
Societies in Software.

They failed! The Engineers ignored them.

The Science needed as a basis for Software
Engineering was developed anyway.

Courses in that Science were sometimes called
Software Engineering.

Specialists in that science sometimes called
themselves “Software Engineers” as did a broad
variety of people (including some without any
technical degrees) who were developing software.

We need to protect the public from incompetent
software developers.

We need to distinguish between the science and the
profession.

It is important to recognise the legal status of the
title Engineer and not to have programmes called
Engineering that will not qualify their graduates for
licensing as an engineer.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
38 unconJS.slides

Some Thoughts on Curriculum

If all other engineers know something, software
engineers should know it too.

The intersection of the engineering fields is small
and contains very basic material.

We must focus on fundamentals,viz.things that
were valuable a decade ago and will be valuable
decades from now. The field is moving too fast to
chase it. It is good to use recent tools in laboratory
work, but they cannot be the subject of a course.

There must be emphasis on design principles and
their mathematical basis. Students must be taught
how to design and how to evaluate designs.

Theory and Practice must be integrated in each
course.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
39 unconJS.slides

Basic Mathematics

Calculus
Mathematical Foundations and Discrete Mathematics
Logic
Matrix Algebra
Differential Equations
Probability and Applied Statistics.

Basic Science

Chemistry
Physics

Engineering T opics

Electric Circuits, Electronics and Instrumentation
Physical Systems and their Analysis
Communications and Signal Processing
Engineering Economics
Communication Skills - Explaining Software
Complementary Studies
Safety Training
Engineering Design and Communication

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
40 unconJS.slides

Computer Science Fundamentals

Fundamentals of Computation

Basic Software T opics

Software and Social Responsibility

Systematic Programming

Selection and Design of Computer Algorithms and Data
Structures

Software Design I - Programming and Specifications

Software Design II - Design of Sequential Software
Systems

Software Design III - Design of real-time, distributed,
and concurrent software

Digital System Principles/Logic Design.

“Architecture” of Computers and Multi-Processors

Numerical Computing

“Machine Level” Computer Programming

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
41 unconJS.slides

Advanced and Specialised T opics

Performance Analysis of Computer Systems
Simulation and Modelling Methods
Optimization Methods, Graph Theoretic Models, Search and Pruning
Techniques
Design and Evaluation of Operating Systems
Design and Selection of Programming Languages
Design of Real-time Systems, Computerised Control Systems
Computer Communications
Design of Parallel/Distributed Computer Systems and Computations
Design of Human Computer Interfaces
Data Management Techniques
Computers in Communication Systems
Evaluation, Selection, and Design of Computer Assisted Design
(CAD) Tools
Robotics and Intelligent Manufacturing
Computerised Image Processing (Computer Vision), Pattern
Recognition
Geographic Information Systems
Computer Security
Digital Signal Processing
Business Applications of Computers
Information Retrieval
Computational Geometry
Senior Thesis: One final design experience.

Most of this is “software science” but it must be
taught for engineers, i.e. they must be taught how to
design using these ideas.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
42 unconJS.slides

Topics That Are (Deliberatel y) Missing

Current languages and Systems.

Compiling Techniques.

Programming tricks that are language dependant.

Specification languages such as Z, VDM, B, SDL,
Estelle, and their many variants.

Computational Models of Semantics.

Specific Tools as the main subject of a course.

Buzzwords like O-O, client server, agents,....

Software Development Process, CMM, ISO 9000.

Configuration Management.

Software-Specific Project Management.

Artificial Intelligence.

Anthropomorphic terms and analogies.

The “17 operas that Verdi wrote” (Leo Aldo Finzi).

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
43 unconJS.slides

A Possib le Transition Plan

The length of time a student spends in University or
Institute of Technology is limited.

Politicians (everywhere) want to reduce that time
and to limit it strictly.

Engineering is a full education - so is Computer
Science. Neither has room for much more.

Until we have learned to understand each other and
develop joint curricula we have to develop “extra
year” curricula. We need two:

•An extra year for engineers to teach them
software science and how to use it.

•An extra year for students in Computer Science
to teach them more about Engineering.

The lack of Computer People and Engineers who
can communicate is a frequent complaint by
industry. We must produce such people.

 McMaster University

9/9/98

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice ”
44 unconJS.slides

Conc lusions

1. It is time for engineering to take up the challenge
of 1967.

2. We needlicensed Software Engineers

3. We needaccredited Software Engineering
Programmes.

4. It will require the marriage of software scientists
and Engineers.Neither can do it alone.

5. There is meaning to the word “Engineer”. Lets
not destroy it by misusing it.

6. Both Engineers and Computer Scientists have
ignored the problem for too long. Neither has
defined the core body of knowledge, the
knowledge that we expect of all software
engineers.

