
Mathemati
al Foundationsof Answer Set ProgrammingPaolo Ferraris and Vladimir Lifs
hitz
1 Introdu
tionAnswer set programming (ASP) is a form of de
larative logi
 programmingoriented towards diÆ
ult
ombinatorial sear
h problems. ASP has beenapplied, for instan
e, to developing a de
ision support system for the Spa
eShuttle [Nogueira et al., 2001℄ and to graph-theoreti
 problems arising inzoology and linguisti
s [Brooks et al., 2005℄. This paper is about the designof provably
orre
t ASP programs and about the mathemati
al theory itis based on. Our des
ription of ASP may be useful as a
omplement tothe monograph [Baral, 2003℄ and to the manuals on the software systemssmodels1 and dlv2.Synta
ti
ally, ASP programs look like Prolog programs, but the
ompu-tational me
hanisms used in ASP are di�erent: they are based on the ideasthat have led to the
reation of fast satis�ability solvers for propositionallogi
.ASP has emerged from intera
tion between two lines of resear
h|on thesemanti
s of negation in logi
 programming [Gelfond and Lifs
hitz, 1988℄and on appli
ations of satis�ability solvers to sear
h problems [Kautz andSelman, 1992℄. It was identi�ed as a new programming paradigm in [Lif-s
hitz, 1999, Marek and Trusz
zy�nski, 1999, Niemel�a, 1999℄.The main de�nition of ASP, dis
ussed in Se
tion 2 below, tells us underwhat
onditions a model of a propositional formula F (that is, a truthassignment satisfying F) is
alled \stable." The idea of ASP is to representthe sear
h problem we are interested in as the problem of �nding a stablemodel of a formula, and then �nd a solution using an answer set solver|a system for generating stable models, su
h as the systems smodels anddlv mentioned above. Information on these and other available answerset solvers
an be obtained from the library of logi
 programming systems1http://www.t
s.hut.fi/Software/smodels/lparse.ps .2http://www.dbai.tuwien.a
.at/proj/dlv/man/ .

2 Paolo Ferraris and Vladimir Lifs
hitzmaintained at the University of Koblenz and Landau.3 Su
h systems arenot appli
able, at least dire
tly, to arbitrary propositional formulas; whatthey expe
t as input is a
onjun
tion, or list, of formulas of several spe
ialtypes that are parti
ularly useful from the programmer's perspe
tive; theseformulas are assumed to be written in \logi
 programming notation"|asrules, often similar to Prolog rules.Properties of stable models are dis
ussed here in Se
tion 2, and designingprovably
orre
t ASP programs is the topi
 of Se
tion 3. Proofs of theoremsare relegated to Se
tion 4. These se
tions are followed by Appendix A,whi
h provides the ne
essary ba
kground information about propositionallogi
, and Appendix B, whi
h reviews the original 1988 de�nition of a stablemodel and relates it to the de�nition used in the main part of this paper.As we will see, two equivalent formulas do not ne
essarily have the samestable models. For instan
e, the only stable model of the impli
ation(1) :p! qis the truth assignment that makes p false and q true; the only stable modelof its
ontrapositive(2) :q ! pmakes p true and q false. (In ASP, it is
ustomary to identify a truthassignment with the set of atoms that get the value t. So we
an say thatthe only stable model of (1) is fqg, and the only stable model of (2) is fpg.)The fa
t that there is an essential di�eren
e between (1) and (2) will notsurprise a Prolog programmer: in the world of programs with negation asfailure, pla
ing q in the head of a rule and the negation of p in the bodyis very di�erent than pla
ing p in the head and the negation of q in thebody. A logi
ian, on the other hand, will note that formulas (1) and (2)are equivalent to ea
h other
lassi
ally, but not intuitionisti
ally. We willsee, in fa
t, that intuitionisti
ally equivalent formulas always have the samestable models. Hen
e intuitionisti
ally equivalent transformations play animportant role in ASP.A
onjun
tion F ^G may have a stable model that is not a stable modelof F . For instan
e, the formula(3) (:p! q) ^ phas one stable model fpg, whi
h is not a stable model of its �rst
on-jun
tive term (1). Thus appending an additional
onjun
tive term to aformula may give it a new stable model. In this sense, the
on
ept of a3http://www.uni-koblenz.de/ag-ki/LP/lp systems.html .

Answer Set Programming 3stable model is nonmonotoni
. Early work on stable models was an out-growth of resear
h on formal nonmonotoni
 reasoning [M
Carthy, 1980,M
Dermott and Doyle, 1980, Reiter, 1980℄, and, more spe
i�
ally, of thestudy in [Gelfond, 1987℄ of the relationship between autoepistemi
 logi
[Moore, 1985℄ and the semanti
s of negation in logi
 programming.2 Stable ModelsAfter de�ning the
on
ept of a stable model in Se
tion 2.1, we apply thisde�nition to three spe
ial
ases that are often en
ountered in the pra
ti
e ofanswer set programming: Horn formulas,
hoi
e formulas and
onstraints(Se
tions 2.2{2.4). Se
tion 2.5 is a brief introdu
tion to the use of theanswer set solver smodels. Then we dis
uss two mathemati
al ideas thatplay an important role in the design of provably
orre
t ASP programs:strong equivalen
e (Se
tion 2.6) and splitting (Se
tion 2.7).2.1 De�nition and ExamplesRe
all that we identify truth-valued fun
tions on the set of atoms withsubsets of that set (Se
tion A.1).The redu
t FX of a formula F relative to a set X of atoms is the formulaobtained from F by repla
ing ea
h maximal subformula that is not satis�edbyX with ? [Ferraris, 2005℄.4 We say that X is a stable model (or an answerset) of F if X is minimal among the sets satisfying FX . The minimalityof X is understood here in the sense of set in
lusion: no proper subset of Xsatis�es FX .Clearly, every set that is a stable model of F a

ording to this de�nitionis a model of F . Indeed, if X does not satisfy F then FX is ?.A

ording to the de�nition, we
an verify that X is a stable model of Fas follows:(i) mark in F the maximal subformulas that are not satis�ed by X ;(ii) repla
e ea
h of these subformulas with ? (after that, equivalent trans-formations of
lassi
al propositional logi

an be used to simplify theresult);(iii)
he
k that the resulting formula is satis�ed by X ;(iv)
he
k that it is not satis�ed by any proper subset of X .For instan
e, to
he
k that fqg is an answer set of (1), we do the following:4This is somewhat di�erent from the de�nition of the redu
t proposed in [Gelfond andLifs
hitz, 1988℄. The relationship between the two de�nitions is dis
ussed in Appendix B.

4 Paolo Ferraris and Vladimir Lifs
hitz(i) mark the only subformula of (1) that is not satis�ed by fqg::p! q;(ii) repla
e that subformula with ?::? ! q;simplify: q;(iii)
he
k that the last formula is satis�ed by fqg;(iv)
he
k that it is not satis�ed by ;.The other two models of (1) fpg; fp; qgare not stable. We
he
k, for instan
e, that fpg is not stable as follows.First we mark the subformulas of (1) that are not satis�ed by fpg::p! q:After repla
ing these subformulas with ?, we get ?! ?, or >. Clearly fpgis not minimal among the sets satisfying this redu
t: the empty set satis�esit as well.Alternatively, we
an
on
lude that fpg and fp; qg
annot be stable mod-els of (1) from the general property of stable models stated below. Anatom A is a head atom of a formula F if at least one o

urren
e of A in Fis stri
tly positive (see Se
tion A.1 for the de�nition). This terminologyis related to the fa
t that in logi
 programming it is
ustomary to writeimpli
ations F ! G as \rules" G F and to
all G the \head"of the ruleand H its \body." Clearly, every head atom of a rule G F o

urs in itshead G.THEOREM 1 ([Ferraris, 2005℄). Any stable model of F is a subset of theset of head atoms of F .Sin
e the only head atom of (1) is q, Theorem 1 shows that stable modelsof that formula
an be found only among the subsets of fqg.Many formulas have several stable models. For instan
e, the
onjun
tionof (1) and (2)(4) (:p! q) ^ (:q ! p)

Answer Set Programming 5has two stable models fpg and fqg, and so does the formula p _ q. On theother hand, ::p and :p! p are examples of satis�able formulas that haveno stable models.It is easy to see that for any X?X = ?;AX = (A; if X j= A;?; otherwise(A is an atom);(F �G)X = (FX �GX ; if X j= F �G;?; otherwise(� is ^, _ or !):These equalities provide an alternative, re
ursive de�nition of the redu
t.There is no
lause for negation here, be
ause we treat it as an abbreviation(Se
tion A.1). It is easy to
he
k that(:F)X = (?; if X j= F;>; otherwise.2.2 Horn FormulasA Horn formula is a
onjun
tion of several (0 or more) impli
ations of theform F ! A, where F is a
onjun
tion of several (0 or more) atoms, and Ais an atom. The theorem below shows that any Horn formula has exa
tlyone stable model.For any Horn formula F , the interse
tion of all models of F is a modelof F also; it is
alled the minimal model of F .THEOREM 2. For any Horn formula F , the minimal model of F is theonly stable model of F .For instan
e, the formula(5) p ^ (p! q) ^ (q ^ r ! s)has one stable model|its minimal model fp; qg. The only model of theempty
onjun
tion > is the empty set.

6 Paolo Ferraris and Vladimir Lifs
hitz2.3 Choi
e FormulasFrom formulas with a unique stable model dis
ussed above we turn now toan example of formulas that have exponentially many stable models.For any �nite set Z of atoms, by Z
 we denote the formulaÂ2Z(A _ :A):PROPOSITION 3. For any �nite set Z of atoms, a set X of atoms is astable model of Z
 i� X � Z.Proof. For any subset X of Z, the redu
t of Z
 relative to X isÂ2X(A _?) ^ ^A2ZnX(? _ :?);whi
h is equivalent to VA2X A. This formula is satis�ed by X , but is notsatis�ed by any proper subset of X . We have proved that if X is a subsetof Z then X is a stable model of Z
. The
onverse is immediate fromTheorem 1. �For instan
e, fp; qg
 is (p _ :p) ^ (q _ :q):This formula has 4 answer sets|arbitrary subsets of fp; qg. Generally, if Z
onsists of n atoms then Z
 has 2n stable models. To form one of them, we
hoose for every element of Z arbitrarily whether to in
lude it in the model.We will
all formulas of the form Z

hoi
e formulas. (The supers
ript
 isused in this notation be
ause it is the �rst letter of the word \
hoi
e.")2.4 ConstraintsThe art of answer set programming is based on the possibility of repre-senting the
olle
tion of sets that we are interested in as the
olle
tion ofstable models of a formula. This is often a
hieved by
onjoining a
hoi
eformula, whi
h provides an approximation from above for the
olle
tion ofsets that we want to des
ribe, with formulas of a spe
ial synta
ti
 form,
alled
onstraints, that eliminate the unsuitable stable models.As dis
ussed in the introdu
tion,
onjoining a formula F with anotherformula generally a�e
ts the
olle
tion of stable models of F nonmonoton-i
ally. But this does not happen if the se
ond
onjun
tive term beginswith negation. A

ording to the proposition below,
onjoining a formula F

Answer Set Programming 7with :G has a simple e�e
t on the set of stable models of F : it eliminatesthe stable models that do not satisfy the additional
onjun
tive term.PROPOSITION 4. A set of atoms is a stable model of F ^ :G i� it is astable model of F that satis�es :G.Proof. Case 1: X satis�es F ^ :G. Then X does not satisfy G, and(F ^ :G)X is FX ^ :?, whi
h is equivalent to FX . Consequently X isminimal among the sets satisfying FX i� it is minimal among the setssatisfying (F ^ :G)X . Case 2: X does not satisfy F ^ :G. Then X
annotbe a model of F that satis�es :G. �In the terminology of ASP, a
onstraint is simply a formula beginning withnegation. To illustrate the spe
ial role of
onstraints as additional
onjun
-tive terms, let us go ba
k to example (3), where adding the
onjun
tiveterm p to formula (1)
hanged its
olle
tion of stable models nonmonotoni-
ally. If we
onjoin (1) with the
onstraint :p instead then we will get theformula (:p! q) ^ :p:Sin
e the only stable model fqg of (1) satis�es the
onstraint, the
onjun
-tion has fqg as the only stable model as well. If we
onjoin (1) with the
onstraint ::p then we will get the formula(:p! q) ^ ::p:Sin
e the only stable model fqg of (1) does not satisfy this
onstraint, the
onjun
tion has no stable models.2.5 LPARSE and SMODELSWe brie
y interrupt now the dis
ussion of the theory of stable models totalk about the
apabilities of one of the widely used answer set solvers,smodels.5 Its frontend lparse serves also as the frontend of three othersystems for
omputing stable models: GnT6, assat7 and
models8. Thisfrontend requires that the input formula be represented in a spe
ial format,as a list (
onjun
tion) of \rules," somewhat similar to Prolog rules. In thispaper the reader will �nd many examples of representing formulas in theinput language of lparse. A detailed des
ription of that language
an befound in the lparse manual, available online (see Footnote 1).Our �rst example illustrates representing Horn formulas. Formula (5)would be represented in an lparse input �le as follows:5http://www.t
s.hut.fi/Software/smodels/ .6http://www.t
s.hut.fi/Software/gnt/ .7http://assat.
s.ust.hk/ .8http://www.
s.utexas.edu/users/tag/
models/ .

8 Paolo Ferraris and Vladimir Lifs
hitzp.q :- p.s :- q, r.Note that ea
h
onjun
tive term here is written as a separate rule, followedby a period. In ea
h rule A F , the left arrow is written as :- and
onjun
tion as a
omma.To instru
t smodels to �nd the stable model of (5), we save the threelines shown above in a �le,
alled, say, file5, and invoke lparse andsmodels as follows:% lparse file5 | smodelsThe main part of the output generated in response to this
ommand line isthe program's stable model:Answer: 1Stable Model: q pNegation in front of an atom is represented in the language of lparse asnot. For instan
e, formula (4) would be written in a �le, say, file4, asq :- not p.p :- not q.The
ommand line% lparse file4 | smodels 0instru
ts smodels to �nd the stable models of this formula. The zero at theend indi
ates that we want to
ompute all stable models; a positive number kin this position would tell smodels to terminate after
omputing k stablemodels. smodels will produ
e the following output:Answer: 1Stable Model: qAnswer: 2Stable Model: pTo represent a
hoi
e formula fA1; : : : ; Ang
 in the language of lparse,we simply drop the supers
ript
. A
onstraint :F , where F is a
onjun
tionof literals, is written as :- F . For instan
e, the formulafp; q; rg
 ^ ::p ^ :(q ^ :r)
an be written in the syntax of lparse as99The
hoi
e
onstru
t was originally de�ned as an addition to the language of lparsein [Simons et al., 2002℄, and it was treated there as a primitive, rather than abbreviation.The equivalen
e of our treatment of
hoi
e formulas to that de�nition follows from resultsof [Ferraris and Lifs
hitz, 2005℄ and [Ferraris, 2005℄.

Answer Set Programming 9{p,q,r}.:- not p.:- q, not r.The sear
h pro
ess employed in smodels is quite sophisti
ated, and itguarantees, in prin
iple, that every stable model of the given input will befound. It
an be viewed as a modi�
ation of the Davis-Putnam-Logemann-Loveland pro
edure for the propositional satis�ability problem (SAT) [Daviset al., 1962℄. We should note that �nding a stable model of a formula ismore diÆ
ult than SAT: the existen
e of a stable model is a �P2 -
ompleteproperty [Eiter and Gottlob, 1993℄. But most uses of ASP involve formulasof spe
ial synta
ti
 forms for whi
h this property is known to be in
lassNP.10Systems assat and
models operate in a di�erent way: they redu
e theproblem of
omputing stable models of a given formula to an instan
e (ora series of instan
es) of SAT and then invoke SAT solvers to do sear
h.2.6 Strong Equivalen
eAs dis
ussed in the introdu
tion, two formulas have the same stable modelsif they are intuitionisti
ally equivalent (see Se
tion A.3 for the de�nition).The theorem below is stronger than this
laim in several ways.We say that a formula F is strongly equivalent to a formula G if any for-mula F 0 that
ontains an o

urren
e of F has the same stable models as theformula G0 obtained from F 0 by repla
ing that o

urren
e with G. (As theterm \strongly equivalent" suggests, this relation turns out to be strongerthan equivalen
e in the sense of
lassi
al logi
.) For instan
e, p ! q hasthe same stable model as p ! r (the empty set), but these two formulasare not strongly equivalent. Indeed, take F 0 to be (p! q) ^ p. Then G0 is(p ! r) ^ p. These two formulas have di�erent stable models: fp; qg andfp; rg respe
tively. The theorem below shows, however, that intuitionisti-
ally equivalent formulas are strongly equivalent. This is not surprising inview of the repla
ement property of intuitionisti
 logi
 (Se
tion A.3): if Fis intuitionisti
ally equivalent to G then F 0 is intuitionisti
ally equivalentto G0.The role of strong equivalen
e in the pra
ti
e of answer set programmingis determined by the fa
t that it allows us to simplify a part of a programwithout looking at the rest of it. For instan
e, we
an observe that theformula p ^ (p ! q) is intuitionisti
ally equivalent to p ^ q. It follows that10There are ex
eptions, however, and the answer set solvers GnT and
models areamong the systems that are not limited to \NP
ases" of answer set programming. Systemdlv (http://www.dbai.tuwien.a
.at/proj/dlv/) is the earliest answer set solver of thiskind.

10 Paolo Ferraris and Vladimir Lifs
hitzin any program
ontaining the rulesp.q :- p.repla
ing the se
ond rule byq.will have no e�e
t on the set of stable models.If formulas F and G are not strongly equivalent to ea
h other then this
an be always demonstrated using a
ounterexample F 0 that is not mu
hmore
ompli
ated than F . We
an always take F 0 to be a formula of theform F ^H , where H is a Horn formula (see Se
tion 2.2 for the de�nition).One
an say even more. A formula H is unary if it is a
onjun
tion ofseveral (0 or more) atoms and impli
ations of the form A1 ! A2, where A1and A2 are atoms. The theorem below shows that formulas F and G arestrongly equivalent i�, for every unary H , F ^H and G^H have the samestable models.Furthermore, in the statement of the theorem intuitionisti
 logi
 is re-pla
ed with a stronger subsystem of
lassi
al logi
,
alled \the logi
 of here-and-there." This logi
 is reviewed in Se
tion A.2. Its role in the theory ofstable models was �rst re
ognized in [Pear
e, 1997℄, where it was used tode�ne a nonmonotoni
 \equilibrium logi
"; the de�nition of a stable modelin Se
tion 2 is equivalent to the semanti
s of equilibrium logi
 [Ferraris,2005, Theorem 1℄.Finally, the theorem below asserts not only that equivalen
e in the logi
of here-and-there implies strong equivalen
e, but that the
onverse holdsalso. Thus the logi
 of here-and-there provides a
omplete
hara
terizationof strong equivalen
e. This fa
t, as well as the property of unary formulaspointed out above, was �rst established in [Lifs
hitz et al., 2001℄.THEOREM 5. For any formulas F and G, the following
onditions areequivalent:(i) F is strongly equivalent to G,(ii) for every unary formula H, F ^ H and G ^ H have the same stablemodels,(iii) F is equivalent to G in the logi
 of here-and-there.Here are some examples of the use of the most important part of thistheorem, the impli
ation from (iii) to (i). As mentioned in Se
tion 2.1,formulas ::p and :p ! p have no stable models. We
an now say more:

Answer Set Programming 11sin
e these formulas are intuitionisti
ally equivalent (Se
tion A.3), the resultof repla
ing the subformula :p ! p in any formula with ::p does not
hange its stable models. In parti
ular, any program
ontaining the rulep :- not p.
an be simpli�ed by repla
ing that rule with:- not p.Another example: the formulas p _ :p and ::p ! p are equivalent toea
h other in the logi
 of here-and-there (Se
tion A.3);
onsequently, theyare strongly equivalent. We know that the �rst of these formulas
an bewritten in the input language of lparse as{p}.That language allows us to represent the double negation of an atom in thebody of a rule as well: ::A
an be written as fnot Ag0. (This is a spe
ial
ase of \
ardinality" notation dis
ussed in Se
tion 3.1 below.) In parti
ular,we
an write ::p! p as the rulep :- {not p} 0.One more example of the use of Theorem 5 is given by the proof of thefollowing proposition:PROPOSITION 6. Let Z be the set of atoms o

urring in a formula F . Asubset X of Z satis�es F i� X is a stable model of Z
 ^ F .Proof. From Propositions 3 and 4, a subset X of Z satis�es F i� Xis a stable model of Z
 ^ ::F . It remains to observe that ::F $ F
an be intuitionisti
ally derived from Z
, be
ause Z
 is the
onjun
tionof the ex
luded middle formulas A _ :A for all atoms A o

urring in thisequivalen
e. �Proposition 6 provides a redu
tion of the propositional satis�ability prob-lem to ASP: to �nd a model of F , look for a stable model of the
onjun
tionof F with the ex
luded middle formulas A _ :A for all atoms A o

urringin F .An alternative approa
h to proving the strong equivalen
e of proposi-tional formulas, based on [Lifs
hitz et al., 1999, Se
tion 4℄ and [Turner,2003℄, does not require the knowledge of intuitionisti
 logi
 or the logi
 ofhere-and-there. We
an show that F is strongly equivalent to G by
he
kingthat, for every set X of atoms, the redu
ts FX and GX are equivalent toea
h other in
lassi
al logi
:

12 Paolo Ferraris and Vladimir Lifs
hitzTHEOREM 7 ([Ferraris, 2005℄). For any formulas F and G, F is stronglyequivalent to G i�, for every set X of atoms, FX is equivalent to GX in
lassi
al logi
.For instan
e, the fa
t that :p ! p is strongly equivalent to ::p
an beestablished by the following
omputation:(:p! p)fpg = ? ! p $ >;(::p)fpg = :? = >;(:p! p); = ?;(::p); = ?:2.7 SplittingTheorem 2 des
ribes stable models of Horn formulas; Proposition 3 des
ribesstable models of
hoi
e formulas. Many ASP programs involve
onjun
tionsof formulas of these two types. To design su
h programs, we need to under-stand the stru
ture of their stable models.Consider the following example:(6) fp; qg
 ^ (p! r) ^ (q ^ r ! s):The �rst
onjun
tive term of this formula has 4 stable models:(7) ;; fpg; fqg; fp; qg:The rest of the
onjun
tion
an be viewed as a \de�nition,"
hara
terizing rand s in terms of p and q. Appending this de�nition to the
hoi
e formulafp; qg
 does not a�e
t the total number of its stable models, but it
an
hange ea
h of the models (7) by adding to it some of the atoms r, s. In viewof the impli
ation p ! r, atom r is added to ea
h model
ontaining p. Inview of the impli
ation q^ r ! s, atom s is added to ea
h model
ontainingboth q and r. Thus we
an expe
t that (6) will have the following stablemodels:(8) ;; fp; rg; fqg; fp; q; r; sg:The validity of this
laim
an be justi�ed using the theorem below, whi
hshows that in some
ases we
an
ompute the stable models of a
onjun
tionby \splitting" it into
onjun
tive terms and
omputing �rst the stable mod-els of one of these terms. Splitting was proposed in [Lifs
hitz and Turner,1994℄ and generalized and simpli�ed in [Erdo�gan and Lifs
hitz, 2004℄ and[Ferraris, 2005℄.THEOREM 8. Let F and G be formulas su
h that F does not
ontain anyhead atoms of G. A set X of atoms is a stable model of F ^ G i� there

Answer Set Programming 13exists a stable model fA1; : : : ; Ang of F su
h that X is a stable model ofA1 ^ � � � ^ An ^G.(For the de�nition of a head atom see Se
tion 2.1.)In appli
ation to (6), we take fp; qg
 to be F and (p! r)^ (q^r ! s) tobe G. Sin
e F does not
ontain any of the head atoms r, s of G, the stablemodels of F ^ G
an be generated by taking ea
h of the stable models (7)of F ,
onjoining its elements with G, and listing all stable models of ea
hof the resulting formulas (p! r) ^ (q ^ r ! s);p ^ (p! r) ^ (q ^ r ! s);q ^ (p! r) ^ (q ^ r ! s);p ^ q ^ (p! r) ^ (q ^ r ! s):Sin
e these are Horn formulas, ea
h of them has one stable model|itsminimal model. As we have
onje
tured, these stable models are the sets (8)shown above.Here is an example of the use of Theorem 8 in the
ase when F is not a
hoi
e formula. We want to �nd the stable models of the
onjun
tion(9) (:p! q) ^ (q ! r):The only stable model of the �rst
onjun
tive term is fqg (Se
tion 2.1).A

ording to Theorem 8, it follows that (9) has the same stable models asq ^ (q ! r):This is a Horn formula, and its minimal model fq; rg is its only stable model.Theorem 8
an be useful also when G is not a Horn formula. But in su
h
ases A1^� � �^An^G will not be a Horn formula either, and
omputing itsstable models may require additional work. The following two propositions
an often help at this stage.Notation: FAG stands for the formula obtained from a formula F by sub-stituting a formula G for all o

urren
es of an atom A.PROPOSITION 9. For any atom A that is not a head atom of F , F hasthe same stable models as FA? .Proof. Sin
e A is not a head atom of F , A does not belong to any ofthe stable models of F (Theorem 1). Consequently, F has the same sta-ble models as F ^ :A (Proposition 4). Similarly, FA? has the same stablemodel as FA? ^ :A. It remains to observe that F ^ :A and FA? ^ :A areintuitionisti
ally equivalent to ea
h other by the repla
ement property ofintuitionisti
 logi
 (Se
tion A.3). �

14 Paolo Ferraris and Vladimir Lifs
hitzExample: Using Proposition 9, we
an �nd the stable model of :p ! qwithout dire
tly referring to the de�nition of a stable model as in Se
-tion 2.1. Sin
e p is not a head atom of :p ! q, this formula has the samestable models as :? ! q, whi
h is intuitionisti
ally equivalent to the Hornformula q. Consequently, the only stable model of :p! q is q.PROPOSITION 10. For any atom A, a set X of atoms is a stable modelof F ^ A i� there exists a stable model Y of FA> su
h that X = Y [fAg.Proof. By the repla
ement property of intuitionisti
 logi
, F ^ A isintuitionisti
ally equivalent to FA> ^ A, so that the two formulas have thesame stable models. By Theorem 8, X is a stable model of FA> ^ A i�there exists a stable model fA1; : : : ; Ang of FA> su
h that X is a stablemodel of A1 ^ � � � ^ An ^ A. The only stable model of this Horn formula isfA1; : : : ; An; Ag, whi
h
an be written as fA1; : : : ; Ang [fAg. �Example: Proposition 10
an be used to verify the
laim that the onlystable model of (3) is fpg. To �nd the stable models of (:p ! q) ^ p,we need to add p to ea
h stable model of :> ! q. Sin
e this formula isintuitionisti
ally equivalent to >, its only stable model is the empty set.The following example shows how Propositions 9 and 10
an be used in
ombination with splitting. We want to �nd the stable models of(10) fp; qg
 ^ (:p! r):By Theorem 8, this
an be done by
omputing the stable models of ea
h ofthe
onjun
tions :p! r;p ^ (:p! r);q ^ (:p! r);p ^ q ^ (:p! r):Proposition 9 shows that the only stable model of the �rst of these formulasis frg. Proposition 10 shows that the only stable model of the se
ondformula is fpg. Proposition 9 shows that the only stable model of the thirdformula is fq; rg. Proposition 10 shows that the only stable model of thelast formula is fp; qg. Consequently, (10) has 4 stable models:fpg; frg; fq; rg; fp; qg:Using Theorem 8 twi
e, we
an derive the following useful fa
t:PROPOSITION 11. Let F and G be formulas su
h that F does not
ontainhead atoms of G, and G does not
ontain head atoms of F . A set of atomsis a stable model of F ^ G i� it
an be represented as the union of a stablemodel of F and a stable model of G.

Answer Set Programming 15Proof. By Theorem 8, X is a stable model of F ^G i� there exists a stablemodel fA1; : : : ; Ang of F su
h that X is a stable model of(11) G ^ (A1 ^ � � � ^ An):By Theorem 1, for any stable model fA1; : : : ; Ang of F , atoms A1; : : : ; Anare head atoms of F . Consequently they are di�erent from the head atomsof G, so that the head atoms of G do not o

ur in the se
ond
onjun
tiveterm of (11). By Theorem 8, X is a stable model of (11) i� there exists astable model fB1; : : : ; Bmg of G su
h that X is a stable model ofB1 ^ � � � ^ Bm ^ A1 ^ � � � ^An;that is to say, su
h thatX = fA1; : : : ; Ang [fB1; : : : ; Bmg: �3 ProgrammingBy an ASP program we understand a propositional formula that
an beeasily
ommuni
ated to an answer set solver. We want to learn how torepresent a given sear
h problem as the problem of
omputing a stablemodel of su
h a formula.After dis
ussing in Se
tions 3.1 and 3.2 a few features of the language oflparse that have not been mentioned earlier, we give several examples of
omputational problems that
an be solved using ASP (Se
tions 3.3{3.8).Then we talk about answer set programming with strong negation (Se
-tion 3.9) and about its appli
ation to representing a
tions (Se
tion 3.10).3.1 Cardinality ExpressionsIn answer set programming we often need formulas expressing
onditions on
ardinalities of sets. The following notation is useful. For any nonnegativeinteger l (\lower bound") and formulas F1; : : : ; Fn,(12) l � fF1; : : : ; Fngstands for the disjun
tion _I�f1;:::;ng; jIj=l î2I Fi:For instan
e, 2 � fF1; F2; F3g

16 Paolo Ferraris and Vladimir Lifs
hitzstands for (F1 ^ F2) _ (F1 ^ F3) _ (F2 ^ F3):By(13) fF1; : : : ; Fng � uwhere u is a nonnegative integer (\upper bound") we denote the formula:(u+ 1 � fF1; : : : ; Fng):Finally,(14) l � fF1; : : : ; Fng � ustands for (l � fF1; : : : ; Fng) ^ (fF1; : : : ; Fng � u):It is
lear that any set of atoms� satis�es (12) i� it satis�es at least l of the formulas F1; : : : ; Fn;� satis�es (13) i� it satis�es at most u of the formulas F1; : : : ; Fn;� satis�es (14) i� it satis�es at least l and at most u of the formulasF1; : : : ; Fn.The input language of lparse allows us to use expressions (12){(14) inthe bodies of rules, with the symbol � dropped, if all formulas F1; : : : ; Fnare literals.11 We saw an example in Se
tion 2.3: the impli
ation ::p! p
an be represented in an lparse input �le asp :- {not p} 0.be
ause f:pg � 0 = :(1 � f:pg) = ::p:If A1; : : : ; An are pairwise distin
t atoms then we will writel � fA1; : : : ; Ang
 for fA1; : : : ; Ang
 ^ (l � fA1; : : : ; Ang);fA1; : : : ; Ang
 � u for fA1; : : : ; Ang
 ^ (fA1; : : : ; Ang � u);l � fA1; : : : ; Ang
 � u for fA1; : : : ; Ang
 ^ (l � fA1; : : : ; Ang � u):The following proposition explains why these are useful abbreviations.PROPOSITION 12. For any pairwise distin
t atoms A1; : : : ; An, nonneg-ative integers l and u, and a set X of atoms,11What we said in Footnote 9 about the invention of
hoi
e formulas applies also to\
ardinality formulas" (12){(14) and to their
ombinations with
hoi
e formulas intro-du
ed below. These expressions were originally introdu
ed in [Simons et al., 2002℄ asprimitives. The equivalen
e of our presentation to that de�nition follows from results of[Ferraris and Lifs
hitz, 2005℄ and [Ferraris, 2005℄.

Answer Set Programming 17(i) X is a stable model of l � fA1; : : : ; Ang
 i� X � fA1; : : : ; Ang andl � jX j;(ii) X is a stable model of fA1; : : : ; Ang
 � u i� X � fA1; : : : ; Ang andjX j � u;(iii) X is a stable model of l � fA1; : : : ; Ang
 � u i� X � fA1; : : : ; Angand l � jX j � u.Proof : Immediate from Proposition 6. �For instan
e, the stable models of2 � fp; q; rg
 � 2are fp; qg; fp; rg; fq; rg:Expressions of the formsl � f� � � g
; f� � � g
 � u; l � f� � � g
 � u
an be used in lparse
ode in the head of a rule, with both � and thesupers
ript
 dropped:l f...g; f...g u; l f...g u:Note that lparse understands expressions of these types in di�erent waysdepending on whether they o

ur in the body or in the head of a rule:a
hoi
e formula is in
luded in the se
ond
ase, but not in the �rst. Forinstan
e, the lparse rulesr :- 1 {p,q}.1 {p,q} :- r.stand for 1 � fp; qg ! rand r ! 1 � fp; qg
respe
tively.

18 Paolo Ferraris and Vladimir Lifs
hitz3.2 Variables in the Language of LPARSEA group of rules that follow a pattern
an be often des
ribed
on
isely in theinput language of lparse using s
hemati
 variables. As in Prolog, variablesmust be
apitalized. Here is an example:p(1..4).#domain p(I).q(I) :- not q(I-1).Assume that these 3 lines are saved as �le var. The �rst line of var is anlparse abbreviation for a group of 4 rules:p(1). p(2). p(3). p(4).It de�nes the auxiliary \domain" predi
ate12 p, whi
h is used in the se
ondline to de
lare I to be a variable with the domain f1; : : : ; 4g. The last lineof var is interpreted then as a s
hemati
 representation of 4 rules:q(1) :- not q(0).q(2) :- not q(1).q(3) :- not q(2).q(4) :- not q(3).Generating these rules from the s
hemati
 expression at the end of �le var isan example of \grounding," whi
h is the main
omputational task performedby lparse.To sum up, lparse interprets var as the
onjun
tion of the formulas(15) p(i);:q(i� 1)! q(i)(1 � i � 4). In response to the
ommand% lparse var | smodels 0smodels will
ompute the only stable model of this
onjun
tion:Stable Model: q(1) q(3) p(1) p(2) p(3) p(4)The auxiliary atoms p(1),: : : ,p(4) in the output
an be suppressed by in-
luding the de
larationhide p(_).12The general de�nition of a domain predi
ate in the lparse manual is somewhat
ompli
ated, and it has been
hanging from one version of the system to another.

Answer Set Programming 19(\do not display atoms of the form p()") in �le var. Alternatively, dis-playing information about domain predi
ates
an be suppressed using the-d option of lparse, as follows:% lparse -d none var | smodels 0Besides #domain de
larations, there is another me
hanism for tellinglparse how to ground s
hemati
 rules: domain predi
ates
an be in
ludeddire
tly in the bodies of these rules. For instan
e, �le var
an be rewrittenin the following way:p(1..4).q(I) :- p(I), not q(I-1).These two lines represent the
onjun
tion of the formulas(16) p(i);p(i) ^ :q(i� 1)! q(i)(1 � i � 4). Sin
e the
onjun
tion of formulas (16) is intuitionisti
allyequivalent to the
onjun
tion of formulas (15), these two
onjun
tions havethe same stable models.In the language of lparse, variables
an be used also to des
ribe a listof literals that is formed a

ording to a pattern. For instan
e, lparseunderstandsp(1..4).2 {q(I) : p(I)} 3.as shorthand forp(1). p(2). p(3). p(4).2 {q(1), q(2), q(3), q(4)} 3.3.3 Graph ColoringAs we are turning to a
tual programming examples, we would like to fa
ili-tate representing propositional formulas by input �les of answer set solvers.To this end, we will usually write formulas in \logi
 programming nota-tion." A
onjun
tion will be written as a list of its
onjun
tive terms; if a
onjun
tive term is an impli
ation F ! G then it will be written as G F ;if a
onjun
tive term is a
onstraint :F then it will be written as F . Ifthe body F in su
h an expression is a
onjun
tion then we will separate its
onjun
tive terms by
ommas; if the body or one of its
onjun
tive terms isa literal :A then we will write it as not A.An n-
oloring of a graph G is a fun
tion f from its set of verti
es tof1; : : : ; ng su
h that f(x) 6= f(y) for every pair of adja
ent verti
es x, y.

20 Paolo Ferraris and Vladimir Lifs
hitzWe would like to use ASP to �nd an n-
oloring of a given graph or todetermine that it does not exist. To this end, we will write a programwhose answer sets are in a 1{1
orresponden
e with the n-
olorings of G.Let V be the set of verti
es of the graph, and E the set of its edges. Theprogram
onsists of the rules(17) 1 � f
olor (x; 1); : : : ;
olor(x; n)g
 � 1 (x 2 V);(18)
olor (x; i);
olor (y; i) (fx; yg 2 E; 1 � i � n):It has the desired property:PROPOSITION 13. A set X of atoms is a stable model of the
onjun
tionof (17) and (18) i� X is(19) f
olor (x; f(x)) : x 2 V gfor some n-
oloring f of hV;Ei.Proof. By Proposition 12(iii), ea
h of the formulas (17) has n stable mod-els f
olor(x; i)g (i = 1; : : : ; n). By Proposition 11, it follows that arbitrarystable models of the
onjun
tion of these formulas are unions of su
h sin-gletons, one per ea
h x 2 V . In other words, stable models of (17)
anbe
hara
terized as sets of the form (19), where f is a fun
tion from V tof1; : : : ; ng.By Proposition 4, it follows that the stable models of the
onjun
tionof (17) with the
onstraints (18)
an be
hara
terized as the sets of theform (19) that do not satisfy the bodies of the
onstraints. The last
ondi-tion
an be expressed by saying that the equalities f(x) = i and f(y) = i
annot hold simultaneously when fx; yg 2 E, whi
h means that f(x) 6= f(y)whenever fx; yg 2 E. �Program (17), (18)
an be en
oded in the language of lparse as thefollowing �le
olor:
(1..n).1 {
olor(X,I) :
(I)} 1 :- v(X).:-
olor(X,I),
olor(Y,I), e(X,Y),
(I).The domain predi
ates v and e,
hara
terizing the verti
es and edges of G,are assumed to be de�ned in a separate �le,
alled, say, graph. For instan
e,if G is the 3-dimensional
ube then that �le may look like this:v(0..7).e(0,1). e(1,2). e(2,3). e(3,0).e(4,5). e(5,6). e(6,7). e(7,4).e(0,4). e(1,5). e(2,6). e(3,7).

Answer Set Programming 21(There is no need to in
lude atoms with the opposite order of arguments,su
h as e(1,0); it is only essential that the adja
en
y relation of G be thesymmetri

losure of e.) The
ommand line uses the -
 option of lparseto spe
ify the value of the symboli

onstant n, and it instru
ts lparse to
on
atenate the �les graph and
olor:% lparse -
 n=2 -d none graph
olor | smodelsIn response, smodels produ
es the set of atoms des
ribing a 2-
oloring ofthe
ube:Stable Model:
olor(0,1)
olor(1,2)
olor(2,1)
olor(3,2)
olor(4,2)
olor(5,1)
olor(6,2)
olor(7,1)As
an be seen from the proof of Proposition 13, the �rst part (17) of our
oloring program des
ribes a \simple" superset of the set of n-
olorings of Gthat we are trying to
apture; the se
ond half (18)
onsists of the
onstraintsthat weed out the \bad" elements of that superset. This \generate-and-test"organization is typi
al for simple ASP programs. But it would be a mistaketo think that answer set solvers operate by generating the elements of thesuperset des
ribed in the generate part and verifying whi
h of these elementssatisfy the test
onditions. As brie
y dis
ussed at the end of Se
tion 2.5, thesear
h algorithms implemented in these systems are based on very di�erentideas.3.4 CliquesA
lique in a graph G is a set of pairwise adja
ent verti
es of G. We wouldlike to use ASP to �nd a
lique of a
ardinality � n in a given graph or todetermine that it does not exist. To this end, we will write a program whoseanswer sets are in a 1{1
orresponden
e with
liques of
ardinalities � n.As before, V is the set of verti
es of the graph, and E the set of its edges.The program
onsists of the rules(20) n � fin(x) : x 2 V g
;(21) in(x); in(y) (x; y 2 V ; x 6= y; fx; yg 62 E):PROPOSITION 14. A set X of atoms is a stable model of the
onjun
tionof (20) and (21) i� X is(22) fin(x) : x 2 Cgfor some
lique C in G su
h that jCj � n.

22 Paolo Ferraris and Vladimir Lifs
hitzProof. By Proposition 12(i), the stable models of (20)
an be
hara
terizedas sets of the form (22), where C is a set of verti
es of a
ardinality� n. ByProposition 4, it follows that the stable models of the
onjun
tion of (20)with the
onstraints (21)
an be
hara
terized as the sets of the form (22)that do not satisfy the bodies of the
onstraints. The last
ondition
anbe expressed by saying that the
onditions x 2 C and y 2 C
annot holdsimultaneously for two di�erent non-adja
ent verti
es x, y, whi
h meansthat C is a
lique. �Here is an lparse en
oding of (20), (21):n {in(X) : v(X)}.:- in(X), in(Y), v(X;Y), X!=Y, not e(X,Y), not e(Y,X).The domain predi
ates v and e are assumed to
hara
terize the verti
esand edges of G, as in Se
tion 3.3. In the body of the se
ond rule, v(X;Y)is an lparse abbreviation for v(X),v(Y), and != represents 6=. The pairof
onditions not e(X,Y), not e(Y,X) expresses that X and Y are non-adja
ent.3.5 S
hur NumbersA set S of integers is
alled sum-free if there are no numbers x, y in S su
hthat x+y is in S. For instan
e, f1; 3; 5g is sum-free, and f2; 3; 5g and f2; 4gare not. We would like to use ASP to �nd, for given k and n, a partitionof the interval f1; : : : ; ng into at most k sum-free sets or to determine thatsu
h a partition does not exist. (The largest n su
h that f1; : : : ; ng
an bepartitioned into k sum-free set is
alled the k-th S
hur number and denotedby S(k).)In the following program the atoms si(x) (1 � i � k, 1 � x � n) areused to express that x belongs to the i-th set Si in a partition of f1; : : : ; nginto sum-free sets S1; : : : ; Sk:(23) 1 � fs1(x); : : : ; sk(x)g
 � 1 (1 � x � n);(24) si(x); si(y); si(x+ y) (1 � i � k; x; y � 1; x+ y � n):The proposition below expresses the
orre
tness of this program. Notethat the
onditions on the sets Si in the statement of the proposition allowthese sets to be empty, so that the list S1; : : : ; Sk represents a partition intoat most k sets, not exa
tly k.PROPOSITION 15. A set X of atoms is a stable model of the
onjun
tionof (23) and (24) i� X is(25) fsi(x) : 1 � i � k; x 2 Sig

Answer Set Programming 23for sum-free pairwise disjoint sets S1; : : : ; Sk su
h that(26) S1 [� � � [Sk = f1; : : : ; ng:Proof. By Proposition 12(iii), ea
h of the formulas (23) has k stable modelsfsi(x)g (i = 1; : : : ; k). By Proposition 11, it follows that arbitrary stablemodels of the
onjun
tion of these formulas are unions of su
h singletons,one per ea
h x 2 f1; : : : ; ng. In other words, the stable models of (23)
anbe
hara
terized as sets of the form (25), where the sets Si are pairwisedisjoint and satisfy (26).By Proposition 4, it follows that the stable models of the
onjun
tionof (23) with the
onstraints (24)
an be
hara
terized as sets of the form (25),where Si are pairwise disjoint, satisfy (26), and do not satisfy the bodies ofthe
onstraints. The last
ondition
an be expressed by saying that ea
h Siis sum-free. �Here is how rules (23), (24)
an be written in the language of lparse:subset(1..k).number(1..n).#domain number(X;Y).1 {s(I,X) : subset(I)} 1.:- s(I,X), s(I,Y), s(I,X+Y), subset(I), X+Y<=n.(In the last rule, <= is the lparse symbol for � .) In response to the
ommand% lparse -
 k=3 -
 n=13 -d none s
hur | smodelssmodels produ
es the outputStable Model: s(3,1) s(1,2) s(1,3) s(3,4) s(2,5) s(2,6) s(2,7)s(2,8) s(2,9) s(3,10) s(1,11) s(1,12) s(3,13)whi
h represents a partition of the interval f1; : : : ; 13g into 3 sum-free sets:f2; 3; 11; 12g[f5; 6; 7; 8; 9g[f1; 4; 10; 13g:If we repla
e 13 by 14 in the
ommand line then smodels will report thatthe program has no stable models; thus S(3) = 13.

24 Paolo Ferraris and Vladimir Lifs
hitz3.6 TilingWe would like to use ASP to �nd a way to
over an 8 � 8
hessboard bytwenty-one 3� 1 tiles and one 1� 1 tile.The idea of the solution below is due to Ashish Gupta (personal
ommu-ni
ation). The problem
an be reformulated as follows: pla
e twenty-one3 � 1 tiles on an 8 � 8
hessboard without overlaps. If a tile is pla
ed onthe
hessboard horizontally then we will des
ribe its position by the atomh(x; y) (0 � x � 5, 0 � y � 7), where x; y are the
oordinates of the tile'ssouthwest
orner. If a tile is pla
ed on the
hessboard verti
ally then wewill des
ribe its position by the atom v(x; y) (0 � x � 7, 0 � y � 5); xand y have the same meaning. Call these 96 atoms A1; : : : ; A96. The stablemodels of the rule(27) 21 � fA1; : : : ; A96g
 � 21
orrespond to all possible ways to pla
e 21 tiles on the
hessboard. Tothis \generate" part we now add the
onstraints testing an arrangement foroverlaps. Overlaps between two horizontal tiles are eliminated by the rules(28) h(x; y); h(x+ i; y) (0 � x; y � 7; i = 1; 2):For overlaps between the verti
al tiles, we in
lude(29) v(x; y); v(x; y + i) (0 � x; y � 7; i = 1; 2):Finally, we eliminate overlaps between a horizontal tile and a verti
al tile:(30) h(x; y); v(x + i; y � j) (0 � x; y � 7; 0 � i; j � 2):The stable models of program (27){(30)
orrespond to the solutions to thetiling problem we are interested in.The program above
an be represented in the language of lparse asfollows:number(0..7).#domain number(X;Y;I;J).hpos(X,Y) :- X<=5.vpos(X,Y) :- Y<=5.21 {h(XX,YY) : hpos(XX,YY), v(XX,YY) : vpos(XX,YY)} 21.:- h(X,Y), h(X+I,Y), 0<I, I<=2.:- v(X,Y), v(X,Y+I), 0<I, I<=2.:- h(X,Y), v(X+I,Y-J), I<=2, J<=2.

Answer Set Programming 25The domain predi
ates hpos and vpos represent the possible positions ofhorizontal and verti
al tiles. In the output of smodels we read:Stable Model: h(5,1) h(5,0) h(3,7) h(3,6) h(3,5) h(3,4) h(3,3)h(3,2) h(2,1) h(2,0) h(0,7) h(0,6) v(7,5) v(7,2) v(6,5) v(6,2)v(2,3) v(1,3) v(1,0) v(0,3) v(0,0)3.7 Hamiltonian Cy
lesEa
h of the programs in Se
tions 3.3{3.6 is a
onjun
tion of
hoi
e formulasand
onstraints. In the next example we will have a
han
e to use Hornformulas as well.A Hamiltonian
y
le in a dire
ted graph G is a
losed path that passesthrough ea
h vertex of G exa
tly on
e. We would like to use ASP to �nda Hamiltonian
y
le in a given dire
ted graph or to determine that it doesnot exist.The program below uses the atoms in(x; y) for all edges hx; yi of G toexpress that hx; yi belongs to the path. The generate part of the program
onsists of the
hoi
e rules(31) fin(x; y)g
 (hx; yi 2 E)(E stands for the set of edges of G). We need to
onjoin them with
on-straints that eliminate all subsets of E other than Hamiltonian
y
les.Two useful
onstraints are(32) 2 � fin(x; y) : y 2 Axg (x 2 V);where Ax stands for fy : hx; yi 2 Eg, and(33) 2 � fin(x; y) : x 2 Byg (y 2 V);where By stands for fx : hx; yi 2 Eg. They ensure that two in-edges neitherstart nor end at the same vertex, so that the set of in-edges is a path or aunion of disjoint paths. In addition, we want to require that every vertexof G be rea
hable by a sequen
e of in-edges from some �xed vertex x0. Wewill do this using the auxiliary atoms r(x) (\x is rea
hable from x0") forall verti
es x of G. The following two rules provide a \re
ursive de�nition"of r:(34) r(x) in(x0; x) (x 2 V);(35) r(y) r(x); in(x; y) (hx; yi 2 E)(V stands for the set of verti
es of G). Now we are ready to impose therea
hability
onstraints:

26 Paolo Ferraris and Vladimir Lifs
hitz(36) not r(x) (x 2 V):Besides the generate part (31) and the test part (32), (33), (36), thisprogram
ontains the rules (34) and (35), whi
h de�ne the auxiliary atomsused in one of the test rules. This \generate-de�ne-test" stru
ture is typi
alfor more advan
ed ASP programs. As in the example above, the de�nitionsof auxiliary atoms are often re
ursive.The following proposition expresses the
orre
tness of program (31){(36).In its statement, the essential part of a set X of atoms is the set of atomsin X that have the form in(x; y).PROPOSITION 16. A set X of atoms is the essential part of a stable modelof (31){(36) i� X has the form(37) fin(x; y)) : hx; yi 2 Hgwhere H is the set of edges of a Hamiltonian
y
le in G. Furthermore,di�erent stable models of this program have di�erent essential parts.The last senten
e shows that if we \hide" the atoms of the form r(x) inthe list of stable models of this program produ
ed by an answer set solverthen the output will
ontain ea
h Hamiltonian
y
le of G exa
tly on
e.For any set H � E, by RH we denote the set of atoms r(x) for allverti
es x to whi
h there is a path of nonzero length from x0 over edgesin H .LEMMA 17. A set X of atoms is a stable model of the
onjun
tion offormulas (31), (34) and (35) i� X is(38) fin(x; y)) : hx; yi 2 Hg [RHfor some subset H of E.Proof. Denote the
onjun
tion of formulas (31) by F , and the
onjun
tionof formulas (34), (35) by G. By Theorem 8, X is a stable model of F ^G i�there exists a stable model fA1; : : : ; Ang of F su
h that X is a stable modelof A1 ^ � � � ^ An ^ G. By Proposition 3, it follows that the stable modelsof F ^G
an be
hara
terized as the stable models of formulas of the form(39) ^hx;yi2H in(x; y) ^ Gfor arbitrary subsets H of E. Formula (39) is a Horn formula, and itsminimal model is its only stable model (Theorem 2). It remains to observethat the minimal model of (39) is (38). �

Answer Set Programming 27Proof of Proposition 16. A setH � E is the set of edges of a Hamiltonian
y
le in G i� it satis�es the following
onditions:(i) H does not
ontain two di�erent edges leaving the same vertex.(ii) H does not
ontain two di�erent edges ending at the same vertex.(iii) For every vertex x of G, there exists a path of nonzero length from x0to x over edges in H .By Lemma 17 and Proposition 4, a set X of atoms is a stable model ofprogram (31){(36) i� X has the form (38), where H � E, and does notsatisfy the bodies of the
onstraints (32), (33), (36). It is
lear that� (i) holds i� (38) does not satisfy the bodies of
onstraints (32);� (ii) holds i� (38) does not satisfy the bodies of
onstraints (33);� (iii) holds i� (38) does not satisfy the bodies of
onstraints (36).Consequently X is a stable model of (31){(36) i� X has the form (38) fora subset H of E satisfying
onditions (i){(iii). Both parts of the statementof Proposition 16 now follow, be
ause the essential part of (38) is (37). �The dis
ussion of the Hamiltonian
y
les example above is based on[Erdo�gan and Lifs
hitz, 2004, Se
tion 5℄.Here is a representation of program (31){(36) in the language of lparse,assuming that x0 is 0:{in(X,Y)} :- e(X,Y).:- 2 {in(X,Y) : e(X,Y)}, v(X).:- 2 {in(X,Y) : e(X,Y)}, v(Y).r(X) :- in(0,X), v(X).r(Y) :- r(X), in(X,Y), e(X,Y).:- not r(X), v(X).hide r(_).3.8 The Blo
ks WorldThe blo
ks world
onsists of several blo
ks 1; : : : ; n, pla
ed on the table sothat they form a tower or several towers. For instan
e, if n = 2 then theblo
ks world
an be in 3 states:

28 Paolo Ferraris and Vladimir Lifs
hitz1 22 1 1 2------- ------- -------If n = 3 then 13 states are possible: 6
on�gurations in whi
h the blo
ksform one tower; 6
on�gurations in whi
h 2 blo
ks form a tower and thethird is on the table; one
on�guration in whi
h all blo
ks are on the table.Blo
ks
an be moved around, and in Se
tion 3.10 we show how ASP
an be used to �nd a sequen
e of a
tions that takes the blo
ks world froma given initial state to a given goal state (or, more generally, to a statesatisfying a given goal
ondition). As a preliminary step, in this se
tion wewrite an ASP program that represents the set of all possible
on�gurationsof n blo
ks.Positions of blo
ks are des
ribed in this program by the atoms on(x; y),where x 2 f1; : : : ; ng, y 2 f1; : : : ; n; tableg, x 6= y. The �rst rule of theprogram is the
hoi
e rule allowing us to
hoose arbitrarily, for ea
h blo
k x,a unique lo
ation:(40) 1 � fon(x; y) : y 2 f1; : : : ; n; tableg n fxgg
 � 1(1 � x � n). Furthermore, we do not allow two blo
ks to be on top of thesame blo
k:(41) 2 � fon(x; y) : x 2 f1; : : : ; ng n fygg(1 � y � n). These
onstraints are not suÆ
ient, however, for eliminatingall \bad" stable models of (40), be
ause they allow subsets of blo
ks to form
ir
ular
on�gurations \
oating in spa
e," su
h as on(1; 2) and on(2; 1).The absen
e of su
h
on�gurations
an be expressed using an auxiliaryre
ursively de�ned predi
ate, similar to the predi
ate r used in Se
tion 3.7to des
ribe Hamiltonian
y
les. The atoms s(x), where 1 � x � n, willexpress that x is supported by the table, that is to say, belongs to a towerof blo
ks that rests on the table. They are de�ned by the rules(42) s(x) on(x; table) (1 � x � n);(43) s(x) s(y); on(x; y) (1 � x; y � n;x 6= y):The absen
e of blo
ks
oating in spa
e is expressed by the
onstraints(44) not s(x) (1 � x � n):In the language of lparse:

Answer Set Programming 29blo
k(1..n).1 {on(X,Y) : blo
k(Y) : X!=Y, on(X,table)} 1 :- blo
k(X).:- 2 {on(X,Y) : blo
k(X) : X!=Y}, blo
k(Y).s(X) :- on(X,table), blo
k(X).s(X) :- s(Y), on(X,Y), blo
k(X;Y), X!=Y.:- not s(X), blo
k(X).hide s(_).3.9 Strong NegationSome appli
ations of ASP, in
luding those related to a
tions and planning,are fa
ilitated by the use of a se
ond kind of negation,
alled \strong" (or\
lassi
al," or \true"), proposed in [Gelfond and Lifs
hitz, 1991℄.Re
all that propositional formulas are formed from atoms and the 0-pla
e
onne
tive ? using the binary
onne
tives ^, _ and ! (Se
tion A.1). As-sume that we distinguish between atoms of two kinds, positive and negative,and that ea
h negative atom is an expression of the form �A, where A is apositive atom. The symbol � is
alled strong negation.Note that synta
ti
ally strong negation is not really a
onne
tive, a

ord-ing to this de�nition: it is allowed to o

ur in front of positive atoms only.For example, expressions ��p and �(p ^ q) are not formulas.13A set of atoms is
oherent if it does not
ontain \
omplementary" pairsof atoms A, �A.Consider, for instan
e, the program(45) fpg
;q;�q :p:It
ontains two positive atoms p, q and one negative atom �q. It is easy to
he
k using the method of Se
tion 2.7 that the stable models of this programare fp; qg and fq;�qg. The �rst of them is
oherent, and the se
ond is not.The problem of
omputing the
oherent stable models of a formula
anbe easily redu
ed to the problem of
omputing arbitrarily stable models:PROPOSITION 18. A set X of atoms is a
oherent stable model of a for-mula F i� X is a stable model of the formula13Alternatively, strong negation
an be treated as an additional
onne
tive, in the spiritof [Nelson, 1949℄.

30 Paolo Ferraris and Vladimir Lifs
hitz(46) F ^ Â :(A^ �A);where the big
onjun
tion extends over all positive atoms A su
h that both Aand �A are head atoms of F .Proof. By Proposition 4, X is a stable model of (46) i� X is a stable modelof F whi
h does not have subsets of the form fA;�Ag su
h that A, �Aare head atoms of F . By Theorem 1, this
ondition on X is equivalent tosaying that X is a
oherent stable model of F . �In the input language of lparse, strong negation is written as - . Whenthe input program
ontains strong negation, lparse should be
alled withthe option --true-negation . The answer set solvers that a

ept inputprograms with strong negation, su
h as smodels, generate
oherent answersets only. For instan
e, if we save the rules{p}.q.-q :- not p.as file45 and give the
ommand% lparse --true-negation file45 | smodels 0then the output will
ontain only one model:Stable Model: p qStrong negation allows us to distinguish between the assertions \A isfalse" and \A is not known to be true" in ASP programs. The former isexpressed by the presen
e of the negative atom � A in a
oherent stablemodel; the latter, by the absen
e of the positive atom A, whi
h is obviouslya weaker
ondition. The rule(47) �A not A(\A is false if there is no eviden
e to the
ontrary") is an ASP representationof the
losed world assumption [Reiter, 1978℄ for the positive atom A. Thefollowing proposition des
ribes the e�e
t of adding this rule on the stablemodels of a program.PROPOSITION 19. Let F be a formula and A a positive atom su
h that�A does not o

ur in F . For any set X of atoms, X is a
oherent stablemodel of(48) F ^ (:A!�A)

Answer Set Programming 31i�(i) X is a stable model of F and A 2 X, or(ii) X = Y [f�Ag, where Y is a stable model of F su
h that A 62 Y .Case (ii) is the
ase when there is no eviden
e that A is true, and the
losed world assumption leads us to the
on
lusion that A is false.Proof. By Theorem 8, X is a stable model of (48) i� X is a stable modelof a formula of the form(49) A1 ^ � � � ^ An ^ (:A!�A);where fA1; : : : ; Ang is a stable model of F . Case 1: A equals one of theatoms Ai. Then (49) is intuitionisti
ally equivalent to A1 ^ � � � ^An, and Xis a stable model of (49) i�X = fA1; : : : ; Ang. Case 2: A is di�erent from allatoms Ai. Then A is not a head atom of (49). By Proposition 9, it followsthat X is a stable model of (49) i� X is a stable model of the formulaA1 ^ � � � ^ An ^ (:? !�A);whi
h is intuitionisti
ally equivalent toA1 ^ � � � ^ An^ �A:So X is a stable model of (48) i� X = Y [f� Ag, where Y stands forfA1; : : : ; Ang. �The rule(50) A not �Aexpresses the inverse
losed world assumption: A is true if there is no evi-den
e to the
ontrary.3.10 PlanningWe would like to use ASP to �nd a sequen
e of a
tions that takes the blo
ksworld (Se
tion 3.8) from a given initial state to a state satisfying a givengoal
ondition. To be more pre
ise, we will be looking for a sequen
e of setsof a
tions, be
ause some a
tions
an be exe
uted
on
urrently. There are n2possible a
tions, where n is the number of blo
ks: any blo
k x 2 f1; : : : ; ng
an be moved to any lo
ation l 2 f1; : : : ; n; tableg di�erent from x.

32 Paolo Ferraris and Vladimir Lifs
hitzWe assume that� a blo
k
an be moved only when there are no blo
ks on top of it, and� at most k a
tions
an be exe
uted
on
urrently(think of a robot with k grippers that
an only grasp a blo
k from above).We also assume that� a blo
k x
an be moved onto a blo
k y only if y is not being moved atthe same time(the robot's ability to
oordinate the movements of the grippers is not goodenough for that).A history is a �nite sequen
es0; e0; s1; e1; : : : ; em�1; smwhere s0; s1; : : : ; sm are states of the blo
ks world, and ea
h ei (0 � i < m) isa set of a
tions (an \event"), whi
h, when exe
uted
on
urrently in state si,lead to state si+1. We will write a program whose stable models representthe histories with a given initial state s0 and a given length m su
h thattheir �nal state sm satis�es a given goal
ondition.Histories will be des
ribed by� the atoms on(x; l; i) (x 2 f1; : : : ; ng, l 2 f1; : : : ; n; tableg, x 6= l,i 2 f0; : : : ;mg), expressing that x is on l in state si, and� the atoms move(x; l; i) (x 2 f1; : : : ; ng, l 2 f1; : : : ; n; tableg, x 6= l,i 2 f0; : : : ;m � 1g), expressing that x is moved onto l as part ofevent ei.One of the rules of the program (rule (55) below) uses these atoms to de-s
ribe the e�e
t of moving a blo
k: if x is moved onto l as part of event eithen x is on l in state si+1.The program
ontains strong negation (Se
tion 3.9), whi
h is applied tothe atoms on(x; l; i). The usefulness of strong negation in ASP programsdes
ribing e�e
ts of a
tions is related to the frame problem [Shanahan,1997℄|the problem of des
ribing what does not
hange when a
tions areexe
uted. If x1; x2; : : : are the blo
ks that are moved in the
ourse of event eithen rule (55) tells us where these blo
ks are going to be afterwards. Butwhat about lo
ations of the blo
ks other than x1; x2; : : : ? An adequateformalization should allow us to
on
lude that the lo
ations of all the otherblo
ks will not
hange; in state si+1 ea
h of them will stay where it was instate si.

Answer Set Programming 33An elegant way to ensure this is to postulate the default that Leibnizstated in his Introdu
tion to a Se
ret En
y
lopedia and that is now
alledthe
ommonsense law of inertia: \Everything is presumed to remain inthe state in whi
h it is" [Leibniz, 1995, p. 9℄. In parti
ular, the lo
ationof a blo
k after event ei is presumed, in the absen
e of eviden
e to the
ontrary, to remain the same as it was before the event. Blo
ks x1; x2; : : :are ex
eptions: sin
e they are moved, rule (55) provides eviden
e that theirlo
ations may not remain the same. We have seen in Se
tion 3.9 that strongnegation helps us formalize another default|the
losed world assumption;here strong negation will be used to solve the frame problem.The generate part of the program expresses that ea
h event ei
an be
omposed of up to k a
tions,
hosen arbitrarily:(51) fmove(x; l; i) : 1 � x � n; l 2 f1; : : : ; n; tableg; x 6= lg
 � k(1 � i < m). This rule is followed by
onstraints expressing that a blo
k
an be moved only if it is
lear(52) move(x; l; i); on(y; x; i)(1 � x; y � n, l 2 f1; : : : ; n; tableg, x 6= l, x 6= y, 0 � i < m) and if thedestination is not a blo
k that is being moved also:(53) move(x; y; i);move(y; l; i)(1 � x; y � n, l 2 f1; : : : ; n; tableg, x 6= y, y 6= l, 0 � i < m).The next part of the program de�nes the lo
ations of blo
ks in state siin terms of their initial lo
ations and the events e0; : : : ; ei�1. It begins withthe rules(54) on(x; init(x); 0)(1 � x � n), where init(x) stands for the initial lo
ation of x, and(55) on(x; l; i+ 1) move(x; l; i)(1 � x � n, l 2 f1; : : : ; n; tableg, x 6= l, 0 � i < m). The next rule expressesthe uniqueness of the lo
ation of a blo
k using strong negation:(56) �on(x; l; i) on(x; l0; i)(1 � x � n, l; l0 2 f1; : : : ; n; tableg, x 6= l, x 6= l0, l 6= l0, 0 � i � m).The last rule in this group expresses the
ommonsense law of inertia for theblo
ks world:(57) on(x; l; i+ 1) on(x; l; i);not �on(x; l; i+ 1)

34 Paolo Ferraris and Vladimir Lifs
hitz(1 � x � n, l 2 f1; : : : ; n; tableg, x 6= l, 0 � i < m). It says thatx is on l in state si+1 (the head of the rule) ifx is on l in state si (the �rst term of the body) andthe rules of the program provide no eviden
e to the
ontrary (these
ond term of the body).Note that ex
ept for the presen
e of the term on(x; l; i) in the body, (57)has the same synta
ti
 form as (50).Finally, we need to in
lude
onstraints expressing that s1; : : : ; sm arevalid states of the blo
ks world, and that sm satis�es the goal
ondition G:(58) 2 � fon(x; y) : x 2 f1; : : : ; ng n fygg(0 � y � n, 0 � i < m);(59) not G:Rule (58) says that two blo
ks
annot be on top of the same blo
k; thisis a
ounterpart of rule (41). Counterparts of the other properties of validstates dis
ussed in Se
tion 3.8 are not needed in the new framework. Indeed,the existen
e of the lo
ation of every blo
k and the absen
e of
ir
ular
on�gurations are assumed to hold in the initial state des
ribed by thefun
tion init , and these properties are preserved when blo
ks are moved;the uniqueness of the lo
ation of a blo
k is expressed by (56).Here is program (51){(59) in the language of lparse:step(0..m).blo
k(1..n).lo
ation(1..n;table).#domain step(I).#domain blo
k(X;Y;Z).#domain lo
ation(L;L1).{move(XX,LL,I) : blo
k(XX) : lo
ation(LL) : XX!=LL} k :- I<m.:- move(X,L,I), on(Y,X,I), X!=L, X!=Y, I<m.:- move(X,Y,I), move(Y,L,I), X!=Y, Y!=L, I<m.on(X,L,0) :- init(X,L).on(X,L,I+1) :- move(X,L,I), X!=L, I<m.-on(X,L,I) :- on(X,L1,I), X!=L, X!=L1, L!=L1.on(X,L,I+1) :- on(X,L,I), not -on(X,L,I+1), X!=L, I<m.

Answer Set Programming 35:- 2 {on(XX,Y,I) : blo
k(XX) : XX!=Y}.:- not goal.hide.show move(_,_,_).The last two lines instru
t smodels to display no atoms ex
ept for thea
tions move(...). The initial state and the goal
ondition are assumed tobe de�ned in a separate �le, for instan
e:init(1,2). init(2,table). init(3,4).init(4,table). init(5,6). init(6,table).goal :- on(2,1,m), on(3,2,m), on(6,5,m), on(5,4,m).The idea of the solution to the frame problem given by rule (57) goesba
k to [Reiter, 1980, Se
tion 1.1.4℄, but implementing that idea was notstraightforward [Hanks and M
Dermott, 1987℄, and it was a
hieved yearslater [Turner, 1997℄. The fa
t that planning
an be redu
ed to �nding astable model was noted in [Subrahmanian and Zaniolo, 1995℄, and �rst ex-periments on generating plans using smodels were reported in [Dimopouloset al., 1997℄. The dis
ussion of blo
ks world planning in this se
tion is basedon [Lifs
hitz, 2002, Se
tion 5℄.4 Proofs of Theorems4.1 Proof of Theorem 1LEMMA 20. If X j= F and a set Y
ontains all head atoms of F thenX \ Y j= FX .Proof. The proof is by stru
tural indu
tion on F . Assume that X j= F .Clearly F is not ?. Case 1: F is an atom A. Sin
e X j= F , FX is A andA 2 X . Sin
e A is a head atom, we
an further
on
lude that A 2 X \ Y .Case 2: F is G ^H . Sin
e X j= F , we know that FX is GX ^HX , X j= Gand X j= H . Sin
e all head atoms of G and H belong to Y , from theindu
tion hypothesis we
on
lude that X \ Y j= GX and X \ Y j= HX .Consequently X \ Y j= FX . Case 3: F is G _ H . Similar to Case 2.Case 4: F is G! H . Sin
e X j= F , FX is GX ! HX . Case 4.1: X j= G.Then X j= H . Sin
e all head atoms of H belong to Y , from the indu
tionhypothesis we
on
lude that X \ Y j= HX . Consequently X \ Y j= FX .Case 4.2: X 6j= G. Then GX is ?, so that FX is a tautology. �THEOREM 1. Any stable model of F is a subset of the set of head atomsof F .

36 Paolo Ferraris and Vladimir Lifs
hitzProof. Let X be a stable model of F , and Y the set of head atoms of F . ByLemma 20, X\Y j= FX . Sin
e X is minimal among the sets satisfying FX ,it follows that X \ Y = X , and
onsequently X � Y . �4.2 Proof of Theorem 2LEMMA 21. For any Horn formula F and any two sets X and Y of atoms,if X � Y and Y j= F then X j= F i� X j= F Y .Proof. Assume �rst that F is a single impli
ation(60) A1 ^ � � � ^ An ! A:Case 1: A1; : : : ; An belong to Y . Under the assumption Y j= F the
on-sequent A of F belongs to Y also, so that F Y = F . Case 2: for some i,Ai 62 Y . Under the assumption X � Y , Ai 62 X , so that X satis�es F . Onthe other hand, F Y is the tautology ? ! AY , so that X satis�es F Y aswell.If F is a
onjun
tion F1^� � �^Fm of several impli
ations of the form (60)then X satis�es F i� X satis�es ea
h Fj . Under the assumption Y j= F ,F Y is F Y1 ^ � � � ^F Ym ;
onsequently X satis�es F Y i� X satis�es ea
h of the
onjun
tive terms F Yj . The assertion of the lemma follows from the spe
ial
ase proved above. �THEOREM 2. For any Horn formula F , the minimal model of F is theonly stable model of F .Proof. Let M be the minimal model of a Horn formula F . Lemma 21,applied to M as Y , shows that FM is satis�ed by M but is not satis�ed byany proper subset of M . ConsequentlyM is a stable model of F . Now takeany stable model Y of F . By the
hoi
e of M , M � Y . Lemma 21, appliedto M as X , shows that M j= F Y . By the de�nition of a stable model, Yis minimal among the sets satisfying F Y . Consequently Y � M . We haveproved that Y =M . �4.3 Proof of Theorems 5 and 7LEMMA 22. For any formula F and any set X of atoms, X j= FX i�X j= F .Proof. Redu
t FX is obtained from F by repla
ing some subformulas thatare not satis�ed by X with ?. �LEMMA 23. For any two formulas F and G and any set X of atoms,(a) (F ^G)X is equivalent to FX ^GX in
lassi
al logi
, and

Answer Set Programming 37(b) (F _G)X is equivalent to FX _GX in
lassi
al logi
.Proof. Part (a):
onsider two
ases, depending on whether X satis�esF ^G. If it does then the two formulas are equal to ea
h other; if not thenea
h of them is equivalent to ?. For part (b), the proof is similar. �LEMMA 24. For any formula F and any two sets X and Y of atoms,X j= F Y i� hX \ Y; Y i j= F .Proof. The proof is by stru
tural indu
tion on F . If F is ? then theassertion of the lemma is trivial. If F is an atom A,X j= AY i� A 2 Y and A 2 Xi� A 2 X \ Yi� hX \ Y; Y i j= A:If F is G ^H then, using Lemma 23(a),X j= (G ^H)Y i� X j= GY ^HYi� X j= GY and X j= HYi� hX \ Y; Y i j= G and hX \ Y; Y i j= Hi� hX \ Y; Y i j= G ^H:If F is G _H then the reasoning is similar, using Lemma 23(b). Finally, ifF is G! H ,X j= (G! H)Y i� Y j= G! H and X j= GY ! HYi� Y j= G! H andX 6j= GY or X j= HYi� Y j= G! H andhX \ Y; Y i 6j= G or hX \ Y; Y i j= Hi� hX \ Y; Y i j= G! H: �LEMMA 25. Let F , G, F 0, G0 be formulas su
h that G0 is obtained from F 0by repla
ing some (zero or more) o

urren
es of F with G. For any set Xof atoms, if FX is equivalent to GX then (F 0)X is equivalent to (G0)X .Proof. Assume that FX is equivalent to GX . By Lemma 22, it follows that(61) X j= F $ G:

38 Paolo Ferraris and Vladimir Lifs
hitzWe will prove that (F 0)X is equivalent to (G0)X by stru
tural indu
tionon F 0. This assertion is trivial when F 0 equals F and also when the numberof o

urren
es of F in F 0 that are being repla
ed is 0; in parti
ular, the
ases when F 0 is ? or an atom are trivial. Assume that F 0 has the formF 01�F 02, and G0 is G01�G02, where G0i is obtained from F 0i by repla
ing someo

urren
es of F with G. Case 1: X 6j= F 0. In view of (61), X 6j= G0, so that(F 0)X = ? and (G0)X = ?. Case 2: X j= F 0. In view of (61), X j= G0, sothat (F 0)X = (F 01)X � (F 02)X and (G0)X = (G01)X � (G02)X , and the
laimfollows by the indu
tion hypothesis. �COMBINED STATEMENT OF THEOREMS 5 AND 7. For any formu-las F and G, the following
onditions are equivalent:(i) F is strongly equivalent to G,(ii) for every unary formula H, F ^ H and G ^ H have the same stablemodels,(iii) F is equivalent to G in the logi
 of here-and-there,(iv) for any set X of atoms, FX is equivalent to GX in
lassi
al logi
.Proof. From (i) to (ii): obvious.From (ii) to (iii): assume that F is not equivalent to G in the logi
 ofhere-and-there, and let hX;Y i be an HT-interpretation that satis�es, say, Fbut not G. Then X � Y and, by Lemma 24, X j= F Y , X 6j= GY . Sin
eX j= F Y , F Y is not ?, whi
h implies that Y j= F . By Lemma 22, it followsthat Y j= F Y . Case 1: Y 6j= GY . By Lemma 22, Y 6j= G, so that Y isnot a stable model of G ^ H for any H . But if we take H to be VA2Y Athen Y is a stable model of F ^ H . Indeed, by Lemma 23(a), (F ^ H)Yis equivalent to F Y ^HY , whi
h is the same as F Y ^H ; both
onjun
tiveterms of this formula are satis�ed by Y , but the se
ond term is not satis�edby any proper subset of Y . Case 2: Y j= GY . Sin
e X 6j= GY , X is di�erentfrom Y ;
onsequentlyX is a proper subset of Y . LetH be the unary formulaÂ2X A ^ ^A;A02Y nX(A! A0):Set Y is not a stable model of F ^H . Indeed, just as in Case 1, (F ^H)Yis equivalent to F Y ^ H ; X is a proper subset of Y that satis�es both
onjun
tive terms. We will show, on the other hand, that Y is a stablemodel of G ^H , whi
h
ontradi
ts
ondition (ii). In view of Lemma 23(a),

Answer Set Programming 39(G ^ H)Y is equivalent to GY ^ H . Clearly Y satis�es both
onjun
tiveterms; the only proper subset of Y that satis�es H is X , and X does notsatisfy GY .From (iii) to (iv): if F and G are satis�ed by the same HT-interpretationsthen, by Lemma 24, for any set Y of atoms, F Y and GY are satis�ed bythe same sets of atoms.From (iv) to (i): immediate from Lemma 25. �4.4 Proof of Theorem 8LEMMA 26. If X is a stable model of F then FX is equivalent to VA2X A.Proof. Sin
e all atoms o

urring in these two formulas belong to X , it issuÆ
ient to show that the formulas are satis�ed by the same subsets of X .By the de�nition of a stable model, the only subset of X satisfying FX is X .�LEMMA 27. Let S be a set of atoms that
ontains all atoms o

urring ina formula F but does not
ontain any head atoms of a formula G. For anyset X of atoms, if X is a stable model of F ^G then X \S is a stable modelof F .Proof. Sin
e X is a stable model of F ^ G, X j= F , so that X \ S j= F ,and, by Lemma 22, X \ S j= FX\S . It remains to show that no propersubset Y of X \ S satis�es FX\S . Let S0 be the set of head atoms of G,and let Z be X \ (S0 [Y). Set Z has the following properties:(i) Z \ S = Y ;(ii) Z � X ;(iii) Z j= GX .To prove (i), note that sin
e S0 is disjoint from S, and Y is a subset ofX \ S, Z \ S = X \ (S0 [Y) \ S = X \ Y \ S = (X \ S) \ Y = Y:To prove (ii), note that set Z is
learly a subset of X . It
annot be equalto X , be
ause otherwise we would have, by (i),Y = Z \ S = X \ S;this is impossible, be
ause Y is a proper subset of X \ S. Property (iii)follows from Lemma 20, be
ause X j= G, and S0[Y
ontains all head atomsof G.

40 Paolo Ferraris and Vladimir Lifs
hitzSin
e X is a stable model of F ^ G, from property (ii) we
an
on
ludethat Z 6j= (F ^ G)X . Consequently, by Lemma 23(a) and property (iii),Z 6j= FX . Sin
e all atoms o

urring in F belong to S, FX = FX\S , sothat we
an rewrite this formula as Z 6j= FX\S . Sin
e all atoms o

urringin FX\S belong to S, it follows that Z \ S 6j= FX\S. By property (i), we
on
lude that Y 6j= FX\S . �THEOREM 8. Let F and G be formulas su
h that F does not
ontain anyhead atoms of G. A set X of atoms is a stable model of F ^ G i� thereexists a stable model fA1; : : : ; Ang of F su
h that X is a stable model of(62) A1 ^ � � � ^ An ^G:Proof. Take formulas F and G su
h that F does not
ontain any headatoms of G, and let S the set of atoms o

urring in F . Observe �rst thatif a set X of atoms is a stable model of a formula of the form (62), whereA1; : : : ; An 2 S, then X \ S = fA1; : : : ; Ang. Indeed, by Lemma 27 withA1 ^ � � � ^ An as F , X \ S is a stable model of A1 ^ � � � ^An, and the onlystable model of this formula is fA1; : : : ; Ang. Consequently, the assertionto be proved
an be reformulated as follows: a set X of atoms is a stablemodel of F ^G i�(i) X \ S is a stable model of F , and(ii) X is a stable model of VA2X\S A ^ G.If X \ S is not a stable model of F then X is not a stable model ofF ^ G by Lemma 27. Now suppose that X \ S is a stable model of F .Then, by Lemma 26, FX\S is equivalent to VA2X\S A. Consequently, byLemma 23(a),(F ^G)X $ FX ^GX = FX\S ^GX $ VA2X\S A ^ GX= �VA2X\S A�X ^GX $ �VA2X\S A ^G�X :We
an
on
lude that X is a stable model of F ^G i� X is a stable modelof VA2X\S A ^ G. �5 Con
lusionMany publi
ations in the area of answer set programming are dire
ted to-wards pra
ti
al appli
ations, and the titles of several papers of this kindin
luded in the bibliography14 show the remarkable diversity of the areas14[Soininen and Niemel�a, 1998℄, [Erdem et al., 2000℄, [Nogueira et al., 2001℄, [Hel-janko and Niemel�a, 2003℄, [Baral et al., 2004℄, [Brooks et al., 2005℄, [Leone et al., 2005℄,[Hermansson et al., 2005℄.

Answer Set Programming 41of s
ien
e and te
hnology where ASP may be useful. Su

ess in this workwould have been impossible without eÆ
ient, reliable,
arefully
rafted an-swer set solvers.The main topi
 of this paper, however, is theoreti
al. We have seen thatASP is based on interesting mathemati
s, in
luding some ideas developedin the early days of modern logi
. The senior author (VL) is parti
ularlypleased to
ontribute a paper on mathemati
al foundations of answer setprogramming to a volume in honor of Dov Gabbay in view of the importantrole that intuitionisti
 logi
 plays in this theory. Intuitionisti
 logi
 is whatboth of us were interested in as beginning resear
hers many years ago, whenwe �rst learned about ea
h other's work.A Propositional Logi
A.1 Syntax and Semanti
s(Propositional) formulas are formed from propositional atoms and the 0-pla
e
onne
tive ? using the binary
onne
tives ^, _ and !. We use> as shorthand for ? ! ?;:F as shorthand for F ! ?;F $ G as shorthand for (F ! G) ^ (G! F):Atoms and negated atoms are
alled literals.The relationX j= F between a set X of atoms and a formula F is de�nedre
ursively:� for an atom A, X j= A if A 2 X ;� X 6j= ?;� X j= F ^G if X j= F and X j= G;� X j= F _G if X j= F or X j= G;� X j= F ! G if X 6j= F or X j= G.If X j= F then we say that X satis�es F , or is a model of F . A formula isa tautology if it is satis�ed by every set of atoms. A formula F is equivalentto a formula G if F $ G is a tautology (or, equivalently, if F and G havethe same models).An o

urren
e of an atom A in a formula F is positive if the numberof impli
ations
ontaining that o

urren
e in the ante
edent is even, andnegative otherwise. For instan
e, both o

urren
es of p in the formula(63) ((p! q) ^ r)! p

42 Paolo Ferraris and Vladimir Lifs
hitzare positive, and q, r are negative. An o

urren
e of an atom A in aformula F is stri
tly positive if it does not belong to the ante
edent ofany impli
ation in F . For instan
e, the se
ond o

urren
e of p in (63) isstri
tly positive, and the �rst is not. Sin
e :F is shorthand for F ! ?, noo

urren
e of an atom in a formula of the form :F
an be stri
tly positive.A.2 Logi
 of Here-and-ThereThe logi
 of here-and-there is a 3-valued logi
 that was originally proposedby the inventor of intuitionisti
 logi
 Arend Heyting as a te
hni
al toolfor the purpose of proving that intuitionisti
 logi
 is weaker than
lassi-
al [Heyting, 1930℄. (He remarks that the truth values in his truth tables\
an be interpreted as follows: 0 denotes a
orre
t proposition, 1 denotesa false proposition, and 2 denotes a proposition that
annot be false butwhose
orre
tness is not proved.") We will identify a fun
tion from the setof atoms to the extended set of truth values f0; 1; 2g with the ordered pair
onsisting of the set X of atoms that are mapped to 0 and the set Y ofatoms that are mapped to 0 or 2. (If an atom belongs to X then it is true\here"; if an atom belongs to Y then it is true \there".)An HT-interpretation is an ordered pair hX;Y i of sets of atoms su
h thatX � Y . The satisfa
tion relation j= between an HT -interpretation hX;Y iand a formula F is de�ned re
ursively:� for an atom A, hX;Y i j= A if A 2 X ;� hX;Y i 6j= ?;� hX;Y i j= F ^G if hX;Y i j= F and hX;Y i j= G;� hX;Y i j= F _G if hX;Y i j= F or hX;Y i j= G;� hX;Y i j= F ! G if(i) hX;Y i 6j= F or hX;Y i j= G, and(ii) Y j= F ! G.(The symbol j= in the last line refers to the satisfa
tion relation of
lassi
allogi
 de�ned in Se
tion A.1.)A formula is valid in the logi
 of here-and-there if it is satis�ed by ev-ery HT -interpretation. A formula F is equivalent to a formula G in thelogi
 of here-and-there if F $ G is valid in the logi
 of here-and-there (or,equivalently, if F and G are satis�ed by the same HT -interpretations).The following fa
ts relate the satisfa
tion relation of the logi
 of here-and-there to the satisfa
tion relation of
lassi
al logi
:

Answer Set Programming 43(64) hX;Xi j= F i� X j= F:(65) If hX;Y i j= F then Y j= F:(66) hX;Y i j= :F i� Y j= :F:From property (64) we see that a formula
an be valid in the logi
 of here-and-there only if it is a tautology. It follows that two formulas
an beequivalent to ea
h other in the logi
 of here-and-there only if they are
las-si
ally equivalent. To see where the two equivalen
e relations di�er fromea
h other, note that ::p is not equivalent to p in the logi
 of here-and-there. Indeed, by (66), the HT -interpretation h;; fpgi satis�es ::p, but it
learly does not satisfy p.A.3 Natural Dedu
tionIn the natural dedu
tion system for propositional logi
, the derivable obje
tsare sequents|expressions of the form �) F (\F under the assumptions�"), where F is a formula and � is a �nite set of formulas. Notationally, wewill identify the set of assumption in a sequent with the list of its elements.For instan
e, we will write �; F) G for � [fFg) G.The axiom s
hemas are(67) F) Fand(68)) F _ :F:The latter is
alled the law of ex
luded middle. The inferen
e rules are(^I) �) F �) G�;�) F ^G (^E) �) F ^G�) F �) F ^G�) G(_I) �) F�) F _G �) G�) F _G (_E) �) F _G �1; F) H �2; G) H�;�1;�2) H(!I) �; F) G�) F ! G (!E) �) F �) F ! G�;�) G(C) �) ?�) F(W) �) F�0) Fif � � �0

44 Paolo Ferraris and Vladimir Lifs
hitzAmong the �rst six inferen
e rules, the rules in the left
olumn are introdu
-tion rules, and the rules in the right
olumn are elimination rules. Rule (C)is the
ontradi
tion rule, and (W) is weakening.Sin
e we de�ned :F as an abbreviation for F ! ? (Se
tion A.1), \nega-tion introdu
tion" �; F) ?�) :Fis a spe
ial
ase of (! I), and \negation elimination"�) F �) :F�;�) ?is a spe
ial
ase of (! E). Similarly, the introdu
tion and elimination rulesfor equivalen
e�) F ! G �) G! F�;�) F $ G �) F $ G�) F ! G �) F $ G�) G! Fare spe
ial
ases of (^I) and (^E).To prove a formula F in this system means to prove the sequent) F .For instan
e, here is a proof of the equivalen
e(69) (:p! p)$::p:1: :p! p) :p! p | axiom2: :p) :p | axiom3: :p;:p! p) p | by (! E) from 2, 14: :p;:p! p) ? | by (! E) from 3, 25: :p! p) ::p | by (! I) from 46:) (:p! p)! ::p | by (! I) from 57: ::p) ::p | axiom8: :p;::p) ? | by (! E) from 2, 79: :p;::p) p | by (C) from 810: ::p) :p! p | by (! I) from 911:) ::p! (:p! p) | by (! I) from 1012:) (:p! p)$::p | by (^I) from 6, 11The dedu
tive system des
ribed above is sound and
omplete: a for-mula F is provable in this system i� F is a tautology.A formula is intuitionisti
ally provable if it
an be proved in this de-du
tive system without referen
es to axiom s
hema (68). A formula F isintuitionisti
ally equivalent to a formula G if F $ G is intuitionisti
allyprovable.

Answer Set Programming 45For instan
e, the impli
ation:p! p is intuitionisti
ally equivalent to theformula ::p, be
ause the proof of (69) above
ontains no referen
es to thelaw of ex
luded middle. On the other hand, this impli
ation is not intuition-isti
ally equivalent to p: the equivalen
e obtained from (69) by dropping thedouble negation in the right-hand side
annot be proved without (68).A

ording to the repla
ement property of intuitionisti
 logi
, if F is asubformula of a formula F 0, and G0 is obtained from F 0 by repla
ing ano

urren
e of F with another formula G, then F 0 $ G0 is intuitionisti-
ally derivable from F $ G. For instan
e, from the fa
t that :p ! p isintuitionisti
ally equivalent to ::p we
an
on
lude that (:p ! p) ^ q isintuitionisti
ally equivalent to ::p ^ q.Every intuitionisti
ally provable formula is valid in the logi
 of here-and-there; if two formulas are intuitionisti
ally equivalent then they areequivalent in the logi
 of here-and-there. Moreover, these assertions remaintrue if, instead of intuitionisti
 logi
, we talk about the stronger dedu
tivesystem, obtained from
lassi
al by repla
ing (68) with the axiom s
hemaexpressing the weak law of ex
luded middle:(70)) :F _ ::F:We
an use this fa
t, for example, to
he
k that the formulas p _ :p and::p ! p are equivalent to ea
h other in the logi
 of here-and-there, asfollows: 1: p _ :p) p _ :p | axiom2: p) p | axiom3: :p) :p | axiom4: ::p) ::p | axiom5: :p;::p) ? | by (! E) from 3, 46: :p;::p) p | by (C) from 57: p _ :p;::p) p | by (_E) from 1, 2, 68: p _ :p) ::p! p | by (! I) from 79:) (p _ :p)! (::p! p) | by (! I) from 810: ::p! p) ::p! p | axiom11:) :p _ ::p | axiom12: :p) p _ :p | by (_I) from 313: ::p;::p! p) p | by (! E) from 4, 1014: ::p;::p! p) p _ :p | by (_I) from 1315: ::p! p) p _ :p | by (_E) from 11, 12, 1416:) (::p! p)! (p _ :p) | by (! I) from 1517:) (p _ :p)$ (::p! p) | by (^I) from 9, 16

46 Paolo Ferraris and Vladimir Lifs
hitzHere is an axiom s
hema that is even stronger than (70) and that
an beused for establishing the validity of formulas in the logi
 of here-and-thereas well:(71)) F _ (F ! G) _ :G:Nothing stronger would be a

eptable: A propositional formula is valid inthe logi
 of here-and-there i� it is provable in the dedu
tive system obtainedfrom intuitionisti
 logi
 by adding axiom s
hema (71). This theorem is dueto Lex Hendriks [Lifs
hitz et al., 2001, Se
tion 2.2℄.B Traditional De�nition of a Stable ModelIn [Gelfond and Lifs
hitz, 1988℄, a logi
 program is assumed to
onsist ofrules of the form(72) A0 A1; : : : ; Am;not Am+1; : : : ;not Anwhere n � m � 0 and A0; : : : ; An are atoms; we will
all su
h expressionstraditional rules. A �nite set of traditional rules with m = n, that is, rulesof the form(73) A0 A1; : : : ; Amis essentially a Horn formula in the sense of Se
tion 2.2.The traditional redu
t of a traditional program � relative to a set X ofatoms is the set of rules (73) for all rules (72) in � su
h thatAm+1; : : : ; An 62 X:A

ording to the 1988 de�nition, the stable model of a traditional program�is a set X of atoms with the following property: X is the minimal model ofthe traditional redu
t of � relative to X . This is equivalent to our de�nitionof a stable model (Se
tion 2.1) limited to traditional programs:PROPOSITION 28. For any traditional program �, a set X of atoms isthe minimal model of the traditional redu
t of � relative to X i� X is astable model of �.Proof. Let �X denote the traditional redu
t of � relative to X .Case 1: X 6j= �. Set X is not a stable model of �. On the other hand, �
ontains a rule (72) su
h that A1; : : : ; Am 2 X and A0; Am+1; : : : ; An 62 X .The
orresponding rule (73) in �X is not satis�ed by X , so that X is notthe minimal model of �X .Case 2: X j= �. We will show that �X and �X are satis�ed by the samesubsets of X . Sin
e �X is the
onjun
tion of the formulas RX for all rules R

Answer Set Programming 47of �, and �X is the union of the programs fRgX for all rules R of �, itis suÆ
ient to verify this
laim for the
ase when � is a single rule (72).If X
ontains at least one of the atoms Am+1; : : : ; An then �X is empty and�X is the tautology ? ! AX0 . Otherwise �X is (73). If A1; : : : ; Am 2 Xthen A0 2 X , be
ause X j= �;
onsequently �X is the result of repla
ingAm+1; : : : ; An in (72) with ?, whi
h is equivalent to (73). It remains to
onsider the
ase when Am+1; : : : ; An 62 X and at least one of the atomsA1; : : : ; Am, say A1, does not belong to X . In this
ase �X is the tautology? ! AX0 . On the other hand, �X is the rule (73) whose body
ontains A1and
onsequently is not satis�ed by any subset of X . It follows that everysubset of X satis�es �X . �Intuitively, a rule (73)
an be viewed as a rule for generating atoms:we are allowed to generate its head A0 as soon as all atoms A1; : : : ; Amin the body have been generated. The minimal model of a set of rules ofthe form (73) is the set of all atoms that
an be generated by this pro
ess,starting from the empty set. The traditional de�nition of a stable model
anbe thought of as an extension of this idea to rules
ontaining negative literalsin the body. A rule (72) allows us to generate A0 as soon as we generatedthe atoms A1; : : : ; Am provided that none of the atoms Am+1; : : : ; An
anbe generated using the rules of the program. There is a vi
ious
ir
le inthis senten
e: to de
ide whether a rule of �
an be used to generate a newatom, we need to know whi
h atoms
an be generated using the rules of �.The traditional de�nition of a stable model over
omes this diÆ
ulty usinga \�xpoint
onstru
tion." Take a set X that you suspe
t may be exa
tlythe set of atoms that
an be generated using the rules of �. Under thisassumption, � has the same meaning as the traditional redu
t of � relativeto X , whi
h is a set of rules of the form (73). Consider the minimal modelof the traditional redu
t. If this model is exa
tly identi
al to the set X thatwe started with then X was a \good guess"; it is indeed a stable modelof �.The de�nition of a stable model for traditional programs
an be viewedas a possible de�nition of a \
orre
t" answer to a query in Prolog. Let �be a Prolog program without variables (or the set of ground rules obtainedfrom a Prolog program with variables by repla
ing ea
h rule with all itsground instan
es). If � is a traditional program with a unique stable modelthen the
orre
t answer to a ground query A is yes or no depending onwhether A belongs to that model.From this perspe
tive, a program with several stable models is \bad"|itdoes not provide an unambiguous spe
i�
ation for the behavior of a Pro-log system. Programs without answer sets are \bad" also. In answer setprogramming, on the other hand, programs without a unique answer set

48 Paolo Ferraris and Vladimir Lifs
hitzare quite useful: they
orrespond to
omputational problems with manysolutions, or with no solutions.The
on
ept of a stable model is only one of several available de�nitionsof the semanti
s of negation as failure. Two other de�nitions frequentlyreferred to in the literature are based on program
ompletion [Clark, 1978℄and the well-foundedmodel [Van Gelder et al., 1991℄. These three de�nitionsare not
ompletely equivalent to ea
h other, but ea
h of them provides anadequate des
ription of the behavior of Prolog.A
knowledgementsThis paper grew out of a graduate seminar that one of the authors hastaught at the University of Texas and his
ourse in
luded in the programof the 2004 European Summer S
hool on Logi
, Language and Information.We are grateful to the students who took those
lasses for their feedba
k.We would like to thank also Esra Erdem, Artur Gar
ez, Joohyung Lee,Grigori Mints, Jayadev Misra and Hudson Turner for
omments on a draftof this paper. This work was partially supported by the National S
ien
eFoundation under Grant IIS-0412907.BIBLIOGRAPHY[Baral et al., 2004℄ Chitta Baral, Karen Chan
ellor, Nam Tran, Nhan Tran, Anna Joy,and Mi
hael Berens. A knowledge based approa
h for representing and reasoning about
ell signaling networks. In Pro
eedings of European Conferen
e on ComputationalBiology (ECCB), Supplement on Bioinformati
s, pages 15{22, 2004.[Baral, 2003℄ Chitta Baral. Knowledge Representation, Reasoning and De
larative Prob-lem Solving. Cambridge University Press, 2003.[Brooks et al., 2005℄ Daniel R. Brooks, Esra Erdem, James W. Minett, and DonaldRinge. Chara
ter-based
ladisti
s and answer set programming. In Pro
eedings ofInternational Symposium on Pra
ti
al Aspe
ts of De
larative Languages (PADL),pages 37{51, 2005.[Clark, 1978℄ Keith Clark. Negation as failure. In Herve Gallaire and Ja
k Minker,editors, Logi
 and Data Bases, pages 293{322. Plenum Press, New York, 1978.[Davis et al., 1962℄ Martin Davis, George Logemann, and Donald Loveland. A ma
hineprogram for theorem proving. Communi
ations of ACM, 5(7):394{397, 1962.[Dimopoulos et al., 1997℄ Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. En-
oding planning problems in non-monotoni
 logi
 programs. In Sam Steel and Ra
hidAlami, editors, Pro
eedings of European Conferen
e on Planning, pages 169{181.Springer-Verlag, 1997.[Eiter and Gottlob, 1993℄ Thomas Eiter and Georg Gottlob. Complexity results for dis-jun
tive logi
 programming and appli
ation to nonmonotoni
 logi
s. In Dale Miller,editor, Pro
eedings of International Logi
 Programming Symposium (ILPS), pages266{278, 1993.[Erdem et al., 2000℄ Esra Erdem, Vladimir Lifs
hitz, and Martin Wong. Wire routingand satis�ability planning. In Pro
eedings of International Conferen
e on Computa-tional Logi
, pages 822{836, 2000.[Erdo�gan and Lifs
hitz, 2004℄ Selim T. Erdo�gan and Vladimir Lifs
hitz. De�nitions inanswer set programming. In Vladimir Lifs
hitz and Ilkka Niemel�a, editors, Pro
eedings

Answer Set Programming 49of International Conferen
e on Logi
 Programming and Nonmonotoni
 Reasoning(LPNMR), pages 114{126, 2004.[Ferraris and Lifs
hitz, 2005℄ Paolo Ferraris and Vladimir Lifs
hitz. Weight
onstraintsas nested expressions. Theory and Pra
ti
e of Logi
 Programming, 5:45{74, 2005.[Ferraris, 2005℄ Paolo Ferraris. Answer sets for propositional theories. In Pro
eedingsof International Conferen
e on Logi
 Programming and Nonmonotoni
 Reasoning(LPNMR), 2005. To appear.[Gelfond and Lifs
hitz, 1988℄ Mi
hael Gelfond and Vladimir Lifs
hitz. The stable modelsemanti
s for logi
 programming. In Robert Kowalski and Kenneth Bowen, editors,Pro
eedings of International Logi
 Programming Conferen
e and Symposium, pages1070{1080, 1988.[Gelfond and Lifs
hitz, 1991℄ Mi
hael Gelfond and Vladimir Lifs
hitz. Classi
al negationin logi
 programs and disjun
tive databases. New Generation Computing, 9:365{385,1991.[Gelfond, 1987℄ Mi
hael Gelfond. On strati�ed autoepistemi
 theories. In Pro
eedingsof National Conferen
e on Arti�
ial Intelligen
e (AAAI), pages 207{211, 1987.[Hanks and M
Dermott, 1987℄ Steve Hanks and Drew M
Dermott. Nonmonotoni
 logi
and temporal proje
tion. Arti�
ial Intelligen
e, 33(3):379{412, 1987.[Heljanko and Niemel�a, 2003℄ Keijo Heljanko and Ilkka Niemel�a. Bounded LTL model
he
king with stable models. Theory and Pra
ti
e of Logi
 Programming, 3:519{550,2003.[Hermansson et al., 2005℄ Martin Hermansson, Andreas Upho�, Reijo K�akel�a, andPentti Somerharju. Automated quantitative analysis of
omplex lipidomes by liquid
hromatography/mass spe
trometry. Analyti
al Chemistry, 77:2166{2175, 2005.[Heyting, 1930℄ Arend Heyting. Die formalen Regeln der intuitionistis
hen Logik.Sitzunsberi
hte der Preussis
hen Akademie von Wissens
haften. Physikalis
h-mathematis
he Klasse, pages 42{56, 1930.[Kautz and Selman, 1992℄ Henry Kautz and Bart Selman. Planning as satis�ability. InPro
eedings of European Conferen
e on Arti�
ial Intelligen
e (ECAI), pages 359{363,1992.[Leibniz, 1995℄ Gottfried Wilhelm Leibniz. Philosophi
al Writings. Everyman, 1995.[Leone et al., 2005℄ Ni
ola Leone, Thomas Eiter, Wolfgang Faber, Mi
hael Fink, GeorgGottlob, Gianluigi Gre
o, Giovambattista Ianni, Edyta Kalka, Domeni
o Lembo,Maurizio Lenzerini, Vin
enzino Lio, Bartosz Nowi
ki, Ri

ardo Rosati, Mar
o Ruzzi,Witold Staniszkis, and Giorgio Terra
ina. The INFOMIX system for advan
ed inte-gration of in
omplete and in
onsistent data. In Pro
eedings of ACM Symposium onPrin
iples of Database Systems (PODS), pages 915{917. ACM, 2005. Demo paper.[Lifs
hitz and Turner, 1994℄ Vladimir Lifs
hitz and Hudson Turner. Splitting a logi
program. In Pas
al Van Hentenry
k, editor, Pro
eedings of International Conferen
eon Logi
 Programming (ICLP), pages 23{37, 1994.[Lifs
hitz et al., 1999℄ Vladimir Lifs
hitz, Lappoon R. Tang, and Hudson Turner. Nestedexpressions in logi
 programs. Annals of Mathemati
s and Arti�
ial Intelligen
e,25:369{389, 1999.[Lifs
hitz et al., 2001℄ Vladimir Lifs
hitz, David Pear
e, and Agustin Valverde. Stronglyequivalent logi
 programs. ACM Transa
tions on Computational Logi
, 2:526{541,2001.[Lifs
hitz, 1999℄ Vladimir Lifs
hitz. A
tion languages, answer sets and planning. InThe Logi
 Programming Paradigm: a 25-Year Perspe
tive, pages 357{373. SpringerVerlag, 1999.[Lifs
hitz, 2002℄ Vladimir Lifs
hitz. Answer set programming and plan generation. Ar-ti�
ial Intelligen
e, 138:39{54, 2002.[Marek and Trusz
zy�nski, 1999℄ Vi
tor Marek and Miros law Trusz
zy�nski. Stable mod-els and an alternative logi
 programming paradigm. In The Logi
 ProgrammingParadigm: a 25-Year Perspe
tive, pages 375{398. Springer Verlag, 1999.

50 Paolo Ferraris and Vladimir Lifs
hitz[M
Carthy, 1980℄ John M
Carthy. Cir
ums
ription|a form of non-monotoni
 reason-ing. Arti�
ial Intelligen
e, 13:27{39,171{172, 1980. Reprodu
ed in [M
Carthy, 1990℄.[M
Carthy, 1990℄ John M
Carthy. Formalizing Common Sense: Papers by John M
-Carthy. Ablex, Norwood, NJ, 1990.[M
Dermott and Doyle, 1980℄ Drew M
Dermott and Jon Doyle. Nonmonotoni
 logi
 I.Arti�
ial Intelligen
e, 13:41{72, 1980.[Moore, 1985℄ Robert Moore. Semanti
al
onsiderations on nonmonotoni
 logi
. Arti�-
ial Intelligen
e, 25(1):75{94, 1985.[Nelson, 1949℄ David Nelson. Constru
tible falsity. Journal of Symboli
 Logi
, 14:16{26,1949.[Niemel�a, 1999℄ Ilkka Niemel�a. Logi
 programs with stable model semanti
s as a
on-straint programming paradigm. Annals of Mathemati
s and Arti�
ial Intelligen
e,25:241{273, 1999.[Nogueira et al., 2001℄ Moni
a Nogueira, Mar
ello Baldu

ini, Mi
hael Gelfond, Ri
hardWatson, and Matthew Barry. An A-Prolog de
ision support system for the Spa
e Shut-tle. In Pro
eedings of International Symposium on Pra
ti
al Aspe
ts of De
larativeLanguages (PADL), pages 169{183, 2001.[Pear
e, 1997℄ David Pear
e. A new logi
al
hara
terization of stable models and answersets. In J�urgen Dix, Luis Pereira, and Teodor Przymusinski, editors, Non-Monotoni
Extensions of Logi
 Programming (Le
ture Notes in Arti�
ial Intelligen
e 1216),pages 57{70. Springer-Verlag, 1997.[Reiter, 1978℄ Raymond Reiter. On
losed world data bases. In Herve Gallaire and Ja
kMinker, editors, Logi
 and Data Bases, pages 119{140. Plenum Press, New York, 1978.[Reiter, 1980℄ Raymond Reiter. A logi
 for default reasoning. Arti�
ial Intelligen
e,13:81{132, 1980.[Shanahan, 1997℄ Murray Shanahan. Solving the Frame Problem: A Mathemati
al In-vestigation of the Common Sense Law of Inertia. MIT Press, 1997.[Simons et al., 2002℄ Patrik Simons, Ilkka Niemel�a, and Timo Soininen. Extending andimplementing the stable model semanti
s. Arti�
ial Intelligen
e, 138:181{234, 2002.[Soininen and Niemel�a, 1998℄ Timo Soininen and Ilkka Niemel�a. Developing a de
lara-tive rule language for appli
ations in produ
t
on�guration. In Gopal Gupta, editor,Pro
eedings of International Symposium on Pra
ti
al Aspe
ts of De
larative Lan-guages (PADL), pages 305{319. Springer-Verlag, 1998.[Subrahmanian and Zaniolo, 1995℄ V.S. Subrahmanian and Carlo Zaniolo. Relating sta-ble models and AI planning domains. In Pro
eedings of International Conferen
e onLogi
 Programming (ICLP), 1995.[Turner, 1997℄ Hudson Turner. Representing a
tions in logi
 programs and default theo-ries: a situation
al
ulus approa
h. Journal of Logi
 Programming, 31:245{298, 1997.[Turner, 2003℄ Hudson Turner. Strong equivalen
e made easy: nested expressions andweight
onstraints. Theory and Pra
ti
e of Logi
 Programming, 3(4,5):609{622, 2003.[Van Gelder et al., 1991℄ Allen Van Gelder, Kenneth Ross, and John S
hlipf. The well-founded semanti
s for general logi
 programs. Journal of ACM, 38(3):620{650, 1991.

