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1 Introduction

Answer set programming (ASP) is a form of declarative logic programming
oriented towards difficult combinatorial search problems. ASP has been
applied, for instance, to developing a decision support system for the Space
Shuttle [Nogueira et al., 2001] and to graph-theoretic problems arising in
zoology and linguistics [Brooks et al., 2005]. This paper is about the design
of provably correct ASP programs and about the mathematical theory it
is based on. Our description of ASP may be useful as a complement to
the monograph [Baral, 2003] and to the manuals on the software systems
sMODELS! and DLVZ.

Syntactically, ASP programs look like Prolog programs, but the compu-
tational mechanisms used in ASP are different: they are based on the ideas
that have led to the creation of fast satisfiability solvers for propositional
logic.

ASP has emerged from interaction between two lines of research—on the
semantics of negation in logic programming [Gelfond and Lifschitz, 1988]
and on applications of satisfiability solvers to search problems [Kautz and
Selman, 1992]. Tt was identified as a new programming paradigm in [Lif-
schitz, 1999, Marek and Truszczynski, 1999, Niemels, 1999)].

The main definition of ASP, discussed in Section 2 below, tells us under
what conditions a model of a propositional formula F (that is, a truth
assignment satisfying F') is called “stable.” The idea of ASP is to represent
the search problem we are interested in as the problem of finding a stable
model of a formula, and then find a solution using an answer set solver—
a system for generating stable models, such as the systems SMODELS and
DLV mentioned above. Information on these and other available answer
set solvers can be obtained from the library of logic programming systems

lhttp://www.tcs.hut.fi/Software/smodels/lparse.ps .
?http://wuw.dbai.tuwien.ac.at/proj/dlv/man/ .
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maintained at the University of Koblenz and Landau.? Such systems are
not applicable, at least directly, to arbitrary propositional formulas; what
they expect as input is a conjunction, or list, of formulas of several special
types that are particularly useful from the programmer’s perspective; these
formulas are assumed to be written in “logic programming notation”—as
rules, often similar to Prolog rules.

Properties of stable models are discussed here in Section 2, and designing
provably correct ASP programs is the topic of Section 3. Proofs of theorems
are relegated to Section 4. These sections are followed by Appendix A,
which provides the necessary background information about propositional
logic, and Appendix B, which reviews the original 1988 definition of a stable
model and relates it to the definition used in the main part of this paper.

As we will see, two equivalent formulas do not necessarily have the same
stable models. For instance, the only stable model of the implication

(1) -»p—q

is the truth assignment that makes p false and g true; the only stable model
of its contrapositive

(2) —g—p

makes p true and ¢ false. (In ASP, it is customary to identify a truth
assignment with the set of atoms that get the value t. So we can say that
the only stable model of (1) is {¢}, and the only stable model of (2) is {p}.)
The fact that there is an essential difference between (1) and (2) will not
surprise a Prolog programmer: in the world of programs with negation as
failure, placing ¢ in the head of a rule and the negation of p in the body
is very different than placing p in the head and the negation of ¢ in the
body. A logician, on the other hand, will note that formulas (1) and (2)
are equivalent to each other classically, but not intuitionistically. We will
see, in fact, that intuitionistically equivalent formulas always have the same
stable models. Hence intuitionistically equivalent transformations play an
important role in ASP.

A conjunction F'A G may have a stable model that is not a stable model
of F'. For instance, the formula

B) (-p—=qAp

has one stable model {p}, which is not a stable model of its first con-
junctive term (1). Thus appending an additional conjunctive term to a
formula may give it a new stable model. In this sense, the concept of a

Shttp://www.uni-koblenz.de/ag-ki/LP/lp_systems.html .



Answer Set Programming 3

stable model is nonmonotonic. Early work on stable models was an out-
growth of research on formal nonmonotonic reasoning [McCarthy, 1980,
McDermott and Doyle, 1980, Reiter, 1980], and, more specifically, of the
study in [Gelfond, 1987] of the relationship between autoepistemic logic
[Moore, 1985] and the semantics of negation in logic programming.

2 Stable Models

After defining the concept of a stable model in Section 2.1, we apply this
definition to three special cases that are often encountered in the practice of
answer set programming: Horn formulas, choice formulas and constraints
(Sections 2.2-2.4). Section 2.5 is a brief introduction to the use of the
answer set solver SMODELS. Then we discuss two mathematical ideas that
play an important role in the design of provably correct ASP programs:
strong equivalence (Section 2.6) and splitting (Section 2.7).

2.1 Definition and Examples

Recall that we identify truth-valued functions on the set of atoms with
subsets of that set (Section A.1).

The reduct FX of a formula F relative to a set X of atoms is the formula
obtained from F' by replacing each maximal subformula that is not satisfied
by X with L [Ferraris, 2005].* We say that X is a stable model (or an answer
set) of F if X is minimal among the sets satisfying F'X. The minimality
of X is understood here in the sense of set inclusion: no proper subset of X
satisfies FX.

Clearly, every set that is a stable model of F' according to this definition
is a model of F'. Indeed, if X does not satisfy F' then FX is L.

According to the definition, we can verify that X is a stable model of F’
as follows:

(i) mark in F' the maximal subformulas that are not satisfied by X;

(ii) replace each of these subformulas with L (after that, equivalent trans-
formations of classical propositional logic can be used to simplify the
result);

(iii) check that the resulting formula is satisfied by X;
(iv) check that it is not satisfied by any proper subset of X.

For instance, to check that {¢} is an answer set of (1), we do the following:

4This is somewhat different from the definition of the reduct proposed in [Gelfond and
Lifschitz, 1988]. The relationship between the two definitions is discussed in Appendix B.
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(i) mark the only subformula of (1) that is not satisfied by {¢}:
—p = q;

(ii) replace that subformula with L:
L =g

simplify:
q;

(iii) check that the last formula is satisfied by {q};
(iv) check that it is not satisfied by 0.

The other two models of (1)

{p}, {p,q}

are not stable. We check, for instance, that {p} is not stable as follows.
First we mark the subformulas of (1) that are not satisfied by {p}:

Py

After replacing these subformulas with L, we get L — L, or T. Clearly {p}
is not minimal among the sets satisfying this reduct: the empty set satisfies
it as well.

Alternatively, we can conclude that {p} and {p, ¢} cannot be stable mod-
els of (1) from the general property of stable models stated below. An
atom A is a head atom of a formula F' if at least one occurrence of A in F'
is strictly positive (see Section A.l1 for the definition). This terminology
is related to the fact that in logic programming it is customary to write
implications F' — G as “rules” G «+ F and to call G the “head”of the rule
and H its “body.” Clearly, every head atom of a rule G < F occurs in its
head G.

THEOREM 1 ([Ferraris, 2005]). Any stable model of F is a subset of the
set of head atoms of F.

Since the only head atom of (1) is g, Theorem 1 shows that stable models
of that formula can be found only among the subsets of {g}.

Many formulas have several stable models. For instance, the conjunction
of (1) and (2)

4) (=p—q) A (~q—p)
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has two stable models {p} and {q}, and so does the formula p V gq. On the
other hand, ——p and —p — p are examples of satisfiable formulas that have
no stable models.

It is easy to see that for any X

1X =1;

AX A, if X E A,
1, otherwise

(A is an atom);

FXoGX, f X EFOG,
1, otherwise

(F@G)X:{

(®is A, Vor —).

These equalities provide an alternative, recursive definition of the reduct.
There is no clause for negation here, because we treat it as an abbreviation
(Section A.1). Tt is easy to check that

1, if X EF,
(—|F)X — y 1 | ) ’
T, otherwise.

2.2 Horn Formulas

A Horn formula is a conjunction of several (0 or more) implications of the
form F' — A, where F' is a conjunction of several (0 or more) atoms, and A
is an atom. The theorem below shows that any Horn formula has exactly
one stable model.

For any Horn formula F', the intersection of all models of F' is a model
of F' also; it is called the minimal model of F'.

THEOREM 2. For any Horn formula F, the minimal model of F is the
only stable model of F.

For instance, the formula
(5) pAP—=a)A(gAr = s)

has one stable model—its minimal model {p,q}. The only model of the
empty conjunction T is the empty set.
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2.3 Choice Formulas

From formulas with a unique stable model discussed above we turn now to
an example of formulas that have exponentially many stable models.
For any finite set Z of atoms, by Z¢ we denote the formula

N (Av-4).

AeZ

PROPOSITION 3. For any finite set Z of atoms, a set X of atoms is a
stable model of Z¢ iff X C Z.

Proof. For any subset X of Z, the reduct of Z¢ relative to X is

A Aavoa A (Lv-l),

Aex A€Z\X

which is equivalent to A 4.y A. This formula is satisfied by X, but is not
satisfied by any proper subset of X. We have proved that if X is a subset
of Z then X is a stable model of Z°. The converse is immediate from
Theorem 1. |

For instance, {p, ¢}° is

(pV —p)A(qV—q).

This formula has 4 answer sets—arbitrary subsets of {p, ¢}. Generally, if Z
consists of n atoms then Z¢ has 2" stable models. To form one of them, we
choose for every element of Z arbitrarily whether to include it in the model.
We will call formulas of the form Z¢ choice formulas. (The superscript ¢ is
used in this notation because it is the first letter of the word “choice.”)

2.4 Constraints

The art of answer set programming is based on the possibility of repre-
senting the collection of sets that we are interested in as the collection of
stable models of a formula. This is often achieved by conjoining a choice
formula, which provides an approximation from above for the collection of
sets that we want to describe, with formulas of a special syntactic form,
called constraints, that eliminate the unsuitable stable models.

As discussed in the introduction, conjoining a formula F' with another
formula generally affects the collection of stable models of F' nonmonoton-
ically. But this does not happen if the second conjunctive term begins
with negation. According to the proposition below, conjoining a formula F’
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with =G has a simple effect on the set of stable models of F': it eliminates
the stable models that do not satisfy the additional conjunctive term.

PROPOSITION 4. A set of atoms is a stable model of F' N —~G iff it is a
stable model of F' that satisfies =G.

Proof. Case 1: X satisfies FF A =(G. Then X does not satisfy G, and
(F A =G)X is FX A =1, which is equivalent to FX. Consequently X is
minimal among the sets satisfying FX iff it is minimal among the sets
satisfying (F' A =G)X. Case 2: X does not satisfy F' A =G. Then X cannot
be a model of F' that satisfies -G. |

In the terminology of ASP, a constraintis simply a formula beginning with
negation. To illustrate the special role of constraints as additional conjunc-
tive terms, let us go back to example (3), where adding the conjunctive
term p to formula (1) changed its collection of stable models nonmonotoni-
cally. If we conjoin (1) with the constraint —p instead then we will get the
formula

(=p — q) A —p.
Since the only stable model {g} of (1) satisfies the constraint, the conjunc-
tion has {q} as the only stable model as well. If we conjoin (1) with the
constraint ——p then we will get the formula

(-p = @) A——p.

Since the only stable model {g} of (1) does not satisfy this constraint, the
conjunction has no stable models.

2.5 LPARSE and SMODELS

We briefly interrupt now the discussion of the theory of stable models to
talk about the capabilities of one of the widely used answer set solvers,
SMODELS.? Its frontend LPARSE serves also as the frontend of three other
systems for computing stable models: GNT®, AsSAT” and cMODELS®. This
frontend requires that the input formula be represented in a special format,
as a list (conjunction) of “rules,” somewhat similar to Prolog rules. In this
paper the reader will find many examples of representing formulas in the
input language of LPARSE. A detailed description of that language can be
found in the LPARSE manual, available online (see Footnote 1).

Our first example illustrates representing Horn formulas. Formula (5)
would be represented in an LPARSE input file as follows:

Shttp://wuw.tcs.hut.fi/Software/smodels/ .
Shttp://wuw.tcs.hut.fi/Software/gnt/ .
"http://assat.cs.ust.hk/ .
8http://www.cs.utexas.edu/users/tag/cmodels/ .
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P.
qQ :7 P-
s :-q, r.

Note that each conjunctive term here is written as a separate rule, followed
by a period. In each rule A «+ F, the left arrow is written as :- and
conjunction as a comma.

To instruct SMODELS to find the stable model of (5), we save the three
lines shown above in a file, called, say, file5, and invoke LPARSE and
SMODELS as follows:

% lparse fileb | smodels

The main part of the output generated in response to this command line is
the program’s stable model:

Answer: 1
Stable Model: q p

Negation in front of an atom is represented in the language of LPARSE as
not. For instance, formula (4) would be written in a file, say, file4, as
q :— not p.
P :- not q.

The command line
% lparse file4 | smodels O

instructs SMODELS to find the stable models of this formula. The zero at the
end indicates that we want to compute all stable models; a positive number &
in this position would tell SMODELS to terminate after computing & stable
models. SMODELS will produce the following output:

Answer: 1
Stable Model: q
Answer: 2
Stable Model: p

To represent a choice formula {4;,...,A4,,}¢ in the language of LPARSE,
we simply drop the superscript ©. A constraint —F, where F' is a conjunction
of literals, is written as : - F'. For instance, the formula

{p,q, 7} N==p A =(g A —r)

can be written in the syntax of LPARSE as®

9The choice construct was originally defined as an addition to the language of LPARSE
in [Simons et al., 2002], and it was treated there as a primitive, rather than abbreviation.
The equivalence of our treatment of choice formulas to that definition follows from results
of [Ferraris and Lifschitz, 2005] and [Ferraris, 2005].
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{p.q,r}.
:- not p.
:- q, not r.

The search process employed in SMODELS is quite sophisticated, and it
guarantees, in principle, that every stable model of the given input will be
found. It can be viewed as a modification of the Davis-Putnam-Logemann-
Loveland procedure for the propositional satisfiability problem (SAT) [Davis
et al., 1962]. We should note that finding a stable model of a formula is
more difficult than SAT: the existence of a stable model is a $£'-complete
property [Eiter and Gottlob, 1993]. But most uses of ASP involve formulas
of special syntactic forms for which this property is known to be in class
NPp.10

Systems ASSAT and CMODELS operate in a different way: they reduce the
problem of computing stable models of a given formula to an instance (or
a series of instances) of SAT and then invoke SAT solvers to do search.

2.6 Strong Equivalence

As discussed in the introduction, two formulas have the same stable models
if they are intuitionistically equivalent (see Section A.3 for the definition).
The theorem below is stronger than this claim in several ways.

We say that a formula F' is strongly equivalent to a formula G if any for-
mula F’ that contains an occurrence of F' has the same stable models as the
formula G’ obtained from F' by replacing that occurrence with G. (As the
term “strongly equivalent” suggests, this relation turns out to be stronger
than equivalence in the sense of classical logic.) For instance, p — ¢ has
the same stable model as p — r (the empty set), but these two formulas
are not strongly equivalent. Indeed, take F’ to be (p — ¢) Ap. Then G' is
(p = r) A p. These two formulas have different stable models: {p,q} and
{p,r} respectively. The theorem below shows, however, that intuitionisti-
cally equivalent formulas are strongly equivalent. This is not surprising in
view of the replacement property of intuitionistic logic (Section A.3): if F'
is intuitionistically equivalent to G then F' is intuitionistically equivalent
to G'.

The role of strong equivalence in the practice of answer set programming
is determined by the fact that it allows us to simplify a part of a program
without looking at the rest of it. For instance, we can observe that the
formula p A (p — ¢) is intuitionistically equivalent to p A g. It follows that

10There are exceptions, however, and the answer set solvers GNT and CMODELS are
among the systems that are not limited to “NP cases” of answer set programming. System
DLV (http://www.dbai.tuwien.ac.at/proj/dlv/) is the earliest answer set solver of this
kind.
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in any program containing the rules

P-
q = P-

replacing the second rule by

q.

will have no effect on the set of stable models.

If formulas F' and G are not strongly equivalent to each other then this
can be always demonstrated using a counterexample F’ that is not much
more complicated than F. We can always take F' to be a formula of the
form F'A H, where H is a Horn formula (see Section 2.2 for the definition).
One can say even more. A formula H is unary if it is a conjunction of
several (0 or more) atoms and implications of the form A; — As, where A,
and A, are atoms. The theorem below shows that formulas F' and G are
strongly equivalent iff, for every unary H, FF A H and G A H have the same
stable models.

Furthermore, in the statement of the theorem intuitionistic logic is re-
placed with a stronger subsystem of classical logic, called “the logic of here-
and-there.” This logic is reviewed in Section A.2. Its role in the theory of
stable models was first recognized in [Pearce, 1997], where it was used to
define a nonmonotonic “equilibrium logic”; the definition of a stable model
in Section 2 is equivalent to the semantics of equilibrium logic [Ferraris,
2005, Theorem 1].

Finally, the theorem below asserts not only that equivalence in the logic
of here-and-there implies strong equivalence, but that the converse holds
also. Thus the logic of here-and-there provides a complete characterization
of strong equivalence. This fact, as well as the property of unary formulas
pointed out above, was first established in [Lifschitz et al., 2001].

THEOREM 5. For any formulas F and G, the following conditions are
equivalent:

(i) F is strongly equivalent to G,

(i1) for every unary formula H, F AN H and G A H have the same stable
models,

(iii) F' is equivalent to G in the logic of here-and-there.

Here are some examples of the use of the most important part of this
theorem, the implication from (iii) to (i). As mentioned in Section 2.1,
formulas ——p and —p — p have no stable models. We can now say more:
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since these formulas are intuitionistically equivalent (Section A.3), the result
of replacing the subformula —p — p in any formula with ——p does not
change its stable models. In particular, any program containing the rule

P :— not p.
can be simplified by replacing that rule with
:- not p.

Another example: the formulas p V =p and =—p — p are equivalent to
each other in the logic of here-and-there (Section A.3); consequently, they
are strongly equivalent. We know that the first of these formulas can be
written in the input language of LPARSE as

{p}.

That language allows us to represent the double negation of an atom in the
body of a rule as well: =—A can be written as {not A}0. (This is a special
case of “cardinality” notation discussed in Section 3.1 below.) In particular,
we can write =—p — p as the rule

p :- {not p} O.

One more example of the use of Theorem 5 is given by the proof of the
following proposition:

PROPOSITION 6. Let Z be the set of atoms occurring in a formula F. A
subset X of Z satisfies F iff X is a stable model of Z° N F.

Proof. From Propositions 3 and 4, a subset X of Z satisfies F' iff X
is a stable model of Z° A —=—F. It remains to observe that -—F « F
can be intuitionistically derived from Z¢, because Z¢ is the conjunction
of the excluded middle formulas A V = A for all atoms A occurring in this
equivalence. |

Proposition 6 provides a reduction of the propositional satisfiability prob-
lem to ASP: to find a model of F', look for a stable model of the conjunction
of F' with the excluded middle formulas A V = A for all atoms A occurring
in F.

An alternative approach to proving the strong equivalence of proposi-
tional formulas, based on [Lifschitz et al., 1999, Section 4] and [Turner,
2003], does not require the knowledge of intuitionistic logic or the logic of
here-and-there. We can show that F is strongly equivalent to G by checking
that, for every set X of atoms, the reducts FX and GX are equivalent to
each other in classical logic:
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THEOREM 7 ([Ferraris, 2005]). For any formulas F and G, F is strongly
equivalent to G iff, for every set X of atoms, FX is equivalent to GX in
classical logic.

For instance, the fact that —p — p is strongly equivalent to =—p can be
established by the following computation:

(-p—=p = 1Lop & T,
(-p—=p? = 1,
(=p)° = L

2.7 Splitting
Theorem 2 describes stable models of Horn formulas; Proposition 3 describes
stable models of choice formulas. Many ASP programs involve conjunctions
of formulas of these two types. To design such programs, we need to under-
stand the structure of their stable models.

Consider the following example:

6) {pa}Ap—=r)A(gAT = 5).

The first conjunctive term of this formula has 4 stable models:

(1) 0, {p}, {q}, {p,q}-

The rest of the conjunction can be viewed as a “definition,” characterizing r
and s in terms of p and ¢. Appending this definition to the choice formula
{p, q}¢ does not affect the total number of its stable models, but it can
change each of the models (7) by adding to it some of the atoms 7, s. In view
of the implication p — r, atom r is added to each model containing p. In
view of the implication g Ar — s, atom s is added to each model containing
both ¢ and r. Thus we can expect that (6) will have the following stable
models:

(8) @, {p,T}, {q}a {p,q,T‘,S}.

The validity of this claim can be justified using the theorem below, which
shows that in some cases we can compute the stable models of a conjunction
by “splitting” it into conjunctive terms and computing first the stable mod-
els of one of these terms. Splitting was proposed in [Lifschitz and Turner,
1994] and generalized and simplified in [Erdogan and Lifschitz, 2004] and
[Ferraris, 2005].

THEOREM 8. Let F and G be formulas such that F' does not contain any
head atoms of G. A set X of atoms is a stable model of F' N G iff there
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exists a stable model {A;,...,An} of F such that X is a stable model of
AN NALNG.

(For the definition of a head atom see Section 2.1.)

In application to (6), we take {p,q}° to be F and (p — r) A(gAr — $) to
be G. Since F' does not contain any of the head atoms r, s of GG, the stable
models of F' A G can be generated by taking each of the stable models (7)
of F, conjoining its elements with GG, and listing all stable models of each
of the resulting formulas

(p—=r)AN(gAr —s),
pA(—=T)AN(@AT — 3),
gA(P—=T1)A(gAT = 8),

pAgA(p—=T1)A(gAT = 8).

Since these are Horn formulas, each of them has one stable model—its
minimal model. As we have conjectured, these stable models are the sets (8)
shown above.

Here is an example of the use of Theorem 8 in the case when F' is not a
choice formula. We want to find the stable models of the conjunction

9) (p—=aA(@—r).

The only stable model of the first conjunctive term is {¢} (Section 2.1).
According to Theorem 8, it follows that (9) has the same stable models as

gNh (g —r).

This is a Horn formula, and its minimal model {g, r} is its only stable model.
Theorem 8 can be useful also when G is not a Horn formula. But in such
cases A1 A---A A, NG will not be a Horn formula either, and computing its
stable models may require additional work. The following two propositions
can often help at this stage.
Notation: Fé‘l stands for the formula obtained from a formula F' by sub-
stituting a formula G for all occurrences of an atom A.

PROPOSITION 9. For any atom A that is not a head atom of F, F has
the same stable models as Ff.

Proof. Since A is not a head atom of F, A does not belong to any of
the stable models of F' (Theorem 1). Consequently, F' has the same sta-
ble models as F' A ~A (Proposition 4). Similarly, F has the same stable
model as F! A —=A. Tt remains to observe that F' A =4 and FA A - A are
intuitionistically equivalent to each other by the replacement property of
intuitionistic logic (Section A.3). [ |
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Example: Using Proposition 9, we can find the stable model of —p — ¢
without directly referring to the definition of a stable model as in Sec-
tion 2.1. Since p is not a head atom of —p — ¢, this formula has the same
stable models as =1 — ¢, which is intuitionistically equivalent to the Horn
formula gq. Consequently, the only stable model of —p — ¢ is g.

PROPOSITION 10. For any atom A, a set X of atoms is a stable model
of F' A A iff there exists a stable model Y of F2 such that X =Y U {A}.

Proof. By the replacement property of intuitionistic logic, F' A A is
intuitionistically equivalent to Fi2 A A, so that the two formulas have the
same stable models. By Theorem 8, X is a stable model of F-’lf1 A A iff
there exists a stable model {A;,...,A,} of F'# such that X is a stable
model of A; A--- A A, A A. The only stable model of this Horn formula is
{4;,...,A,, A}, which can be written as {A,,...,4,} U {A}. ]

Example: Proposition 10 can be used to verify the claim that the only
stable model of (3) is {p}. To find the stable models of (—-p — ¢) A p,
we need to add p to each stable model of =T — ¢. Since this formula is
intuitionistically equivalent to T, its only stable model is the empty set.

The following example shows how Propositions 9 and 10 can be used in
combination with splitting. We want to find the stable models of

(10) {p,q}* A (=p —1).

By Theorem 8, this can be done by computing the stable models of each of
the conjunctions
p—T,
pA(mp =),
gA(-p—r),
pAgA (—p—=r).
Proposition 9 shows that the only stable model of the first of these formulas
is {r}. Proposition 10 shows that the only stable model of the second
formula is {p}. Proposition 9 shows that the only stable model of the third
formula is {q,r}. Proposition 10 shows that the only stable model of the
last formula is {p, ¢}. Consequently, (10) has 4 stable models:

{r}, {r} {a,r}, {p,a}.
Using Theorem 8 twice, we can derive the following useful fact:

PROPOSITION 11. Let F and G be formulas such that F' does not contain
head atoms of G, and G does not contain head atoms of F. A set of atoms
is a stable model of F' N\ G iff it can be represented as the union of a stable
model of F' and a stable model of G.



Answer Set Programming 15

Proof. By Theorem 8, X is a stable model of F' A G iff there exists a stable
model {4;,...,A,} of F such that X is a stable model of

(11) GA (AL A A Ay).

By Theorem 1, for any stable model {4;,...,A4,} of F, atoms A,,..., A4,
are head atoms of F'. Consequently they are different from the head atoms
of G, so that the head atoms of G do not occur in the second conjunctive
term of (11). By Theorem 8, X is a stable model of (11) iff there exists a
stable model {B,..., B,,} of G such that X is a stable model of

BiA---ABp NALA--- A Ay,
that is to say, such that

X ={A1,..., A} U{B1,..., Bn}.

3 Programming

By an ASP program we understand a propositional formula that can be
easily communicated to an answer set solver. We want to learn how to
represent a given search problem as the problem of computing a stable
model of such a formula.

After discussing in Sections 3.1 and 3.2 a few features of the language of
LPARSE that have not been mentioned earlier, we give several examples of
computational problems that can be solved using ASP (Sections 3.3-3.8).
Then we talk about answer set programming with strong negation (Sec-
tion 3.9) and about its application to representing actions (Section 3.10).

3.1 Cardinality Expressions

In answer set programming we often need formulas expressing conditions on
cardinalities of sets. The following notation is useful. For any nonnegative
integer | (“lower bound”) and formulas Fi,..., F,,

(12) I < {F1,...,F,}
stands for the disjunction
V.o AR
IC{1,...,n}, |I|=l i€l

For instance,
2<{Fh, F, Fs}
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stands for
(FL A Fy) V (F1 AN F3)V (Fa A F).

By
(13) {F1,...,F,} <u
where u is a nonnegative integer (“upper bound”) we denote the formula
—(u+1<A{F,...,F,}).
Finally,
(14) I <{F,...,F,} <u
stands for
(I <A{F,....,F,}) N\({F1,...,F,} < ).

It is clear that any set of atoms

o satisfies (12) iff it satisfies at least [ of the formulas Fi, ..., Fy;

o satisfies (13) iff it satisfies at most u of the formulas Fi, ..., Fy;

o satisfies (14) iff it satisfies at least [ and at most u of the formulas

By, F,.

The input language of LPARSE allows us to use expressions (12)—(14) in
the bodies of rules, with the symbol < dropped, if all formulas Fi,..., F,
are literals.!! We saw an example in Section 2.3: the implication ~—p — p
can be represented in an LPARSE input file as

p :- {not p} O.
because
If Ay,..., A, are pairwise distinct atoms then we will write
[ <{Ay,...,A,}¢ for {A;,...; A} NI < {A1,...,A,}),
{A1,..., A} <u for {A,..., A, }°N({A1,..., A} <w),
l S {Alv"'aAn}C S u for {Alv"'aAn}C/\ (l S {Alv"'aAn} S u)'
The following proposition explains why these are useful abbreviations.

PROPOSITION 12. For any pairwise distinct atoms As, ..., A,, nonneg-
ative integers | and u, and a set X of atoms,

11'What we said in Footnote 9 about the invention of choice formulas applies also to
“cardinality formulas” (12)—(14) and to their combinations with choice formulas intro-
duced below. These expressions were originally introduced in [Simons et al., 2002] as
primitives. The equivalence of our presentation to that definition follows from results of
[Ferraris and Lifschitz, 2005] and [Ferraris, 2005).
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(i) X is a stable model of | < {Ay,...,A,}¢ iff X C {A1,...,A,} and
L <X

(i) X is a stable model of {A1,...,An} <w iff X C {A4,...,A,} and
X < u;

(iii) X is a stable model of | < {A;,...,A,}¢ <wu ¢ff X C {41,...,4,}
and | < | X| < w.

Proof: Immediate from Proposition 6. |

For instance, the stable models of
2<{p,q,r}* <2

{p,a}, {p,7}, {a,7}.

Expressions of the forms
1< {...}C’ {...}CSM lg{...}c <u

can be used in LPARSE code in the head of a rule, with both < and the
superscript ¢ dropped:

1{...}, {.3u 1{.}u

Note that LPARSE understands expressions of these types in different ways
depending on whether they occur in the body or in the head of a rule:
a choice formula is included in the second case, but not in the first. For
instance, the LPARSE rules

r :- 1 {p,q}.
1 {p,q} :- r.
stand for
1<{p,q}—=r
and

r—1<{p,q}°

respectively.



18 Paolo Ferraris and Vladimir Lifschitz

3.2 Variables in the Language of LPARSE

A group of rules that follow a pattern can be often described concisely in the
input language of LPARSE using schematic variables. As in Prolog, variables
must be capitalized. Here is an example:

p(1..4).
#domain p(I).
q(I) :- not q(I-1).

Assume that these 3 lines are saved as file var. The first line of var is an
LPARSE abbreviation for a group of 4 rules:

p(1). p(2). p®). pd).

It defines the auxiliary “domain” predicate'? p, which is used in the second
line to declare I to be a variable with the domain {1,...,4}. The last line
of var is interpreted then as a schematic representation of 4 rules:

q(1) :- not q(0).
q(2) :- not q(1).
q(3) :- not q(2).
q(4) :- not q(3).

Generating these rules from the schematic expression at the end of file var is
an example of “grounding,” which is the main computational task performed
by LPARSE.

To sum up, LPARSE interprets var as the conjunction of the formulas

)

i—1) = q(i)

(1 <i < 4). In response to the command

p(i
(15) ﬁq

—~—

% lparse var | smodels O
SMODELS will compute the only stable model of this conjunction:
Stable Model: q(1) q(3) p(1) p(2) p(3) p(4)

The auxiliary atoms p(1),...,p(4) in the output can be suppressed by in-
cluding the declaration

hide p( ).

12The general definition of a domain predicate in the LPARSE manual is somewhat
complicated, and it has been changing from one version of the system to another.
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(“do not display atoms of the form p(.)”) in file var. Alternatively, dis-
playing information about domain predicates can be suppressed using the
-d option of LPARSE, as follows:

% lparse -d none var | smodels O

Besides #domain declarations, there is another mechanism for telling
LPARSE how to ground schematic rules: domain predicates can be included
directly in the bodies of these rules. For instance, file var can be rewritten
in the following way:

p(l..4).
q(I) :- p(I), not q(I-1).

These two lines represent the conjunction of the formulas

p(i),

090 p(6) Aati ~ 1) > a(6)
(1 < i < 4). Since the conjunction of formulas (16) is intuitionistically
equivalent to the conjunction of formulas (15), these two conjunctions have
the same stable models.

In the language of LPARSE, variables can be used also to describe a list
of literals that is formed according to a pattern. For instance, LPARSE
understands

p(l..4).
2 {q(I) : p(I)} 3.

as shorthand for

p(1). p(2). p®3). p4).
2 {q(1), q(2), q(3), q(4)} 3.

3.3 Graph Coloring

As we are turning to actual programming examples, we would like to facili-
tate representing propositional formulas by input files of answer set solvers.
To this end, we will usually write formulas in “logic programming nota-
tion.” A conjunction will be written as a list of its conjunctive terms; if a
conjunctive term is an implication F' — G then it will be written as G < F};
if a conjunctive term is a constraint —F then it will be written as «+ F. If
the body F' in such an expression is a conjunction then we will separate its
conjunctive terms by commas; if the body or one of its conjunctive terms is
a literal = A then we will write it as not A.

An n-coloring of a graph G is a function f from its set of vertices to
{1,...,n} such that f(z) # f(y) for every pair of adjacent vertices z, y.
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We would like to use ASP to find an n-coloring of a given graph or to
determine that it does not exist. To this end, we will write a program
whose answer sets are in a 1-1 correspondence with the n-colorings of G.

Let V be the set of vertices of the graph, and E the set of its edges. The
program consists of the rules

(17) 1 < {color(z,1),...,color(z,n)}° <1 (zeV),
(18) « color(x,1), color(y,i) ({z,y} € E; 1 <i<n).
It has the desired property:

PROPOSITION 13. A set X of atoms is a stable model of the conjunction
of (17) and (18) iff X is

(19) {color(z, f(z)) : z € V}
for some n-coloring f of (V, E).

Proof. By Proposition 12(iii), each of the formulas (17) has n stable mod-
els {color(z,7)} (i =1,...,n). By Proposition 11, it follows that arbitrary
stable models of the conjunction of these formulas are unions of such sin-
gletons, one per each z € V. In other words, stable models of (17) can
be characterized as sets of the form (19), where f is a function from V to
{1,...,n}.

By Proposition 4, it follows that the stable models of the conjunction
of (17) with the constraints (18) can be characterized as the sets of the
form (19) that do not satisfy the bodies of the constraints. The last condi-
tion can be expressed by saying that the equalities f(z) = i and f(y) = ¢
cannot hold simultaneously when {z,y} € E, which means that f(z) # f(y)
whenever {z,y} € E. ]

Program (17), (18) can be encoded in the language of LPARSE as the
following file color:

c(1..n).
1 {color(X,I) : c(ID} 1 :- v(X).
:— color(X,I), color(Y,I), e(X,Y), c(I).

The domain predicates v and e, characterizing the vertices and edges of G,
are assumed to be defined in a separate file, called, say, graph. For instance,
if G is the 3-dimensional cube then that file may look like this:

v(0..7).
e(0,1). e(1,2). e(2,3). e(3,0).

e(4,5). e(5,6). e(6,7). e(7,4).
e(0,4). e(1,5). e(2,6). e(3,7).
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(There is no need to include atoms with the opposite order of arguments,
such as e(1,0); it is only essential that the adjacency relation of G be the
symmetric closure of e.) The command line uses the —-c option of LPARSE
to specify the value of the symbolic constant n, and it instructs LPARSE to
concatenate the files graph and color:

% lparse -c n=2 -d none graph color | smodels

In response, SMODELS produces the set of atoms describing a 2-coloring of
the cube:

Stable Model: color(0,1) color(1,2) color(2,1) color(3,2)
color(4,2) color(5,1) color(6,2) color(7,1)

As can be seen from the proof of Proposition 13, the first part (17) of our
coloring program describes a “simple” superset of the set of n-colorings of G
that we are trying to capture; the second half (18) consists of the constraints
that weed out the “bad” elements of that superset. This “generate-and-test”
organization is typical for simple ASP programs. But it would be a mistake
to think that answer set solvers operate by generating the elements of the
superset described in the generate part and verifying which of these elements
satisfy the test conditions. As briefly discussed at the end of Section 2.5, the
search algorithms implemented in these systems are based on very different
ideas.

3.4 Cliques

A clique in a graph G is a set of pairwise adjacent vertices of G. We would
like to use ASP to find a clique of a cardinality > n in a given graph or to
determine that it does not exist. To this end, we will write a program whose
answer sets are in a 1-1 correspondence with cliques of cardinalities > n.

As before, V is the set of vertices of the graph, and E the set of its edges.
The program consists of the rules

(20) n < {in(z) : z € V}9
(21) « in(z), in(y) (z,y €V; z#y; {z,y} € E).

PROPOSITION 14. A set X of atoms is a stable model of the conjunction
of (20) and (21) iff X is

(22) {in(z) : z € C}

for some clique C in G such that |C| > n.
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Proof. By Proposition 12(i), the stable models of (20) can be characterized
as sets of the form (22), where C is a set of vertices of a cardinality > n. By
Proposition 4, it follows that the stable models of the conjunction of (20)
with the constraints (21) can be characterized as the sets of the form (22)
that do not satisfy the bodies of the constraints. The last condition can
be expressed by saying that the conditions z € C' and y € C cannot hold
simultaneously for two different non-adjacent vertices z, y, which means
that C is a clique. [ |

Here is an LPARSE encoding of (20), (21):

n {in(X) : v(X)}.
:— in(X), in(Y), v(X;Y), X'=Y, not e(X,Y), not e(Y,X).

The domain predicates v and e are assumed to characterize the vertices
and edges of G, as in Section 3.3. In the body of the second rule, v(X;Y)
is an LPARSE abbreviation for v(X),v(Y), and != represents #. The pair
of conditions not e(X,Y), not e(Y,X) expresses that X and Y are non-
adjacent.

3.5 Schur Numbers

A set S of integers is called sum-free if there are no numbers z, y in S such
that ¢ +y is in S. For instance, {1, 3,5} is sum-free, and {2,3,5} and {2, 4}
are not. We would like to use ASP to find, for given k& and n, a partition
of the interval {1,...,n} into at most k sum-free sets or to determine that
such a partition does not exist. (The largest n such that {1,...,n} can be
partitioned into k£ sum-free set is called the k-th Schur number and denoted
by S(k).)

In the following program the atoms s;(z) (1 < i <k, 1 <z < n) are
used to express that z belongs to the i-th set S; in a partition of {1,...,n}
into sum-free sets Si,..., Sk:

(23) 1< {s1(2),..ysk(2)}*° <1 (1<z<n),
(24) « si(7),8:(y), si(z +y) (1<i<kjz,y>1; z4+y<n).

The proposition below expresses the correctness of this program. Note
that the conditions on the sets S; in the statement of the proposition allow
these sets to be empty, so that the list Sy, ..., S represents a partition into
at most k sets, not exactly k.

PROPOSITION 15. A set X of atoms is a stable model of the conjunction
of (23) and (24) iff X is

(25) {si(z) 1 1<i<h; o€ 8}
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for sum-free pairwise disjoint sets Si,..., Sy such that

(26) S1U---USy ={1,...,n}

Proof. By Proposition 12(iii), each of the formulas (23) has & stable models
{si(z)} (i = 1,...,k). By Proposition 11, it follows that arbitrary stable
models of the conjunction of these formulas are unions of such singletons,
one per each z € {1,...,n}. In other words, the stable models of (23) can
be characterized as sets of the form (25), where the sets S; are pairwise
disjoint and satisfy (26).

By Proposition 4, it follows that the stable models of the conjunction
of (23) with the constraints (24) can be characterized as sets of the form (25),
where S; are pairwise disjoint, satisfy (26), and do not satisfy the bodies of
the constraints. The last condition can be expressed by saying that each S;
is sum-free. |

Here is how rules (23), (24) can be written in the language of LPARSE:

subset (1. .k).
number (1. .n).
#domain number (X;Y).

1 {s(I,X) : subset(I)} 1.
:- s(I,X), s(I,Y), s(I,X+Y), subset(I), X+Y<=n.

(In the last rule, <= is the LPARSE symbol for < .) In response to the
command

% lparse -c k=3 -c n=13 -d none schur | smodels

SMODELS produces the output

Stable Model: s(3,1) s(1,2) s(1,3) s(3,4) s(2,5) s(2,6) s(2,7)
s(2,8) s(2,9) s(3,10) s(1,11) s(1,12) s(3,13)

which represents a partition of the interval {1,...,13} into 3 sum-free sets:
{2,3,11,12} U {5,6,7,8,9} U {1,4, 10, 13}.

If we replace 13 by 14 in the command line then SMODELS will report that
the program has no stable models; thus S(3) = 13.
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3.6 Tiling
We would like to use ASP to find a way to cover an 8 x 8 chessboard by
twenty-one 3 x 1 tiles and one 1 x 1 tile.

The idea of the solution below is due to Ashish Gupta (personal commu-
nication). The problem can be reformulated as follows: place twenty-one
3 x 1 tiles on an 8 x 8 chessboard without overlaps. If a tile is placed on
the chessboard horizontally then we will describe its position by the atom
h(z,y) (0 <z <5,0<y<T7T), where z,y are the coordinates of the tile’s
southwest corner. If a tile is placed on the chessboard vertically then we
will describe its position by the atom v(z,y) (0 <z < 7,0 <y < 5);
and y have the same meaning. Call these 96 atoms Aj, ..., Agg. The stable
models of the rule

(27) 21 < {4, ..., Agg}¢ < 21

correspond to all possible ways to place 21 tiles on the chessboard. To
this “generate” part we now add the constraints testing an arrangement for
overlaps. Overlaps between two horizontal tiles are eliminated by the rules

(28) « h(z,y),h(z+1,9) 0<z,y<T7;i=1,2).

For overlaps between the vertical tiles, we include

(29) < v(z,y),v(z,y +1) 0<z,y<7 i=1,2).

Finally, we eliminate overlaps between a horizontal tile and a vertical tile:
(30) « h(z,y),v(z+i,y—j) (0<=z,y<T7 0<i,j<2)

The stable models of program (27)—(30) correspond to the solutions to the
tiling problem we are interested in.

The program above can be represented in the language of LPARSE as
follows:

number (0..7).
#domain number (X;Y;I;J).

hpos(X,Y) :- X<=b.
vpos(X,Y) :- Y<=5.

21 {h(XX,YY) : hpos(XX,YY), v(XX,YY) : vpos(XX,YY)} 21.
i~ h(X,Y), h(X+I,Y), O<I, I<=2.

- v(X,Y), v(X,Y+I), 0O<I, I<=2.
i= h(X,Y), v(X+I,Y-J), I<=2, J<=2.
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The domain predicates hpos and vpos represent the possible positions of
horizontal and vertical tiles. In the output of SMODELS we read:

Stable Model: h(5,1) h(5,0) h(3,7) h(3,6) h(3,5) h(3,4) h(3,3)
h(3,2) h(2,1) h(2,0) h(0,7) h(0,6) v(7,5) v(7,2) v(6,5) v(6,2)
v(2,3) v(1,3) v(1,0) v(0,3) v(0,0)

3.7 Hamiltonian Cycles

Each of the programs in Sections 3.3-3.6 is a conjunction of choice formulas
and constraints. In the next example we will have a chance to use Horn
formulas as well.

A Hamiltonian cycle in a directed graph G is a closed path that passes
through each vertex of G exactly once. We would like to use ASP to find
a Hamiltonian cycle in a given directed graph or to determine that it does
not exist.

The program below uses the atoms in(z,y) for all edges (z,y) of G to
express that (z,y) belongs to the path. The generate part of the program
consists of the choice rules

(31) {in(z,9)}*  ((z,y) € B)

(F stands for the set of edges of G). We need to conjoin them with con-
straints that eliminate all subsets of F other than Hamiltonian cycles.
Two useful constraints are

(32) <2< {in(z,y) : ye A}  (z€V),
where A, stands for {y : (z,y) € E}, and
(33) <2< {n(z,y) :ze B}  (yeV),

where By, stands for {z : (z,y) € E}. They ensure that two in-edges neither
start nor end at the same vertex, so that the set of in-edges is a path or a
union of disjoint paths. In addition, we want to require that every vertex
of G be reachable by a sequence of in-edges from some fixed vertex zq. We
will do this using the auxiliary atoms r(z) (“z is reachable from z,”) for
all vertices x of G. The following two rules provide a “recursive definition”
of r:

(34) r(z) + in(zo,x) (zeV),
(35) r(y) < r(z),in(z,y)  ((z,9) € E)

(V stands for the set of vertices of G). Now we are ready to impose the
reachability constraints:
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(36) « not r(z) (zeV).

Besides the generate part (31) and the test part (32), (33), (36), this
program contains the rules (34) and (35), which define the auxiliary atoms
used in one of the test rules. This “generate-define-test” structure is typical
for more advanced ASP programs. As in the example above, the definitions
of auxiliary atoms are often recursive.

The following proposition expresses the correctness of program (31)—(36).
In its statement, the essential part of a set X of atoms is the set of atoms
in X that have the form in(z,y).

PROPOSITION 16. A set X of atoms is the essential part of a stable model
of (81)-(36) iff X has the form

(37) {in(z,y)) : (z,y) € H}

where H is the set of edges of a Hamiltonian cycle in G. Furthermore,
different stable models of this program have different essential parts.

The last sentence shows that if we “hide” the atoms of the form r(z) in
the list of stable models of this program produced by an answer set solver
then the output will contain each Hamiltonian cycle of G exactly once.

For any set H C E, by Ry we denote the set of atoms r(z) for all
vertices z to which there is a path of nonzero length from z, over edges
in H.

LEMMA 17. A set X of atoms is a stable model of the conjunction of
formulas (31), (84) and (35) iff X is

(38) {in(z,y)) : (z,y) € H} U Rp

for some subset H of E.

Proof. Denote the conjunction of formulas (31) by F', and the conjunction
of formulas (34), (35) by G. By Theorem 8, X is a stable model of F AG iff
there exists a stable model {A;,..., A,} of F such that X is a stable model
of Ay A--- N A, N G. By Proposition 3, it follows that the stable models
of F A G can be characterized as the stable models of formulas of the form

(39) /\ in(z,y) N G

(z,y)€eH

for arbitrary subsets H of E. Formula (39) is a Horn formula, and its
minimal model is its only stable model (Theorem 2). It remains to observe
that the minimal model of (39) is (38). ]
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Proof of Proposition 16. A set H C F is the set of edges of a Hamiltonian
cycle in G iff it satisfies the following conditions:
(i) H does not contain two different edges leaving the same vertex.
(ii) H does not contain two different edges ending at the same vertex.

(iii) For every vertex z of G, there exists a path of nonzero length from z
to x over edges in H.

By Lemma 17 and Proposition 4, a set X of atoms is a stable model of
program (31)—(36) iff X has the form (38), where H C E, and does not
satisfy the bodies of the constraints (32), (33), (36). It is clear that

e (i) holds iff (38) does not satisfy the bodies of constraints (32);
e (ii) holds iff (38) does not satisfy the bodies of constraints (33);
e (iii) holds iff (38) does not satisfy the bodies of constraints (36).

Consequently X is a stable model of (31)—(36) iff X has the form (38) for
a subset H of E satisfying conditions (i)—(iii). Both parts of the statement
of Proposition 16 now follow, because the essential part of (38) is (37). W

The discussion of the Hamiltonian cycles example above is based on
[Erdogan and Lifschitz, 2004, Section 5].

Here is a representation of program (31)—(36) in the language of LPARSE,
assuming that z( is 0:

{in(X, )} :- e(X,Y).

- 2 {in(X,Y) : e(X,V)}, v(X).
- 2 {in(X,Y) : e(X,V)}, v(Y).

r(X) :- in(0,X), v(X).
r(Y) :- r(X), in(X,Y), e(X,Y).

:— not r(X), v(X).

hide r().

3.8 The Blocks World

The blocks world consists of several blocks 1,...,n, placed on the table so
that they form a tower or several towers. For instance, if n = 2 then the
blocks world can be in 3 states:
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If n = 3 then 13 states are possible: 6 configurations in which the blocks
form one tower; 6 configurations in which 2 blocks form a tower and the
third is on the table; one configuration in which all blocks are on the table.

Blocks can be moved around, and in Section 3.10 we show how ASP
can be used to find a sequence of actions that takes the blocks world from
a given initial state to a given goal state (or, more generally, to a state
satisfying a given goal condition). As a preliminary step, in this section we
write an ASP program that represents the set of all possible configurations
of n blocks.

Positions of blocks are described in this program by the atoms on(z,y),
where ¢ € {1,...,n}, y € {1,...,n,table}, x # y. The first rule of the
program is the choice rule allowing us to choose arbitrarily, for each block z,
a unique location:

(40) 1 < {on(z,y) : y€{1,...,n,table} \ {z}}° <1

(1 < z < n). Furthermore, we do not allow two blocks to be on top of the
same block:

(41) <2 <{on(z,y) : z€{1,...,n}\ {y}}

(1 <y < n). These constraints are not sufficient, however, for eliminating
all “bad” stable models of (40), because they allow subsets of blocks to form
circular configurations “floating in space,” such as on(1,2) and on(2,1).

The absence of such configurations can be expressed using an auxiliary
recursively defined predicate, similar to the predicate r used in Section 3.7
to describe Hamiltonian cycles. The atoms s(z), where 1 < z < n, will
express that z is supported by the table, that is to say, belongs to a tower
of blocks that rests on the table. They are defined by the rules

(42) s(z) < on(z, table) (1<z<n),

(43) s(z) < s(y),on(z,y) (1 <@y <njz#y).

The absence of blocks floating in space is expressed by the constraints
(44) « not s(z) (1<z<n).

In the language of LPARSE:
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block(l..n).
1 {on(X,Y) : block(Y) : X'=Y, on(X,table)} 1 :- block(X).
:— 2 {on(X,Y) : block(X) : X'!'=Y}, block(Y).

s(X) :- on(X,table), block(X).
s(X) :- s(Y), on(X,Y), block(X;Y), X!'=Y.

:- not s(X), block(X).

hide s(_).

3.9 Strong Negation

Some applications of ASP, including those related to actions and planning,
are facilitated by the use of a second kind of negation, called “strong” (or
“classical,” or “true”), proposed in [Gelfond and Lifschitz, 1991].

Recall that propositional formulas are formed from atoms and the 0-place
connective L using the binary connectives A, V and — (Section A.1). As-
sume that we distinguish between atoms of two kinds, positive and negative,
and that each negative atom is an expression of the form ~ A, where A is a
positive atom. The symbol ~ is called strong negation.

Note that syntactically strong negation is not really a connective, accord-
ing to this definition: it is allowed to occur in front of positive atoms only.
For example, expressions ~ ~p and ~ (p A q) are not formulas.'3

A set of atoms is coherent if it does not contain “complementary” pairs
of atoms A, ~ A.

Consider, for instance, the program

{r}e,
(45) q,

It contains two positive atoms p, ¢ and one negative atom ~gq. It is easy to
check using the method of Section 2.7 that the stable models of this program
are {p, q} and {q,~q}. The first of them is coherent, and the second is not.
The problem of computing the coherent stable models of a formula can
be easily reduced to the problem of computing arbitrarily stable models:

PROPOSITION 18. A set X of atoms is a coherent stable model of a for-
mula F iff X is a stable model of the formula

13 Alternatively, strong negation can be treated as an additional connective, in the spirit
of [Nelson, 1949].
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(46) F A N\ -(AN ~A),
A

where the big conjunction extends over all positive atoms A such that both A
and ~ A are head atoms of F'.

Proof. By Proposition 4, X is a stable model of (46) iff X is a stable model
of F which does not have subsets of the form {4, ~ A} such that A, ~ A
are head atoms of F'. By Theorem 1, this condition on X is equivalent to
saying that X is a coherent stable model of F'. |

In the input language of LPARSE, strong negation is written as - . When
the input program contains strong negation, LPARSE should be called with
the option --true-negation . The answer set solvers that accept input
programs with strong negation, such as SMODELS, generate coherent answer
sets only. For instance, if we save the rules

{p}.

q.

-q :- not p.

as file45 and give the command

% lparse --true-negation file45 | smodels O
then the output will contain only one model:

Stable Model: p q

Strong negation allows us to distinguish between the assertions “A is
false” and “A is not known to be true” in ASP programs. The former is
expressed by the presence of the negative atom ~ A in a coherent stable
model; the latter, by the absence of the positive atom A, which is obviously
a weaker condition. The rule

(47) ~A <+ not A

(“A is false if there is no evidence to the contrary”) is an ASP representation
of the closed world assumption [Reiter, 1978] for the positive atom A. The
following proposition describes the effect of adding this rule on the stable
models of a program.

PROPOSITION 19. Let F be a formula and A a positive atom such that
~ A does not occur in F. For any set X of atoms, X is a coherent stable

model of
(48) F A (A =~ A)
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iff
(i) X is a stable model of F and A € X, or

(i) X =Y U{~A}, whereY is a stable model of F' such that A ¢ Y.

Case (ii) is the case when there is no evidence that A is true, and the
closed world assumption leads us to the conclusion that A is false.

Proof. By Theorem 8, X is a stable model of (48) iff X is a stable model
of a formula of the form

(49) A1 A+ A Ay A (A =~ A),

where {A41,...,A,} is a stable model of F. Case 1: A equals one of the
atoms A;. Then (49) is intuitionistically equivalent to A; A--- A A, and X
is a stable model of (49) iff X = {4,,..., A, }. Case 2: Ais different from all
atoms A;. Then A is not a head atom of (49). By Proposition 9, it follows
that X is a stable model of (49) iff X is a stable model of the formula

AN NAL A (0L =5~ A),
which is intuitionistically equivalent to
Ay N NARN ~ A

So X is a stable model of (48) iff X = Y U {~ A}, where Y stands for
{A1,..., An}. [ |

The rule
(50) A<« not ~A

expresses the inverse closed world assumption: A is true if there is no evi-
dence to the contrary.

3.10 Planning

We would like to use ASP to find a sequence of actions that takes the blocks
world (Section 3.8) from a given initial state to a state satisfying a given
goal condition. To be more precise, we will be looking for a sequence of sets
of actions, because some actions can be executed concurrently. There are n>
possible actions, where n is the number of blocks: any block z € {1,...,n}
can be moved to any location | € {1,...,n, table} different from z.
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We assume that
e a block can be moved only when there are no blocks on top of it, and
e at most k actions can be executed concurrently

(think of a robot with & grippers that can only grasp a block from above).
We also assume that

e a block z can be moved onto a block y only if y is not being moved at
the same time

(the robot’s ability to coordinate the movements of the grippers is not good
enough for that).
A history is a finite sequence

$0,€0,81,€15---7y€m—1,8m

where sg, $1, - . -, S, are states of the blocks world, and each e; (0 < i < m) is
a set of actions (an “event”), which, when executed concurrently in state s;,
lead to state s;+1. We will write a program whose stable models represent
the histories with a given initial state sqg and a given length m such that
their final state s,, satisfies a given goal condition.

Histories will be described by

e the atoms on(z,l,7) (z € {1,...,n}, I € {1,...,n,table}, z # I,
i € {0,...,m}), expressing that z is on [ in state s;, and

e the atoms move(z,l,i) (z € {1,...,n}, 1 € {1,...,n,table}, = # I,
i € {0,...,m — 1}), expressing that z is moved onto ! as part of
event e;.

One of the rules of the program (rule (55) below) uses these atoms to de-
scribe the effect of moving a block: if x is moved onto [ as part of event e;
then z is on [ in state s;41.

The program contains strong negation (Section 3.9), which is applied to
the atoms on(z,[,7). The usefulness of strong negation in ASP programs
describing effects of actions is related to the frame problem [Shanahan,
1997]—the problem of describing what does not change when actions are
executed. If 21, 25, ... are the blocks that are moved in the course of event ¢;
then rule (55) tells us where these blocks are going to be afterwards. But
what about locations of the blocks other than z;,zs,...7 An adequate
formalization should allow us to conclude that the locations of all the other
blocks will not change; in state s;;1 each of them will stay where it was in
state s;.
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An elegant way to ensure this is to postulate the default that Leibniz
stated in his Introduction to a Secret Encyclopedia and that is now called
the commonsense law of inertia: “Everything is presumed to remain in
the state in which it is” [Leibniz, 1995, p. 9]. In particular, the location
of a block after event e; is presumed, in the absence of evidence to the
contrary, to remain the same as it was before the event. Blocks z1, zs,...
are exceptions: since they are moved, rule (55) provides evidence that their
locations may not remain the same. We have seen in Section 3.9 that strong
negation helps us formalize another default—the closed world assumption;
here strong negation will be used to solve the frame problem.

The generate part of the program expresses that each event e; can be
composed of up to k actions, chosen arbitrarily:

(51) {move(z,l,i) : 1<z <n,le{l,...,n,table}, z#1}° <k

(1 <4 < m). This rule is followed by constraints expressing that a block
can be moved only if it is clear

(52) « move(z,l,1), on(y,x,1)

(1 <z,y<n,le{l,....,ntable}, z #1, z #y, 0 < i < m) and if the
destination is not a block that is being moved also:

(53) « move(z,y,i), move(y,l,1)

(I<z,y<n,le{l,...,n,table}, z #y,y #1, 0 <i < m).

The next part of the program defines the locations of blocks in state s;
in terms of their initial locations and the events eg,...,e;_1. It begins with
the rules

4) on(z, init(z),0)

< z < n), where init(z) stands for the initial location of z, and

1<z <n,le{l,...,n, table}, z #1, 0 <i < m). The next rule expresses

(5

(1

(55) on(z,l,i+ 1) « move(z,l,1)

(

the uniqueness of the locatlon of a block using strong negation:
(56) ~on(z,1,1) + on(z,l',1)

1<z<n LI € {l,....,ntable}, z # 1,z #U', 1 #1', 0 < i < m).
The last rule in this group expresses the commonsense law of inertia for the
blocks world:

(57) on(z,l,i+1) « on(z,l,i),not ~on(z,l,i + 1)
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(I1<z<n,le{l,...,n,table}, x #1,0 < i < m). It says that
z is on [ in state s;11 (the head of the rule) if
z is on [ in state s; (the first term of the body) and

the rules of the program provide no evidence to the contrary (the
second term of the body).

Note that except for the presence of the term on(z,l,7) in the body, (57)
has the same syntactic form as (50).

Finally, we need to include constraints expressing that si,...,s,, are
valid states of the blocks world, and that s,, satisfies the goal condition G:

(58) <2< {on(z,y) : z€{l,...,n} \{y}}
(0<y<n,0<i<m)
(59) « not G.

Rule (58) says that two blocks cannot be on top of the same block; this
is a counterpart of rule (41). Counterparts of the other properties of valid
states discussed in Section 3.8 are not needed in the new framework. Indeed,
the existence of the location of every block and the absence of circular
configurations are assumed to hold in the initial state described by the
function init, and these properties are preserved when blocks are moved;
the uniqueness of the location of a block is expressed by (56).
Here is program (51)—(59) in the language of LPARSE:

step(0..m).
block(1l..n).
location(l. .n;table).

#domain step(I).
#domain block(X;Y;Z).
#domain location(L;L1).

{move (XX,LL,I) : block(XX) : location(LL) : XX'!=LL} k :- I<m.

:- move(X,L,I), on(Y,X,I), X!'=L, X!=Y, I<m.
:- move(X,Y,I), move(Y,L,I), X!=Y, Y!=L, I<m.

on(X,L,0) :- init(X,L).

on(X,L,I+1) :- move(X,L,I), X!=L, I<m.

-on(X,L,I) :- on(X,L1,I), X'=L, X!=L1, L'=L1.
on(X,L,I+1) :- on(X,L,I), not -on(X,L,I+1), X!=L, I<m.
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:— 2 {on(XX,Y,I) : block(XX) : XX!=Y}.
:— not goal.

hide.
show move(_,_,_).

The last two lines instruct SMODELS to display no atoms except for the
actions move (. ..). The initial state and the goal condition are assumed to
be defined in a separate file, for instance:

init(1,2). init(2,table). init(3,4).
init(4,table). init(5,6). init(6,table).

goal :- on(2,1,m), on(3,2,m), on(6,5,m), on(5,4,m).

The idea of the solution to the frame problem given by rule (57) goes
back to [Reiter, 1980, Section 1.1.4], but implementing that idea was not
straightforward [Hanks and McDermott, 1987], and it was achieved years
later [Turner, 1997]. The fact that planning can be reduced to finding a
stable model was noted in [Subrahmanian and Zaniolo, 1995, and first ex-
periments on generating plans using SMODELS were reported in [Dimopoulos
et al., 1997]. The discussion of blocks world planning in this section is based
on [Lifschitz, 2002, Section 5].

4 Proofs of Theorems
4.1 Proof of Theorem 1

LEMMA 20. If X = F and a set Y contains all head atoms of F then
XnY E FX.

Proof. The proof is by structural induction on F. Assume that X | F.
Clearly F'is not L. Case 1: F is an atom A. Since X = F, FX is A and
A € X. Since A is a head atom, we can further conclude that A € X NY.
Case 2: Fis G A H. Since X = F, we know that FX is GX AHX, X =G
and X |= H. Since all head atoms of G and H belong to Y, from the
induction hypothesis we conclude that X NY | GX and X NY | HX.
Consequently X NY |= FX. Case 3: F is GV H. Similar to Case 2.
Case 4: F'is G — H. Since X = F, FX is GX — HX. Case 4.1: X = G.
Then X = H. Since all head atoms of H belong to Y, from the induction
hypothesis we conclude that X NY |= HX. Consequently X NY = FX.
Case 4.2: X £ G. Then GX is L, so that FX is a tautology. |

THEOREM 1. Any stable model of F is a subset of the set of head atoms
of F.
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Proof. Let X be a stable model of F', and Y the set of head atoms of F'. By
Lemma 20, XNY |= FX. Since X is minimal among the sets satisfying F'X,
it follows that X NY = X, and consequently X C Y. |

4.2 Proof of Theorem 2

LEMMA 21. For any Horn formula F' and any two sets X andY of atoms,
ifXCY andY =F then X = F iff X = FY.

Proof. Assume first that F' is a single implication
(60) AN NA, — A.

Case 1: A;,..., A, belong to Y. Under the assumption Y |= F' the con-
sequent A of F belongs to Y also, so that F¥ = F. Case 2: for some i,
A; € Y. Under the assumption X C Y, A; € X, so that X satisfies F. On
the other hand, FV is the tautology L — AY, so that X satisfies F'¥ as
well.

If F'is a conjunction F; A--- A F, of several implications of the form (60)
then X satisfies F' iff X satisfies each F;. Under the assumption YV |= F,
FY is FY A--- AFY; consequently X satisfies F'Y iff X satisfies each of the
conjunctive terms FjY. The assertion of the lemma follows from the special
case proved above. |

THEOREM 2. For any Horn formula F, the minimal model of F 1is the
only stable model of F.

Proof. Let M be the minimal model of a Horn formula F. Lemma 21,
applied to M as Y, shows that FM is satisfied by M but is not satisfied by
any proper subset of M. Consequently M is a stable model of F'. Now take
any stable model Y of F'. By the choice of M, M C Y. Lemma 21, applied
to M as X, shows that M |= FY. By the definition of a stable model, Y
is minimal among the sets satisfying Y. Consequently Y C M. We have
proved that Y = M. |

4.3 Proof of Theorems 5 and 7

LEMMA 22. For any formula F and any set X of atoms, X = FX iff
X [EF.

Proof. Reduct X is obtained from F' by replacing some subformulas that
are not satisfied by X with 1. |

LEMMA 23. For any two formulas F' and G and any set X of atoms,

(a) (F AG)X is equivalent to FX AN GX in classical logic, and
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(b) (FV G)X is equivalent to FX vV GX in classical logic.

Proof. Part (a): consider two cases, depending on whether X satisfies
F AG. If it does then the two formulas are equal to each other; if not then
each of them is equivalent to L. For part (b), the proof is similar. [ |

LEMMA 24. For any formula F and any two sets X and Y of atoms,
XEFY iff (XNY,Y) | F.

Proof. The proof is by structural induction on F. If F'is L then the
assertion of the lemma is trivial. If F' is an atom A,

X|:AY if AeYand Ae X
if AeXnNnY
iff (XNY,Y)E A

If Fis G A H then, using Lemma 23(a),

XE(GAH)Y iff X§EGYAHY
iff XEGY and X = HY
iff (XNY,Y)=Gand (XNY,Y)|=H
iff (XNY,Y)E=GAH.

If Fis GV H then the reasoning is similar, using Lemma 23(b). Finally, if
FisG— H,

XE(G—-HY if YEG—HandXE=GY - HY
iff Y =G— H and
XFEGY or X =HY
if Y =G— H and
(XNY,Y)£FGor(XNY,Y)=H
iff (XNY)Y)=G— H.

LEMMA 25. Let F, G, F', G' be formulas such that G' is obtained from F'
by replacing some (zero or more) occurrences of F' with G. For any set X
of atoms, if FX is equivalent to GX then (F')X is equivalent to (G')X.

Proof. Assume that FX is equivalent to GX. By Lemma 22, it follows that

61) X = F & G.
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We will prove that (F')X is equivalent to (G')* by structural induction
on F'. This assertion is trivial when F’ equals F' and also when the number
of occurrences of F' in F' that are being replaced is 0; in particular, the
cases when F’ is L or an atom are trivial. Assume that F’ has the form
F| ®Fj, and G' is G} ® G}, where G/, is obtained from F] by replacing some
occurrences of F' with G. Case 1: X [~ F'. In view of (61), X [~ G’, so that
(F')X = L and (G")X = L. Case 2: X = F'. In view of (61), X E G', so
that (F')* = (F})X © (F3)* and (G")X = (G})* ® (G4)*, and the claim
follows by the induction hypothesis. |

COMBINED STATEMENT OF THEOREMS 5 AND 7. For any formu-
las F' and G, the following conditions are equivalent:

(i) F is strongly equivalent to G,

(i1) for every unary formula H, F AN H and G A H have the same stable
models,

(iii) F' is equivalent to G in the logic of here-and-there,

(iv) for any set X of atoms, FX is equivalent to GX in classical logic.

Proof. From (i) to (ii): obvious.

From (ii) to (iii): assume that F' is not equivalent to G in the logic of
here-and-there, and let (X,Y’) be an HT-interpretation that satisfies, say, F'
but not G. Then X C Y and, by Lemma 24, X = FY, X [£ GY. Since
X = FY, FY isnot L, which implies that Y = F. By Lemma 22, it follows
that Y = FY. Case 1: Y [£ GY. By Lemma 22, Y [~ G, so that Y is
not a stable model of G A H for any H. But if we take H to be A ., A
then Y is a stable model of F' A H. Indeed, by Lemma 23(a), (F A H)Y
is equivalent to 'Y A HY, which is the same as F'¥ A H; both conjunctive
terms of this formula are satisfied by Y, but the second term is not satisfied
by any proper subset of Y. Case 2: Y = GY. Since X [~# GY, X is different
from Y'; consequently X is a proper subset of Y. Let H be the unary formula

N An N\ (A= A).

Aex AAEY\X

Set Y is not a stable model of F' A H. Indeed, just as in Case 1, (F A H)Y
is equivalent to F¥ A H; X is a proper subset of Y that satisfies both
conjunctive terms. We will show, on the other hand, that Y is a stable
model of G A H, which contradicts condition (ii). In view of Lemma 23(a),
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(G A H)Y is equivalent to GY A H. Clearly Y satisfies both conjunctive
terms; the only proper subset of Y that satisfies H is X, and X does not
satisfy GY .

From (iii) to (iv): if F" and G are satisfied by the same HT-interpretations
then, by Lemma 24, for any set Y of atoms, F'¥ and GY are satisfied by
the same sets of atoms.

From (iv) to (i): immediate from Lemma 25. ]

4.4 Proof of Theorem 8

LEMMA 26. If X is a stable model of F' then FX is equivalent to Nacx A
Proof. Since all atoms occurring in these two formulas belong to X, it is
sufficient to show that the formulas are satisfied by the same subsets of X.

By the definition of a stable model, the only subset of X satisfying F'X is X .
[ ]

LEMMA 27. Let S be a set of atoms that contains all atoms occurring in
a formula F but does not contain any head atoms of a formula G. For any
set X of atoms, if X is a stable model of FAG then X NS is a stable model
of F.

Proof. Since X is a stable model of FAG, X |= F, so that XN S |= F,
and, by Lemma 22, X NS | FX™S. It remains to show that no proper
subset Y of X N S satisfies FX™5. Let S’ be the set of head atoms of G,
and let Z be X N (S’ UY). Set Z has the following properties:

(i) ZnS=Y;
(i) Z C X;
(iii) Z | GX.

To prove (i), note that since S’ is disjoint from S, and Y is a subset of
Xns,

ZNS=XNnS'uy)nS=XnNnyYynS=(XnsS)ny =Y.

To prove (ii), note that set Z is clearly a subset of X. It cannot be equal
to X, because otherwise we would have, by (i),

Y=2NS=XnNS;

this is impossible, because Y is a proper subset of X N S. Property (iii)
follows from Lemma 20, because X |= G, and S'UY contains all head atoms
of G.
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Since X is a stable model of F' A G, from property (ii) we can conclude
that Z % (F A G)*X. Consequently, by Lemma 23(a) and property (iii),
Z [ FX. Since all atoms occurring in F belong to S, FX = FX"3 5o
that we can rewrite this formula as Z = FX™S. Since all atoms occurring
in FX7S belong to S, it follows that Z N S & FX™S. By property (i), we
conclude that Y [£ FX9, [ |

THEOREM 8. Let F and G be formulas such that F' does not contain any
head atoms of G. A set X of atoms is a stable model of F' N\ G iff there
exists a stable model {Ay,...,A,} of F such that X is a stable model of

(62) AL A---NAp AG.

Proof. Take formulas F' and G such that F' does not contain any head
atoms of G, and let S the set of atoms occurring in F'. Observe first that
if a set X of atoms is a stable model of a formula of the form (62), where
Ay, ...,A, € S, then X NS = {A4;,...,A4,}. Indeed, by Lemma 27 with
Ay N---NA, as F, XN S is a stable model of A; A--- A A, and the only
stable model of this formula is {A4;,...,A,}. Consequently, the assertion
to be proved can be reformulated as follows: a set X of atoms is a stable
model of F' A G iff

(i) X NS is a stable model of F', and
(ii) X is a stable model of A 4. x~g4 A G.

If X NS is not a stable model of F' then X is not a stable model of
F A G by Lemma 27. Now suppose that X NS is a stable model of F'.
Then, by Lemma 26, FX"S is equivalent to A4scxnsA. Consequently, by
Lemma 23(a),

(FAGYY < FXANGX = FXPSAGY & Ajcxns A N GX

X X

= (AaexnsA)” NG & (Nacxns ANG) ™.
We can conclude that X is a stable model of F' A G iff X is a stable model
of Apexns4 N G. |
5 Conclusion

Many publications in the area of answer set programming are directed to-
wards practical applications, and the titles of several papers of this kind
included in the bibliography'* show the remarkable diversity of the areas

14[Soininen and Niemeld, 1998], [Erdem et al., 2000], [Nogueira et al., 2001], [Hel-
janko and Niemeli, 2003], [Baral et al., 2004], [Brooks et al., 2005], [Leone et al., 2005],
[Hermansson et al., 2005].
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of science and technology where ASP may be useful. Success in this work
would have been impossible without efficient, reliable, carefully crafted an-
swer set solvers.

The main topic of this paper, however, is theoretical. We have seen that
ASP is based on interesting mathematics, including some ideas developed
in the early days of modern logic. The senior author (VL) is particularly
pleased to contribute a paper on mathematical foundations of answer set
programming to a volume in honor of Dov Gabbay in view of the important
role that intuitionistic logic plays in this theory. Intuitionistic logic is what
both of us were interested in as beginning researchers many years ago, when
we first learned about each other’s work.

A Propositional Logic
A.1 Syntax and Semantics

(Propositional) formulas are formed from propositional atoms and the 0-
place connective L using the binary connectives A, V and —. We use

T as shorthand for 1 — 1,
—-F as shorthand for F — 1,
F <+ G asshorthand for (F — G) A (G — F).

Atoms and negated atoms are called literals.
The relation X |= F between a set X of atoms and a formula F is defined
recursively:

e for an atom A, X = A if A € X

X B~ L

XEFAGH X |EF and X | G;
e X=FVGitXEForX =G
e X=F S GifXEForX =G.

If X = F then we say that X satisfies F', or is a model of F. A formula is
a tautology if it is satisfied by every set of atoms. A formula F' is equivalent
to a formula G if F' + G is a tautology (or, equivalently, if F' and G have
the same models).

An occurrence of an atom A in a formula F' is positive if the number
of implications containing that occurrence in the antecedent is even, and
negative otherwise. For instance, both occurrences of p in the formula

63) (p—=q)Ar)—=p
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are positive, and ¢, r are negative. =~ An occurrence of an atom A in a
formula F is strictly positive if it does not belong to the antecedent of
any implication in F. For instance, the second occurrence of p in (63) is
strictly positive, and the first is not. Since —F' is shorthand for F — 1, no
occurrence of an atom in a formula of the form —F' can be strictly positive.

A.2 Logic of Here-and-There

The logic of here-and-there is a 3-valued logic that was originally proposed
by the inventor of intuitionistic logic Arend Heyting as a technical tool
for the purpose of proving that intuitionistic logic is weaker than classi-
cal [Heyting, 1930]. (He remarks that the truth values in his truth tables
“can be interpreted as follows: 0 denotes a correct proposition, 1 denotes
a false proposition, and 2 denotes a proposition that cannot be false but
whose correctness is not proved.”) We will identify a function from the set
of atoms to the extended set of truth values {0, 1,2} with the ordered pair
consisting of the set X of atoms that are mapped to 0 and the set Y of
atoms that are mapped to 0 or 2. (If an atom belongs to X then it is true
“here”; if an atom belongs to Y then it is true “there”.)

An HT-interpretation is an ordered pair (X,Y’) of sets of atoms such that
X CY. The satisfaction relation = between an HT-interpretation (X,Y)
and a formula F' is defined recursively:

e for an atom A, (X,Y) = Aif A € X;

(X,Y) B L;
(X,Y)EFAGif(X,Y) = F and (X,Y) F G;
(X,Y)

(X,Y)

EFVGif(X)Y)E=For(X)Y) G,

= F - Gif

(i) (X,Y) £ For (X,Y) =G, and
(i) Y = F — G.

(The symbol = in the last line refers to the satisfaction relation of classical
logic defined in Section A.1.)

A formula is valid in the logic of here-and-there if it is satisfied by ev-
ery HT-interpretation. A formula F' is equivalent to a formula G in the
logic of here-and-there if F' +» G is valid in the logic of here-and-there (or,
equivalently, if 7' and G are satisfied by the same HT-interpretations).

The following facts relate the satisfaction relation of the logic of here-
and-there to the satisfaction relation of classical logic:
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(64) (X,X)|= Fiff X = F.
(65) If (X,Y) = F then Y = F.
(66) (X,Y) = ~Fiff Y = ~F.

From property (64) we see that a formula can be valid in the logic of here-
and-there only if it is a tautology. It follows that two formulas can be
equivalent to each other in the logic of here-and-there only if they are clas-
sically equivalent. To see where the two equivalence relations differ from
each other, note that ——p is not equivalent to p in the logic of here-and-
there. Indeed, by (66), the HT-interpretation (@), {p}) satisfies =—p, but it
clearly does not satisfy p.

A.3 Natural Deduction

In the natural deduction system for propositional logic, the derivable objects
are sequents—expressions of the form I' = F' (“F under the assumptions
'), where F'is a formula and T is a finite set of formulas. Notationally, we
will identify the set of assumption in a sequent with the list of its elements.
For instance, we will write I', F = G for TU {F'} = G.

The axiom schemas are

(67) F=F
and
(68) = F'V —F.

The latter is called the law of excluded middle. The inference rules are

'=sF A=G ' FANG T=>FAG
(AD) A= FAG (AE) '=F '=aG
) 'r=F r=aG (VE)F=>FVG A,F=H A,,G=H
I'=FVGTI'=FVdE F,Al,A2:>H
NrF=aGg r=FA=F—>SG
ChrErsa (=F) I'A=G
©) 1=+
W) =
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Among the first six inference rules, the rules in the left column are introduc-
tion rules, and the rules in the right column are elimination rules. Rule (C)
is the contradiction rule, and (W) is weakening.

Since we defined —F as an abbreviation for F — L (Section A.1), “nega-

tion introduction”
I'F=_1

I'=>-F
is a special case of (— I), and “negation elimination”

I'=sF A=-F
A= 1

is a special case of (— E). Similarly, the introduction and elimination rules
for equivalence

I'sF—-G A=>G—F I'=sF&G I'=sFeG
NMA=F&G s F->G 'sG—-F

are special cases of (AI) and (AE).
To prove a formula F' in this system means to prove the sequent = F.
For instance, here is a proof of the equivalence

(69) (—p = p) < ——p.

1. -p—=p=-p—p — axiom

2. —p=-p — axiom

3. p,p—op=>p — by (— E) from 2, 1
4. —-p,p—op=>1 — by (= E) from 3, 2
5. -p—=p=-p — by (= I) from 4

6. =(—p—p —-p —by(—=1I)fromb5

7. ——p=-p — axiom

8 —p,p= L — by (— E) from 2, 7

©

-p, P =P — by (C) from 8
10. ——p=>-p—p — by (= I) from 9
11. =--p—=(-p—p — by (= I) from 10
12. = (-p = p) & ——p — by (AI) from 6, 11

The deductive system described above is sound and complete: a for-
mula F' is provable in this system iff F' is a tautology.

A formula is intuitionistically provable if it can be proved in this de-
ductive system without references to axiom schema (68). A formula F' is
intuitionistically equivalent to a formula G if F' < G is intuitionistically
provable.
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For instance, the implication —p — p is intuitionistically equivalent to the
formula ——p, because the proof of (69) above contains no references to the
law of excluded middle. On the other hand, this implication is not intuition-
istically equivalent to p: the equivalence obtained from (69) by dropping the
double negation in the right-hand side cannot be proved without (68).

According to the replacement property of intuitionistic logic, if F' is a
subformula of a formula F’, and G' is obtained from F’ by replacing an
occurrence of F' with another formula G, then F’ < G' is intuitionisti-
cally derivable from F < G. For instance, from the fact that -p — p is
intuitionistically equivalent to ——p we can conclude that (-p — p) A ¢ is
intuitionistically equivalent to =—p A q.

Every intuitionistically provable formula is valid in the logic of here-
and-there; if two formulas are intuitionistically equivalent then they are
equivalent in the logic of here-and-there. Moreover, these assertions remain
true if, instead of intuitionistic logic, we talk about the stronger deductive
system, obtained from classical by replacing (68) with the axiom schema
expressing the weak law of excluded middle:

(70) = ~F V ——F.

We can use this fact, for example, to check that the formulas p V =p and
——p — p are equivalent to each other in the logic of here-and-there, as
follows:

1. pV-p=pV-p — axiom
2. p=p — axiom
3. —p=-p — axiom
4. ——p=-p — axiom
5. 7p,~ =1 — by (= E) from 3, 4
6. -p,-p=p — by (C) from 5
7. pV-p,——p=p — by (VE) from 1, 2, 6
8. pV-p=-p—p — by (= I) from 7
9. = (pV-p — (—p—p) —by(=I) from8
10. ——p—=p=-——p—=p — axiom
1. = -pV-p — axiom
12. —=p=pV-p — by (VI) from 3
13. == p,——p—=>p=p — by (= E) from 4, 10
14. ——p,~—p—=>p=>pV-p — by (VI)from 13
15. ——p—=p=pV-p — by (VE) from 11, 12, 14
16. = (-—p—=p)— (pV-p) — by (= I) from 15
17. = (pV-p) ¢ (-—p —p) — by (Al) from 9, 16
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Here is an axiom schema that is even stronger than (70) and that can be
used for establishing the validity of formulas in the logic of here-and-there
as well:

(71) = FV (F = G)V —G.

Nothing stronger would be acceptable: A propositional formula is valid in
the logic of here-and-there iff it is provable in the deductive system obtained
from intuitionistic logic by adding axiom schema (71). This theorem is due
to Lex Hendriks [Lifschitz et al., 2001, Section 2.2].

B Traditional Definition of a Stable Model

In [Gelfond and Lifschitz, 1988], a logic program is assumed to consist of
rules of the form

(72) Ag « A1,...,Ap,not Apya,...,not Ay

where n > m > 0 and Aq,..., A, are atoms; we will call such expressions
traditional Tules. A finite set of traditional rules with m = n, that is, rules
of the form

(73) Ap < Ai,..., A,

is essentially a Horn formula in the sense of Section 2.2.
The traditional reduct of a traditional program II relative to a set X of
atoms is the set of rules (73) for all rules (72) in II such that

Apityeees An @ X

According to the 1988 definition, the stable model of a traditional program II
is a set X of atoms with the following property: X is the minimal model of
the traditional reduct of I relative to X. This is equivalent to our definition
of a stable model (Section 2.1) limited to traditional programs:

PROPOSITION 28. For any traditional program 11, a set X of atoms is
the minimal model of the traditional reduct of 11 relative to X iff X is a
stable model of II.

Proof. Let ITX denote the traditional reduct of II relative to X.

Case 1: X [~ II. Set X is not a stable model of II. On the other hand, IT
contains a rule (72) such that Ay,...,A,, € X and Ao, Appy1,..., 4, € X.
The corresponding rule (73) in IIX is not satisfied by X, so that X is not
the minimal model of TTX.

Case 2: X |= 1. We will show that ITX and I1X are satisfied by the same
subsets of X. Since IIX is the conjunction of the formulas RX for all rules R
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of I, and IIX is the union of the programs {R}%X for all rules R of II, it
is sufficient to verify this claim for the case when II is a single rule (72).
If X contains at least one of the atoms A4,,,1, ..., 4, then [IX is empty and
I1X is the tautology 1 — A{. Otherwise IX is (73). If A;,...,4,, € X
then Ay € X, because X = II; consequently II¥ is the result of replacing
Ami1,-..,An in (72) with L, which is equivalent to (73). It remains to
consider the case when A,,;1,...,4, € X and at least one of the atoms
A1, ..., A, say Ay, does not belong to X. In this case IIX is the tautology
1 — Af. On the other hand, TI* is the rule (73) whose body contains A;
and consequently is not satisfied by any subset of X. It follows that every
subset of X satisfies I1X. |

Intuitively, a rule (73) can be viewed as a rule for generating atoms:
we are allowed to generate its head Ay as soon as all atoms A;,..., A,
in the body have been generated. The minimal model of a set of rules of
the form (73) is the set of all atoms that can be generated by this process,
starting from the empty set. The traditional definition of a stable model can
be thought of as an extension of this idea to rules containing negative literals
in the body. A rule (72) allows us to generate Ay as soon as we generated
the atoms A,..., A, provided that none of the atoms A,,411,..., A4, can
be generated using the rules of the program. There is a vicious circle in
this sentence: to decide whether a rule of II can be used to generate a new
atom, we need to know which atoms can be generated using the rules of II.
The traditional definition of a stable model overcomes this difficulty using
a “fixpoint construction.” Take a set X that you suspect may be exactly
the set of atoms that can be generated using the rules of II. Under this
assumption, I has the same meaning as the traditional reduct of II relative
to X, which is a set of rules of the form (73). Consider the minimal model
of the traditional reduct. If this model is exactly identical to the set X that
we started with then X was a “good guess”; it is indeed a stable model
of TI.

The definition of a stable model for traditional programs can be viewed
as a possible definition of a “correct” answer to a query in Prolog. Let II
be a Prolog program without variables (or the set of ground rules obtained
from a Prolog program with variables by replacing each rule with all its
ground instances). If II is a traditional program with a unique stable model
then the correct answer to a ground query A is yes or no depending on
whether A belongs to that model.

From this perspective, a program with several stable models is “bad”—it
does not provide an unambiguous specification for the behavior of a Pro-
log system. Programs without answer sets are “bad” also. In answer set
programming, on the other hand, programs without a unique answer set
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are quite useful: they correspond to computational problems with many
solutions, or with no solutions.

The concept of a stable model is only one of several available definitions
of the semantics of negation as failure. Two other definitions frequently
referred to in the literature are based on program completion [Clark, 1978]
and the well-founded model [Van Gelder et al., 1991]. These three definitions
are not completely equivalent to each other, but each of them provides an
adequate description of the behavior of Prolog.
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