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tThe theorem on loop formulas due to Fangzhen Lin and YutingZhao shows how to turn a logi
 program into a propositional formulathat des
ribes the program's stable models. In this paper we sim-plify and generalize the statement of this theorem. The simpli�
ationis a
hieved by modifying the de�nition of a loop in su
h a way thata program is turned into the 
orresponding propositional formula byadding loop formulas dire
tly to the 
onjun
tion of its rules, with-out the intermediate step of forming the program's 
ompletion. Thegeneralization makes the idea of a loop formula appli
able to stablemodels in the sense of a very general de�nition that 
overs disjun
tiveprograms, programs with nested expressions, and more.1 Introdu
tionThe theorem on loop formulas due to Fangzhen Lin and Yuting Zhao [Linand Zhao, 2004℄ is an important result in the theory of stable models. Itshows how to turn a logi
 program � into a propositional formula thatdes
ribes the stable models of �. The redu
tion of the problem of 
om-puting stable models to the satis�ability problem for propositional formulasgiven by the Lin-Zhao theorem has led to the development of the answer1



set solvers assat1 and 
models2. If the program � is tight [Fages, 1994,Erdem and Lifs
hitz, 2003℄ then the 
orresponding propositional formulais simply the 
ompletion of � in the sense of [Clark, 1978℄; otherwise the
orresponding formula is the 
onjun
tion of the 
ompletion of � with theadditional formulas that Lin and Zhao 
alled the \loop formulas" of �. Thenumber of loop formulas is exponential in the size of � in the worst 
ase,and there are reasons for this in 
omplexity theory [Lifs
hitz and Razborov,2006℄. But in many 
ases the Lin-Zhao translation of � into propositionallogi
 is not mu
h bigger than �.In this paper we show how the statement of the Lin-Zhao theorem 
an besimpli�ed and generalized. The simpli�
ation is a
hieved by modifying thede�nition of a loop from [Lin and Zhao, 2004℄ in su
h a way that a program isturned into the 
orresponding propositional formula by adding loop formulasdire
tly to the 
onjun
tion of its rules, without the intermediate step offorming the program's 
ompletion.The generalization, on the other hand, makes the idea of a loop for-mula appli
able to stable models in the sense of the very general de�nitionproposed in [Ferraris, 2005℄ and [Ferraris and Lifs
hitz, 2005℄, whi
h is es-sentially a reformulation of equilibrium logi
 [Pear
e, 1997℄. That generalde�nition 
overs, in parti
ular, disjun
tive programs; the possibility of ex-tending the Lin-Zhao theorem to the disjun
tive 
ase has been used to designa version of 
models that 
an handle disjun
tive programs [Lierler, 2005℄.The de�nition 
overs even arbitrary programs with nested expressions inthe sense of [Lifs
hitz et al., 1999℄, and more. The dis
ussion of the seman-ti
s of aggregates (in parti
ular, weight 
onstraints with negative weights)in [Ferraris, 2005℄ shows that this high degree of generality is useful in someappli
ations to knowledge representation.Our version of the Lin-Zhao theorem is also more general than its originalstatement in another sense: it shows that loop formulas 
an be formed intwo ways|not only \disjun
tively" as in [Lin and Zhao, 2004℄, but also\
onjun
tively."It 
an be viewed as an enhan
ement of the en
oding of equilibrium logi
by quanti�ed propositional formulas proposed by David Pear
e, Hans Tom-pits and Stefan Woltran [Pear
e et al., 2001℄. If we eliminate quanti�ersfrom that en
oding, the result will be similar to the 
onjun
tion of loopformulas, but it will be mu
h longer in many 
ases.This paper is organized as follows. In Se
tion 2 we dis
uss our generaliza-1http://assat.
s.ust.hk/ .2http://www.
s.utexas.edu/users/tag/
models/ .2



tion of the Lin-Zhao theorem for the simple 
ase of \traditional" programsfrom [Gelfond and Lifs
hitz, 1988℄, and show how to extend it to disjun
tiveprograms. The main theorem in full generality is stated in Se
tion 3 andproved in Se
tion 4. To make the paper self-
ontained, we have also in
ludeda review of the ne
essary ba
kground material from [Ferraris and Lifs
hitz,2005℄ (Appendix A) and from [Pear
e et al., 2001℄ (Appendix B).Preliminary reports on some of the work presented below are publishedin [Lee, 2005℄ and [Lee and Lifs
hitz, 2003℄.2 Spe
ial Cases2.1 Syntax and Semanti
s of Traditional ProgramsA traditional rule is an expression of the forma1  a2; : : : ; am;not am+1; : : : ;not an (1)where n � m � 1 and a1; : : : ; an are propositional atoms. A traditionalprogram is a �nite set of traditional rules. We will identify a traditionalrule (1) with the propositional formula(a2 ^ � � � ^ am ^ :am+1 ^ � � � ^ :an)! a1: (2)A traditional program � will be identi�ed with the 
onjun
tion of the for-mulas (2) 
orresponding to the rules of �. In view of this 
onvention, thede�nition of a stable model of a propositional formula from [Ferraris, 2005℄and [Ferraris and Lifs
hitz, 2005℄, reprodu
ed here in Appendix A, is ap-pli
able, in parti
ular, to traditional programs; a

ording to [Ferraris andLifs
hitz, 2005, Proposition 28℄, it is equivalent in this spe
ial 
ase to thefamiliar de�nition of a stable model proposed in [Gelfond and Lifs
hitz,1988℄.For example, the traditional programp qq  pp not rr  not p (3)
an be viewed as alternative notation for the formula(q ! p) ^ (p! q) ^ (:r ! p) ^ (:p! r): (4)The stable models of this program are fp; qg and frg (see Appendix A forthe veri�
ation of a part of this 
laim).3



p q rFigure 1: The dependen
y graph of program (3)2.2 Main Theorem for Traditional ProgramsThe (positive) dependen
y graph of a traditional program � is the dire
tedgraph su
h that� its verti
es are the atoms o

urring in �, and� its edges go from a1 to a2; : : : am for all rules (1) of �.A nonempty set L of atoms is 
alled a loop of � if, for every pair p, q ofatoms in L, there exists a path (possibly of length 0) from p to q in thedependen
y graph of � su
h that all verti
es in this path belong to L. Inother words, L is a loop of � i� the subgraph of the dependen
y graph of �indu
ed by L is strongly 
onne
ted. It is 
lear that any set 
onsisting of asingle atom is a loop.For example, the dependen
y graph of program (3) is shown in Figure 1.This program has four loops:fpg; fqg; frg; fp; qg: (5)Our de�nition of a loop is slightly di�erent from the de�nition given in[Lin and Zhao, 2004℄, be
ause it takes into a

ount paths of length 0. Thisis what allows us to drop the 
ompletion step from the statement of theLin-Zhao theorem; see Se
tion 2.3 for details.For any �nite set Y of formulas, by Y ^ and Y _ we denote the 
onjun
tionand, respe
tively, disjun
tion of the elements of Y . Using this notation, we
an write (2) as (B^ ^N)! a1 (6)where B is the set fa2 : : : ; amg of \positive body atoms," and N is the\negative part" :am+1 ^ � � � ^ :an.For any set Y of atoms that o

ur in �, the external support formulaof Y , denoted by ES�(Y ), is the disjun
tion of the bodies B^ ^ N of allrules (6) of � su
h that� a1 2 Y and� B \ Y = ;. 4



The �rst 
ondition expresses that the atom \supported" by (6) is an elementof Y . The se
ond 
ondition expresses that this support is \external": theatoms B that it relies on do not belong to Y .For instan
e, let � be program (3), and let Y be fp; qg. Elements of Yare \supported" by ea
h of the �rst three rules of (3), but in the 
ase ofthe �rst two rules the support is not \external." A

ordingly, the externalsupport formula of fp; qg is the body of the third rule, :r.Main Theorem for Traditional Programs Let � be a traditional pro-gram, and let X be a set of atoms o

urring in �. If X is a model of � thenthe following 
onditions are equivalent:(a) X is stable;(b) for every set Y of atoms o

urring in �, X satis�esY _ ! ES�(Y ); (7)(
) for every loop Y of �, X satis�es (7);(d) for every nonempty set Y of atoms o

urring in �, X satis�esY ^ ! ES�(Y ); (8)(e) for every loop Y of �, X satis�es (8).We 
all (7) the disjun
tive loop formula of � 
orresponding to the set Yof atoms, and (8) its 
onjun
tive loop formula for Y . The two formulas
oin
ide when Y is a singleton.For example, the loop formulas of program (3) are shown in Figure 2.A

ording to the theorem above, a model of (3) is stable i� it satis�es ea
hof the 8 disjun
tive loop formulas. We 
an also say that a model of (3)is stable i� it satis�es the disjun
tive loop formulas 
orresponding to theprogram's loops (5): p ! (q _ :r)q ! pr ! :p(p _ q) ! :r: (9)Alternatively, the stable models of (3) 
an be 
hara
terized as the modelsof (3) that satisfy the 7 
onjun
tive loop formulas shown in Figure 2, and,equivalently, as the models of (3) that satisfy the 4 
onjun
tive loop formulas
orresponding to the program's loops.5



Y Disjun
tive loop formula Conjun
tive loop formula; ? ! ?fpg p ! (q _ :r) p ! (q _ :r)fqg q ! p q ! pfrg r ! :p r ! :pfp; qg (p _ q) ! :r (p ^ q) ! :rfp; rg (p _ r) ! (q _ :r _ :p) (p ^ r) ! (q _ :r _ :p)fq; rg (q _ r) ! (p _ :p) (q ^ r) ! (p _ :p)fp; q; rg (p _ q _ r) ! (:r _ :p) (p ^ q ^ r) ! (:r _ :p)Figure 2: The loop formulas of program (3)Some of the impli
ations between 
onditions (a){(e) are obvious: it iseasy to see that (b) implies both (
) and (d), and ea
h of these two 
on-ditions implies (e). In Se
tion 2.3 we show that the equivalen
e between
onditions (a) and (
) is essentially a reformulation of the Lin-Zhao the-orem. The equivalen
e between (a) and (d) is a reformulation of anotherpublished result; this is dis
ussed in Se
tion 2.5.2.3 Comparison with the Lin-Zhao TheoremWe will now 
ompare the theorem stated above with Theorem 1 from [Linand Zhao, 2004℄. The dis
ussion here does not 
over 
onstraints (rules withempty heads), whi
h are allowed by Lin and Zhao but are not allowed intraditional programs.The 
ompletion of a traditional program � is the set 
onsisting of theequivalen
es a1 $_(a2 ^ � � � ^ am ^ :am+1 ^ � � � ^ :an) (10)for all atoms a1 o

urring in �, where the disjun
tion extends over allrules (1) of � with the head a1. For instan
e, the 
ompletion of (3) isp$ (q _ :r)q $ pr $ :p: (11)We say that a loop L of a traditional program � is trivial if� L is a singleton, and 6



� the dependen
y graph of � does not 
ontain an edge from the elementof L to itself.For instan
e, the loops fpg, fqg, frg of program (3) are trivial; fp; qg isthe only nontrivial loop. If we add the rule r  r to program (3) thenthe loop frg will be
ome nontrivial. Nontrivial loops in the sense of thisde�nition are loops in the sense of [Lin and Zhao, 2004℄.Lin-Zhao Theorem For any traditional program � and any set X ofatoms o

urring in �, X is a stable model of � i� X satis�es(i) the 
ompletion of �, and(ii) the disjun
tive loop formulas for all nontrivial loops of �.For instan
e, the stable models fp; qg and frg of (3) 
an be 
hara
terizedas the models of (11) that satisfy the last of the formulas (9).The part of the theorem from Se
tion 2.1 that asserts the equivalen
ebetween 
onditions (a) and (
) is similar to the Lin-Zhao theorem. Thedi�eren
e is that the former does not refer to 
ompletion, and the latterdoes not refer to loop formulas for trivial loops.It is not diÆ
ult to explain, however, why the set of formulas (i) and (ii)above is equivalent to the union of � with the set of the disjun
tive loopformulas of � for all loops, both trivial and nontrivial. Indeed, (i) 
an beequivalently rewritten as the set of impli
ations that 
onsists of(i0) the right-to-left impli
ations from (10),(i00) the left-to-right impli
ations from (10) for the atoms a1 su
h that theloop fa1g is trivial, and(i000) the left-to-right impli
ations from (10) for the atoms a1 su
h that theloop fa1g is nontrivial.Group (i0) is equivalent to �. Ea
h impli
ationa1 !_(a2 ^ � � � ^ am ^ :am+1 ^ � � � ^ :an) (12)in group (i00) is identi
al to the loop formulafa1g_ ! ES�(fa1g); (13)be
ause, for every rule (1) of � with the head a1,B \ fa1g = fa2; : : : ; amg \ fa1g = ;:7



Finally, group (i000) 
an be dropped in the presen
e of (ii), be
ause ea
himpli
ation (12) in group (i000) is entailed by the 
orresponding loop for-mula (13): the loop formula 
an be obtained from (12) by dropping thedisjun
tive terms with a1 2 fa2; : : : ; amg.2.4 Extension to Disjun
tive ProgramsAs an intermediate step before dis
ussing the main theorem in full generality,we will 
onsider the spe
ial 
ase of \disjun
tive" programs. Disjun
tive rulesare often de�ned as expressions of the forma1; : : : ; ak  ak+1; : : : ; am;not am+1; : : : ;not an (14)(n � m � k � 0), and the de�nition of a stable model from Appendix A 
anbe applied to �nite sets of su
h rules if we treat (14) as alternative notationfor the formula(ak+1 ^ � � � ^ am ^ :am+1 ^ � � � ^ :an)! (a1 _ � � � _ ak): (15)The understanding of disjun
tive rules in this se
tion will be more gen-eral. We say that a propositional formula is negative if every o

urren
e ofevery atom in this formula is in the s
ope of a negation or in the ante
edentof an impli
ation. For instan
e, the 
onjun
tion :am+1^ � � � ^:an in (15) isnegative; any formula of the form F ! :G is negative. The 0-pla
e 
onne
-tives > and ? are negative formulas also, be
ause they don't 
ontain atoms.A disjun
tive rule is a formula of the form(B^ ^N)! A_ (16)where A and B are �nite sets of atoms, and N is a negative formula. Forinstan
e, (p ^ :(q ^ :r))! sis a disjun
tive rule in the sense of this de�nition; in the language of lparse,3it 
an be written as s :- p, fq, not rg1.A disjun
tive program is a 
onjun
tion of (0 or more) disjun
tive rules.The de�nition of the dependen
y graph (Se
tion 2.2) is extended todisjun
tive programs in a straightforward way: the verti
es of the graph arethe atoms o

urring in the program, and its edges go from the elements of A3http://www.t
s.hut.fi/Software/smodels/lparse.ps .8



to the elements of B for all rules (16) of the program. For instan
e, a ruleof the form (b1 ^N)! (a1 _ a2)
ontributes two edges to the dependen
y graph: from a1 to b1 and from a2to b1. Constraints (A = ;) and rules with a negative body (B = ;) don't
ontribute edges to the dependen
y graph.The de�nition of a loop in terms of the dependen
y graph remains thesame as in Se
tion 2.2.For any set Y of atoms that o

ur in a disjun
tive program �, theexternal support formula of Y , denoted by ES�(Y ), is the disjun
tion ofthe formulas B^ ^N ^ ^a2AnY :a (17)for all rules (16) of � su
h that� A \ Y 6= ;, and� B \ Y = ;.When � is a traditional program, this de�nition redu
es to the de�nitionof ES� given in Se
tion 2.2.The theorem from Se
tion 2.2 remains 
orre
t after repla
ing \tradi-tional program" in its statement with \disjun
tive program." The terms\disjun
tive loop formula" and \
onjun
tive loop formula" will be appliedto formulas (7) and (8) when � is an arbitrary disjun
tive program.For instan
e, 
onsider the programp ; s qq  pp ; r  not swhi
h is the \logi
 programming representation" of the formula(q ! (p _ s)) ^ (p! q) ^ (:s! (p _ r)): (18)The loops of this program arefpg; fqg; frg; fsg; fp; qg;and the 
orresponding disjun
tive loop formulas arep ! ((q ^ :s) _ (:s ^ :r))q ! pr ! (:s ^ :p)s ! (q ^ :p)(p _ q) ! (:s ^ :r): (19)9



The stable models fp; qg, frg of (18) 
an be 
hara
terized as the modelsof (18) that satisfy (19).2.5 Relation to Unfounded SetsFor programs 
onsisting of rules of the form (14), the equivalen
e between
onditions (a) and (d) from the statement of the main theorem has beenestablished earlier, in a somewhat di�erent form. Sa

�a and Zaniolo [1990℄showed that the stable models of what we 
all here traditional programs 
anbe 
hara
terized in terms of \unfounded sets."4 Leone et al. [1997℄ extendedthe notion of an unfounded set and the theorem by Sa

�a and Zaniolo todisjun
tive rules of the form (14).Their de�nition 
an be further extended to arbitrary disjun
tive pro-grams in the sense of this se
tion as follows. A set Y of atoms is unfoundedby a disjun
tive program � w.r.t. a set X of atoms if, for ea
h rule (16) of� su
h that A \ Y 6= ;,� X 6j= B^ ^N , or� B \ Y 6= ;, or� X \ (A n Y ) 6= ;.It is easy to see that X j= ES�(Y ) i� Y is not unfounded by � w.r.t. X.A set X of atoms is 
alled unfounded-free if it has no nonempty subsetsunfounded w.r.t. X. The equivalen
e between 
onditions (a) and (d) 
an bereformulated as follows: for any model X of a disjun
tive program �, X isstable i� X is unfounded-free. This is a generalization of Corollary 2 from[Sa

�a and Zaniolo, 1990℄, and of Theorem 4.6 from [Leone et al., 1997℄.3 General Theory of Loop FormulasOur goal now is to extend the de�nition of a loop and the de�nition of a loopformula, stated above for traditional programs (Se
tion 2.2) and for disjun
-tive programs (Se
tion 2.4), to the general 
ase of arbitrary propositionalformulas, and to state the main theorem in full generality.4Their theorem refers a
tually to \assumption sets" rather than unfounded sets. Butas the authors noted, in the 
ontext of this theorem the two 
on
epts are equivalent.Unfounded sets were originally introdu
ed for the purpose of 
hara
terizing the negative
onsequen
es of a program under the well-founded semanti
s [Van Gelder et al., 1991℄.10



For simpli
ity, we assume here that the only propositional 
onne
tivesallowed in formulas are ?, ^, _ and !,and all other 
onne
tives are treated as abbreviations, as in Se
tion B.3. Forinstan
e, (2) is now viewed as an abbreviation for(a2 ^ � � � ^ am ^ (am+1 ! ?) ^ � � � ^ (an ! ?))! a1: (20)Under this simplifying assumption, the de�nition of a negative formula fromSe
tion 2.4 
an be stated as follows: a formula is negative if every o

urren
eof every atom in this formula belongs to the ante
edent of an impli
ation.3.1 LoopsAn o

urren
e of a formula G in a formula F is positive if the number ofimpli
ations in F 
ontaining that o

urren
e in the ante
edent is even; it isstri
tly positive if that number is 0.5 In (20), for instan
e, the o

urren
es ofa1; am+1; : : : ; an are positive, but only the �rst of them is stri
tly positive. Itis 
lear that a formula F is negative i� it has no stri
tly positive o

urren
esof atoms.Note that we apply the term \negative" to formulas, and the terms\positive" and \stri
tly positive" to o

urren
es of one formula in another.We say that an atom a depends on an atom b in an impli
ation G! Hif � a has a stri
tly positive o

urren
e in H, and� b has a positive o

urren
e inG that does not belong to any o

urren
eof a negative formula in G.The dependen
y graph of a formula F is the dire
ted graph su
h that� its verti
es are the atoms that o

ur in F , and� it has an edge from a vertex a to a vertex b if a depends on b in animpli
ation that has a stri
tly positive o

urren
e in F .In appli
ation to traditional programs, the new de�nition of the depen-den
y graph is equivalent to the de�nition from Se
tion 2.2. Indeed, assumethat F is a 
onjun
tion of formulas of the form (20). Impli
ations o

urring5The 
on
ept of a stri
tly positive o

urren
e plays an important role in intuitionisti
logi
; see, for instan
e, [Troelstra and S
hwi
htenberg, 1996, Theorem 4.2.3℄.11



in F are of two kinds: 
onjun
tive terms (20) and impli
ations of the formai ! ?. The edges 
ontributed to the dependen
y graph by (20) go from a1to a2; : : : ; am. Impli
ations of the form ai ! ? do not 
ontribute edges tothe dependen
y graph.More generally, in appli
ation to disjun
tive programs the new de�nitionof the dependen
y graph is equivalent to the de�nition from Se
tion 2.4.Indeed, assume that F is a 
onjun
tion of formulas of the form (16). Impli-
ations o

urring in F are of two kinds: 
onjun
tive terms (16) and impli-
ations that are subformulas of N in one of these 
onjun
tive terms. Theedges 
ontributed to the dependen
y graph by the impli
ations (16) go fromelements of A to elements of B; these impli
ations do not 
ontribute anyother edges, be
ause N is negative. Impli
ations from N do not 
ontributeedges to the dependen
y graph: if an impli
ation G ! H has a stri
tlypositive o

urren
e in a negative formula N then H is a negative formulaalso, and no o

urren
e of an atom in H 
an be stri
tly positive.Consider now some formulas other than disjun
tive programs. Formula(p! q) _ r (21)is a disjun
tion of two traditional rules. Its dependen
y graph has one edge,from q to p. The dependen
y graph of the nested impli
ation((p! q)! r)! shas two edges|from s to r and from s to p. The dependen
y graph of((p! :q)! r)! shas only one edge, from s to r, be
ause the formula p! :q is negative.Given this de�nition of a dependen
y graph, loops are de�ned in thesame way as in Se
tion 2.2: a loop of a formula F is a nonempty set ofatoms o

urring in F su
h that the subgraph of the dependen
y graph of Findu
ed by that set is strongly 
onne
ted.3.2 Loop FormulasFor any set Y of atoms o

urring in a formula F , we want to de�ne a formulathat would be similar to the external support formula ESF (Y ) in the spe
ial
ase when F is a disjun
tive program. It is easier to de�ne a formula su
hthat its negation is similar to ESF (Y ).Su
h a formula NESF (Y ) is de�ned re
ursively, as follows:12



� for an atom a, NESa(Y ) is ? if a 2 Y , and a otherwise;� NES?(Y ) = ?;� NESF^G(Y ) = NESF (Y ) ^NESG(Y );� NESF_G(Y ) = NESF (Y ) _NESG(Y );� NESF!G(Y ) = (NESF (Y )! NESG(Y )) ^ (F ! G).For instan
e, if F is p! q thenNESF (fqg) = (NESp(fqg)! NES q(fqg)) ^ (p! q)= (p! ?) ^ (p! q)$ :p:The de�nitions of ES and NES look very di�erent from ea
h other. Butthe 
al
ulation above shows that in the 
ase of p! q the formula NESF (fqg)is equivalent to the negation of the external support formula p of fqg. Thefollowing proposition shows that NES�(Y ) is \almost equivalent" to thenegation of ES�(Y ) for any disjun
tive program �:Theorem 1 If X is a model of a disjun
tive program � then, for any set Yof atoms, X j= NES�(Y ) i� X j= :ES�(Y ):This fa
t suggests that :NESF (Y ) may be an a

eptable 
ounterpartof the external support formula of Y when F is synta
ti
ally di�erent fromdisjun
tive programs. The main theorem, stated in the next se
tion, showsthat this is indeed the 
ase. Its statement refers to the formulasY _ ! :NESF (Y ) (22)and Y ^ ! :NESF (Y ); (23)whi
h 
an be 
alled the (disjun
tive and 
onjun
tive) loop formulas of aformula F 
orresponding to the set Y of atoms.3.3 Main TheoremTheorem 2 (Main Theorem) Let F be a propositional formula, andlet X be a set of atoms o

urring in F . If X is a model of F then thefollowing 
onditions are equivalent: 13



(a) X is stable;(b) for every set Y of atoms o

urring in F , X satis�es (22);(
) for every loop Y of F , X satis�es (22);(d) for every nonempty set Y of atoms o

urring in F , X satis�es (23);(e) for every loop Y of F , X satis�es (23).Theorem 1 shows that the theorem stated in Se
tion 2.2 and its exten-sion to disjun
tive programs (Se
tion 2.4) 
an be viewed as spe
ial 
ases ofTheorem 2.As an example, let's apply Theorem 2 to formula (21). Its loops are thesingletons fpg, fqg, frg, and the 
orresponding loop formulas (22) arep! :(((? ! q) ^ (p! q)) _ r);q ! :(((p! ?) ^ (p! q)) _ r);r! :(((p! q) ^ (p! q)) _ ?):The 
onjun
tion of these formulas is equivalent to:q ^ :r: (24)A

ording to the main theorem, the stable models of (21) 
an be 
hara
-terized as the sets that satisfy both (21) and (24). The 
onjun
tion of (21)with (24) is equivalent to :p^:q^:r, so that the only stable model of (21)is ;.4 Proofs4.1 Proof of Theorem 1Lemma 1 For any formula F and any set Y of atoms,(a) NESF (Y ) entails F ;(b) if F has no stri
tly positive o

urren
es of atoms from Y then NESF (Y )is equivalent to F .
14



Proof. (a) by indu
tion on F . (b) by indu
tion on F ; 
onsider the 
asewhen F isG! H. By (a), NESG(Y ) entailsG; by the indu
tion hypothesis,NESH(Y ) is equivalent to H. Consequently,NESF (Y ) = (NESG(Y )! NESH(Y )) ^ (G! H)$ (NESG(Y )! H) ^ (G! H)$ ((NESG(Y ) _G)! H)$ (G! H)= F:Theorem 1 If X is a model of a disjun
tive program � then, for any set Yof atoms, X j= NES�(Y ) i� X j= :ES�(Y ):Proof. Sin
e NES�(Y ) is the 
onjun
tion of the formulas NESR(Y ) forall rules R of �, and ES�(Y ) is the disjun
tion of the formulas ESR(Y ), itis suÆ
ient to 
onsider the 
ase when � is a single rule (16). In this 
ase,:ES�(Y ) is equivalent to (B^ ^N)! (A n Y )_ (25)if A \ Y 6= ; and B \ Y = ;, and is > otherwise. We need to show,assuming (16), that this formula is equivalent to NES�(Y ). In the presen
eof (16), using Lemma 1(a),NES�(Y ) = (NESB^^N (Y )! NESA_(Y )) ^ ((B^ ^N)! A_)$ NESB^^N (Y )! NESA_(Y )$ (NESB^(Y ) ^NESN (Y ))! NESA_(Y )$ (NESB^(Y ) ^N)! NESA_(Y )$ (NESB^(Y ) ^N)! (A n Y )_:If B \ Y 6= ; then the last formula 
ontains the 
onjun
tive term ? inthe ante
edent, and 
onsequently is equivalent to >. Otherwise, it 
an berewritten as (25). It remains to note that if A\Y = ; then (25) is identi
alto the assumption (16) and 
onsequently 
an be rewritten as >.
15



4.2 Proof of Theorem 2: Equivalen
e of (a), (b), (d)In the following lemma, F is a propositional formula, and a is a list of distin
tatoms a1; : : : ; an 
ontaining all atoms o

urring in F . For the de�nitions ofF �(v) and �!Y , see Se
tion B.3.Lemma 2 For any sets X, Y of atoms, X j= NESF (Y ) i� X j= F �(���!X n Y ).Proof. By indu
tion on F . Consider the 
ase when F is an atom. If F 2 Ythen ea
h of the formulas NESF (Y ), F �(���!X n Y ) is ?. Otherwise NESF (Y )is F , while F �(���!X n Y ) is > or ? depending on whether F 2 X. The other
ases are straightforward.Proof of the equivalen
e of 
onditions (a), (b), (d) in the statementof Theorem 2. Let a be the list of atoms o

urring in F , and let a subset Xof a be a model of F . By the Pear
e-Tompits-Woltran theorem, and in viewof the fa
t that PTW[F ℄ 
an be written in the form (32), 
ondition (a) (\Xis stable") is equivalent toX j= Ŷ�a(�!Y < a! :F �(�!Y ))and 
onsequently to X j= ^Y�X :F �(�!Y ):Using Lemma 2, we 
an show that this 
ondition is equivalent to 
ondi-tion (b): X j= ^Y�X :F �(�!Y ) i� X j= ^Z�a: Z\X 6=;:F �(���!X n Z)i� X j= ^Z�a: Z\X 6=;:NESF (Z)i� X j= Ẑ�a(Z_ ! :NESF (Z))i� X j= Z_ ! :NESF (Z)for all subsets Z of a:
16



It is also equivalent to (d):X j= ^Y�X :F �(�!Y ) i� X j= ^Z�a: Z�X; Z 6=;:F �(���!X n Z)i� X j= ^Z�a: Z�X; Z 6=;:NESF (Z)i� X j= ^Z�a: Z 6=;(Z^ ! :NESF (Z))i� X j= Z^ ! :NESF (Z)for all nonempty subsets Z of a:4.3 Proof of Theorem 2: Equivalen
e of (
), (e) to the other
onditionsLemma 3 For any formula F , set Y of atoms, and subset Z of Y ,(a) if every positive o

urren
e of every atom from Y n Z in F belongs toa negative formula then NESF (Z) entails NESF (Y );(b) if every nonpositive o

urren
e of every atom from Y nZ in F belongsto a negative formula then NESF (Y ) entails NESF (Z).Proof. Both parts are proved simultaneously by indu
tion on F . As-sume that F is an atom. (a) Sin
e every positive o

urren
e of every atomfrom Y n Z in F belongs to a negative formula, F 62 Y nZ, so that NESF (Z)is the same formula as NESF (Y ). (b) Sin
e Z is a subset of Y , NESF (Y )is equal to NESF (Z) or to ?. The 
ases when F is ?, a 
onjun
tion or adisjun
tion are straightforward. Assume that F is G! H. If F is negativethen, by Lemma 1(b), ea
h of the formulas NESF (Y ), NESF (Z) is equiva-lent to F . Assume that F is not negative. (a) Every nonpositive o

urren
eof every atom from Y n Z in G belongs to a negative formula, and so doesevery positive o

urren
e of every atom from Y n Z in H. We need to showthat (NESG(Z)! NESH(Z)) ^ (G! H)entails (NESG(Y )! NESH(Y )) ^ (G! H);This is 
lear from the fa
t that, by the indu
tion hypothesis, NESG(Y )entails NESG(Z) and NESH(Z) entails NESH(Y ). (b) Similar.17



Lemma 4 For any formula F and any nonempty set Y of atoms, thereexists a subset Z of Y su
h that(a) Z is a loop of F , and(b) the dependen
y graph of F has no edges from atoms in Z to atoms inY n Z.Proof. Consider the strongly 
onne
ted 
omponents of the subgraph of thedependen
y graph of F indu
ed by Y . They form a �nite a
y
li
 graph. Anyterminal vertex of that graph satis�es 
onditions (a) and (b).Lemma 5 Let X be a model of a formula F , Y a set of atoms, and Z anonempty subset of Y su
h that the dependen
y graph of F has no edgesfrom atoms in Z to atoms in Y nZ. If X j= NESF (Y ) then X j= NESF (Z).Proof. By indu
tion on F .Case 1: F is an atom or ?. Then the NESF (Y ) is equal to NESF (Z)or to ?.Case 2: F is G ^ H. All edges in the dependen
y graphs of G and Hbelong to the dependen
y graph of F , so that the indu
tive hypothesis 
anbe applied both to G and to H.Case 3: F is G _H. Similar to Case 2.Case 4: F is G ! H. Assume that the dependen
y graph of F has noedges from Z to Y n Z, and that X satis�es NESF (Y ):X j= (NESG(Y )! NESH(Y )) ^ (G! H) (26)but doesn't satisfy NESF (Z):X 6j= (NESG(Z)! NESH(Z)) ^ (G! H): (27)Sin
e X is a model of G! H, X doesn't satisfy the �rst 
onjun
tive termof (27), so that X j= NESG(Z) (28)and X 6j= NESH(Z): (29)By Lemma 1(a), (28) implies X j= G. Sin
e X is a model of G ! H, itfollows that X j= H. In 
ombination with (29) and Lemma 1(b), this fa
tshows that H 
ontains a stri
tly positive o

urren
e of an atom from Z.Sin
e there are no edges from Z to Y n Z in the dependen
y graph of F , it18



follows that every positive o

urren
e of every atom from Y nZ in G belongsto a negative formula. By Lemma 3(a), we 
an 
on
lude that NESG(Z)entails NESG(Y ). Then, in view of (28), X j= NESG(Y ). By (26), itfollows that X j= NESH(Y ). Sin
e every edge in the dependen
y graphof H belongs to the dependen
y graph of F , the indu
tive hypothesis isappli
able to H, and we 
an further 
on
lude that X j= NESH(Z), whi
h
ontradi
ts (29).Proof of the equivalen
e of 
onditions (d) and (e) in the statementof Theorem 2. Let X be a model of F . It is 
lear that (d) implies (e).Assume that (d) does not hold, and let Y be a nonempty set of atoms su
hthat X does not satisfy loop formula (23), so thatX j= Y ^ (30)and X j= NESF (Y ): (31)By Lemma 4, there exists a subset Z of Y su
h that Z is a loop of F , andthe dependen
y graph of F has no edges from Z to Y n Z. From (30) we
on
lude that X j= Z^. By Lemma 5, (31) implies that X j= NESF (Z).Consequently (e) does not hold either.Proof of the equivalen
e of 
ondition (
) to the other 
onditions inthe statement of Theorem 2. Clearly (b) implies (
), and (
) implies (e).On the other hand, we have already established that (b) is equivalent to (e).5 Con
lusionWe modi�ed the de�nition of a loop due to Lin and Zhao so that the refer-en
e to the program's 
ompletion in the statement of their theorem be
ameunne
essary, and generalized the theorem, �rst to disjun
tive programs, andthen to arbitrary propositional formulas.In the most general framework, the de�nition of the dependen
y graphis guided by three ideas. First, rules of a given program 
an be viewed asimpli
ations that o

ur in it stri
tly positively. Se
ond, head atoms of arule 
an be viewed as atoms that o

ur in its head stri
tly positively. Third,positive body atoms of a rule 
an be viewed as atoms that o

ur in its bodypositively and do not belong to any negative formula.19



The most general de�nition of a loop formula, on the other hand, is mo-tivated by a relationship between external support formulas and a synta
ti
transformation introdu
ed by Pear
e, Tompits and Woltran.In this paper we did not dis
uss logi
 programs with two negations[Gelfond and Lifs
hitz, 1990℄, whi
h are important in many appli
ationsto knowledge representation. Instead of treating the se
ond negation as anadditional synta
ti
 
onstru
t, we 
an think of it in terms of distinguishingbetween atoms of two kinds, 
oming in \
omplementary pairs," and in termsof \
oherent" stable models [Ferraris and Lifs
hitz, 2005, Se
tion 3.9℄.A
knowledgementsThis resear
h was partially supported by the National S
ien
e Foundationunder Grant IIS-0412907.A De�nition of a Stable ModelAtoms and formulas are understood here as in propositional logi
. As usual,we identify truth assignments with sets of atoms; for instan
e, the truthassignment that makes the atom p true and all other atoms false is identi�edwith fpg. A model of a formula F is a set of atoms that satis�es F .A

ording to [Ferraris and Lifs
hitz, 2005, Se
tion 2.1℄, the redu
t FXof a formula F relative to a set X of atoms is the formula obtained from Fby repla
ing ea
h maximal subformula that is not satis�ed by X with ?(\false"). We say that X is a stable model (or an answer set) of F if X isminimal among the sets satisfying FX . The minimality of X is understoodhere in the sense of set in
lusion.Clearly, every set that is a stable model of F a

ording to this de�nitionis a model of F . Indeed, if X does not satisfy F then FX is ?.Thus we 
an verify that X is a stable model of F as follows:(i) mark in F the maximal subformulas that are not satis�ed by X;(ii) repla
e ea
h of these subformulas with ? (after that, equivalent trans-formations of 
lassi
al propositional logi
 
an be used to simplify theresult);(iii) 
he
k that the resulting formula is satis�ed by X;(iv) 
he
k that it is not satis�ed by any proper subset of X.20



For instan
e, to 
he
k that frg is a stable model of (4), we do the following:(i) mark the maximal subformulas of (4) that are not satis�ed by frg:(q ! p) ^ (p! q) ^ (:r ! p) ^ (:p! r);(ii) repla
e these subformulas with ?:(? ! ?) ^ (? ! ?) ^ (? ! ?) ^ (:? ! r);simplify: r;(iii) 
he
k that the last formula is satis�ed by frg;(iv) 
he
k that it is not satis�ed by ;.As another example, the model frg of formula (21) is not stable:(i) mark the maximal subformulas of (21) that are not satis�ed by frg:(p! q) _ r;(ii) repla
e these subformulas with ?:(? ! ?) _ r;simplify: >:The last formula is satis�ed by frg, but it is also satis�ed by the propersubset ; of frg. In fa
t, the only stable model of (21) is ;.B Propositional Cir
ums
ription and the Pear
e-Tompits-Woltran TheoremThe Pear
e-Tompits-Woltran theorem is about a synta
ti
 transformationthat is similar to 
ir
ums
ription [M
Carthy, 1980, M
Carthy, 1986, Lif-s
hitz, 1994℄. For this reason, our review in
ludes a brief dis
ussion of that
on
ept. 21



B.1 Se
ond-Order Propositional FormulasSe
ond-order propositional formulas (also known as quanti�ed Boolean for-mulas) are formed from propositional atoms (in this paper, p; q; : : : ) andan in�nite supply of propositional variables (x; y; : : : ) using propositional
onne
tives and the quanti�ers 8, 9. The usual re
ursive de�nition of satis-fa
tion for propositional formulas is extended to se
ond-order propositionalformulas without free variables as follows: a truth assignment (or a setof atoms) satis�es 8vF (v) if it satis�es both F (?) and F (>); it satis�es9vF (v) if it satis�es at least one of these two formulas. A se
ond-orderpropositional formula is logi
ally valid if its universal 
losure is satis�ed byall truth assignments.Quanti�ers 
an be eliminated from any se
ond-order propositional for-mula by repeatedly repla
ing parts of the form 8vF (v) with F (?) ^ F (>),and parts of the form 9vF (v) with F (?)_F (>). This transformation turnslogi
ally valid formulas without free variables into tautologies. For example,8x9y(y $ p ^ x) $ 9y(y $ p ^ >) ^ 9y(y$ p ^ ?)$ 9y(y $ p) ^ 9y:y$ ((> $ p) _ (? $ p)) ^ (:> _ :?)$ >:B.2 Propositional Cir
ums
riptionThe review of 
ir
ums
ription in this se
tion is limited to the propositional
ase of parallel 
ir
ums
ription with no varied 
onstants.Let a be a tuple of distin
t atoms a1; : : : ; an, and F (a) a propositionalformula. The 
ir
ums
ription of a in F (a), denoted by CIRC[F (a);a℄, is these
ond-order propositional formulaF (a) ^ :9v(v < a ^ F (v));where v is a tuple of n distin
t propositional variables v1; : : : ; vn, and v < astands for(v1 ! a1) ^ � � � ^ (vn ! an) ^ :((a1 ! v1) ^ � � � ^ (an ! vn)):For instan
e,CIRC[p _ q; p℄ = (p _ q) ^ :9x(x < p ^ (x _ q))$ (p _ q) ^ :((? < p ^ (? _ q)) _ (> < p ^ (> _ q)))$ (p _ q) ^ :((p ^ q)) _ (? ^>))$ (p _ q) ^ :(p ^ q):22



B.3 Pear
e-Tompits-Woltran TheoremIn this se
tion we assume that the 
onne
tives used in propositional formulasare ?, ^, _ and !;> stands for ? ! ?, :F for F ! ?, and F $ G for (F ! G) ^ (G! F ).Let a1; : : : ; an be all atoms o

urring in a propositional formula F . ByPTW[F ℄ we denote the se
ond-order propositional formulaF ^ :9v(v < a ^ F �(v));where a stands for a1; : : : ; an, v is a tuple of n distin
t propositional variablesv1; : : : ; vn, and F �(v) is de�ned re
ursively, as follows:� (ai)� = vi;� ?� = ?;� (F ^G)� = F � ^G�;� (F _G)� = F � _G�;� (F ! G)� = (F � ! G�) ^ (F ! G).For instan
e, let F be the formula p ^ (p ! (q _ r)), 
orresponding tothe disjun
tive program pq ; r  p:Then F � = p� ^ (p! (q _ r))�= p� ^ (p� ! (q _ r)�) ^ (p! (q _ r))= p� ^ (p� ! (q� _ r�)) ^ (p! (q _ r))= x ^ (x! (y _ z)) ^ (p! (q _ r))$ x ^ (y _ z) ^ (p! (q _ r))
23



and PTW[F ℄ $ p ^ (p! (q _ r))^:9xyz((x; y; z) < (p; q; r)^x ^ (y _ z) ^ (p! (q _ r)))$ p ^ (q _ r)^:9xyz((x; y; z) < (p; q; r) ^ x ^ (y _ z))$ p ^ (q _ r) ^ :9yz((>; y; z) < (p; q; r) ^ (y _ z))$ p ^ (q _ r) ^ :9yz((y; z) < (q; r) ^ p ^ (y _ z))$ p ^ (q _ r) ^ :9yz((y; z) < (q; r) ^ (y _ z))$ p ^ (q _ r) ^ :9yz((:y ^ z ^ q ^ r)_ (y ^ :z ^ q ^ r))$ p ^ (q _ r) ^ :((q ^ r) ^ 9yz((:y ^ z) _ (y ^ :z))$ p ^ (q _ r) ^ :((q ^ r) ^>)$ p ^ (q _ r) ^ :(q ^ r):The sets satisfying PTW[F ℄ are fp; qg and fp; rg, whi
h are the two stablemodels of F . This is an instan
e of a general theorem:Pear
e-Tompits-Woltran Theorem ([Pear
e et al., 2001℄, Theorem 1)A set X of atoms o

urring in F is a stable model of F i� X satis�esPTW[F ℄.To be pre
ise, the statement of this result in [Pear
e et al., 2001℄ refersto equilibrium models, and its reformulation above refers to stable modelsin the sense of Appendix A; these two 
on
epts are equivalent to ea
h otherby Theorem 1 from [Ferraris, 2005℄. A dire
t proof of our version of thetheorem, not referring to this equivalen
e, is given in Se
tion B.4 below.Re
all that the operation F 7! F �(v) repla
es the atoms from a with the
orresponding variables from v, and that it 
ommutes with all 
onne
tivesex
ept impli
ation. If we drop the se
ond 
onjun
tive term from the 
lausefor impli
ation in the de�nition of F � then F � will turn into the result ofsubstituting v for a in F , and PTW[F ℄ will turn into CIRC[F ;a℄.In one way, however, the operation F 7! F �(v) is essentially di�erentfrom the substitution of v for a: for two equivalent formulas F and G, F �(v)is not ne
essarily equivalent to G�(v). Here is an example:(p! q)� = (x! y) ^ (p! q);(:p _ q)� = (p! ?)� _ q�= ((p� ! ?�) ^ (p! ?)) _ y= (:x ^ :p) _ y$ (x! y) ^ (p! y):24



Applying the 
ir
ums
ription operator to ea
h of two equivalent formulasgives two equivalent results; the Pear
e-Tompits-Woltran transformationdoes not have this property.The result of eliminating quanti�ers from PTW[F ℄ (see Se
tion B.1) 
anbe represented using the following notation. For any subset Y of a, by �!Ywe denote the tuple (Y1; : : : ; Yn), whereYi = � >; if ai 2 Y ;?; otherwise:Then PTW[F ℄ 
an be written asF ^ : _Y�a((�!Y < a ^ F �(�!Y ))or, equivalently, as F ^ Ŷ�a(�!Y < a! :F �(�!Y )): (32)B.4 ProofIn the following lemma, F is a propositional formula, and a is a list ofdistin
t atoms a1; : : : ; an 
ontaining all atoms o

urring in F .Lemma For any subset X of a and any Y � X,Y j= FX i� X j= F �(�!Y ):Proof by indu
tion on F .Case 1: F is an atom ai, so that F �(a) is vi. If ai 2 X then FX is ai;F �(�!Y ) is > or ? depending on whether or not ai 2 Y , that is, depending onwhether or not Y satis�es FX . Otherwise FX is ?; sin
e Y � X, ai 62 Y ,so that F �(�!Y ) is ? too.Case 2: F is ?. Ea
h of the formulas FX , F �(�!Y ) is ?.Case 3: F isG^H, so that F �(�!Y ) isG�(�!Y )^H�(�!Y ). IfX satis�esG^Hthen FX is GX ^HX , and we use the indu
tion hypothesis. Otherwise FXis ?, and X doesn't satisfy at least one of the formulas G, H. Assume, forinstan
e, that X 6j= G. Then GX is ?, and, by the indu
tion hypothesis,X 6j= G�(�!Y ). It follows that X 6j= F �(�!Y ).25



Case 4: F is G _ H, so that F �(�!Y ) is G�(�!Y ) _H�(�!Y ). If X satis-�es G _ H then FX is GX _ HX , and we use the indu
tion hypothesis.Otherwise FX is ?, and X satis�es neither G nor H. Then ea
h of the for-mulas GX , HX is ?, and, by the indu
tion hypothesis, X satis�es neitherG�(�!Y ) nor H�(�!Y ). It follows that X 6j= F �(�!Y ).Case 5: F is G! H, so that F �(�!Y ) is(G�(�!Y )! H�(�!Y )) ^ (G! H): (33)If X satis�es the se
ond term G ! H of (33) then FX is GX ! HX ;from the indu
tion hypothesis we 
on
lude that X satis�es this formula i�it satis�es the �rst term of (33). Otherwise FX is ?; X doesn't satisfy (33)be
ause it doesn't satisfy the se
ond 
onjun
tive term.Proof of Pear
e-Tompits-Woltran Theorem. It is 
lear that X satis�es�!Y < a i� Y is a proper subset of X. Using the representation (32) ofPTW[F ℄, we 
on
lude that X j= PTW[F ℄ i�(i) X j= F , and(ii) for every proper subset Y of X, X 6j= F �(�!Y ).It is easy to 
he
k by indu
tion on F that X j= FX i� X j= F . Using thisfa
t and the lemma above, we 
an restate 
onditions (i) and (ii) as follows:(i0) X j= FX , and(ii0) for every proper subset Y of X, Y 6j= FX .This is equivalent to saying that X is a stable model of F .Referen
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