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1 IntrodutionAnswer set programming (ASP) is a form of delarative logi programmingoriented towards diÆult ombinatorial searh problems. ASP has beenapplied, for instane, to developing a deision support system for the SpaeShuttle [Nogueira et al., 2001℄ and to graph-theoreti problems arising inzoology and linguistis [Brooks et al., 2005℄. This paper is about the designof provably orret ASP programs and about the mathematial theory itis based on. Our desription of ASP may be useful as a omplement tothe monograph [Baral, 2003℄ and to the manuals on the software systemssmodels1 and dlv2.Syntatially, ASP programs look like Prolog programs, but the ompu-tational mehanisms used in ASP are di�erent: they are based on the ideasthat have led to the reation of fast satis�ability solvers for propositionallogi.ASP has emerged from interation between two lines of researh|on thesemantis of negation in logi programming [Gelfond and Lifshitz, 1988℄and on appliations of satis�ability solvers to searh problems [Kautz andSelman, 1992℄. It was identi�ed as a new programming paradigm in [Lif-shitz, 1999, Marek and Truszzy�nski, 1999, Niemel�a, 1999℄.The main de�nition of ASP, disussed in Setion 2 below, tells us underwhat onditions a model of a propositional formula F (that is, a truthassignment satisfying F ) is alled \stable." The idea of ASP is to representthe searh problem we are interested in as the problem of �nding a stablemodel of a formula, and then �nd a solution using an answer set solver|a system for generating stable models, suh as the systems smodels anddlv mentioned above. Information on these and other available answerset solvers an be obtained from the library of logi programming systems1http://www.ts.hut.fi/Software/smodels/lparse.ps .2http://www.dbai.tuwien.a.at/proj/dlv/man/ .



2 Paolo Ferraris and Vladimir Lifshitzmaintained at the University of Koblenz and Landau.3 Suh systems arenot appliable, at least diretly, to arbitrary propositional formulas; whatthey expet as input is a onjuntion, or list, of formulas of several speialtypes that are partiularly useful from the programmer's perspetive; theseformulas are assumed to be written in \logi programming notation"|asrules, often similar to Prolog rules.Properties of stable models are disussed here in Setion 2, and designingprovably orret ASP programs is the topi of Setion 3. Proofs of theoremsare relegated to Setion 4. These setions are followed by Appendix A,whih provides the neessary bakground information about propositionallogi, and Appendix B, whih reviews the original 1988 de�nition of a stablemodel and relates it to the de�nition used in the main part of this paper.As we will see, two equivalent formulas do not neessarily have the samestable models. For instane, the only stable model of the impliation(1) :p! qis the truth assignment that makes p false and q true; the only stable modelof its ontrapositive(2) :q ! pmakes p true and q false. (In ASP, it is ustomary to identify a truthassignment with the set of atoms that get the value t. So we an say thatthe only stable model of (1) is fqg, and the only stable model of (2) is fpg.)The fat that there is an essential di�erene between (1) and (2) will notsurprise a Prolog programmer: in the world of programs with negation asfailure, plaing q in the head of a rule and the negation of p in the bodyis very di�erent than plaing p in the head and the negation of q in thebody. A logiian, on the other hand, will note that formulas (1) and (2)are equivalent to eah other lassially, but not intuitionistially. We willsee, in fat, that intuitionistially equivalent formulas always have the samestable models. Hene intuitionistially equivalent transformations play animportant role in ASP.A onjuntion F ^G may have a stable model that is not a stable modelof F . For instane, the formula(3) (:p! q) ^ phas one stable model fpg, whih is not a stable model of its �rst on-juntive term (1). Thus appending an additional onjuntive term to aformula may give it a new stable model. In this sense, the onept of a3http://www.uni-koblenz.de/ag-ki/LP/lp systems.html .



Answer Set Programming 3stable model is nonmonotoni. Early work on stable models was an out-growth of researh on formal nonmonotoni reasoning [MCarthy, 1980,MDermott and Doyle, 1980, Reiter, 1980℄, and, more spei�ally, of thestudy in [Gelfond, 1987℄ of the relationship between autoepistemi logi[Moore, 1985℄ and the semantis of negation in logi programming.2 Stable ModelsAfter de�ning the onept of a stable model in Setion 2.1, we apply thisde�nition to three speial ases that are often enountered in the pratie ofanswer set programming: Horn formulas, hoie formulas and onstraints(Setions 2.2{2.4). Setion 2.5 is a brief introdution to the use of theanswer set solver smodels. Then we disuss two mathematial ideas thatplay an important role in the design of provably orret ASP programs:strong equivalene (Setion 2.6) and splitting (Setion 2.7).2.1 De�nition and ExamplesReall that we identify truth-valued funtions on the set of atoms withsubsets of that set (Setion A.1).The redut FX of a formula F relative to a set X of atoms is the formulaobtained from F by replaing eah maximal subformula that is not satis�edbyX with ? [Ferraris, 2005℄.4 We say that X is a stable model (or an answerset) of F if X is minimal among the sets satisfying FX . The minimalityof X is understood here in the sense of set inlusion: no proper subset of Xsatis�es FX .Clearly, every set that is a stable model of F aording to this de�nitionis a model of F . Indeed, if X does not satisfy F then FX is ?.Aording to the de�nition, we an verify that X is a stable model of Fas follows:(i) mark in F the maximal subformulas that are not satis�ed by X ;(ii) replae eah of these subformulas with ? (after that, equivalent trans-formations of lassial propositional logi an be used to simplify theresult);(iii) hek that the resulting formula is satis�ed by X ;(iv) hek that it is not satis�ed by any proper subset of X .For instane, to hek that fqg is an answer set of (1), we do the following:4This is somewhat di�erent from the de�nition of the redut proposed in [Gelfond andLifshitz, 1988℄. The relationship between the two de�nitions is disussed in Appendix B.



4 Paolo Ferraris and Vladimir Lifshitz(i) mark the only subformula of (1) that is not satis�ed by fqg::p! q;(ii) replae that subformula with ?::? ! q;simplify: q;(iii) hek that the last formula is satis�ed by fqg;(iv) hek that it is not satis�ed by ;.The other two models of (1) fpg; fp; qgare not stable. We hek, for instane, that fpg is not stable as follows.First we mark the subformulas of (1) that are not satis�ed by fpg::p! q:After replaing these subformulas with ?, we get ?! ?, or >. Clearly fpgis not minimal among the sets satisfying this redut: the empty set satis�esit as well.Alternatively, we an onlude that fpg and fp; qg annot be stable mod-els of (1) from the general property of stable models stated below. Anatom A is a head atom of a formula F if at least one ourrene of A in Fis stritly positive (see Setion A.1 for the de�nition). This terminologyis related to the fat that in logi programming it is ustomary to writeimpliations F ! G as \rules" G F and to all G the \head"of the ruleand H its \body." Clearly, every head atom of a rule G  F ours in itshead G.THEOREM 1 ([Ferraris, 2005℄). Any stable model of F is a subset of theset of head atoms of F .Sine the only head atom of (1) is q, Theorem 1 shows that stable modelsof that formula an be found only among the subsets of fqg.Many formulas have several stable models. For instane, the onjuntionof (1) and (2)(4) (:p! q) ^ (:q ! p)



Answer Set Programming 5has two stable models fpg and fqg, and so does the formula p _ q. On theother hand, ::p and :p! p are examples of satis�able formulas that haveno stable models.It is easy to see that for any X?X = ?;AX = (A; if X j= A;?; otherwise(A is an atom);(F �G)X = (FX �GX ; if X j= F �G;?; otherwise(� is ^, _ or !):These equalities provide an alternative, reursive de�nition of the redut.There is no lause for negation here, beause we treat it as an abbreviation(Setion A.1). It is easy to hek that(:F )X = (?; if X j= F;>; otherwise.2.2 Horn FormulasA Horn formula is a onjuntion of several (0 or more) impliations of theform F ! A, where F is a onjuntion of several (0 or more) atoms, and Ais an atom. The theorem below shows that any Horn formula has exatlyone stable model.For any Horn formula F , the intersetion of all models of F is a modelof F also; it is alled the minimal model of F .THEOREM 2. For any Horn formula F , the minimal model of F is theonly stable model of F .For instane, the formula(5) p ^ (p! q) ^ (q ^ r ! s)has one stable model|its minimal model fp; qg. The only model of theempty onjuntion > is the empty set.



6 Paolo Ferraris and Vladimir Lifshitz2.3 Choie FormulasFrom formulas with a unique stable model disussed above we turn now toan example of formulas that have exponentially many stable models.For any �nite set Z of atoms, by Z we denote the formulaÂ2Z(A _ :A):PROPOSITION 3. For any �nite set Z of atoms, a set X of atoms is astable model of Z i� X � Z.Proof. For any subset X of Z, the redut of Z relative to X isÂ2X(A _?) ^ ^A2ZnX(? _ :?);whih is equivalent to VA2X A. This formula is satis�ed by X , but is notsatis�ed by any proper subset of X . We have proved that if X is a subsetof Z then X is a stable model of Z. The onverse is immediate fromTheorem 1. �For instane, fp; qg is (p _ :p) ^ (q _ :q):This formula has 4 answer sets|arbitrary subsets of fp; qg. Generally, if Zonsists of n atoms then Z has 2n stable models. To form one of them, wehoose for every element of Z arbitrarily whether to inlude it in the model.We will all formulas of the form Z hoie formulas. (The supersript  isused in this notation beause it is the �rst letter of the word \hoie.")2.4 ConstraintsThe art of answer set programming is based on the possibility of repre-senting the olletion of sets that we are interested in as the olletion ofstable models of a formula. This is often ahieved by onjoining a hoieformula, whih provides an approximation from above for the olletion ofsets that we want to desribe, with formulas of a speial syntati form,alled onstraints, that eliminate the unsuitable stable models.As disussed in the introdution, onjoining a formula F with anotherformula generally a�ets the olletion of stable models of F nonmonoton-ially. But this does not happen if the seond onjuntive term beginswith negation. Aording to the proposition below, onjoining a formula F



Answer Set Programming 7with :G has a simple e�et on the set of stable models of F : it eliminatesthe stable models that do not satisfy the additional onjuntive term.PROPOSITION 4. A set of atoms is a stable model of F ^ :G i� it is astable model of F that satis�es :G.Proof. Case 1: X satis�es F ^ :G. Then X does not satisfy G, and(F ^ :G)X is FX ^ :?, whih is equivalent to FX . Consequently X isminimal among the sets satisfying FX i� it is minimal among the setssatisfying (F ^ :G)X . Case 2: X does not satisfy F ^ :G. Then X annotbe a model of F that satis�es :G. �In the terminology of ASP, a onstraint is simply a formula beginning withnegation. To illustrate the speial role of onstraints as additional onjun-tive terms, let us go bak to example (3), where adding the onjuntiveterm p to formula (1) hanged its olletion of stable models nonmonotoni-ally. If we onjoin (1) with the onstraint :p instead then we will get theformula (:p! q) ^ :p:Sine the only stable model fqg of (1) satis�es the onstraint, the onjun-tion has fqg as the only stable model as well. If we onjoin (1) with theonstraint ::p then we will get the formula(:p! q) ^ ::p:Sine the only stable model fqg of (1) does not satisfy this onstraint, theonjuntion has no stable models.2.5 LPARSE and SMODELSWe briey interrupt now the disussion of the theory of stable models totalk about the apabilities of one of the widely used answer set solvers,smodels.5 Its frontend lparse serves also as the frontend of three othersystems for omputing stable models: GnT6, assat7 and models8. Thisfrontend requires that the input formula be represented in a speial format,as a list (onjuntion) of \rules," somewhat similar to Prolog rules. In thispaper the reader will �nd many examples of representing formulas in theinput language of lparse. A detailed desription of that language an befound in the lparse manual, available online (see Footnote 1).Our �rst example illustrates representing Horn formulas. Formula (5)would be represented in an lparse input �le as follows:5http://www.ts.hut.fi/Software/smodels/ .6http://www.ts.hut.fi/Software/gnt/ .7http://assat.s.ust.hk/ .8http://www.s.utexas.edu/users/tag/models/ .



8 Paolo Ferraris and Vladimir Lifshitzp.q :- p.s :- q, r.Note that eah onjuntive term here is written as a separate rule, followedby a period. In eah rule A  F , the left arrow is written as :- andonjuntion as a omma.To instrut smodels to �nd the stable model of (5), we save the threelines shown above in a �le, alled, say, file5, and invoke lparse andsmodels as follows:% lparse file5 | smodelsThe main part of the output generated in response to this ommand line isthe program's stable model:Answer: 1Stable Model: q pNegation in front of an atom is represented in the language of lparse asnot. For instane, formula (4) would be written in a �le, say, file4, asq :- not p.p :- not q.The ommand line% lparse file4 | smodels 0instruts smodels to �nd the stable models of this formula. The zero at theend indiates that we want to ompute all stable models; a positive number kin this position would tell smodels to terminate after omputing k stablemodels. smodels will produe the following output:Answer: 1Stable Model: qAnswer: 2Stable Model: pTo represent a hoie formula fA1; : : : ; Ang in the language of lparse,we simply drop the supersript . A onstraint :F , where F is a onjuntionof literals, is written as :- F . For instane, the formulafp; q; rg ^ ::p ^ :(q ^ :r)an be written in the syntax of lparse as99The hoie onstrut was originally de�ned as an addition to the language of lparsein [Simons et al., 2002℄, and it was treated there as a primitive, rather than abbreviation.The equivalene of our treatment of hoie formulas to that de�nition follows from resultsof [Ferraris and Lifshitz, 2005℄ and [Ferraris, 2005℄.



Answer Set Programming 9{p,q,r}.:- not p.:- q, not r.The searh proess employed in smodels is quite sophistiated, and itguarantees, in priniple, that every stable model of the given input will befound. It an be viewed as a modi�ation of the Davis-Putnam-Logemann-Loveland proedure for the propositional satis�ability problem (SAT) [Daviset al., 1962℄. We should note that �nding a stable model of a formula ismore diÆult than SAT: the existene of a stable model is a �P2 -ompleteproperty [Eiter and Gottlob, 1993℄. But most uses of ASP involve formulasof speial syntati forms for whih this property is known to be in lassNP.10Systems assat and models operate in a di�erent way: they redue theproblem of omputing stable models of a given formula to an instane (ora series of instanes) of SAT and then invoke SAT solvers to do searh.2.6 Strong EquivaleneAs disussed in the introdution, two formulas have the same stable modelsif they are intuitionistially equivalent (see Setion A.3 for the de�nition).The theorem below is stronger than this laim in several ways.We say that a formula F is strongly equivalent to a formula G if any for-mula F 0 that ontains an ourrene of F has the same stable models as theformula G0 obtained from F 0 by replaing that ourrene with G. (As theterm \strongly equivalent" suggests, this relation turns out to be strongerthan equivalene in the sense of lassial logi.) For instane, p ! q hasthe same stable model as p ! r (the empty set), but these two formulasare not strongly equivalent. Indeed, take F 0 to be (p! q) ^ p. Then G0 is(p ! r) ^ p. These two formulas have di�erent stable models: fp; qg andfp; rg respetively. The theorem below shows, however, that intuitionisti-ally equivalent formulas are strongly equivalent. This is not surprising inview of the replaement property of intuitionisti logi (Setion A.3): if Fis intuitionistially equivalent to G then F 0 is intuitionistially equivalentto G0.The role of strong equivalene in the pratie of answer set programmingis determined by the fat that it allows us to simplify a part of a programwithout looking at the rest of it. For instane, we an observe that theformula p ^ (p ! q) is intuitionistially equivalent to p ^ q. It follows that10There are exeptions, however, and the answer set solvers GnT and models areamong the systems that are not limited to \NP ases" of answer set programming. Systemdlv (http://www.dbai.tuwien.a.at/proj/dlv/) is the earliest answer set solver of thiskind.



10 Paolo Ferraris and Vladimir Lifshitzin any program ontaining the rulesp.q :- p.replaing the seond rule byq.will have no e�et on the set of stable models.If formulas F and G are not strongly equivalent to eah other then thisan be always demonstrated using a ounterexample F 0 that is not muhmore ompliated than F . We an always take F 0 to be a formula of theform F ^H , where H is a Horn formula (see Setion 2.2 for the de�nition).One an say even more. A formula H is unary if it is a onjuntion ofseveral (0 or more) atoms and impliations of the form A1 ! A2, where A1and A2 are atoms. The theorem below shows that formulas F and G arestrongly equivalent i�, for every unary H , F ^H and G^H have the samestable models.Furthermore, in the statement of the theorem intuitionisti logi is re-plaed with a stronger subsystem of lassial logi, alled \the logi of here-and-there." This logi is reviewed in Setion A.2. Its role in the theory ofstable models was �rst reognized in [Peare, 1997℄, where it was used tode�ne a nonmonotoni \equilibrium logi"; the de�nition of a stable modelin Setion 2 is equivalent to the semantis of equilibrium logi [Ferraris,2005, Theorem 1℄.Finally, the theorem below asserts not only that equivalene in the logiof here-and-there implies strong equivalene, but that the onverse holdsalso. Thus the logi of here-and-there provides a omplete haraterizationof strong equivalene. This fat, as well as the property of unary formulaspointed out above, was �rst established in [Lifshitz et al., 2001℄.THEOREM 5. For any formulas F and G, the following onditions areequivalent:(i) F is strongly equivalent to G,(ii) for every unary formula H, F ^ H and G ^ H have the same stablemodels,(iii) F is equivalent to G in the logi of here-and-there.Here are some examples of the use of the most important part of thistheorem, the impliation from (iii) to (i). As mentioned in Setion 2.1,formulas ::p and :p ! p have no stable models. We an now say more:



Answer Set Programming 11sine these formulas are intuitionistially equivalent (Setion A.3), the resultof replaing the subformula :p ! p in any formula with ::p does nothange its stable models. In partiular, any program ontaining the rulep :- not p.an be simpli�ed by replaing that rule with:- not p.Another example: the formulas p _ :p and ::p ! p are equivalent toeah other in the logi of here-and-there (Setion A.3); onsequently, theyare strongly equivalent. We know that the �rst of these formulas an bewritten in the input language of lparse as{p}.That language allows us to represent the double negation of an atom in thebody of a rule as well: ::A an be written as fnot Ag0. (This is a speialase of \ardinality" notation disussed in Setion 3.1 below.) In partiular,we an write ::p! p as the rulep :- {not p} 0.One more example of the use of Theorem 5 is given by the proof of thefollowing proposition:PROPOSITION 6. Let Z be the set of atoms ourring in a formula F . Asubset X of Z satis�es F i� X is a stable model of Z ^ F .Proof. From Propositions 3 and 4, a subset X of Z satis�es F i� Xis a stable model of Z ^ ::F . It remains to observe that ::F $ Fan be intuitionistially derived from Z, beause Z is the onjuntionof the exluded middle formulas A _ :A for all atoms A ourring in thisequivalene. �Proposition 6 provides a redution of the propositional satis�ability prob-lem to ASP: to �nd a model of F , look for a stable model of the onjuntionof F with the exluded middle formulas A _ :A for all atoms A ourringin F .An alternative approah to proving the strong equivalene of proposi-tional formulas, based on [Lifshitz et al., 1999, Setion 4℄ and [Turner,2003℄, does not require the knowledge of intuitionisti logi or the logi ofhere-and-there. We an show that F is strongly equivalent to G by hekingthat, for every set X of atoms, the reduts FX and GX are equivalent toeah other in lassial logi:



12 Paolo Ferraris and Vladimir LifshitzTHEOREM 7 ([Ferraris, 2005℄). For any formulas F and G, F is stronglyequivalent to G i�, for every set X of atoms, FX is equivalent to GX inlassial logi.For instane, the fat that :p ! p is strongly equivalent to ::p an beestablished by the following omputation:(:p! p)fpg = ? ! p $ >;(::p)fpg = :? = >;(:p! p); = ?;(::p); = ?:2.7 SplittingTheorem 2 desribes stable models of Horn formulas; Proposition 3 desribesstable models of hoie formulas. Many ASP programs involve onjuntionsof formulas of these two types. To design suh programs, we need to under-stand the struture of their stable models.Consider the following example:(6) fp; qg ^ (p! r) ^ (q ^ r ! s):The �rst onjuntive term of this formula has 4 stable models:(7) ;; fpg; fqg; fp; qg:The rest of the onjuntion an be viewed as a \de�nition," haraterizing rand s in terms of p and q. Appending this de�nition to the hoie formulafp; qg does not a�et the total number of its stable models, but it anhange eah of the models (7) by adding to it some of the atoms r, s. In viewof the impliation p ! r, atom r is added to eah model ontaining p. Inview of the impliation q^ r ! s, atom s is added to eah model ontainingboth q and r. Thus we an expet that (6) will have the following stablemodels:(8) ;; fp; rg; fqg; fp; q; r; sg:The validity of this laim an be justi�ed using the theorem below, whihshows that in some ases we an ompute the stable models of a onjuntionby \splitting" it into onjuntive terms and omputing �rst the stable mod-els of one of these terms. Splitting was proposed in [Lifshitz and Turner,1994℄ and generalized and simpli�ed in [Erdo�gan and Lifshitz, 2004℄ and[Ferraris, 2005℄.THEOREM 8. Let F and G be formulas suh that F does not ontain anyhead atoms of G. A set X of atoms is a stable model of F ^ G i� there



Answer Set Programming 13exists a stable model fA1; : : : ; Ang of F suh that X is a stable model ofA1 ^ � � � ^ An ^G.(For the de�nition of a head atom see Setion 2.1.)In appliation to (6), we take fp; qg to be F and (p! r)^ (q^r ! s) tobe G. Sine F does not ontain any of the head atoms r, s of G, the stablemodels of F ^ G an be generated by taking eah of the stable models (7)of F , onjoining its elements with G, and listing all stable models of eahof the resulting formulas (p! r) ^ (q ^ r ! s);p ^ (p! r) ^ (q ^ r ! s);q ^ (p! r) ^ (q ^ r ! s);p ^ q ^ (p! r) ^ (q ^ r ! s):Sine these are Horn formulas, eah of them has one stable model|itsminimal model. As we have onjetured, these stable models are the sets (8)shown above.Here is an example of the use of Theorem 8 in the ase when F is not ahoie formula. We want to �nd the stable models of the onjuntion(9) (:p! q) ^ (q ! r):The only stable model of the �rst onjuntive term is fqg (Setion 2.1).Aording to Theorem 8, it follows that (9) has the same stable models asq ^ (q ! r):This is a Horn formula, and its minimal model fq; rg is its only stable model.Theorem 8 an be useful also when G is not a Horn formula. But in suhases A1^� � �^An^G will not be a Horn formula either, and omputing itsstable models may require additional work. The following two propositionsan often help at this stage.Notation: FAG stands for the formula obtained from a formula F by sub-stituting a formula G for all ourrenes of an atom A.PROPOSITION 9. For any atom A that is not a head atom of F , F hasthe same stable models as FA? .Proof. Sine A is not a head atom of F , A does not belong to any ofthe stable models of F (Theorem 1). Consequently, F has the same sta-ble models as F ^ :A (Proposition 4). Similarly, FA? has the same stablemodel as FA? ^ :A. It remains to observe that F ^ :A and FA? ^ :A areintuitionistially equivalent to eah other by the replaement property ofintuitionisti logi (Setion A.3). �



14 Paolo Ferraris and Vladimir LifshitzExample: Using Proposition 9, we an �nd the stable model of :p ! qwithout diretly referring to the de�nition of a stable model as in Se-tion 2.1. Sine p is not a head atom of :p ! q, this formula has the samestable models as :? ! q, whih is intuitionistially equivalent to the Hornformula q. Consequently, the only stable model of :p! q is q.PROPOSITION 10. For any atom A, a set X of atoms is a stable modelof F ^ A i� there exists a stable model Y of FA> suh that X = Y [ fAg.Proof. By the replaement property of intuitionisti logi, F ^ A isintuitionistially equivalent to FA> ^ A, so that the two formulas have thesame stable models. By Theorem 8, X is a stable model of FA> ^ A i�there exists a stable model fA1; : : : ; Ang of FA> suh that X is a stablemodel of A1 ^ � � � ^ An ^ A. The only stable model of this Horn formula isfA1; : : : ; An; Ag, whih an be written as fA1; : : : ; Ang [ fAg. �Example: Proposition 10 an be used to verify the laim that the onlystable model of (3) is fpg. To �nd the stable models of (:p ! q) ^ p,we need to add p to eah stable model of :> ! q. Sine this formula isintuitionistially equivalent to >, its only stable model is the empty set.The following example shows how Propositions 9 and 10 an be used inombination with splitting. We want to �nd the stable models of(10) fp; qg ^ (:p! r):By Theorem 8, this an be done by omputing the stable models of eah ofthe onjuntions :p! r;p ^ (:p! r);q ^ (:p! r);p ^ q ^ (:p! r):Proposition 9 shows that the only stable model of the �rst of these formulasis frg. Proposition 10 shows that the only stable model of the seondformula is fpg. Proposition 9 shows that the only stable model of the thirdformula is fq; rg. Proposition 10 shows that the only stable model of thelast formula is fp; qg. Consequently, (10) has 4 stable models:fpg; frg; fq; rg; fp; qg:Using Theorem 8 twie, we an derive the following useful fat:PROPOSITION 11. Let F and G be formulas suh that F does not ontainhead atoms of G, and G does not ontain head atoms of F . A set of atomsis a stable model of F ^ G i� it an be represented as the union of a stablemodel of F and a stable model of G.



Answer Set Programming 15Proof. By Theorem 8, X is a stable model of F ^G i� there exists a stablemodel fA1; : : : ; Ang of F suh that X is a stable model of(11) G ^ (A1 ^ � � � ^ An):By Theorem 1, for any stable model fA1; : : : ; Ang of F , atoms A1; : : : ; Anare head atoms of F . Consequently they are di�erent from the head atomsof G, so that the head atoms of G do not our in the seond onjuntiveterm of (11). By Theorem 8, X is a stable model of (11) i� there exists astable model fB1; : : : ; Bmg of G suh that X is a stable model ofB1 ^ � � � ^ Bm ^ A1 ^ � � � ^An;that is to say, suh thatX = fA1; : : : ; Ang [ fB1; : : : ; Bmg: �3 ProgrammingBy an ASP program we understand a propositional formula that an beeasily ommuniated to an answer set solver. We want to learn how torepresent a given searh problem as the problem of omputing a stablemodel of suh a formula.After disussing in Setions 3.1 and 3.2 a few features of the language oflparse that have not been mentioned earlier, we give several examples ofomputational problems that an be solved using ASP (Setions 3.3{3.8).Then we talk about answer set programming with strong negation (Se-tion 3.9) and about its appliation to representing ations (Setion 3.10).3.1 Cardinality ExpressionsIn answer set programming we often need formulas expressing onditions onardinalities of sets. The following notation is useful. For any nonnegativeinteger l (\lower bound") and formulas F1; : : : ; Fn,(12) l � fF1; : : : ; Fngstands for the disjuntion _I�f1;:::;ng; jIj=l î2I Fi:For instane, 2 � fF1; F2; F3g



16 Paolo Ferraris and Vladimir Lifshitzstands for (F1 ^ F2) _ (F1 ^ F3) _ (F2 ^ F3):By(13) fF1; : : : ; Fng � uwhere u is a nonnegative integer (\upper bound") we denote the formula:(u+ 1 � fF1; : : : ; Fng):Finally,(14) l � fF1; : : : ; Fng � ustands for (l � fF1; : : : ; Fng) ^ (fF1; : : : ; Fng � u):It is lear that any set of atoms� satis�es (12) i� it satis�es at least l of the formulas F1; : : : ; Fn;� satis�es (13) i� it satis�es at most u of the formulas F1; : : : ; Fn;� satis�es (14) i� it satis�es at least l and at most u of the formulasF1; : : : ; Fn.The input language of lparse allows us to use expressions (12){(14) inthe bodies of rules, with the symbol � dropped, if all formulas F1; : : : ; Fnare literals.11 We saw an example in Setion 2.3: the impliation ::p! pan be represented in an lparse input �le asp :- {not p} 0.beause f:pg � 0 = :(1 � f:pg) = ::p:If A1; : : : ; An are pairwise distint atoms then we will writel � fA1; : : : ; Ang for fA1; : : : ; Ang ^ (l � fA1; : : : ; Ang);fA1; : : : ; Ang � u for fA1; : : : ; Ang ^ (fA1; : : : ; Ang � u);l � fA1; : : : ; Ang � u for fA1; : : : ; Ang ^ (l � fA1; : : : ; Ang � u):The following proposition explains why these are useful abbreviations.PROPOSITION 12. For any pairwise distint atoms A1; : : : ; An, nonneg-ative integers l and u, and a set X of atoms,11What we said in Footnote 9 about the invention of hoie formulas applies also to\ardinality formulas" (12){(14) and to their ombinations with hoie formulas intro-dued below. These expressions were originally introdued in [Simons et al., 2002℄ asprimitives. The equivalene of our presentation to that de�nition follows from results of[Ferraris and Lifshitz, 2005℄ and [Ferraris, 2005℄.



Answer Set Programming 17(i) X is a stable model of l � fA1; : : : ; Ang i� X � fA1; : : : ; Ang andl � jX j;(ii) X is a stable model of fA1; : : : ; Ang � u i� X � fA1; : : : ; Ang andjX j � u;(iii) X is a stable model of l � fA1; : : : ; Ang � u i� X � fA1; : : : ; Angand l � jX j � u.Proof : Immediate from Proposition 6. �For instane, the stable models of2 � fp; q; rg � 2are fp; qg; fp; rg; fq; rg:Expressions of the formsl � f� � � g; f� � � g � u; l � f� � � g � uan be used in lparse ode in the head of a rule, with both � and thesupersript  dropped:l f...g; f...g u; l f...g u:Note that lparse understands expressions of these types in di�erent waysdepending on whether they our in the body or in the head of a rule:a hoie formula is inluded in the seond ase, but not in the �rst. Forinstane, the lparse rulesr :- 1 {p,q}.1 {p,q} :- r.stand for 1 � fp; qg ! rand r ! 1 � fp; qgrespetively.



18 Paolo Ferraris and Vladimir Lifshitz3.2 Variables in the Language of LPARSEA group of rules that follow a pattern an be often desribed onisely in theinput language of lparse using shemati variables. As in Prolog, variablesmust be apitalized. Here is an example:p(1..4).#domain p(I).q(I) :- not q(I-1).Assume that these 3 lines are saved as �le var. The �rst line of var is anlparse abbreviation for a group of 4 rules:p(1). p(2). p(3). p(4).It de�nes the auxiliary \domain" prediate12 p, whih is used in the seondline to delare I to be a variable with the domain f1; : : : ; 4g. The last lineof var is interpreted then as a shemati representation of 4 rules:q(1) :- not q(0).q(2) :- not q(1).q(3) :- not q(2).q(4) :- not q(3).Generating these rules from the shemati expression at the end of �le var isan example of \grounding," whih is the main omputational task performedby lparse.To sum up, lparse interprets var as the onjuntion of the formulas(15) p(i);:q(i� 1)! q(i)(1 � i � 4). In response to the ommand% lparse var | smodels 0smodels will ompute the only stable model of this onjuntion:Stable Model: q(1) q(3) p(1) p(2) p(3) p(4)The auxiliary atoms p(1),: : : ,p(4) in the output an be suppressed by in-luding the delarationhide p(_).12The general de�nition of a domain prediate in the lparse manual is somewhatompliated, and it has been hanging from one version of the system to another.



Answer Set Programming 19(\do not display atoms of the form p( )") in �le var. Alternatively, dis-playing information about domain prediates an be suppressed using the-d option of lparse, as follows:% lparse -d none var | smodels 0Besides #domain delarations, there is another mehanism for tellinglparse how to ground shemati rules: domain prediates an be inludeddiretly in the bodies of these rules. For instane, �le var an be rewrittenin the following way:p(1..4).q(I) :- p(I), not q(I-1).These two lines represent the onjuntion of the formulas(16) p(i);p(i) ^ :q(i� 1)! q(i)(1 � i � 4). Sine the onjuntion of formulas (16) is intuitionistiallyequivalent to the onjuntion of formulas (15), these two onjuntions havethe same stable models.In the language of lparse, variables an be used also to desribe a listof literals that is formed aording to a pattern. For instane, lparseunderstandsp(1..4).2 {q(I) : p(I)} 3.as shorthand forp(1). p(2). p(3). p(4).2 {q(1), q(2), q(3), q(4)} 3.3.3 Graph ColoringAs we are turning to atual programming examples, we would like to faili-tate representing propositional formulas by input �les of answer set solvers.To this end, we will usually write formulas in \logi programming nota-tion." A onjuntion will be written as a list of its onjuntive terms; if aonjuntive term is an impliation F ! G then it will be written as G F ;if a onjuntive term is a onstraint :F then it will be written as  F . Ifthe body F in suh an expression is a onjuntion then we will separate itsonjuntive terms by ommas; if the body or one of its onjuntive terms isa literal :A then we will write it as not A.An n-oloring of a graph G is a funtion f from its set of verties tof1; : : : ; ng suh that f(x) 6= f(y) for every pair of adjaent verties x, y.



20 Paolo Ferraris and Vladimir LifshitzWe would like to use ASP to �nd an n-oloring of a given graph or todetermine that it does not exist. To this end, we will write a programwhose answer sets are in a 1{1 orrespondene with the n-olorings of G.Let V be the set of verties of the graph, and E the set of its edges. Theprogram onsists of the rules(17) 1 � folor (x; 1); : : : ; olor(x; n)g � 1 (x 2 V );(18)  olor (x; i); olor (y; i) (fx; yg 2 E; 1 � i � n):It has the desired property:PROPOSITION 13. A set X of atoms is a stable model of the onjuntionof (17) and (18) i� X is(19) folor (x; f(x)) : x 2 V gfor some n-oloring f of hV;Ei.Proof. By Proposition 12(iii), eah of the formulas (17) has n stable mod-els folor(x; i)g (i = 1; : : : ; n). By Proposition 11, it follows that arbitrarystable models of the onjuntion of these formulas are unions of suh sin-gletons, one per eah x 2 V . In other words, stable models of (17) anbe haraterized as sets of the form (19), where f is a funtion from V tof1; : : : ; ng.By Proposition 4, it follows that the stable models of the onjuntionof (17) with the onstraints (18) an be haraterized as the sets of theform (19) that do not satisfy the bodies of the onstraints. The last ondi-tion an be expressed by saying that the equalities f(x) = i and f(y) = iannot hold simultaneously when fx; yg 2 E, whih means that f(x) 6= f(y)whenever fx; yg 2 E. �Program (17), (18) an be enoded in the language of lparse as thefollowing �le olor:(1..n).1 {olor(X,I) : (I)} 1 :- v(X).:- olor(X,I), olor(Y,I), e(X,Y), (I).The domain prediates v and e, haraterizing the verties and edges of G,are assumed to be de�ned in a separate �le, alled, say, graph. For instane,if G is the 3-dimensional ube then that �le may look like this:v(0..7).e(0,1). e(1,2). e(2,3). e(3,0).e(4,5). e(5,6). e(6,7). e(7,4).e(0,4). e(1,5). e(2,6). e(3,7).



Answer Set Programming 21(There is no need to inlude atoms with the opposite order of arguments,suh as e(1,0); it is only essential that the adjaeny relation of G be thesymmetri losure of e.) The ommand line uses the - option of lparseto speify the value of the symboli onstant n, and it instruts lparse toonatenate the �les graph and olor:% lparse - n=2 -d none graph olor | smodelsIn response, smodels produes the set of atoms desribing a 2-oloring ofthe ube:Stable Model: olor(0,1) olor(1,2) olor(2,1) olor(3,2)olor(4,2) olor(5,1) olor(6,2) olor(7,1)As an be seen from the proof of Proposition 13, the �rst part (17) of ouroloring program desribes a \simple" superset of the set of n-olorings of Gthat we are trying to apture; the seond half (18) onsists of the onstraintsthat weed out the \bad" elements of that superset. This \generate-and-test"organization is typial for simple ASP programs. But it would be a mistaketo think that answer set solvers operate by generating the elements of thesuperset desribed in the generate part and verifying whih of these elementssatisfy the test onditions. As briey disussed at the end of Setion 2.5, thesearh algorithms implemented in these systems are based on very di�erentideas.3.4 CliquesA lique in a graph G is a set of pairwise adjaent verties of G. We wouldlike to use ASP to �nd a lique of a ardinality � n in a given graph or todetermine that it does not exist. To this end, we will write a program whoseanswer sets are in a 1{1 orrespondene with liques of ardinalities � n.As before, V is the set of verties of the graph, and E the set of its edges.The program onsists of the rules(20) n � fin(x) : x 2 V g;(21)  in(x); in(y) (x; y 2 V ; x 6= y; fx; yg 62 E):PROPOSITION 14. A set X of atoms is a stable model of the onjuntionof (20) and (21) i� X is(22) fin(x) : x 2 Cgfor some lique C in G suh that jCj � n.



22 Paolo Ferraris and Vladimir LifshitzProof. By Proposition 12(i), the stable models of (20) an be haraterizedas sets of the form (22), where C is a set of verties of a ardinality� n. ByProposition 4, it follows that the stable models of the onjuntion of (20)with the onstraints (21) an be haraterized as the sets of the form (22)that do not satisfy the bodies of the onstraints. The last ondition anbe expressed by saying that the onditions x 2 C and y 2 C annot holdsimultaneously for two di�erent non-adjaent verties x, y, whih meansthat C is a lique. �Here is an lparse enoding of (20), (21):n {in(X) : v(X)}.:- in(X), in(Y), v(X;Y), X!=Y, not e(X,Y), not e(Y,X).The domain prediates v and e are assumed to haraterize the vertiesand edges of G, as in Setion 3.3. In the body of the seond rule, v(X;Y)is an lparse abbreviation for v(X),v(Y), and != represents 6=. The pairof onditions not e(X,Y), not e(Y,X) expresses that X and Y are non-adjaent.3.5 Shur NumbersA set S of integers is alled sum-free if there are no numbers x, y in S suhthat x+y is in S. For instane, f1; 3; 5g is sum-free, and f2; 3; 5g and f2; 4gare not. We would like to use ASP to �nd, for given k and n, a partitionof the interval f1; : : : ; ng into at most k sum-free sets or to determine thatsuh a partition does not exist. (The largest n suh that f1; : : : ; ng an bepartitioned into k sum-free set is alled the k-th Shur number and denotedby S(k).)In the following program the atoms si(x) (1 � i � k, 1 � x � n) areused to express that x belongs to the i-th set Si in a partition of f1; : : : ; nginto sum-free sets S1; : : : ; Sk:(23) 1 � fs1(x); : : : ; sk(x)g � 1 (1 � x � n);(24)  si(x); si(y); si(x+ y) (1 � i � k; x; y � 1; x+ y � n):The proposition below expresses the orretness of this program. Notethat the onditions on the sets Si in the statement of the proposition allowthese sets to be empty, so that the list S1; : : : ; Sk represents a partition intoat most k sets, not exatly k.PROPOSITION 15. A set X of atoms is a stable model of the onjuntionof (23) and (24) i� X is(25) fsi(x) : 1 � i � k; x 2 Sig



Answer Set Programming 23for sum-free pairwise disjoint sets S1; : : : ; Sk suh that(26) S1 [ � � � [ Sk = f1; : : : ; ng:Proof. By Proposition 12(iii), eah of the formulas (23) has k stable modelsfsi(x)g (i = 1; : : : ; k). By Proposition 11, it follows that arbitrary stablemodels of the onjuntion of these formulas are unions of suh singletons,one per eah x 2 f1; : : : ; ng. In other words, the stable models of (23) anbe haraterized as sets of the form (25), where the sets Si are pairwisedisjoint and satisfy (26).By Proposition 4, it follows that the stable models of the onjuntionof (23) with the onstraints (24) an be haraterized as sets of the form (25),where Si are pairwise disjoint, satisfy (26), and do not satisfy the bodies ofthe onstraints. The last ondition an be expressed by saying that eah Siis sum-free. �Here is how rules (23), (24) an be written in the language of lparse:subset(1..k).number(1..n).#domain number(X;Y).1 {s(I,X) : subset(I)} 1.:- s(I,X), s(I,Y), s(I,X+Y), subset(I), X+Y<=n.(In the last rule, <= is the lparse symbol for � .) In response to theommand% lparse - k=3 - n=13 -d none shur | smodelssmodels produes the outputStable Model: s(3,1) s(1,2) s(1,3) s(3,4) s(2,5) s(2,6) s(2,7)s(2,8) s(2,9) s(3,10) s(1,11) s(1,12) s(3,13)whih represents a partition of the interval f1; : : : ; 13g into 3 sum-free sets:f2; 3; 11; 12g[ f5; 6; 7; 8; 9g[ f1; 4; 10; 13g:If we replae 13 by 14 in the ommand line then smodels will report thatthe program has no stable models; thus S(3) = 13.



24 Paolo Ferraris and Vladimir Lifshitz3.6 TilingWe would like to use ASP to �nd a way to over an 8 � 8 hessboard bytwenty-one 3� 1 tiles and one 1� 1 tile.The idea of the solution below is due to Ashish Gupta (personal ommu-niation). The problem an be reformulated as follows: plae twenty-one3 � 1 tiles on an 8 � 8 hessboard without overlaps. If a tile is plaed onthe hessboard horizontally then we will desribe its position by the atomh(x; y) (0 � x � 5, 0 � y � 7), where x; y are the oordinates of the tile'ssouthwest orner. If a tile is plaed on the hessboard vertially then wewill desribe its position by the atom v(x; y) (0 � x � 7, 0 � y � 5); xand y have the same meaning. Call these 96 atoms A1; : : : ; A96. The stablemodels of the rule(27) 21 � fA1; : : : ; A96g � 21orrespond to all possible ways to plae 21 tiles on the hessboard. Tothis \generate" part we now add the onstraints testing an arrangement foroverlaps. Overlaps between two horizontal tiles are eliminated by the rules(28)  h(x; y); h(x+ i; y) (0 � x; y � 7; i = 1; 2):For overlaps between the vertial tiles, we inlude(29)  v(x; y); v(x; y + i) (0 � x; y � 7; i = 1; 2):Finally, we eliminate overlaps between a horizontal tile and a vertial tile:(30)  h(x; y); v(x + i; y � j) (0 � x; y � 7; 0 � i; j � 2):The stable models of program (27){(30) orrespond to the solutions to thetiling problem we are interested in.The program above an be represented in the language of lparse asfollows:number(0..7).#domain number(X;Y;I;J).hpos(X,Y) :- X<=5.vpos(X,Y) :- Y<=5.21 {h(XX,YY) : hpos(XX,YY), v(XX,YY) : vpos(XX,YY)} 21.:- h(X,Y), h(X+I,Y), 0<I, I<=2.:- v(X,Y), v(X,Y+I), 0<I, I<=2.:- h(X,Y), v(X+I,Y-J), I<=2, J<=2.



Answer Set Programming 25The domain prediates hpos and vpos represent the possible positions ofhorizontal and vertial tiles. In the output of smodels we read:Stable Model: h(5,1) h(5,0) h(3,7) h(3,6) h(3,5) h(3,4) h(3,3)h(3,2) h(2,1) h(2,0) h(0,7) h(0,6) v(7,5) v(7,2) v(6,5) v(6,2)v(2,3) v(1,3) v(1,0) v(0,3) v(0,0)3.7 Hamiltonian CylesEah of the programs in Setions 3.3{3.6 is a onjuntion of hoie formulasand onstraints. In the next example we will have a hane to use Hornformulas as well.A Hamiltonian yle in a direted graph G is a losed path that passesthrough eah vertex of G exatly one. We would like to use ASP to �nda Hamiltonian yle in a given direted graph or to determine that it doesnot exist.The program below uses the atoms in(x; y) for all edges hx; yi of G toexpress that hx; yi belongs to the path. The generate part of the programonsists of the hoie rules(31) fin(x; y)g (hx; yi 2 E)(E stands for the set of edges of G). We need to onjoin them with on-straints that eliminate all subsets of E other than Hamiltonian yles.Two useful onstraints are(32)  2 � fin(x; y) : y 2 Axg (x 2 V );where Ax stands for fy : hx; yi 2 Eg, and(33)  2 � fin(x; y) : x 2 Byg (y 2 V );where By stands for fx : hx; yi 2 Eg. They ensure that two in-edges neitherstart nor end at the same vertex, so that the set of in-edges is a path or aunion of disjoint paths. In addition, we want to require that every vertexof G be reahable by a sequene of in-edges from some �xed vertex x0. Wewill do this using the auxiliary atoms r(x) (\x is reahable from x0") forall verties x of G. The following two rules provide a \reursive de�nition"of r:(34) r(x)  in(x0; x) (x 2 V );(35) r(y) r(x); in(x; y) (hx; yi 2 E)(V stands for the set of verties of G). Now we are ready to impose thereahability onstraints:



26 Paolo Ferraris and Vladimir Lifshitz(36)  not r(x) (x 2 V ):Besides the generate part (31) and the test part (32), (33), (36), thisprogram ontains the rules (34) and (35), whih de�ne the auxiliary atomsused in one of the test rules. This \generate-de�ne-test" struture is typialfor more advaned ASP programs. As in the example above, the de�nitionsof auxiliary atoms are often reursive.The following proposition expresses the orretness of program (31){(36).In its statement, the essential part of a set X of atoms is the set of atomsin X that have the form in(x; y).PROPOSITION 16. A set X of atoms is the essential part of a stable modelof (31){(36) i� X has the form(37) fin(x; y)) : hx; yi 2 Hgwhere H is the set of edges of a Hamiltonian yle in G. Furthermore,di�erent stable models of this program have di�erent essential parts.The last sentene shows that if we \hide" the atoms of the form r(x) inthe list of stable models of this program produed by an answer set solverthen the output will ontain eah Hamiltonian yle of G exatly one.For any set H � E, by RH we denote the set of atoms r(x) for allverties x to whih there is a path of nonzero length from x0 over edgesin H .LEMMA 17. A set X of atoms is a stable model of the onjuntion offormulas (31), (34) and (35) i� X is(38) fin(x; y)) : hx; yi 2 Hg [RHfor some subset H of E.Proof. Denote the onjuntion of formulas (31) by F , and the onjuntionof formulas (34), (35) by G. By Theorem 8, X is a stable model of F ^G i�there exists a stable model fA1; : : : ; Ang of F suh that X is a stable modelof A1 ^ � � � ^ An ^ G. By Proposition 3, it follows that the stable modelsof F ^G an be haraterized as the stable models of formulas of the form(39) ^hx;yi2H in(x; y) ^ Gfor arbitrary subsets H of E. Formula (39) is a Horn formula, and itsminimal model is its only stable model (Theorem 2). It remains to observethat the minimal model of (39) is (38). �



Answer Set Programming 27Proof of Proposition 16. A setH � E is the set of edges of a Hamiltonianyle in G i� it satis�es the following onditions:(i) H does not ontain two di�erent edges leaving the same vertex.(ii) H does not ontain two di�erent edges ending at the same vertex.(iii) For every vertex x of G, there exists a path of nonzero length from x0to x over edges in H .By Lemma 17 and Proposition 4, a set X of atoms is a stable model ofprogram (31){(36) i� X has the form (38), where H � E, and does notsatisfy the bodies of the onstraints (32), (33), (36). It is lear that� (i) holds i� (38) does not satisfy the bodies of onstraints (32);� (ii) holds i� (38) does not satisfy the bodies of onstraints (33);� (iii) holds i� (38) does not satisfy the bodies of onstraints (36).Consequently X is a stable model of (31){(36) i� X has the form (38) fora subset H of E satisfying onditions (i){(iii). Both parts of the statementof Proposition 16 now follow, beause the essential part of (38) is (37). �The disussion of the Hamiltonian yles example above is based on[Erdo�gan and Lifshitz, 2004, Setion 5℄.Here is a representation of program (31){(36) in the language of lparse,assuming that x0 is 0:{in(X,Y)} :- e(X,Y).:- 2 {in(X,Y) : e(X,Y)}, v(X).:- 2 {in(X,Y) : e(X,Y)}, v(Y).r(X) :- in(0,X), v(X).r(Y) :- r(X), in(X,Y), e(X,Y).:- not r(X), v(X).hide r(_).3.8 The Bloks WorldThe bloks world onsists of several bloks 1; : : : ; n, plaed on the table sothat they form a tower or several towers. For instane, if n = 2 then thebloks world an be in 3 states:



28 Paolo Ferraris and Vladimir Lifshitz1 22 1 1 2------- ------- -------If n = 3 then 13 states are possible: 6 on�gurations in whih the bloksform one tower; 6 on�gurations in whih 2 bloks form a tower and thethird is on the table; one on�guration in whih all bloks are on the table.Bloks an be moved around, and in Setion 3.10 we show how ASPan be used to �nd a sequene of ations that takes the bloks world froma given initial state to a given goal state (or, more generally, to a statesatisfying a given goal ondition). As a preliminary step, in this setion wewrite an ASP program that represents the set of all possible on�gurationsof n bloks.Positions of bloks are desribed in this program by the atoms on(x; y),where x 2 f1; : : : ; ng, y 2 f1; : : : ; n; tableg, x 6= y. The �rst rule of theprogram is the hoie rule allowing us to hoose arbitrarily, for eah blok x,a unique loation:(40) 1 � fon(x; y) : y 2 f1; : : : ; n; tableg n fxgg � 1(1 � x � n). Furthermore, we do not allow two bloks to be on top of thesame blok:(41)  2 � fon(x; y) : x 2 f1; : : : ; ng n fygg(1 � y � n). These onstraints are not suÆient, however, for eliminatingall \bad" stable models of (40), beause they allow subsets of bloks to formirular on�gurations \oating in spae," suh as on(1; 2) and on(2; 1).The absene of suh on�gurations an be expressed using an auxiliaryreursively de�ned prediate, similar to the prediate r used in Setion 3.7to desribe Hamiltonian yles. The atoms s(x), where 1 � x � n, willexpress that x is supported by the table, that is to say, belongs to a towerof bloks that rests on the table. They are de�ned by the rules(42) s(x) on(x; table) (1 � x � n);(43) s(x) s(y); on(x; y) (1 � x; y � n;x 6= y):The absene of bloks oating in spae is expressed by the onstraints(44)  not s(x) (1 � x � n):In the language of lparse:



Answer Set Programming 29blok(1..n).1 {on(X,Y) : blok(Y) : X!=Y, on(X,table)} 1 :- blok(X).:- 2 {on(X,Y) : blok(X) : X!=Y}, blok(Y).s(X) :- on(X,table), blok(X).s(X) :- s(Y), on(X,Y), blok(X;Y), X!=Y.:- not s(X), blok(X).hide s(_).3.9 Strong NegationSome appliations of ASP, inluding those related to ations and planning,are failitated by the use of a seond kind of negation, alled \strong" (or\lassial," or \true"), proposed in [Gelfond and Lifshitz, 1991℄.Reall that propositional formulas are formed from atoms and the 0-plaeonnetive ? using the binary onnetives ^, _ and ! (Setion A.1). As-sume that we distinguish between atoms of two kinds, positive and negative,and that eah negative atom is an expression of the form �A, where A is apositive atom. The symbol � is alled strong negation.Note that syntatially strong negation is not really a onnetive, aord-ing to this de�nition: it is allowed to our in front of positive atoms only.For example, expressions ��p and �(p ^ q) are not formulas.13A set of atoms is oherent if it does not ontain \omplementary" pairsof atoms A, �A.Consider, for instane, the program(45) fpg;q;�q  :p:It ontains two positive atoms p, q and one negative atom �q. It is easy tohek using the method of Setion 2.7 that the stable models of this programare fp; qg and fq;�qg. The �rst of them is oherent, and the seond is not.The problem of omputing the oherent stable models of a formula anbe easily redued to the problem of omputing arbitrarily stable models:PROPOSITION 18. A set X of atoms is a oherent stable model of a for-mula F i� X is a stable model of the formula13Alternatively, strong negation an be treated as an additional onnetive, in the spiritof [Nelson, 1949℄.



30 Paolo Ferraris and Vladimir Lifshitz(46) F ^ Â :(A^ �A);where the big onjuntion extends over all positive atoms A suh that both Aand �A are head atoms of F .Proof. By Proposition 4, X is a stable model of (46) i� X is a stable modelof F whih does not have subsets of the form fA;�Ag suh that A, �Aare head atoms of F . By Theorem 1, this ondition on X is equivalent tosaying that X is a oherent stable model of F . �In the input language of lparse, strong negation is written as - . Whenthe input program ontains strong negation, lparse should be alled withthe option --true-negation . The answer set solvers that aept inputprograms with strong negation, suh as smodels, generate oherent answersets only. For instane, if we save the rules{p}.q.-q :- not p.as file45 and give the ommand% lparse --true-negation file45 | smodels 0then the output will ontain only one model:Stable Model: p qStrong negation allows us to distinguish between the assertions \A isfalse" and \A is not known to be true" in ASP programs. The former isexpressed by the presene of the negative atom � A in a oherent stablemodel; the latter, by the absene of the positive atom A, whih is obviouslya weaker ondition. The rule(47) �A not A(\A is false if there is no evidene to the ontrary") is an ASP representationof the losed world assumption [Reiter, 1978℄ for the positive atom A. Thefollowing proposition desribes the e�et of adding this rule on the stablemodels of a program.PROPOSITION 19. Let F be a formula and A a positive atom suh that�A does not our in F . For any set X of atoms, X is a oherent stablemodel of(48) F ^ (:A!�A)



Answer Set Programming 31i�(i) X is a stable model of F and A 2 X, or(ii) X = Y [ f�Ag, where Y is a stable model of F suh that A 62 Y .Case (ii) is the ase when there is no evidene that A is true, and thelosed world assumption leads us to the onlusion that A is false.Proof. By Theorem 8, X is a stable model of (48) i� X is a stable modelof a formula of the form(49) A1 ^ � � � ^ An ^ (:A!�A);where fA1; : : : ; Ang is a stable model of F . Case 1: A equals one of theatoms Ai. Then (49) is intuitionistially equivalent to A1 ^ � � � ^An, and Xis a stable model of (49) i�X = fA1; : : : ; Ang. Case 2: A is di�erent from allatoms Ai. Then A is not a head atom of (49). By Proposition 9, it followsthat X is a stable model of (49) i� X is a stable model of the formulaA1 ^ � � � ^ An ^ (:? !�A);whih is intuitionistially equivalent toA1 ^ � � � ^ An^ �A:So X is a stable model of (48) i� X = Y [ f� Ag, where Y stands forfA1; : : : ; Ang. �The rule(50) A not �Aexpresses the inverse losed world assumption: A is true if there is no evi-dene to the ontrary.3.10 PlanningWe would like to use ASP to �nd a sequene of ations that takes the bloksworld (Setion 3.8) from a given initial state to a state satisfying a givengoal ondition. To be more preise, we will be looking for a sequene of setsof ations, beause some ations an be exeuted onurrently. There are n2possible ations, where n is the number of bloks: any blok x 2 f1; : : : ; ngan be moved to any loation l 2 f1; : : : ; n; tableg di�erent from x.



32 Paolo Ferraris and Vladimir LifshitzWe assume that� a blok an be moved only when there are no bloks on top of it, and� at most k ations an be exeuted onurrently(think of a robot with k grippers that an only grasp a blok from above).We also assume that� a blok x an be moved onto a blok y only if y is not being moved atthe same time(the robot's ability to oordinate the movements of the grippers is not goodenough for that).A history is a �nite sequenes0; e0; s1; e1; : : : ; em�1; smwhere s0; s1; : : : ; sm are states of the bloks world, and eah ei (0 � i < m) isa set of ations (an \event"), whih, when exeuted onurrently in state si,lead to state si+1. We will write a program whose stable models representthe histories with a given initial state s0 and a given length m suh thattheir �nal state sm satis�es a given goal ondition.Histories will be desribed by� the atoms on(x; l; i) (x 2 f1; : : : ; ng, l 2 f1; : : : ; n; tableg, x 6= l,i 2 f0; : : : ;mg), expressing that x is on l in state si, and� the atoms move(x; l; i) (x 2 f1; : : : ; ng, l 2 f1; : : : ; n; tableg, x 6= l,i 2 f0; : : : ;m � 1g), expressing that x is moved onto l as part ofevent ei.One of the rules of the program (rule (55) below) uses these atoms to de-sribe the e�et of moving a blok: if x is moved onto l as part of event eithen x is on l in state si+1.The program ontains strong negation (Setion 3.9), whih is applied tothe atoms on(x; l; i). The usefulness of strong negation in ASP programsdesribing e�ets of ations is related to the frame problem [Shanahan,1997℄|the problem of desribing what does not hange when ations areexeuted. If x1; x2; : : : are the bloks that are moved in the ourse of event eithen rule (55) tells us where these bloks are going to be afterwards. Butwhat about loations of the bloks other than x1; x2; : : : ? An adequateformalization should allow us to onlude that the loations of all the otherbloks will not hange; in state si+1 eah of them will stay where it was instate si.



Answer Set Programming 33An elegant way to ensure this is to postulate the default that Leibnizstated in his Introdution to a Seret Enylopedia and that is now alledthe ommonsense law of inertia: \Everything is presumed to remain inthe state in whih it is" [Leibniz, 1995, p. 9℄. In partiular, the loationof a blok after event ei is presumed, in the absene of evidene to theontrary, to remain the same as it was before the event. Bloks x1; x2; : : :are exeptions: sine they are moved, rule (55) provides evidene that theirloations may not remain the same. We have seen in Setion 3.9 that strongnegation helps us formalize another default|the losed world assumption;here strong negation will be used to solve the frame problem.The generate part of the program expresses that eah event ei an beomposed of up to k ations, hosen arbitrarily:(51) fmove(x; l; i) : 1 � x � n; l 2 f1; : : : ; n; tableg; x 6= lg � k(1 � i < m). This rule is followed by onstraints expressing that a blokan be moved only if it is lear(52)  move(x; l; i); on(y; x; i)(1 � x; y � n, l 2 f1; : : : ; n; tableg, x 6= l, x 6= y, 0 � i < m) and if thedestination is not a blok that is being moved also:(53)  move(x; y; i);move(y; l; i)(1 � x; y � n, l 2 f1; : : : ; n; tableg, x 6= y, y 6= l, 0 � i < m).The next part of the program de�nes the loations of bloks in state siin terms of their initial loations and the events e0; : : : ; ei�1. It begins withthe rules(54) on(x; init(x); 0)(1 � x � n), where init(x) stands for the initial loation of x, and(55) on(x; l; i+ 1) move(x; l; i)(1 � x � n, l 2 f1; : : : ; n; tableg, x 6= l, 0 � i < m). The next rule expressesthe uniqueness of the loation of a blok using strong negation:(56) �on(x; l; i) on(x; l0; i)(1 � x � n, l; l0 2 f1; : : : ; n; tableg, x 6= l, x 6= l0, l 6= l0, 0 � i � m).The last rule in this group expresses the ommonsense law of inertia for thebloks world:(57) on(x; l; i+ 1) on(x; l; i);not �on(x; l; i+ 1)



34 Paolo Ferraris and Vladimir Lifshitz(1 � x � n, l 2 f1; : : : ; n; tableg, x 6= l, 0 � i < m). It says thatx is on l in state si+1 (the head of the rule) ifx is on l in state si (the �rst term of the body) andthe rules of the program provide no evidene to the ontrary (theseond term of the body).Note that exept for the presene of the term on(x; l; i) in the body, (57)has the same syntati form as (50).Finally, we need to inlude onstraints expressing that s1; : : : ; sm arevalid states of the bloks world, and that sm satis�es the goal ondition G:(58)  2 � fon(x; y) : x 2 f1; : : : ; ng n fygg(0 � y � n, 0 � i < m);(59)  not G:Rule (58) says that two bloks annot be on top of the same blok; thisis a ounterpart of rule (41). Counterparts of the other properties of validstates disussed in Setion 3.8 are not needed in the new framework. Indeed,the existene of the loation of every blok and the absene of irularon�gurations are assumed to hold in the initial state desribed by thefuntion init , and these properties are preserved when bloks are moved;the uniqueness of the loation of a blok is expressed by (56).Here is program (51){(59) in the language of lparse:step(0..m).blok(1..n).loation(1..n;table).#domain step(I).#domain blok(X;Y;Z).#domain loation(L;L1).{move(XX,LL,I) : blok(XX) : loation(LL) : XX!=LL} k :- I<m.:- move(X,L,I), on(Y,X,I), X!=L, X!=Y, I<m.:- move(X,Y,I), move(Y,L,I), X!=Y, Y!=L, I<m.on(X,L,0) :- init(X,L).on(X,L,I+1) :- move(X,L,I), X!=L, I<m.-on(X,L,I) :- on(X,L1,I), X!=L, X!=L1, L!=L1.on(X,L,I+1) :- on(X,L,I), not -on(X,L,I+1), X!=L, I<m.



Answer Set Programming 35:- 2 {on(XX,Y,I) : blok(XX) : XX!=Y}.:- not goal.hide.show move(_,_,_).The last two lines instrut smodels to display no atoms exept for theations move(...). The initial state and the goal ondition are assumed tobe de�ned in a separate �le, for instane:init(1,2). init(2,table). init(3,4).init(4,table). init(5,6). init(6,table).goal :- on(2,1,m), on(3,2,m), on(6,5,m), on(5,4,m).The idea of the solution to the frame problem given by rule (57) goesbak to [Reiter, 1980, Setion 1.1.4℄, but implementing that idea was notstraightforward [Hanks and MDermott, 1987℄, and it was ahieved yearslater [Turner, 1997℄. The fat that planning an be redued to �nding astable model was noted in [Subrahmanian and Zaniolo, 1995℄, and �rst ex-periments on generating plans using smodels were reported in [Dimopouloset al., 1997℄. The disussion of bloks world planning in this setion is basedon [Lifshitz, 2002, Setion 5℄.4 Proofs of Theorems4.1 Proof of Theorem 1LEMMA 20. If X j= F and a set Y ontains all head atoms of F thenX \ Y j= FX .Proof. The proof is by strutural indution on F . Assume that X j= F .Clearly F is not ?. Case 1: F is an atom A. Sine X j= F , FX is A andA 2 X . Sine A is a head atom, we an further onlude that A 2 X \ Y .Case 2: F is G ^H . Sine X j= F , we know that FX is GX ^HX , X j= Gand X j= H . Sine all head atoms of G and H belong to Y , from theindution hypothesis we onlude that X \ Y j= GX and X \ Y j= HX .Consequently X \ Y j= FX . Case 3: F is G _ H . Similar to Case 2.Case 4: F is G! H . Sine X j= F , FX is GX ! HX . Case 4.1: X j= G.Then X j= H . Sine all head atoms of H belong to Y , from the indutionhypothesis we onlude that X \ Y j= HX . Consequently X \ Y j= FX .Case 4.2: X 6j= G. Then GX is ?, so that FX is a tautology. �THEOREM 1. Any stable model of F is a subset of the set of head atomsof F .



36 Paolo Ferraris and Vladimir LifshitzProof. Let X be a stable model of F , and Y the set of head atoms of F . ByLemma 20, X\Y j= FX . Sine X is minimal among the sets satisfying FX ,it follows that X \ Y = X , and onsequently X � Y . �4.2 Proof of Theorem 2LEMMA 21. For any Horn formula F and any two sets X and Y of atoms,if X � Y and Y j= F then X j= F i� X j= F Y .Proof. Assume �rst that F is a single impliation(60) A1 ^ � � � ^ An ! A:Case 1: A1; : : : ; An belong to Y . Under the assumption Y j= F the on-sequent A of F belongs to Y also, so that F Y = F . Case 2: for some i,Ai 62 Y . Under the assumption X � Y , Ai 62 X , so that X satis�es F . Onthe other hand, F Y is the tautology ? ! AY , so that X satis�es F Y aswell.If F is a onjuntion F1^� � �^Fm of several impliations of the form (60)then X satis�es F i� X satis�es eah Fj . Under the assumption Y j= F ,F Y is F Y1 ^ � � � ^F Ym ; onsequently X satis�es F Y i� X satis�es eah of theonjuntive terms F Yj . The assertion of the lemma follows from the speialase proved above. �THEOREM 2. For any Horn formula F , the minimal model of F is theonly stable model of F .Proof. Let M be the minimal model of a Horn formula F . Lemma 21,applied to M as Y , shows that FM is satis�ed by M but is not satis�ed byany proper subset of M . ConsequentlyM is a stable model of F . Now takeany stable model Y of F . By the hoie of M , M � Y . Lemma 21, appliedto M as X , shows that M j= F Y . By the de�nition of a stable model, Yis minimal among the sets satisfying F Y . Consequently Y � M . We haveproved that Y =M . �4.3 Proof of Theorems 5 and 7LEMMA 22. For any formula F and any set X of atoms, X j= FX i�X j= F .Proof. Redut FX is obtained from F by replaing some subformulas thatare not satis�ed by X with ?. �LEMMA 23. For any two formulas F and G and any set X of atoms,(a) (F ^G)X is equivalent to FX ^GX in lassial logi, and



Answer Set Programming 37(b) (F _G)X is equivalent to FX _GX in lassial logi.Proof. Part (a): onsider two ases, depending on whether X satis�esF ^G. If it does then the two formulas are equal to eah other; if not theneah of them is equivalent to ?. For part (b), the proof is similar. �LEMMA 24. For any formula F and any two sets X and Y of atoms,X j= F Y i� hX \ Y; Y i j= F .Proof. The proof is by strutural indution on F . If F is ? then theassertion of the lemma is trivial. If F is an atom A,X j= AY i� A 2 Y and A 2 Xi� A 2 X \ Yi� hX \ Y; Y i j= A:If F is G ^H then, using Lemma 23(a),X j= (G ^H)Y i� X j= GY ^HYi� X j= GY and X j= HYi� hX \ Y; Y i j= G and hX \ Y; Y i j= Hi� hX \ Y; Y i j= G ^H:If F is G _H then the reasoning is similar, using Lemma 23(b). Finally, ifF is G! H ,X j= (G! H)Y i� Y j= G! H and X j= GY ! HYi� Y j= G! H andX 6j= GY or X j= HYi� Y j= G! H andhX \ Y; Y i 6j= G or hX \ Y; Y i j= Hi� hX \ Y; Y i j= G! H: �LEMMA 25. Let F , G, F 0, G0 be formulas suh that G0 is obtained from F 0by replaing some (zero or more) ourrenes of F with G. For any set Xof atoms, if FX is equivalent to GX then (F 0)X is equivalent to (G0)X .Proof. Assume that FX is equivalent to GX . By Lemma 22, it follows that(61) X j= F $ G:



38 Paolo Ferraris and Vladimir LifshitzWe will prove that (F 0)X is equivalent to (G0)X by strutural indutionon F 0. This assertion is trivial when F 0 equals F and also when the numberof ourrenes of F in F 0 that are being replaed is 0; in partiular, theases when F 0 is ? or an atom are trivial. Assume that F 0 has the formF 01�F 02, and G0 is G01�G02, where G0i is obtained from F 0i by replaing someourrenes of F with G. Case 1: X 6j= F 0. In view of (61), X 6j= G0, so that(F 0)X = ? and (G0)X = ?. Case 2: X j= F 0. In view of (61), X j= G0, sothat (F 0)X = (F 01)X � (F 02)X and (G0)X = (G01)X � (G02)X , and the laimfollows by the indution hypothesis. �COMBINED STATEMENT OF THEOREMS 5 AND 7. For any formu-las F and G, the following onditions are equivalent:(i) F is strongly equivalent to G,(ii) for every unary formula H, F ^ H and G ^ H have the same stablemodels,(iii) F is equivalent to G in the logi of here-and-there,(iv) for any set X of atoms, FX is equivalent to GX in lassial logi.Proof. From (i) to (ii): obvious.From (ii) to (iii): assume that F is not equivalent to G in the logi ofhere-and-there, and let hX;Y i be an HT-interpretation that satis�es, say, Fbut not G. Then X � Y and, by Lemma 24, X j= F Y , X 6j= GY . SineX j= F Y , F Y is not ?, whih implies that Y j= F . By Lemma 22, it followsthat Y j= F Y . Case 1: Y 6j= GY . By Lemma 22, Y 6j= G, so that Y isnot a stable model of G ^ H for any H . But if we take H to be VA2Y Athen Y is a stable model of F ^ H . Indeed, by Lemma 23(a), (F ^ H)Yis equivalent to F Y ^HY , whih is the same as F Y ^H ; both onjuntiveterms of this formula are satis�ed by Y , but the seond term is not satis�edby any proper subset of Y . Case 2: Y j= GY . Sine X 6j= GY , X is di�erentfrom Y ; onsequentlyX is a proper subset of Y . LetH be the unary formulaÂ2X A ^ ^A;A02Y nX(A! A0):Set Y is not a stable model of F ^H . Indeed, just as in Case 1, (F ^H)Yis equivalent to F Y ^ H ; X is a proper subset of Y that satis�es bothonjuntive terms. We will show, on the other hand, that Y is a stablemodel of G ^H , whih ontradits ondition (ii). In view of Lemma 23(a),



Answer Set Programming 39(G ^ H)Y is equivalent to GY ^ H . Clearly Y satis�es both onjuntiveterms; the only proper subset of Y that satis�es H is X , and X does notsatisfy GY .From (iii) to (iv): if F and G are satis�ed by the same HT-interpretationsthen, by Lemma 24, for any set Y of atoms, F Y and GY are satis�ed bythe same sets of atoms.From (iv) to (i): immediate from Lemma 25. �4.4 Proof of Theorem 8LEMMA 26. If X is a stable model of F then FX is equivalent to VA2X A.Proof. Sine all atoms ourring in these two formulas belong to X , it issuÆient to show that the formulas are satis�ed by the same subsets of X .By the de�nition of a stable model, the only subset of X satisfying FX is X .�LEMMA 27. Let S be a set of atoms that ontains all atoms ourring ina formula F but does not ontain any head atoms of a formula G. For anyset X of atoms, if X is a stable model of F ^G then X \S is a stable modelof F .Proof. Sine X is a stable model of F ^ G, X j= F , so that X \ S j= F ,and, by Lemma 22, X \ S j= FX\S . It remains to show that no propersubset Y of X \ S satis�es FX\S . Let S0 be the set of head atoms of G,and let Z be X \ (S0 [ Y ). Set Z has the following properties:(i) Z \ S = Y ;(ii) Z � X ;(iii) Z j= GX .To prove (i), note that sine S0 is disjoint from S, and Y is a subset ofX \ S, Z \ S = X \ (S0 [ Y ) \ S = X \ Y \ S = (X \ S) \ Y = Y:To prove (ii), note that set Z is learly a subset of X . It annot be equalto X , beause otherwise we would have, by (i),Y = Z \ S = X \ S;this is impossible, beause Y is a proper subset of X \ S. Property (iii)follows from Lemma 20, beause X j= G, and S0[Y ontains all head atomsof G.



40 Paolo Ferraris and Vladimir LifshitzSine X is a stable model of F ^ G, from property (ii) we an onludethat Z 6j= (F ^ G)X . Consequently, by Lemma 23(a) and property (iii),Z 6j= FX . Sine all atoms ourring in F belong to S, FX = FX\S , sothat we an rewrite this formula as Z 6j= FX\S . Sine all atoms ourringin FX\S belong to S, it follows that Z \ S 6j= FX\S. By property (i), weonlude that Y 6j= FX\S . �THEOREM 8. Let F and G be formulas suh that F does not ontain anyhead atoms of G. A set X of atoms is a stable model of F ^ G i� thereexists a stable model fA1; : : : ; Ang of F suh that X is a stable model of(62) A1 ^ � � � ^ An ^G:Proof. Take formulas F and G suh that F does not ontain any headatoms of G, and let S the set of atoms ourring in F . Observe �rst thatif a set X of atoms is a stable model of a formula of the form (62), whereA1; : : : ; An 2 S, then X \ S = fA1; : : : ; Ang. Indeed, by Lemma 27 withA1 ^ � � � ^ An as F , X \ S is a stable model of A1 ^ � � � ^An, and the onlystable model of this formula is fA1; : : : ; Ang. Consequently, the assertionto be proved an be reformulated as follows: a set X of atoms is a stablemodel of F ^G i�(i) X \ S is a stable model of F , and(ii) X is a stable model of VA2X\S A ^ G.If X \ S is not a stable model of F then X is not a stable model ofF ^ G by Lemma 27. Now suppose that X \ S is a stable model of F .Then, by Lemma 26, FX\S is equivalent to VA2X\S A. Consequently, byLemma 23(a),(F ^G)X $ FX ^GX = FX\S ^GX $ VA2X\S A ^ GX= �VA2X\S A�X ^GX $ �VA2X\S A ^G�X :We an onlude that X is a stable model of F ^G i� X is a stable modelof VA2X\S A ^ G. �5 ConlusionMany publiations in the area of answer set programming are direted to-wards pratial appliations, and the titles of several papers of this kindinluded in the bibliography14 show the remarkable diversity of the areas14[Soininen and Niemel�a, 1998℄, [Erdem et al., 2000℄, [Nogueira et al., 2001℄, [Hel-janko and Niemel�a, 2003℄, [Baral et al., 2004℄, [Brooks et al., 2005℄, [Leone et al., 2005℄,[Hermansson et al., 2005℄.



Answer Set Programming 41of siene and tehnology where ASP may be useful. Suess in this workwould have been impossible without eÆient, reliable, arefully rafted an-swer set solvers.The main topi of this paper, however, is theoretial. We have seen thatASP is based on interesting mathematis, inluding some ideas developedin the early days of modern logi. The senior author (VL) is partiularlypleased to ontribute a paper on mathematial foundations of answer setprogramming to a volume in honor of Dov Gabbay in view of the importantrole that intuitionisti logi plays in this theory. Intuitionisti logi is whatboth of us were interested in as beginning researhers many years ago, whenwe �rst learned about eah other's work.A Propositional LogiA.1 Syntax and Semantis(Propositional) formulas are formed from propositional atoms and the 0-plae onnetive ? using the binary onnetives ^, _ and !. We use> as shorthand for ? ! ?;:F as shorthand for F ! ?;F $ G as shorthand for (F ! G) ^ (G! F ):Atoms and negated atoms are alled literals.The relationX j= F between a set X of atoms and a formula F is de�nedreursively:� for an atom A, X j= A if A 2 X ;� X 6j= ?;� X j= F ^G if X j= F and X j= G;� X j= F _G if X j= F or X j= G;� X j= F ! G if X 6j= F or X j= G.If X j= F then we say that X satis�es F , or is a model of F . A formula isa tautology if it is satis�ed by every set of atoms. A formula F is equivalentto a formula G if F $ G is a tautology (or, equivalently, if F and G havethe same models).An ourrene of an atom A in a formula F is positive if the numberof impliations ontaining that ourrene in the anteedent is even, andnegative otherwise. For instane, both ourrenes of p in the formula(63) ((p! q) ^ r)! p



42 Paolo Ferraris and Vladimir Lifshitzare positive, and q, r are negative. An ourrene of an atom A in aformula F is stritly positive if it does not belong to the anteedent ofany impliation in F . For instane, the seond ourrene of p in (63) isstritly positive, and the �rst is not. Sine :F is shorthand for F ! ?, noourrene of an atom in a formula of the form :F an be stritly positive.A.2 Logi of Here-and-ThereThe logi of here-and-there is a 3-valued logi that was originally proposedby the inventor of intuitionisti logi Arend Heyting as a tehnial toolfor the purpose of proving that intuitionisti logi is weaker than lassi-al [Heyting, 1930℄. (He remarks that the truth values in his truth tables\an be interpreted as follows: 0 denotes a orret proposition, 1 denotesa false proposition, and 2 denotes a proposition that annot be false butwhose orretness is not proved.") We will identify a funtion from the setof atoms to the extended set of truth values f0; 1; 2g with the ordered paironsisting of the set X of atoms that are mapped to 0 and the set Y ofatoms that are mapped to 0 or 2. (If an atom belongs to X then it is true\here"; if an atom belongs to Y then it is true \there".)An HT-interpretation is an ordered pair hX;Y i of sets of atoms suh thatX � Y . The satisfation relation j= between an HT -interpretation hX;Y iand a formula F is de�ned reursively:� for an atom A, hX;Y i j= A if A 2 X ;� hX;Y i 6j= ?;� hX;Y i j= F ^G if hX;Y i j= F and hX;Y i j= G;� hX;Y i j= F _G if hX;Y i j= F or hX;Y i j= G;� hX;Y i j= F ! G if(i) hX;Y i 6j= F or hX;Y i j= G, and(ii) Y j= F ! G.(The symbol j= in the last line refers to the satisfation relation of lassiallogi de�ned in Setion A.1.)A formula is valid in the logi of here-and-there if it is satis�ed by ev-ery HT -interpretation. A formula F is equivalent to a formula G in thelogi of here-and-there if F $ G is valid in the logi of here-and-there (or,equivalently, if F and G are satis�ed by the same HT -interpretations).The following fats relate the satisfation relation of the logi of here-and-there to the satisfation relation of lassial logi:



Answer Set Programming 43(64) hX;Xi j= F i� X j= F:(65) If hX;Y i j= F then Y j= F:(66) hX;Y i j= :F i� Y j= :F:From property (64) we see that a formula an be valid in the logi of here-and-there only if it is a tautology. It follows that two formulas an beequivalent to eah other in the logi of here-and-there only if they are las-sially equivalent. To see where the two equivalene relations di�er fromeah other, note that ::p is not equivalent to p in the logi of here-and-there. Indeed, by (66), the HT -interpretation h;; fpgi satis�es ::p, but itlearly does not satisfy p.A.3 Natural DedutionIn the natural dedution system for propositional logi, the derivable objetsare sequents|expressions of the form � ) F (\F under the assumptions�"), where F is a formula and � is a �nite set of formulas. Notationally, wewill identify the set of assumption in a sequent with the list of its elements.For instane, we will write �; F ) G for � [ fFg ) G.The axiom shemas are(67) F ) Fand(68) ) F _ :F:The latter is alled the law of exluded middle. The inferene rules are(^I) �) F �) G�;�) F ^G (^E) �) F ^G�) F �) F ^G�) G(_I) �) F�) F _G �) G�) F _G (_E) �) F _G �1; F ) H �2; G) H�;�1;�2 ) H(!I) �; F ) G�) F ! G (!E) �) F �) F ! G�;�) G(C) �) ?�) F(W ) �) F�0 ) Fif � � �0



44 Paolo Ferraris and Vladimir LifshitzAmong the �rst six inferene rules, the rules in the left olumn are introdu-tion rules, and the rules in the right olumn are elimination rules. Rule (C)is the ontradition rule, and (W ) is weakening.Sine we de�ned :F as an abbreviation for F ! ? (Setion A.1), \nega-tion introdution" �; F ) ?�) :Fis a speial ase of (! I), and \negation elimination"�) F �) :F�;�) ?is a speial ase of (! E). Similarly, the introdution and elimination rulesfor equivalene�) F ! G �) G! F�;�) F $ G �) F $ G�) F ! G �) F $ G�) G! Fare speial ases of (^I) and (^E).To prove a formula F in this system means to prove the sequent ) F .For instane, here is a proof of the equivalene(69) (:p! p)$ ::p:1: :p! p) :p! p | axiom2: :p) :p | axiom3: :p;:p! p) p | by (! E) from 2, 14: :p;:p! p) ? | by (! E) from 3, 25: :p! p) ::p | by (! I) from 46: ) (:p! p)! ::p | by (! I) from 57: ::p) ::p | axiom8: :p;::p) ? | by (! E) from 2, 79: :p;::p) p | by (C) from 810: ::p) :p! p | by (! I) from 911: ) ::p! (:p! p) | by (! I) from 1012: ) (:p! p)$ ::p | by (^I) from 6, 11The dedutive system desribed above is sound and omplete: a for-mula F is provable in this system i� F is a tautology.A formula is intuitionistially provable if it an be proved in this de-dutive system without referenes to axiom shema (68). A formula F isintuitionistially equivalent to a formula G if F $ G is intuitionistiallyprovable.



Answer Set Programming 45For instane, the impliation:p! p is intuitionistially equivalent to theformula ::p, beause the proof of (69) above ontains no referenes to thelaw of exluded middle. On the other hand, this impliation is not intuition-istially equivalent to p: the equivalene obtained from (69) by dropping thedouble negation in the right-hand side annot be proved without (68).Aording to the replaement property of intuitionisti logi, if F is asubformula of a formula F 0, and G0 is obtained from F 0 by replaing anourrene of F with another formula G, then F 0 $ G0 is intuitionisti-ally derivable from F $ G. For instane, from the fat that :p ! p isintuitionistially equivalent to ::p we an onlude that (:p ! p) ^ q isintuitionistially equivalent to ::p ^ q.Every intuitionistially provable formula is valid in the logi of here-and-there; if two formulas are intuitionistially equivalent then they areequivalent in the logi of here-and-there. Moreover, these assertions remaintrue if, instead of intuitionisti logi, we talk about the stronger dedutivesystem, obtained from lassial by replaing (68) with the axiom shemaexpressing the weak law of exluded middle:(70) ) :F _ ::F:We an use this fat, for example, to hek that the formulas p _ :p and::p ! p are equivalent to eah other in the logi of here-and-there, asfollows: 1: p _ :p) p _ :p | axiom2: p) p | axiom3: :p) :p | axiom4: ::p) ::p | axiom5: :p;::p) ? | by (! E) from 3, 46: :p;::p) p | by (C) from 57: p _ :p;::p) p | by (_E) from 1, 2, 68: p _ :p) ::p! p | by (! I) from 79: ) (p _ :p)! (::p! p) | by (! I) from 810: ::p! p) ::p! p | axiom11: ) :p _ ::p | axiom12: :p) p _ :p | by (_I) from 313: ::p;::p! p) p | by (! E) from 4, 1014: ::p;::p! p) p _ :p | by (_I) from 1315: ::p! p) p _ :p | by (_E) from 11, 12, 1416: ) (::p! p)! (p _ :p) | by (! I) from 1517: ) (p _ :p)$ (::p! p) | by (^I) from 9, 16



46 Paolo Ferraris and Vladimir LifshitzHere is an axiom shema that is even stronger than (70) and that an beused for establishing the validity of formulas in the logi of here-and-thereas well:(71) ) F _ (F ! G) _ :G:Nothing stronger would be aeptable: A propositional formula is valid inthe logi of here-and-there i� it is provable in the dedutive system obtainedfrom intuitionisti logi by adding axiom shema (71). This theorem is dueto Lex Hendriks [Lifshitz et al., 2001, Setion 2.2℄.B Traditional De�nition of a Stable ModelIn [Gelfond and Lifshitz, 1988℄, a logi program is assumed to onsist ofrules of the form(72) A0  A1; : : : ; Am;not Am+1; : : : ;not Anwhere n � m � 0 and A0; : : : ; An are atoms; we will all suh expressionstraditional rules. A �nite set of traditional rules with m = n, that is, rulesof the form(73) A0  A1; : : : ; Amis essentially a Horn formula in the sense of Setion 2.2.The traditional redut of a traditional program � relative to a set X ofatoms is the set of rules (73) for all rules (72) in � suh thatAm+1; : : : ; An 62 X:Aording to the 1988 de�nition, the stable model of a traditional program�is a set X of atoms with the following property: X is the minimal model ofthe traditional redut of � relative to X . This is equivalent to our de�nitionof a stable model (Setion 2.1) limited to traditional programs:PROPOSITION 28. For any traditional program �, a set X of atoms isthe minimal model of the traditional redut of � relative to X i� X is astable model of �.Proof. Let �X denote the traditional redut of � relative to X .Case 1: X 6j= �. Set X is not a stable model of �. On the other hand, �ontains a rule (72) suh that A1; : : : ; Am 2 X and A0; Am+1; : : : ; An 62 X .The orresponding rule (73) in �X is not satis�ed by X , so that X is notthe minimal model of �X .Case 2: X j= �. We will show that �X and �X are satis�ed by the samesubsets of X . Sine �X is the onjuntion of the formulas RX for all rules R



Answer Set Programming 47of �, and �X is the union of the programs fRgX for all rules R of �, itis suÆient to verify this laim for the ase when � is a single rule (72).If X ontains at least one of the atoms Am+1; : : : ; An then �X is empty and�X is the tautology ? ! AX0 . Otherwise �X is (73). If A1; : : : ; Am 2 Xthen A0 2 X , beause X j= �; onsequently �X is the result of replaingAm+1; : : : ; An in (72) with ?, whih is equivalent to (73). It remains toonsider the ase when Am+1; : : : ; An 62 X and at least one of the atomsA1; : : : ; Am, say A1, does not belong to X . In this ase �X is the tautology? ! AX0 . On the other hand, �X is the rule (73) whose body ontains A1and onsequently is not satis�ed by any subset of X . It follows that everysubset of X satis�es �X . �Intuitively, a rule (73) an be viewed as a rule for generating atoms:we are allowed to generate its head A0 as soon as all atoms A1; : : : ; Amin the body have been generated. The minimal model of a set of rules ofthe form (73) is the set of all atoms that an be generated by this proess,starting from the empty set. The traditional de�nition of a stable model anbe thought of as an extension of this idea to rules ontaining negative literalsin the body. A rule (72) allows us to generate A0 as soon as we generatedthe atoms A1; : : : ; Am provided that none of the atoms Am+1; : : : ; An anbe generated using the rules of the program. There is a viious irle inthis sentene: to deide whether a rule of � an be used to generate a newatom, we need to know whih atoms an be generated using the rules of �.The traditional de�nition of a stable model overomes this diÆulty usinga \�xpoint onstrution." Take a set X that you suspet may be exatlythe set of atoms that an be generated using the rules of �. Under thisassumption, � has the same meaning as the traditional redut of � relativeto X , whih is a set of rules of the form (73). Consider the minimal modelof the traditional redut. If this model is exatly idential to the set X thatwe started with then X was a \good guess"; it is indeed a stable modelof �.The de�nition of a stable model for traditional programs an be viewedas a possible de�nition of a \orret" answer to a query in Prolog. Let �be a Prolog program without variables (or the set of ground rules obtainedfrom a Prolog program with variables by replaing eah rule with all itsground instanes). If � is a traditional program with a unique stable modelthen the orret answer to a ground query A is yes or no depending onwhether A belongs to that model.From this perspetive, a program with several stable models is \bad"|itdoes not provide an unambiguous spei�ation for the behavior of a Pro-log system. Programs without answer sets are \bad" also. In answer setprogramming, on the other hand, programs without a unique answer set
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