
A Generalizationof the Lin-Zhao TheoremPaolo FerrarisUniversity of Texas at Austin, Texas, USAJoohyung LeeArizona State University, Tempe, Arizona, USAVladimir LifshitzUniversity of Texas at Austin, Texas, USAAbstratThe theorem on loop formulas due to Fangzhen Lin and YutingZhao shows how to turn a logi program into a propositional formulathat desribes the program's stable models. In this paper we sim-plify and generalize the statement of this theorem. The simpli�ationis ahieved by modifying the de�nition of a loop in suh a way thata program is turned into the orresponding propositional formula byadding loop formulas diretly to the onjuntion of its rules, with-out the intermediate step of forming the program's ompletion. Thegeneralization makes the idea of a loop formula appliable to stablemodels in the sense of a very general de�nition that overs disjuntiveprograms, programs with nested expressions, and more.1 IntrodutionThe theorem on loop formulas due to Fangzhen Lin and Yuting Zhao [Linand Zhao, 2004℄ is an important result in the theory of stable models. Itshows how to turn a logi program � into a propositional formula thatdesribes the stable models of �. The redution of the problem of om-puting stable models to the satis�ability problem for propositional formulasgiven by the Lin-Zhao theorem has led to the development of the answer1



set solvers assat1 and models2. If the program � is tight [Fages, 1994,Erdem and Lifshitz, 2003℄ then the orresponding propositional formulais simply the ompletion of � in the sense of [Clark, 1978℄; otherwise theorresponding formula is the onjuntion of the ompletion of � with theadditional formulas that Lin and Zhao alled the \loop formulas" of �. Thenumber of loop formulas is exponential in the size of � in the worst ase,and there are reasons for this in omplexity theory [Lifshitz and Razborov,2006℄. But in many ases the Lin-Zhao translation of � into propositionallogi is not muh bigger than �.In this paper we show how the statement of the Lin-Zhao theorem an besimpli�ed and generalized. The simpli�ation is ahieved by modifying thede�nition of a loop from [Lin and Zhao, 2004℄ in suh a way that a program isturned into the orresponding propositional formula by adding loop formulasdiretly to the onjuntion of its rules, without the intermediate step offorming the program's ompletion.The generalization, on the other hand, makes the idea of a loop for-mula appliable to stable models in the sense of the very general de�nitionproposed in [Ferraris, 2005℄ and [Ferraris and Lifshitz, 2005℄, whih is es-sentially a reformulation of equilibrium logi [Peare, 1997℄. That generalde�nition overs, in partiular, disjuntive programs; the possibility of ex-tending the Lin-Zhao theorem to the disjuntive ase has been used to designa version of models that an handle disjuntive programs [Lierler, 2005℄.The de�nition overs even arbitrary programs with nested expressions inthe sense of [Lifshitz et al., 1999℄, and more. The disussion of the seman-tis of aggregates (in partiular, weight onstraints with negative weights)in [Ferraris, 2005℄ shows that this high degree of generality is useful in someappliations to knowledge representation.Our version of the Lin-Zhao theorem is also more general than its originalstatement in another sense: it shows that loop formulas an be formed intwo ways|not only \disjuntively" as in [Lin and Zhao, 2004℄, but also\onjuntively."It an be viewed as an enhanement of the enoding of equilibrium logiby quanti�ed propositional formulas proposed by David Peare, Hans Tom-pits and Stefan Woltran [Peare et al., 2001℄. If we eliminate quanti�ersfrom that enoding, the result will be similar to the onjuntion of loopformulas, but it will be muh longer in many ases.This paper is organized as follows. In Setion 2 we disuss our generaliza-1http://assat.s.ust.hk/ .2http://www.s.utexas.edu/users/tag/models/ .2



tion of the Lin-Zhao theorem for the simple ase of \traditional" programsfrom [Gelfond and Lifshitz, 1988℄, and show how to extend it to disjuntiveprograms. The main theorem in full generality is stated in Setion 3 andproved in Setion 4. To make the paper self-ontained, we have also inludeda review of the neessary bakground material from [Ferraris and Lifshitz,2005℄ (Appendix A) and from [Peare et al., 2001℄ (Appendix B).Preliminary reports on some of the work presented below are publishedin [Lee, 2005℄ and [Lee and Lifshitz, 2003℄.2 Speial Cases2.1 Syntax and Semantis of Traditional ProgramsA traditional rule is an expression of the forma1  a2; : : : ; am;not am+1; : : : ;not an (1)where n � m � 1 and a1; : : : ; an are propositional atoms. A traditionalprogram is a �nite set of traditional rules. We will identify a traditionalrule (1) with the propositional formula(a2 ^ � � � ^ am ^ :am+1 ^ � � � ^ :an)! a1: (2)A traditional program � will be identi�ed with the onjuntion of the for-mulas (2) orresponding to the rules of �. In view of this onvention, thede�nition of a stable model of a propositional formula from [Ferraris, 2005℄and [Ferraris and Lifshitz, 2005℄, reprodued here in Appendix A, is ap-pliable, in partiular, to traditional programs; aording to [Ferraris andLifshitz, 2005, Proposition 28℄, it is equivalent in this speial ase to thefamiliar de�nition of a stable model proposed in [Gelfond and Lifshitz,1988℄.For example, the traditional programp qq  pp not rr  not p (3)an be viewed as alternative notation for the formula(q ! p) ^ (p! q) ^ (:r ! p) ^ (:p! r): (4)The stable models of this program are fp; qg and frg (see Appendix A forthe veri�ation of a part of this laim).3



p q rFigure 1: The dependeny graph of program (3)2.2 Main Theorem for Traditional ProgramsThe (positive) dependeny graph of a traditional program � is the diretedgraph suh that� its verties are the atoms ourring in �, and� its edges go from a1 to a2; : : : am for all rules (1) of �.A nonempty set L of atoms is alled a loop of � if, for every pair p, q ofatoms in L, there exists a path (possibly of length 0) from p to q in thedependeny graph of � suh that all verties in this path belong to L. Inother words, L is a loop of � i� the subgraph of the dependeny graph of �indued by L is strongly onneted. It is lear that any set onsisting of asingle atom is a loop.For example, the dependeny graph of program (3) is shown in Figure 1.This program has four loops:fpg; fqg; frg; fp; qg: (5)Our de�nition of a loop is slightly di�erent from the de�nition given in[Lin and Zhao, 2004℄, beause it takes into aount paths of length 0. Thisis what allows us to drop the ompletion step from the statement of theLin-Zhao theorem; see Setion 2.3 for details.For any �nite set Y of formulas, by Y ^ and Y _ we denote the onjuntionand, respetively, disjuntion of the elements of Y . Using this notation, wean write (2) as (B^ ^N)! a1 (6)where B is the set fa2 : : : ; amg of \positive body atoms," and N is the\negative part" :am+1 ^ � � � ^ :an.For any set Y of atoms that our in �, the external support formulaof Y , denoted by ES�(Y ), is the disjuntion of the bodies B^ ^ N of allrules (6) of � suh that� a1 2 Y and� B \ Y = ;. 4



The �rst ondition expresses that the atom \supported" by (6) is an elementof Y . The seond ondition expresses that this support is \external": theatoms B that it relies on do not belong to Y .For instane, let � be program (3), and let Y be fp; qg. Elements of Yare \supported" by eah of the �rst three rules of (3), but in the ase ofthe �rst two rules the support is not \external." Aordingly, the externalsupport formula of fp; qg is the body of the third rule, :r.Main Theorem for Traditional Programs Let � be a traditional pro-gram, and let X be a set of atoms ourring in �. If X is a model of � thenthe following onditions are equivalent:(a) X is stable;(b) for every set Y of atoms ourring in �, X satis�esY _ ! ES�(Y ); (7)() for every loop Y of �, X satis�es (7);(d) for every nonempty set Y of atoms ourring in �, X satis�esY ^ ! ES�(Y ); (8)(e) for every loop Y of �, X satis�es (8).We all (7) the disjuntive loop formula of � orresponding to the set Yof atoms, and (8) its onjuntive loop formula for Y . The two formulasoinide when Y is a singleton.For example, the loop formulas of program (3) are shown in Figure 2.Aording to the theorem above, a model of (3) is stable i� it satis�es eahof the 8 disjuntive loop formulas. We an also say that a model of (3)is stable i� it satis�es the disjuntive loop formulas orresponding to theprogram's loops (5): p ! (q _ :r)q ! pr ! :p(p _ q) ! :r: (9)Alternatively, the stable models of (3) an be haraterized as the modelsof (3) that satisfy the 7 onjuntive loop formulas shown in Figure 2, and,equivalently, as the models of (3) that satisfy the 4 onjuntive loop formulasorresponding to the program's loops.5



Y Disjuntive loop formula Conjuntive loop formula; ? ! ?fpg p ! (q _ :r) p ! (q _ :r)fqg q ! p q ! pfrg r ! :p r ! :pfp; qg (p _ q) ! :r (p ^ q) ! :rfp; rg (p _ r) ! (q _ :r _ :p) (p ^ r) ! (q _ :r _ :p)fq; rg (q _ r) ! (p _ :p) (q ^ r) ! (p _ :p)fp; q; rg (p _ q _ r) ! (:r _ :p) (p ^ q ^ r) ! (:r _ :p)Figure 2: The loop formulas of program (3)Some of the impliations between onditions (a){(e) are obvious: it iseasy to see that (b) implies both () and (d), and eah of these two on-ditions implies (e). In Setion 2.3 we show that the equivalene betweenonditions (a) and () is essentially a reformulation of the Lin-Zhao the-orem. The equivalene between (a) and (d) is a reformulation of anotherpublished result; this is disussed in Setion 2.5.2.3 Comparison with the Lin-Zhao TheoremWe will now ompare the theorem stated above with Theorem 1 from [Linand Zhao, 2004℄. The disussion here does not over onstraints (rules withempty heads), whih are allowed by Lin and Zhao but are not allowed intraditional programs.The ompletion of a traditional program � is the set onsisting of theequivalenes a1 $_(a2 ^ � � � ^ am ^ :am+1 ^ � � � ^ :an) (10)for all atoms a1 ourring in �, where the disjuntion extends over allrules (1) of � with the head a1. For instane, the ompletion of (3) isp$ (q _ :r)q $ pr $ :p: (11)We say that a loop L of a traditional program � is trivial if� L is a singleton, and 6



� the dependeny graph of � does not ontain an edge from the elementof L to itself.For instane, the loops fpg, fqg, frg of program (3) are trivial; fp; qg isthe only nontrivial loop. If we add the rule r  r to program (3) thenthe loop frg will beome nontrivial. Nontrivial loops in the sense of thisde�nition are loops in the sense of [Lin and Zhao, 2004℄.Lin-Zhao Theorem For any traditional program � and any set X ofatoms ourring in �, X is a stable model of � i� X satis�es(i) the ompletion of �, and(ii) the disjuntive loop formulas for all nontrivial loops of �.For instane, the stable models fp; qg and frg of (3) an be haraterizedas the models of (11) that satisfy the last of the formulas (9).The part of the theorem from Setion 2.1 that asserts the equivalenebetween onditions (a) and () is similar to the Lin-Zhao theorem. Thedi�erene is that the former does not refer to ompletion, and the latterdoes not refer to loop formulas for trivial loops.It is not diÆult to explain, however, why the set of formulas (i) and (ii)above is equivalent to the union of � with the set of the disjuntive loopformulas of � for all loops, both trivial and nontrivial. Indeed, (i) an beequivalently rewritten as the set of impliations that onsists of(i0) the right-to-left impliations from (10),(i00) the left-to-right impliations from (10) for the atoms a1 suh that theloop fa1g is trivial, and(i000) the left-to-right impliations from (10) for the atoms a1 suh that theloop fa1g is nontrivial.Group (i0) is equivalent to �. Eah impliationa1 !_(a2 ^ � � � ^ am ^ :am+1 ^ � � � ^ :an) (12)in group (i00) is idential to the loop formulafa1g_ ! ES�(fa1g); (13)beause, for every rule (1) of � with the head a1,B \ fa1g = fa2; : : : ; amg \ fa1g = ;:7



Finally, group (i000) an be dropped in the presene of (ii), beause eahimpliation (12) in group (i000) is entailed by the orresponding loop for-mula (13): the loop formula an be obtained from (12) by dropping thedisjuntive terms with a1 2 fa2; : : : ; amg.2.4 Extension to Disjuntive ProgramsAs an intermediate step before disussing the main theorem in full generality,we will onsider the speial ase of \disjuntive" programs. Disjuntive rulesare often de�ned as expressions of the forma1; : : : ; ak  ak+1; : : : ; am;not am+1; : : : ;not an (14)(n � m � k � 0), and the de�nition of a stable model from Appendix A anbe applied to �nite sets of suh rules if we treat (14) as alternative notationfor the formula(ak+1 ^ � � � ^ am ^ :am+1 ^ � � � ^ :an)! (a1 _ � � � _ ak): (15)The understanding of disjuntive rules in this setion will be more gen-eral. We say that a propositional formula is negative if every ourrene ofevery atom in this formula is in the sope of a negation or in the anteedentof an impliation. For instane, the onjuntion :am+1^ � � � ^:an in (15) isnegative; any formula of the form F ! :G is negative. The 0-plae onne-tives > and ? are negative formulas also, beause they don't ontain atoms.A disjuntive rule is a formula of the form(B^ ^N)! A_ (16)where A and B are �nite sets of atoms, and N is a negative formula. Forinstane, (p ^ :(q ^ :r))! sis a disjuntive rule in the sense of this de�nition; in the language of lparse,3it an be written as s :- p, fq, not rg1.A disjuntive program is a onjuntion of (0 or more) disjuntive rules.The de�nition of the dependeny graph (Setion 2.2) is extended todisjuntive programs in a straightforward way: the verties of the graph arethe atoms ourring in the program, and its edges go from the elements of A3http://www.ts.hut.fi/Software/smodels/lparse.ps .8



to the elements of B for all rules (16) of the program. For instane, a ruleof the form (b1 ^N)! (a1 _ a2)ontributes two edges to the dependeny graph: from a1 to b1 and from a2to b1. Constraints (A = ;) and rules with a negative body (B = ;) don'tontribute edges to the dependeny graph.The de�nition of a loop in terms of the dependeny graph remains thesame as in Setion 2.2.For any set Y of atoms that our in a disjuntive program �, theexternal support formula of Y , denoted by ES�(Y ), is the disjuntion ofthe formulas B^ ^N ^ ^a2AnY :a (17)for all rules (16) of � suh that� A \ Y 6= ;, and� B \ Y = ;.When � is a traditional program, this de�nition redues to the de�nitionof ES� given in Setion 2.2.The theorem from Setion 2.2 remains orret after replaing \tradi-tional program" in its statement with \disjuntive program." The terms\disjuntive loop formula" and \onjuntive loop formula" will be appliedto formulas (7) and (8) when � is an arbitrary disjuntive program.For instane, onsider the programp ; s qq  pp ; r  not swhih is the \logi programming representation" of the formula(q ! (p _ s)) ^ (p! q) ^ (:s! (p _ r)): (18)The loops of this program arefpg; fqg; frg; fsg; fp; qg;and the orresponding disjuntive loop formulas arep ! ((q ^ :s) _ (:s ^ :r))q ! pr ! (:s ^ :p)s ! (q ^ :p)(p _ q) ! (:s ^ :r): (19)9



The stable models fp; qg, frg of (18) an be haraterized as the modelsof (18) that satisfy (19).2.5 Relation to Unfounded SetsFor programs onsisting of rules of the form (14), the equivalene betweenonditions (a) and (d) from the statement of the main theorem has beenestablished earlier, in a somewhat di�erent form. Sa�a and Zaniolo [1990℄showed that the stable models of what we all here traditional programs anbe haraterized in terms of \unfounded sets."4 Leone et al. [1997℄ extendedthe notion of an unfounded set and the theorem by Sa�a and Zaniolo todisjuntive rules of the form (14).Their de�nition an be further extended to arbitrary disjuntive pro-grams in the sense of this setion as follows. A set Y of atoms is unfoundedby a disjuntive program � w.r.t. a set X of atoms if, for eah rule (16) of� suh that A \ Y 6= ;,� X 6j= B^ ^N , or� B \ Y 6= ;, or� X \ (A n Y ) 6= ;.It is easy to see that X j= ES�(Y ) i� Y is not unfounded by � w.r.t. X.A set X of atoms is alled unfounded-free if it has no nonempty subsetsunfounded w.r.t. X. The equivalene between onditions (a) and (d) an bereformulated as follows: for any model X of a disjuntive program �, X isstable i� X is unfounded-free. This is a generalization of Corollary 2 from[Sa�a and Zaniolo, 1990℄, and of Theorem 4.6 from [Leone et al., 1997℄.3 General Theory of Loop FormulasOur goal now is to extend the de�nition of a loop and the de�nition of a loopformula, stated above for traditional programs (Setion 2.2) and for disjun-tive programs (Setion 2.4), to the general ase of arbitrary propositionalformulas, and to state the main theorem in full generality.4Their theorem refers atually to \assumption sets" rather than unfounded sets. Butas the authors noted, in the ontext of this theorem the two onepts are equivalent.Unfounded sets were originally introdued for the purpose of haraterizing the negativeonsequenes of a program under the well-founded semantis [Van Gelder et al., 1991℄.10



For simpliity, we assume here that the only propositional onnetivesallowed in formulas are ?, ^, _ and !,and all other onnetives are treated as abbreviations, as in Setion B.3. Forinstane, (2) is now viewed as an abbreviation for(a2 ^ � � � ^ am ^ (am+1 ! ?) ^ � � � ^ (an ! ?))! a1: (20)Under this simplifying assumption, the de�nition of a negative formula fromSetion 2.4 an be stated as follows: a formula is negative if every ourreneof every atom in this formula belongs to the anteedent of an impliation.3.1 LoopsAn ourrene of a formula G in a formula F is positive if the number ofimpliations in F ontaining that ourrene in the anteedent is even; it isstritly positive if that number is 0.5 In (20), for instane, the ourrenes ofa1; am+1; : : : ; an are positive, but only the �rst of them is stritly positive. Itis lear that a formula F is negative i� it has no stritly positive ourrenesof atoms.Note that we apply the term \negative" to formulas, and the terms\positive" and \stritly positive" to ourrenes of one formula in another.We say that an atom a depends on an atom b in an impliation G! Hif � a has a stritly positive ourrene in H, and� b has a positive ourrene inG that does not belong to any ourreneof a negative formula in G.The dependeny graph of a formula F is the direted graph suh that� its verties are the atoms that our in F , and� it has an edge from a vertex a to a vertex b if a depends on b in animpliation that has a stritly positive ourrene in F .In appliation to traditional programs, the new de�nition of the depen-deny graph is equivalent to the de�nition from Setion 2.2. Indeed, assumethat F is a onjuntion of formulas of the form (20). Impliations ourring5The onept of a stritly positive ourrene plays an important role in intuitionistilogi; see, for instane, [Troelstra and Shwihtenberg, 1996, Theorem 4.2.3℄.11



in F are of two kinds: onjuntive terms (20) and impliations of the formai ! ?. The edges ontributed to the dependeny graph by (20) go from a1to a2; : : : ; am. Impliations of the form ai ! ? do not ontribute edges tothe dependeny graph.More generally, in appliation to disjuntive programs the new de�nitionof the dependeny graph is equivalent to the de�nition from Setion 2.4.Indeed, assume that F is a onjuntion of formulas of the form (16). Impli-ations ourring in F are of two kinds: onjuntive terms (16) and impli-ations that are subformulas of N in one of these onjuntive terms. Theedges ontributed to the dependeny graph by the impliations (16) go fromelements of A to elements of B; these impliations do not ontribute anyother edges, beause N is negative. Impliations from N do not ontributeedges to the dependeny graph: if an impliation G ! H has a stritlypositive ourrene in a negative formula N then H is a negative formulaalso, and no ourrene of an atom in H an be stritly positive.Consider now some formulas other than disjuntive programs. Formula(p! q) _ r (21)is a disjuntion of two traditional rules. Its dependeny graph has one edge,from q to p. The dependeny graph of the nested impliation((p! q)! r)! shas two edges|from s to r and from s to p. The dependeny graph of((p! :q)! r)! shas only one edge, from s to r, beause the formula p! :q is negative.Given this de�nition of a dependeny graph, loops are de�ned in thesame way as in Setion 2.2: a loop of a formula F is a nonempty set ofatoms ourring in F suh that the subgraph of the dependeny graph of Findued by that set is strongly onneted.3.2 Loop FormulasFor any set Y of atoms ourring in a formula F , we want to de�ne a formulathat would be similar to the external support formula ESF (Y ) in the speialase when F is a disjuntive program. It is easier to de�ne a formula suhthat its negation is similar to ESF (Y ).Suh a formula NESF (Y ) is de�ned reursively, as follows:12



� for an atom a, NESa(Y ) is ? if a 2 Y , and a otherwise;� NES?(Y ) = ?;� NESF^G(Y ) = NESF (Y ) ^NESG(Y );� NESF_G(Y ) = NESF (Y ) _NESG(Y );� NESF!G(Y ) = (NESF (Y )! NESG(Y )) ^ (F ! G).For instane, if F is p! q thenNESF (fqg) = (NESp(fqg)! NES q(fqg)) ^ (p! q)= (p! ?) ^ (p! q)$ :p:The de�nitions of ES and NES look very di�erent from eah other. Butthe alulation above shows that in the ase of p! q the formula NESF (fqg)is equivalent to the negation of the external support formula p of fqg. Thefollowing proposition shows that NES�(Y ) is \almost equivalent" to thenegation of ES�(Y ) for any disjuntive program �:Theorem 1 If X is a model of a disjuntive program � then, for any set Yof atoms, X j= NES�(Y ) i� X j= :ES�(Y ):This fat suggests that :NESF (Y ) may be an aeptable ounterpartof the external support formula of Y when F is syntatially di�erent fromdisjuntive programs. The main theorem, stated in the next setion, showsthat this is indeed the ase. Its statement refers to the formulasY _ ! :NESF (Y ) (22)and Y ^ ! :NESF (Y ); (23)whih an be alled the (disjuntive and onjuntive) loop formulas of aformula F orresponding to the set Y of atoms.3.3 Main TheoremTheorem 2 (Main Theorem) Let F be a propositional formula, andlet X be a set of atoms ourring in F . If X is a model of F then thefollowing onditions are equivalent: 13



(a) X is stable;(b) for every set Y of atoms ourring in F , X satis�es (22);() for every loop Y of F , X satis�es (22);(d) for every nonempty set Y of atoms ourring in F , X satis�es (23);(e) for every loop Y of F , X satis�es (23).Theorem 1 shows that the theorem stated in Setion 2.2 and its exten-sion to disjuntive programs (Setion 2.4) an be viewed as speial ases ofTheorem 2.As an example, let's apply Theorem 2 to formula (21). Its loops are thesingletons fpg, fqg, frg, and the orresponding loop formulas (22) arep! :(((? ! q) ^ (p! q)) _ r);q ! :(((p! ?) ^ (p! q)) _ r);r! :(((p! q) ^ (p! q)) _ ?):The onjuntion of these formulas is equivalent to:q ^ :r: (24)Aording to the main theorem, the stable models of (21) an be hara-terized as the sets that satisfy both (21) and (24). The onjuntion of (21)with (24) is equivalent to :p^:q^:r, so that the only stable model of (21)is ;.4 Proofs4.1 Proof of Theorem 1Lemma 1 For any formula F and any set Y of atoms,(a) NESF (Y ) entails F ;(b) if F has no stritly positive ourrenes of atoms from Y then NESF (Y )is equivalent to F .
14



Proof. (a) by indution on F . (b) by indution on F ; onsider the asewhen F isG! H. By (a), NESG(Y ) entailsG; by the indution hypothesis,NESH(Y ) is equivalent to H. Consequently,NESF (Y ) = (NESG(Y )! NESH(Y )) ^ (G! H)$ (NESG(Y )! H) ^ (G! H)$ ((NESG(Y ) _G)! H)$ (G! H)= F:Theorem 1 If X is a model of a disjuntive program � then, for any set Yof atoms, X j= NES�(Y ) i� X j= :ES�(Y ):Proof. Sine NES�(Y ) is the onjuntion of the formulas NESR(Y ) forall rules R of �, and ES�(Y ) is the disjuntion of the formulas ESR(Y ), itis suÆient to onsider the ase when � is a single rule (16). In this ase,:ES�(Y ) is equivalent to (B^ ^N)! (A n Y )_ (25)if A \ Y 6= ; and B \ Y = ;, and is > otherwise. We need to show,assuming (16), that this formula is equivalent to NES�(Y ). In the preseneof (16), using Lemma 1(a),NES�(Y ) = (NESB^^N (Y )! NESA_(Y )) ^ ((B^ ^N)! A_)$ NESB^^N (Y )! NESA_(Y )$ (NESB^(Y ) ^NESN (Y ))! NESA_(Y )$ (NESB^(Y ) ^N)! NESA_(Y )$ (NESB^(Y ) ^N)! (A n Y )_:If B \ Y 6= ; then the last formula ontains the onjuntive term ? inthe anteedent, and onsequently is equivalent to >. Otherwise, it an berewritten as (25). It remains to note that if A\Y = ; then (25) is identialto the assumption (16) and onsequently an be rewritten as >.
15



4.2 Proof of Theorem 2: Equivalene of (a), (b), (d)In the following lemma, F is a propositional formula, and a is a list of distintatoms a1; : : : ; an ontaining all atoms ourring in F . For the de�nitions ofF �(v) and �!Y , see Setion B.3.Lemma 2 For any sets X, Y of atoms, X j= NESF (Y ) i� X j= F �(���!X n Y ).Proof. By indution on F . Consider the ase when F is an atom. If F 2 Ythen eah of the formulas NESF (Y ), F �(���!X n Y ) is ?. Otherwise NESF (Y )is F , while F �(���!X n Y ) is > or ? depending on whether F 2 X. The otherases are straightforward.Proof of the equivalene of onditions (a), (b), (d) in the statementof Theorem 2. Let a be the list of atoms ourring in F , and let a subset Xof a be a model of F . By the Peare-Tompits-Woltran theorem, and in viewof the fat that PTW[F ℄ an be written in the form (32), ondition (a) (\Xis stable") is equivalent toX j= Ŷ�a(�!Y < a! :F �(�!Y ))and onsequently to X j= ^Y�X :F �(�!Y ):Using Lemma 2, we an show that this ondition is equivalent to ondi-tion (b): X j= ^Y�X :F �(�!Y ) i� X j= ^Z�a: Z\X 6=;:F �(���!X n Z)i� X j= ^Z�a: Z\X 6=;:NESF (Z)i� X j= Ẑ�a(Z_ ! :NESF (Z))i� X j= Z_ ! :NESF (Z)for all subsets Z of a:
16



It is also equivalent to (d):X j= ^Y�X :F �(�!Y ) i� X j= ^Z�a: Z�X; Z 6=;:F �(���!X n Z)i� X j= ^Z�a: Z�X; Z 6=;:NESF (Z)i� X j= ^Z�a: Z 6=;(Z^ ! :NESF (Z))i� X j= Z^ ! :NESF (Z)for all nonempty subsets Z of a:4.3 Proof of Theorem 2: Equivalene of (), (e) to the otheronditionsLemma 3 For any formula F , set Y of atoms, and subset Z of Y ,(a) if every positive ourrene of every atom from Y n Z in F belongs toa negative formula then NESF (Z) entails NESF (Y );(b) if every nonpositive ourrene of every atom from Y nZ in F belongsto a negative formula then NESF (Y ) entails NESF (Z).Proof. Both parts are proved simultaneously by indution on F . As-sume that F is an atom. (a) Sine every positive ourrene of every atomfrom Y n Z in F belongs to a negative formula, F 62 Y nZ, so that NESF (Z)is the same formula as NESF (Y ). (b) Sine Z is a subset of Y , NESF (Y )is equal to NESF (Z) or to ?. The ases when F is ?, a onjuntion or adisjuntion are straightforward. Assume that F is G! H. If F is negativethen, by Lemma 1(b), eah of the formulas NESF (Y ), NESF (Z) is equiva-lent to F . Assume that F is not negative. (a) Every nonpositive ourreneof every atom from Y n Z in G belongs to a negative formula, and so doesevery positive ourrene of every atom from Y n Z in H. We need to showthat (NESG(Z)! NESH(Z)) ^ (G! H)entails (NESG(Y )! NESH(Y )) ^ (G! H);This is lear from the fat that, by the indution hypothesis, NESG(Y )entails NESG(Z) and NESH(Z) entails NESH(Y ). (b) Similar.17



Lemma 4 For any formula F and any nonempty set Y of atoms, thereexists a subset Z of Y suh that(a) Z is a loop of F , and(b) the dependeny graph of F has no edges from atoms in Z to atoms inY n Z.Proof. Consider the strongly onneted omponents of the subgraph of thedependeny graph of F indued by Y . They form a �nite ayli graph. Anyterminal vertex of that graph satis�es onditions (a) and (b).Lemma 5 Let X be a model of a formula F , Y a set of atoms, and Z anonempty subset of Y suh that the dependeny graph of F has no edgesfrom atoms in Z to atoms in Y nZ. If X j= NESF (Y ) then X j= NESF (Z).Proof. By indution on F .Case 1: F is an atom or ?. Then the NESF (Y ) is equal to NESF (Z)or to ?.Case 2: F is G ^ H. All edges in the dependeny graphs of G and Hbelong to the dependeny graph of F , so that the indutive hypothesis anbe applied both to G and to H.Case 3: F is G _H. Similar to Case 2.Case 4: F is G ! H. Assume that the dependeny graph of F has noedges from Z to Y n Z, and that X satis�es NESF (Y ):X j= (NESG(Y )! NESH(Y )) ^ (G! H) (26)but doesn't satisfy NESF (Z):X 6j= (NESG(Z)! NESH(Z)) ^ (G! H): (27)Sine X is a model of G! H, X doesn't satisfy the �rst onjuntive termof (27), so that X j= NESG(Z) (28)and X 6j= NESH(Z): (29)By Lemma 1(a), (28) implies X j= G. Sine X is a model of G ! H, itfollows that X j= H. In ombination with (29) and Lemma 1(b), this fatshows that H ontains a stritly positive ourrene of an atom from Z.Sine there are no edges from Z to Y n Z in the dependeny graph of F , it18



follows that every positive ourrene of every atom from Y nZ in G belongsto a negative formula. By Lemma 3(a), we an onlude that NESG(Z)entails NESG(Y ). Then, in view of (28), X j= NESG(Y ). By (26), itfollows that X j= NESH(Y ). Sine every edge in the dependeny graphof H belongs to the dependeny graph of F , the indutive hypothesis isappliable to H, and we an further onlude that X j= NESH(Z), whihontradits (29).Proof of the equivalene of onditions (d) and (e) in the statementof Theorem 2. Let X be a model of F . It is lear that (d) implies (e).Assume that (d) does not hold, and let Y be a nonempty set of atoms suhthat X does not satisfy loop formula (23), so thatX j= Y ^ (30)and X j= NESF (Y ): (31)By Lemma 4, there exists a subset Z of Y suh that Z is a loop of F , andthe dependeny graph of F has no edges from Z to Y n Z. From (30) weonlude that X j= Z^. By Lemma 5, (31) implies that X j= NESF (Z).Consequently (e) does not hold either.Proof of the equivalene of ondition () to the other onditions inthe statement of Theorem 2. Clearly (b) implies (), and () implies (e).On the other hand, we have already established that (b) is equivalent to (e).5 ConlusionWe modi�ed the de�nition of a loop due to Lin and Zhao so that the refer-ene to the program's ompletion in the statement of their theorem beameunneessary, and generalized the theorem, �rst to disjuntive programs, andthen to arbitrary propositional formulas.In the most general framework, the de�nition of the dependeny graphis guided by three ideas. First, rules of a given program an be viewed asimpliations that our in it stritly positively. Seond, head atoms of arule an be viewed as atoms that our in its head stritly positively. Third,positive body atoms of a rule an be viewed as atoms that our in its bodypositively and do not belong to any negative formula.19



The most general de�nition of a loop formula, on the other hand, is mo-tivated by a relationship between external support formulas and a syntatitransformation introdued by Peare, Tompits and Woltran.In this paper we did not disuss logi programs with two negations[Gelfond and Lifshitz, 1990℄, whih are important in many appliationsto knowledge representation. Instead of treating the seond negation as anadditional syntati onstrut, we an think of it in terms of distinguishingbetween atoms of two kinds, oming in \omplementary pairs," and in termsof \oherent" stable models [Ferraris and Lifshitz, 2005, Setion 3.9℄.AknowledgementsThis researh was partially supported by the National Siene Foundationunder Grant IIS-0412907.A De�nition of a Stable ModelAtoms and formulas are understood here as in propositional logi. As usual,we identify truth assignments with sets of atoms; for instane, the truthassignment that makes the atom p true and all other atoms false is identi�edwith fpg. A model of a formula F is a set of atoms that satis�es F .Aording to [Ferraris and Lifshitz, 2005, Setion 2.1℄, the redut FXof a formula F relative to a set X of atoms is the formula obtained from Fby replaing eah maximal subformula that is not satis�ed by X with ?(\false"). We say that X is a stable model (or an answer set) of F if X isminimal among the sets satisfying FX . The minimality of X is understoodhere in the sense of set inlusion.Clearly, every set that is a stable model of F aording to this de�nitionis a model of F . Indeed, if X does not satisfy F then FX is ?.Thus we an verify that X is a stable model of F as follows:(i) mark in F the maximal subformulas that are not satis�ed by X;(ii) replae eah of these subformulas with ? (after that, equivalent trans-formations of lassial propositional logi an be used to simplify theresult);(iii) hek that the resulting formula is satis�ed by X;(iv) hek that it is not satis�ed by any proper subset of X.20



For instane, to hek that frg is a stable model of (4), we do the following:(i) mark the maximal subformulas of (4) that are not satis�ed by frg:(q ! p) ^ (p! q) ^ (:r ! p) ^ (:p! r);(ii) replae these subformulas with ?:(? ! ?) ^ (? ! ?) ^ (? ! ?) ^ (:? ! r);simplify: r;(iii) hek that the last formula is satis�ed by frg;(iv) hek that it is not satis�ed by ;.As another example, the model frg of formula (21) is not stable:(i) mark the maximal subformulas of (21) that are not satis�ed by frg:(p! q) _ r;(ii) replae these subformulas with ?:(? ! ?) _ r;simplify: >:The last formula is satis�ed by frg, but it is also satis�ed by the propersubset ; of frg. In fat, the only stable model of (21) is ;.B Propositional Cirumsription and the Peare-Tompits-Woltran TheoremThe Peare-Tompits-Woltran theorem is about a syntati transformationthat is similar to irumsription [MCarthy, 1980, MCarthy, 1986, Lif-shitz, 1994℄. For this reason, our review inludes a brief disussion of thatonept. 21



B.1 Seond-Order Propositional FormulasSeond-order propositional formulas (also known as quanti�ed Boolean for-mulas) are formed from propositional atoms (in this paper, p; q; : : : ) andan in�nite supply of propositional variables (x; y; : : : ) using propositionalonnetives and the quanti�ers 8, 9. The usual reursive de�nition of satis-fation for propositional formulas is extended to seond-order propositionalformulas without free variables as follows: a truth assignment (or a setof atoms) satis�es 8vF (v) if it satis�es both F (?) and F (>); it satis�es9vF (v) if it satis�es at least one of these two formulas. A seond-orderpropositional formula is logially valid if its universal losure is satis�ed byall truth assignments.Quanti�ers an be eliminated from any seond-order propositional for-mula by repeatedly replaing parts of the form 8vF (v) with F (?) ^ F (>),and parts of the form 9vF (v) with F (?)_F (>). This transformation turnslogially valid formulas without free variables into tautologies. For example,8x9y(y $ p ^ x) $ 9y(y $ p ^ >) ^ 9y(y$ p ^ ?)$ 9y(y $ p) ^ 9y:y$ ((> $ p) _ (? $ p)) ^ (:> _ :?)$ >:B.2 Propositional CirumsriptionThe review of irumsription in this setion is limited to the propositionalase of parallel irumsription with no varied onstants.Let a be a tuple of distint atoms a1; : : : ; an, and F (a) a propositionalformula. The irumsription of a in F (a), denoted by CIRC[F (a);a℄, is theseond-order propositional formulaF (a) ^ :9v(v < a ^ F (v));where v is a tuple of n distint propositional variables v1; : : : ; vn, and v < astands for(v1 ! a1) ^ � � � ^ (vn ! an) ^ :((a1 ! v1) ^ � � � ^ (an ! vn)):For instane,CIRC[p _ q; p℄ = (p _ q) ^ :9x(x < p ^ (x _ q))$ (p _ q) ^ :((? < p ^ (? _ q)) _ (> < p ^ (> _ q)))$ (p _ q) ^ :((p ^ q)) _ (? ^>))$ (p _ q) ^ :(p ^ q):22



B.3 Peare-Tompits-Woltran TheoremIn this setion we assume that the onnetives used in propositional formulasare ?, ^, _ and !;> stands for ? ! ?, :F for F ! ?, and F $ G for (F ! G) ^ (G! F ).Let a1; : : : ; an be all atoms ourring in a propositional formula F . ByPTW[F ℄ we denote the seond-order propositional formulaF ^ :9v(v < a ^ F �(v));where a stands for a1; : : : ; an, v is a tuple of n distint propositional variablesv1; : : : ; vn, and F �(v) is de�ned reursively, as follows:� (ai)� = vi;� ?� = ?;� (F ^G)� = F � ^G�;� (F _G)� = F � _G�;� (F ! G)� = (F � ! G�) ^ (F ! G).For instane, let F be the formula p ^ (p ! (q _ r)), orresponding tothe disjuntive program pq ; r  p:Then F � = p� ^ (p! (q _ r))�= p� ^ (p� ! (q _ r)�) ^ (p! (q _ r))= p� ^ (p� ! (q� _ r�)) ^ (p! (q _ r))= x ^ (x! (y _ z)) ^ (p! (q _ r))$ x ^ (y _ z) ^ (p! (q _ r))
23



and PTW[F ℄ $ p ^ (p! (q _ r))^:9xyz((x; y; z) < (p; q; r)^x ^ (y _ z) ^ (p! (q _ r)))$ p ^ (q _ r)^:9xyz((x; y; z) < (p; q; r) ^ x ^ (y _ z))$ p ^ (q _ r) ^ :9yz((>; y; z) < (p; q; r) ^ (y _ z))$ p ^ (q _ r) ^ :9yz((y; z) < (q; r) ^ p ^ (y _ z))$ p ^ (q _ r) ^ :9yz((y; z) < (q; r) ^ (y _ z))$ p ^ (q _ r) ^ :9yz((:y ^ z ^ q ^ r)_ (y ^ :z ^ q ^ r))$ p ^ (q _ r) ^ :((q ^ r) ^ 9yz((:y ^ z) _ (y ^ :z))$ p ^ (q _ r) ^ :((q ^ r) ^>)$ p ^ (q _ r) ^ :(q ^ r):The sets satisfying PTW[F ℄ are fp; qg and fp; rg, whih are the two stablemodels of F . This is an instane of a general theorem:Peare-Tompits-Woltran Theorem ([Peare et al., 2001℄, Theorem 1)A set X of atoms ourring in F is a stable model of F i� X satis�esPTW[F ℄.To be preise, the statement of this result in [Peare et al., 2001℄ refersto equilibrium models, and its reformulation above refers to stable modelsin the sense of Appendix A; these two onepts are equivalent to eah otherby Theorem 1 from [Ferraris, 2005℄. A diret proof of our version of thetheorem, not referring to this equivalene, is given in Setion B.4 below.Reall that the operation F 7! F �(v) replaes the atoms from a with theorresponding variables from v, and that it ommutes with all onnetivesexept impliation. If we drop the seond onjuntive term from the lausefor impliation in the de�nition of F � then F � will turn into the result ofsubstituting v for a in F , and PTW[F ℄ will turn into CIRC[F ;a℄.In one way, however, the operation F 7! F �(v) is essentially di�erentfrom the substitution of v for a: for two equivalent formulas F and G, F �(v)is not neessarily equivalent to G�(v). Here is an example:(p! q)� = (x! y) ^ (p! q);(:p _ q)� = (p! ?)� _ q�= ((p� ! ?�) ^ (p! ?)) _ y= (:x ^ :p) _ y$ (x! y) ^ (p! y):24



Applying the irumsription operator to eah of two equivalent formulasgives two equivalent results; the Peare-Tompits-Woltran transformationdoes not have this property.The result of eliminating quanti�ers from PTW[F ℄ (see Setion B.1) anbe represented using the following notation. For any subset Y of a, by �!Ywe denote the tuple (Y1; : : : ; Yn), whereYi = � >; if ai 2 Y ;?; otherwise:Then PTW[F ℄ an be written asF ^ : _Y�a((�!Y < a ^ F �(�!Y ))or, equivalently, as F ^ Ŷ�a(�!Y < a! :F �(�!Y )): (32)B.4 ProofIn the following lemma, F is a propositional formula, and a is a list ofdistint atoms a1; : : : ; an ontaining all atoms ourring in F .Lemma For any subset X of a and any Y � X,Y j= FX i� X j= F �(�!Y ):Proof by indution on F .Case 1: F is an atom ai, so that F �(a) is vi. If ai 2 X then FX is ai;F �(�!Y ) is > or ? depending on whether or not ai 2 Y , that is, depending onwhether or not Y satis�es FX . Otherwise FX is ?; sine Y � X, ai 62 Y ,so that F �(�!Y ) is ? too.Case 2: F is ?. Eah of the formulas FX , F �(�!Y ) is ?.Case 3: F isG^H, so that F �(�!Y ) isG�(�!Y )^H�(�!Y ). IfX satis�esG^Hthen FX is GX ^HX , and we use the indution hypothesis. Otherwise FXis ?, and X doesn't satisfy at least one of the formulas G, H. Assume, forinstane, that X 6j= G. Then GX is ?, and, by the indution hypothesis,X 6j= G�(�!Y ). It follows that X 6j= F �(�!Y ).25



Case 4: F is G _ H, so that F �(�!Y ) is G�(�!Y ) _H�(�!Y ). If X satis-�es G _ H then FX is GX _ HX , and we use the indution hypothesis.Otherwise FX is ?, and X satis�es neither G nor H. Then eah of the for-mulas GX , HX is ?, and, by the indution hypothesis, X satis�es neitherG�(�!Y ) nor H�(�!Y ). It follows that X 6j= F �(�!Y ).Case 5: F is G! H, so that F �(�!Y ) is(G�(�!Y )! H�(�!Y )) ^ (G! H): (33)If X satis�es the seond term G ! H of (33) then FX is GX ! HX ;from the indution hypothesis we onlude that X satis�es this formula i�it satis�es the �rst term of (33). Otherwise FX is ?; X doesn't satisfy (33)beause it doesn't satisfy the seond onjuntive term.Proof of Peare-Tompits-Woltran Theorem. It is lear that X satis�es�!Y < a i� Y is a proper subset of X. Using the representation (32) ofPTW[F ℄, we onlude that X j= PTW[F ℄ i�(i) X j= F , and(ii) for every proper subset Y of X, X 6j= F �(�!Y ).It is easy to hek by indution on F that X j= FX i� X j= F . Using thisfat and the lemma above, we an restate onditions (i) and (ii) as follows:(i0) X j= FX , and(ii0) for every proper subset Y of X, Y 6j= FX .This is equivalent to saying that X is a stable model of F .Referenes[Clark, 1978℄ Keith Clark. Negation as failure. In Herve Gallaire and JakMinker, editors, Logi and Data Bases, pages 293{322. Plenum Press,New York, 1978.[Erdem and Lifshitz, 2003℄ Esra Erdem and Vladimir Lifshitz. Tight logiprograms. Theory and Pratie of Logi Programming, 3:499{518, 2003.[Fages, 1994℄ Fran�ois Fages. Consisteny of Clark's ompletion and exis-tene of stable models. Journal of Methods of Logi in Computer Siene,1:51{60, 1994. 26
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