
Causal Theories as Logic Programs

Paolo Ferraris

University of Texas at Austin, Austin TX 78712, USA otto@cs.utexas.edu

∗ ∗ ∗ UNPUBLISHED DRAFT ∗ ∗ ∗

Abstract. We show how we can rewrite any causal theory — under
the semantics of causal logic due to McCain and Turner — as a logic
program in the answer set semantics. Using this translation the models
of any causal theory can be computed using answer set solvers.

1 Introduction

Causal logic [McCain and Turner, 1997] is a formalism for knowledge represen-
tation, especially suited for representing effects of actions. Causal theories are
syntactically simple but also very general: they consist of causal rules of the form

F ⇐ G (1)

where F and G are propositional formulas. Intuitively, rule (1) says that there
is a cause for F to be true if G is true. For instance, the causal rule

pt+1 ⇐ at (2)

can be used to describe the effect of an action a on a Boolean fluent p: if a
is executed at time t then there is a cause for p to hold at time t + 1. Other
important concepts in commonsense reasoning can be easily expressed by rules
of this kind too. For instance, a rule of the form

F ⇐ F

(“if F is true then there is a cause for this”) expresses, intuitively, that F is true
by default. In particular, the causal rule

pt ⇐ pt (3)

says that Boolean fluent p is normally true. The frame problem [McCarthy and
Hayes, 1969] is solved in causal logic using the rules

pt+1 ⇐ pt ∧ pt+1

¬pt+1 ⇐ ¬pt ∧ ¬pt+1.
(4)

These rules say: if a fluent p is true (false) at time t then normally it remains
true (false) at time t + 1.

In many useful causal rules, such as (2)–(4), the formula before the “⇐” is
a literal or ⊥. Rules of this kinds are called definite. Other important rules are
not definite: for instance, the equivalence of two fluents p and q at some time t
is expressed by

pt ↔ qt ⇐ >.

Search for models of a causal theory is an important computational problem.
In fact, the semantics of causal logic defines when an interpretation is a model
of a causal theory without offering any search method better than the exaustive
one. Two search techniques exist in the special case when the theory is definite,
i.e., all its rules are definite. In this case, the causal theory can be converted into a
propositional theory, called its “literal completion” [McCain and Turner, 1997],
that has the same models. Turning a causal theory into its literal completion
doesn’t lead to an increase in size. We can then use a satisfiability solver to find
the models of the causal theory. That translation is used in an implementation of
the definite fragment of causal logic, called the Causal Calculator, or CCalc.1

The Causal Calculator has been applied to several problems in the theory of
commonsense reasoning [Lifschitz et al., 2000], [Lifschitz, 2000], [Akman et al.,
2004], [Campbell and Lifschitz, 2003], [Lee and Lifschitz, 2005].

The second method uses the translation from definite causal theories into
logic programs under the answer set semantics [Gelfond and Lifschitz, 1988], [Gel-
fond and Lifschitz, 1991] that was discovered by McCain [1997]. This translation
is linear as well, and, unlike literal completion, it is modular (i.e., can be applied
to a causal theory rule-by-rule). For instance, causal rule (3) is turned into

pt ← not ¬pt,

which is the usual way of expressing that pt is true by default in logic pro-
grams [Gelfond and Lifschitz, 1991, Section 3]. Answer set solvers — systems
that find the answer sets for logic programs — can then be used to find the
models of definite causal theories [Doğandağ et al., 2001].

In this paper we propose a translation that is more general than McCain’s
one. We can convert a causal theory in clausal form — consisting of rules of the
form

l1 ∨ · · · ∨ ln ⇐ G (5)

where each li is a literal — into a logic program. This translation is modular
and linear.

Unlike definite causal theories, the class of causal theories in clausal form is
very general since every causal theory can be converted into a theory in clausal
form with the same models in a modular way. In this paper we will show that
this “clausification” can be even done without much increase in size, at the price
of introducing auxiliary atoms.

On the other hand, the output of our translation has a more general form
than the output of McCain’s translation: it is a logic program with nested ex-
pressions [Lifschitz et al., 1999]. Any rule with nested expression can be replaced
1 http://www.cs.utexas.edu/users/tag/ccalc/ .

by a set of rules of the form

l1; . . . ; lm ← lm+1, . . . , ln,not ln+1, . . . ,not lp, (6)

(0 ≤ m ≤ n ≤ p) in polynomial time as explained in [Pearce et al., 2002], again
at the price of introducing auxiliary atoms. The output of McCain’s translation
consists of rules of the form (6) that are, moreover, nondisjunctive (m ≤ 1). The
need to use disjunctive rules in a polynomial time reduction of causal theories
to logic programs follows from computational complexity considerations.

Our translation, together with the “clausification” procedure of causal the-
ories and the reduction from [Pearce et al., 2002], may allow some answer set
solvers — the ones that understand rules of the form (6), such as dlv 2, GnT 3

and cmodels, 4 — to compute the models of an arbitrary causal theory.
We review the syntax and semantics of causal theories and logic programs in

Sections 2 and 3, respectively. Our translation is described in Section 4, while
the clausification process in Section 5. Related work is discussed in Section 6.

2 Causal Theories

We begin with a propositional signature σ, i.e., a collection of symbols called
atoms. A (propositional) formula is built from atoms using the connectives ∧,
∨, ¬, > and ⊥. Formulas of the forms F ⊃ G and F ≡ G can be seen as
abbreviations in the usual way.

A causal rule is an expression of the form F ⇐ G, where F and G are
propositional formulas.5 These formulas are called the head and the body of the
rule respectively. A causal theory is a set of causal rules.

The semantics of causal theories of [McCain and Turner, 1997] defines when
an interpretation I of σ (that is, a function from the atoms of σ to truth values)
is a model of a causal theory T , as follows. The reduct T I of T relative to I is
the set of the heads of the rules of T whose bodies are satisfied by I. We say that
I is a model of T if I is the only model of T I in the sense of propositional logic.
It is clear that replacing the head or the body of a causal rule by an equivalent
formula doesn’t change the models of a causal theory.

Take, for instance, the following causal theory T of signature {p, q}:
p ∨ ¬q ⇐ >

q ⇐ p.
(7)

The interpretation I defined by I(p) = I(q) = t is a model of T . Indeed, in this
case T I = {p∨¬q, q}, and its only model is I. No other interpretation is a model
2 http://www.dbai.tuwien.ac.at/proj/dlv/ .
3 http://www.tcs.hut.fi/Software/gnt/ .
4 www.cs.utexas.edu/users/tag/cmodels/ .
5 In [Giunchiglia et al., 2004] the syntax of causal rules allows F and G to be “multi-

valued propositional formulas.” Causal theories in this more general sense can be
reduced to causal theories in the sense of [McCain and Turner, 1997] that are con-
sidered in this note [Lee, 2005, Section 6.4.2].

of I: if I(p) = f and I(q) = t then I is not a model of the reduct T I = {p∨¬q, q},
while if I(q) = f then the reduct T I = {p ∨ ¬q} has more than one model.

A rule of the form (5), where n ≥ 0 and l1, . . . , ln are literals, is said to be
in clausal form. A causal theory is in clausal form if all its rules are in clausal
form.

3 Logic programs

The answer set semantics was originally defined in [Gelfond and Lifschitz, 1988]
for logic programs of a very simple form and has been generalized several times.
Here we review the syntax and semantics of programs with nested expres-
sions [Lifschitz et al., 1999]. A literal is an atom a or its negation ¬a. A nested
expression is built from literals using the 0-place connectives > and ⊥, the unary
connective “not” (negation as failure) and the binary connectives “,” (conjunc-
tion) and “;” (disjunction).

A logic program rule (with nested expressions) has the form

F ← G

where F and G are nested expressions. As in causal rules, F is called the head
of the rule and G its body. Finally, a logic program (with nested expressions) is
a set of logic program rules.

The answer set semantics defines when a consistent set of literals (a set that
doesn’t contain both a and ¬a for the same atom a) is an answer set for a logic
program. In the rest of this section X stands for a consistent set of literals, l for
a literal, F and G for nested expressions and Π for a logic program.

We define when X satisfies F (symbolically, X |= F) recursively as follows:

– X |= l if l ∈ X,
– X |= > and X 6|= ⊥,
– X |= not F if X 6|= F ,
– X |= F, G if X |= F and X |= G, and
– X |= F ;G if X |= F or X |= G.

Finally, X satisfies Π (X |= Π) if, for all rules F ← G in Π, X |= F whenever
X |= G.

The reduct ΠX of Π relative to X is the result of replacing every maximal
subexpression of Π that has the form not F with ⊥ if X |= F , and with >
otherwise. A set X is an answer set for Π if X is a minimal set (in the sense of
set inclusion) satisfying ΠX .

Two logic programs Π1 and Π2 are strongly equivalent if, for any logic pro-
gram Π, Π1∪Π and Π2∪Π have the same answer sets [Lifschitz et al., 2001]. In
this paper we are actually interested in sets of literals that are complete — those
that contain, for each atom a, either a or ¬a. Then it is convenient to define a
weaker condition than strong equivalence: Π1 and Π2 are c-strongly equivalent,
if, for any logic program Π, Π1 ∪Π and Π2 ∪Π have the same complete answer

sets. It can be shown that Π1 and Π2 are c-strongly equivalent iff the result of
extending Π1 by the rules

⊥ ← not a,not ¬a (8)

for all atoms a is strongly equivalent to the result of extending Π2 by the same
rules.

4 Translation

For any formula F , F ne stands for the nested expression obtained from F by
replacing each ∧ with a comma, each ∨ with a semicolon and ¬ with not .

Given any causal theory T in clausal form, we define ΠT as the program with
nested expressions obtained from T by replacing each causal rule (5) by

l1; . . . ; ln ← not not Gne, (l1;not l1), . . . , (ln;not ln) (9)

where each li stands for the literal complementary to li.
According to this definition, each rule of ΠT can be obtained from the cor-

responding rule of T in three steps: by

– replacing each propositional connective with the corresponding “logic pro-
gram connective”, with the exception of negation in the head,

– prepending not not to the body of the rule, and
– adding some “excluded middle hypotheses” to the body of the rule.

This translation is clearly linear.
For instance, if T is (7) then ΠT is

p;¬q ←not not >, (¬p;not ¬p), (q;not q)
q ←not not p, (¬q;not ¬q).

(10)

This program can be equivalently rewritten as

p;¬q ←¬p, q

p;¬q ←¬p,not q

p;¬q ←not ¬p, q

p;¬q ←not ¬p,not q

q;not p←¬q

q;not p←not ¬q.

The theorem below expresses the soundness of this translation. We identify
each interpretation with the corresponding complete set of literals.

Theorem 1. For any causal theory T in clausal form, an interpretation I is a
model of T iff I is an answer set for ΠT .

For instance, the only answer set of (10) is {p, q}. It is a complete set of
literals and indeed it is the only model of (7). In general, ΠT may have answer
sets that are not complete sets of literals, and those don’t correspond to model
of T . The incomplete answer sets of a logic program can be eliminated by adding
rules (8) for all atoms a.

The following proposition shows that, in case of causal rules of the form
l1 ⇐ G (causal rule (5) with n = 1), we can drop (l1;not l1) from logic program
rule (9).

Proposition 1. For any literal l and any nested expression F , the one-rule logic
program

l← F,
(
l;not l

)

is strongly equivalent to
l← F.

For instance, the second rule of (10) can be rewritten as

q ← not not p

and the answer sets don’t change.
We will see in Section 6 that Proposition 1 brings us to a translation that

is similar to McCain’s translation in case of definite causal theories. However,
dropping terms of the form li ∨ ¬li from (9) is usually not sound when n > 1.
Take, for instance, the one-rule causal theory:

p ∨ ¬p⇐ >,

which has no models. As we expect, the corresponding logic program

p;¬p← not not >, (¬p;not ¬p), (p;not p)

has no complete answer sets. If we drop the two disjunctions in the body we get
a logic program with two complete answer sets {p} and {¬p} instead.

5 Clausifying a causal theory

As we mentioned in the introduction, the translation from the previous sec-
tion can also be applied to arbitrary causal theories, by first converting them
into clausal form. One way to do that is by rewriting the head of each rule in
conjunctive normal form, and then by breaking each rule

C1 ∧ · · · ∧ Cn ⇐ G, (11)

where C1, . . . , Cn (n ≥ 0) are clauses, into n rules

Ci ⇐ G (12)

(i = 1, . . . , n) [Giunchiglia et al., 2004, Proposition 4]. However, this reduction
may lead to an exponential increase in size unless we assume an upper bound
on the number of atoms that occur in the head of each single rule.

We propose a reduction from an arbitrary causal theory to a causal theory
where the head of each rule has at most three atoms. This translation can be
computed in polynomial time and requires the introduction of auxiliary atoms.
The translation is similar to the one for logic programs from [Pearce et al., 2002]
mentioned in the introduction.

Consider any causal theory T over a signature σ, and let form(T) be the
collection of all subformulas of the heads of rules of T . The translation T ′ of
T will contain atoms from σ and auxiliary atoms that we denote by dF , where
F ∈ form(T).

For any formula F ∈ form(T), we define def(F) as

– formula dG ⊗ dH , if F has the form G⊗H where ⊗ is ∨ or ∧,
– formula ¬dG, if F has the form ¬G, and
– formula F , if F is an atom or > or ⊥.

Finally, we define T ′ to be the causal theory consisting of

dF ⇐ G (13)

for all rules F ⇐ G in T , plus

dF ≡ def(F)⇐ > (14)

for all formulas F ∈ form(T).

Theorem 2. For any causal theory T over σ, I 7→ I|σ is a 1–1 correspondence
between the models of T ′ and the models of T .

The clausification process described at the beginning of the section is actually
linear in size when applied to causal theories of the form T ′. Indeed, it doesn’t
modify rules of the form (13) since they are already in clausal form. About rules
of the form (14), each head can be rewritten as a formula in conjunctive normal
form that is only linearly larger than the head of (14), because it contains only
three atoms. Finally, the transformation from rule (11) to rules (12) is normally
quadratic, but in this case it is linear because the body of each rule (14) — and
then of the corresponding rule (11) — has constant size: it is >.

Finally, note also that

– the translation T 7→ ΠT of the previous section is linear,
– the transformation T 7→ T ′ is almost linear, and
– the translation of logic programs defined by [Pearce et al., 2002] is almost

linear.

As a result, for an arbitrary causal theory T , we can get a logic program con-
sisting of rules (6) — such that its answer sets are the models of T extended by
auxiliary atoms — that is not much larger than T .

6 Related work and conclusions

Our translation is similar McCain’s one [1997] in the sense that they are both
modular, linear, and they share the same soundness property: the complete an-
swer sets of the translations are the models of the original causal theory. On the
other hand, McCain’s translation is only applicable to rules of the form

l⇐ l1 ∧ · · · ∧ ln (15)

(l1, . . . , ln are literals and l is a literal or ⊥), and its output is different from ours
applied to (15). McCain’s translation turns (15) into

l← not l1, . . . ,not ln (16)

while the transformation of Section 4, simplified using Proposition 1, turns it
into

l← not not ((l1)
ne

, . . . , (ln)ne). (17)

It can be shown that (17) is c-strongly equivalent to (16), so that our translation
and McCain’s translation indeed have the same complete answer sets. Note that
the incomplete answer sets may be different: McCain’s translation of p⇐ p is

p← not ¬p

which has answer set {p} only. Our translation gives

p← not not p

which has the answer set ∅ as well.
As a generalization of McCain’s translation, [Doğandağ et al., 2004] proposed

a translation from causal theories called “almost definite” into logic programs
that is linear and modular also. The syntax of rules allowed in almost definite
causal theory T is more general than rules in clausal form. On the other hand,
whether or not a causal theory is almost definite depends on which rules of the
form l ⇐ l occur in it. We saw that every causal theory can be converted to
clausal form, at the cost of introducing additional atoms, in a modular way, and
with an increase in size close to linear. It is not clear if similar simple reductions
to almost definite causal theories exist. In this sense, our translation is more
general than the one of [Doğandağ et al., 2004].

Even if rules of the form l ⇐ l play no special role in our translation, they
can be used to reduce the size of the output. Indeed,

Π{l⇐l} ∪ {l;F ←
(
l;not l

)
, G}

is c-strong equivalent to
Π{l⇐l} ∪ {F ← l, G},

and
Π{l⇐l} ∪ {l;F ←

(
l;not l

)
, G}

is c-strong equivalent to
Π{l⇐l} ∪ {l;F ← G}.

In some cases, these simplifications allow us to translate nondefinite causal the-
ories into nondisjunctive logic programs. This happens, for instance, with two
examples of almost definite causal theories — that are essentially in clausal form
— from Section 5 of [Doğandağ et al., 2004]: the description of the transitive
closure of a relation, and the formalization of the two-gear domain. The applica-
tion of the translation from [Doğandağ et al., 2004] to those examples produces
nondisjunctive programs as well. In fact, the translation from that paper and
the two c-strong equivalences above are related to each other.

Another way of translating an arbitrary causal theory into a logic program is
by first making it defite, as described by Lee [2004]. We can then use McCain’s
translation to get a logic program. However, that process is not modular, and it
may lead to an exponential increase in size.

The translation from this paper can be extended to a large subset of the logic
of universal causation [Turner, 1999].

Acknowledgments

We thank Hudson Turner for comments on this topic. We are grateful to Vladimir
Lifschitz for many suggestions and his careful reading of this paper. This research
was partially supported by the National Science Foundation under Grant IIS-
0412907.

References

[Akman et al., 2004] Varol Akman, Selim Erdoğan, Joohyung Lee, Vladimir Lifschitz,
and Hudson Turner. Representing the Zoo World and the Traffic World in the
language of the Causal Calculator. Artificial Intelligence, 153(1–2):105–140, 2004.

[Campbell and Lifschitz, 2003] Jonathan Campbell and Vladimir Lifschitz. Reinforc-
ing a claim in commonsense reasoning. In Working Notes of the AAAI Spring
Symposium on Logical Formalizations of Commonsense Reasoning, 2003.

[Doğandağ et al., 2001] Semra Doğandağ, Ferda N. Alpaslan, and Varol Akman. Us-
ing stable model semantics (SMODELS) in the Causal Calculator (CCALC). In
Proc. 10th Turkish Symposium on Artificial Intelligence and Neural Networks, pages
312–321, 2001.

[Doğandağ et al., 2004] Semra Doğandağ, Paolo Ferraris, and Vladimir Lifschitz. Al-
most definite causal theories. In Proc. 7th Int’l Conference on Logic Programming
and Nonmonotonic Reasoning, pages 74–86, 2004.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Robert Kowalski and Kenneth Bowen,
editors, Proceedings of International Logic Programming Conference and Symposium,
pages 1070–1080, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical nega-
tion in logic programs and disjunctive databases. New Generation Computing, 9:365–
385, 1991.

[Giunchiglia et al., 2004] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Nor-
man McCain, and Hudson Turner. Nonmonotonic causal theories. Artificial Intelli-
gence, 153(1–2):49–104, 2004.

[Lee and Lifschitz, 2005] Joohyung Lee and Vladimir Lifschitz. A knowledge module:
buying and selling 6 Unpublished draft, 2005.

[Lee, 2004] Joohyung Lee. Nondefinite vs. definite causal theories. In Proc. 7th Int’l
Conference on Logic Programming and Nonmonotonic Reasoning, pages 141–153,
2004.

[Lee, 2005] Joohyung Lee. Automated Reasoning about Actions.7 PhD thesis, Univer-
sity of Texas at Austin, 2005.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner.
Nested expressions in logic programs. Annals of Mathematics and Artificial In-
telligence, 25:369–389, 1999.

[Lifschitz et al., 2000] Vladimir Lifschitz, Norman McCain, Emilio Remolina, and Ar-
mando Tacchella. Getting to the airport: The oldest planning problem in AI. In Jack
Minker, editor, Logic-Based Artificial Intelligence, pages 147–165. Kluwer, 2000.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce, and Agustin Valverde.
Strongly equivalent logic programs. ACM Transactions on Computational Logic,
2:526–541, 2001.

[Lifschitz, 2000] Vladimir Lifschitz. Missionaries and cannibals in the Causal Calcula-
tor. In Principles of Knowledge Representation and Reasoning: Proc. Seventh Int’l
Conf., pages 85–96, 2000.

[McCain and Turner, 1997] Norman McCain and Hudson Turner. Causal theories of
action and change. In Proc. AAAI-97, pages 460–465, 1997.

[McCain, 1997] Norman McCain. Causality in Commonsense Reasoning about Ac-
tions.8 PhD thesis, University of Texas at Austin, 1997.

[McCarthy and Hayes, 1969] John McCarthy and Patrick Hayes. Some philosophical
problems from the standpoint of artificial intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence, volume 4, pages 463–502. Edinburgh University Press,
Edinburgh, 1969.

[Pearce et al., 2002] David Pearce, Torsten Schaub, Vladimir Sarsakov, Hans Tompits,
and Stefan Woltran. A polynomial translation of logic programs with nested expres-
sions into disjunctive logic programs. In Proc. NMR-02, 2002.

[Turner, 1999] Hudson Turner. A logic of universal causation. Artificial Intelligence,
113:87–123, 1999.

[Turner, 2003] Hudson Turner. Strong equivalence made easy: nested expressions and
weight constraints. Theory and Practice of Logic Programming, 3(4,5):609–622, 2003.

Appendix

Proof of Theorem 1

Next lemma is easily verifiable by structural induction.

Lemma 1. For any interpretation I and any propositional formula F , I is a
model of F iff I |= Fne.
6 http://www.cs.utexas.edu/users/vl/papers/buy.ps .
7 http://www.cs.utexas.edu/users/appsmurf/papers/dissertation.ps .
8 ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps .

Lemma 2. For any two interpretations I and J and any causal theory T in
clausal form, I ∩ J |= (ΠT)I iff J is a model of T I .

Proof. It is sufficient to prove the claim for the case when T is a single rule (5).
Then ΠT is rule (9). Case 1: I is not a model for G. Then T I = ∅, and, in view
of Lemma 1, I 6|= Gne. Consequently, the term not not Gne in the body of (9) is
replaced by ⊥ in the reduct (ΠT)I . The claim in this case immediately follows.
Case 2: I is a model for G. Then T I is

l1 ∨ · · · ∨ ln.

Considering the reduct of (9) relative to I, we notice that not not Gne is replaced
by > in view of a reasoning on Lemma 1 similar to the previous case. Also, the
terms of the form (li;not li) of (9) can be rewritten, in the reduct, as li if li ∈ G,
and dropped otherwise. Consequently, we can write (ΠT)I as

l1; . . . ; ln ← ,
l∈{l1,...,ln}:l∈I

l

where the “big comma” is similar to
∧

(in particular, it is > if there are no con-
junctive terms). Consequently, since interpretations are complete sets of literals,
(l ranges over l1, . . . , ln)

I ∩ J |= (ΠT)I iff l ∈ I ∩ J for some l whenever l ∈ I ∩ J for all l ∈ I

iff l ∈ J for some l ∈ I or l 6∈ I ∩ J for some l ∈ I

iff l ∈ J for some l ∈ I or l 6∈ J for some l ∈ I

iff l ∈ J for some l ∈ I or l ∈ J for some l 6∈ I

iff l ∈ J for some l

iff J is a model of T I .

Theorem 1. For any causal theory T in clausal form, an interpretation I is a
model of T iff I is an answer set for ΠT .

Proof. The condition
I is a model of T

means that

for every interpretation J , J is a model of T I iff J = I.

In view of Lemma 2, this is equivalent to the condition

for every interpretation J , I ∩ J |= (ΠT)I iff J = I.

This is further equivalent to the assertion

I is the only subset of I that satisfies (ΠT)I ,

because J 7→ I ∩J is a 1–1 correspondence between the set of all interpretations
and the set of all the subsets of I. This means that I is an answer set for ΠT .

Proof of Proposition 1

We will use the following characterization of strong equivalence, which is basi-
cally a rephrasing of the characterization from [Turner, 2003]: two logic programs
Π1 and Π2 are strongly equivalent iff for every consistent set X of literals, either

– X 6|= (Π1)X and X 6|= (Π2)X , or
– (Π1)X and (Π2)X are satisfied by the same subsets of X.

Proposition 1. For any literal l and any nested expression F , the one-rule logic
program

l← F,
(
l;not l

)
(18)

is strongly equivalent to
l← F. (19)

Proof. Let Π1 be (18), and Π2 be (19). Take any consistent set X of literals.
Then (Π2)X is

l← FX ,

where FX stands for F with all maximal subexpressions of the form not G
replaced by > if X |= not G, by ⊥ otherwise.

Case 1: l 6∈ X. Then (Π1)X is

l← FX ,
(
l;>)

which is clearly satisfied by the same subsets of X that satisfy (Π2)X .
Case 2: l ∈ X. Then (Π1)X is

l← FX ,
(
l;⊥)

Case 2a: X |= FX . Since l 6∈ X, we conclude that X 6|= (Π1)X and X 6|= (Π2)X .
Case 2b: X 6|= FX . Since FX doesn’t contain negation not , no subset of X
satisfies FX (easily provable by induction). It easily follows that all subsets of
X satisfy both (Π1)X and (Π2)X .

Proof of Theorem 2

Let σ′ = σ∪{dF F ∈ form(T)} be the signature of T ′. Let ∆ be the propositional
theory {dF ↔ def(F) :F ∈ form(T)}, and ∆′ be {dF ↔ F :F ∈ form(T)}. Next
lemma is provable by induction.

Lemma 3. ∆ is equivalent to ∆′.

Lemma 4. For any interpretation I over σ′, M 7→M |σ is a 1–1 correspondence
between the models of (T ′)I and the models of T I|σ .

Proof. Consider that (T ′)I is

{dF :F ⇐ G ∈ T, I |= G} ∪∆.

In view of Lemma 3 and the fact that the body of each rule of T is over σ, (T ′)I

is equivalent to
{dF :F ⇐ G ∈ T, I|σ |= G} ∪∆′

and then to
T I|σ ∪∆′.

It remains to notice that ∆′ only defines each atom of σ′ \σ, which do not occur
in T I|σ , in terms of atoms from σ.

Theorem 2. For any causal theory T over σ, I 7→ I|σ is a 1–1 correspondence
between the models of T ′ and the models of T .

Proof. If I is a model of T ′ then I is the only model of (T ′)I . In view of Lemma 4,
I|σ is the only model of T I|σ , and then of T . Now take any model J of T . It
remains to show that, among all the interpretations I of the signature of T ′ such
that J = I|σ, exactly one is a model of T ′. First we notice that, since T and the
bodies of the rules of T ′ are over σ,

(i) each T I|σ is identical to T J , and
(ii) all (T ′)I are identical to each other.

From (i) we get that J is the only model of every T I|σ . Consequently, by
Lemma 4, (T ′)I has a unique model M with M |σ = J ; this M is the same
for all I ′s by (ii). Note that since M |σ = J , M is one of the interpretations I
that we are considering, so that M is the only model of (T ′)M and consequently
a model of T ′. No other set I is a model of T ′ because it is not a model of (T ′)I .

