Abstract Answer Set Solvers

Yuliya Lierler
University of Texas at Austin
yuliya@cs.utexas.edu

Abstract

Nieuwenhuis, Oliveras, and Tinelli showed how to descrihbamcements
of the Davis-Putnam-Logemann-Loveland algorithm usiagdition systems, in-
stead of pseudocode. We design a similar framework for thhgerithms that
generate answer sets for logic prograreBtODELS ASP-SAT with Backtracking,
and a newly designed and implemented algoritw®. This approach to describ-
ing answer set solvers makes it easier to prove their corgsst to compare them,
and to design new systems.

1 Introduction

Most state-of-the-art Satisfiability (SAT) solvers aredshsn variations of the Davis-
Putnam-Logemann-Lovelan@#LL) procedure [1]. Usually enhancementsoofLL

are described fairly informally with the use of pseudocoldés often difficult to un-
derstand the precise meaning of these modifications andote ftheir properties on
the basis of such informal descriptions. In [2], the authmngposed an alternative
approach to describingpLL and its enhancements (for instance, backjumping and
learning). They describe each varianbsfLL by means of a transition system that can
be viewed as an abstract framework underlyirgg. L computation. The authors fur-
ther extend the framework to the algorithms commonly useSaitisfiability Modulo
Background Theories.

The abstract framework introduced in [2] describes whaitést of computation”
are, and which transitions between states are allowed. isnwhy, it defines a di-
rected graph such that every execution of e L procedure corresponds to a path in
this graph. Some edges may correspond to unit propagaéps,stome to branching,
some to backtracking. This allows the authors to modebaL algorithm by a math-
ematically simple and elegant object, graph, rather thaaolleation of pseudocode
statements. Such an abstract way of preseripgL simplifies the analysis of its
correctness and facilitates formal reasoning about itpgntes. Instead of reasoning
about pseudocode constructs, we can reason about prepEréeyraph. For instance,
by proving that the graph corresponding to a versiomefL is acyclic we demon-
strate that the algorithm always terminates. On the othed Hay checking that every
terminal state corresponds to a solution we establish tirecness of the algorithm.

The graph introduced in [2] is actually an imperfect repnéstion of DPLL in the
sense that some paths in the graph do not correspond to aoytiexeof bpLL (for
example, paths in which branching is used even though umitagration is applicable).
But this level of detall is irrelevant when we talk about emtness. Furthermore, it
makes our correctness theorems more general. These trseeoogaT not only execu-
tions of the pseudo-code, but also some computations thgirahibited by its details.

In this paper we take the abstract framework for descrilmipgL-like procedures
for SAT solvers as a starting point and design a similar fraork for three algo-
rithms that generate answer sets for logic programs. Thiediirs is theSMODELS
algorithm [3], implemented in one of the major answer setesst. The other algo-
rithm is calledsup and can be seen as a simplificationsspfoDELS algorithm? We
implemented this algorithm in the new, previously unpuigis systensur®. The last
algorithm that we describe issp-sAT with Backtracking [4]. It computes models of
the completion of the given program usingLL and tests them until an answer set is
found.

We start by reviewing the abstract framework figrLL developed in [2] in a form
convenient for our purposes. We demonstrate how this framewan be modified to
describe an algorithm for computing supported models ofgéclprogram, and then
extend it to thesmoDELS algorithm for computing answer sets. We show that for a
large class of programs, called tight, the graph represgatiODELSIs closely related
to the graph representing the applicationb@fLL to the completion of the program.
As a step towards extending these ideag$@-sAT with Backtracking, we analyze
a modification of the originabpLL graph that includes testing the models found by
DPLL. We then show how a special case of this construction carefsptoASP-SAT
with Backtracking.

We hope that the analysis of algorithms for computing ansse¢s in terms of
transition systems described in this paper will contritiotelarifying computational
principles of answer set programming and to the developofamw systems.

2 Review: Abstract DPLL

For a seto of atoms, astaterelative tog is either a distinguished stakailStateor a
list M of literals overo such thatM contains no repetitions, and each literaMnhas
an annotationa bit that marks it as decisionliteral or not. For instance, the states
relative to a singleton sd¢&} of atoms are

FailState 0, a, —a, ad, —a9,a—-a, al —a,
a-al, al-ad -aa -a'a, —-aal, -adad,

1smoDELS http: // ww. tcs. hut. fi/ Sof t war e/ snodel s .

2The idea of simplifying thesMoDELS algorithm in this manner was suggested to us by Mirostaw
Truszczyhski (August 2, 2007).

Ssur http://ww. cs. ut exas. edu/ user s/ t ag/ sup. Infact, surimplements a more sophis-
ticated form of the algorithm that is enhanced with learning

4A more sophisticated form of this algorithmasp-saT with Learning, is implemented in system
CMODELS htt p://ww. cs. ut exas. edu/ users/tag/ cnodel s .

where by 0 we denote the empty list. The concatenation ofswah lists is denoted
by juxtaposition. Frequently, we considkt as a set of literals, ignoring both the
annotations and the order between its elements. We Write emphasize thdtis a
decision literal. A literal is unassigned b if neitherl norl belongs tavl.

If C is a disjunction (conjunction) of literals then Bywe understand the conjunc-
tion (disjunction) of the complements of the literals oatug in C. We will sometimes
identify C with the set of its elements.

For any CNF formuld (a set of clauses), we will define IBPLL graphbpPgs. The
set of nodes obpPr consists of the states relative to the set of atoms occuimifg We
use the terms “state” and “node” interchangeably. If a s&at®nsistent and complete
then it represents a truth assignmentfor

The set of edges aipr is described by a set of “transition rules”. Each transition
rule has the fornrM = M’ followed by a condition, so that

e M andM’ are symbolic expressions for nodesos-, and
« if the condition is satisfied there is an edge between hdd@dM’ in the graph.

There are four transition rules that characterize the edfjpsr:

Unit Propagate M = M| if CvlieFandCCM

Decide M = M9 if |isunassigned by
Fail: M — FailStateif 4 M ISinconsistent,and
M contains no decision literals

P 19 Qis inconsistent, and

d T -
Backtrack PIRQ= Pl { Q contains no decision literals

Note that an edge in the graph may be justified by severaliti@msules.

This graph can be used for deciding the satisfiability of anidaF simply by con-
structing an arbitrary path leading from node 0 until a teahnodeM is reached. The
following proposition shows that this process always teates, thaF is unsatisfiable
if M is FailState and thatM is a model o+ otherwise.

Proposition 1. For any CNF formula F,
(a) graphprr is finite and acyclic,
(b) any terminal state abPr other than FailState is a model of F,
(c) FailState is reachable frodin DPg if and only if F is unsatisfiable.

For instance, I be the set consisting of the clauses

avb
—-aVvec.

Here is a path imPg with every edge annotated by the name of a transition rule tha
justifies the presence of this edge in the graph:

0 — (Decide

ad = (Unit Propagatg

alc = (Decide (1)
ad ¢ b

Since the stata® ¢ bf is terminal, Proposition 1(b) asserts thatc, b} is a model of.
Here is another path inPg from 0 to the same terminal node:

0 — (Decide

ad — (Decide

ad-c? = (UnitPropagate

ad -cd¢c — (Backtrack @)
adc — (Decide

ad ¢ b

Path (1) corresponds to an executiomeLiL; path (2) does not, because it uSEcide
instead ofUnit Propagate

Note that the grapbPr is a modification of thelassical DPLLgraph defined in [2,
Section 2.3]. Itis different in three ways. First, the dgstion of the classical DPLL
graph involves a “PureLiteral” transition rule, which wevkadropped. Second, its
states are paisl || F for all CNF formulasF. For our purposes, it is not necessary to
includeF. Third, in the definition of that graph, eathis required to be consistent. In
case of the DPLL, due to the simple structure of a clause pipssible to characterize
the applicability ofBacktrackin a simple manner: when some of the clauses become
inconsistent with the current partial assignmdacktrackis applicable. In ASP, it is
not easy to describe the applicability Backtrackif only consistent states are taken
into account. We introduced inconsistent states in thergpap to facilitate our work
on extending this graph to model te@oDELSalgorithm.

3 Background: Logic Programs
A (propositional) logic prograns a finite set of rules of the form

aOHalv"'aamanOtaﬁklv"'anOta17 (3)

where eacly; is an atom. ByBodiegll,a) we denote the (multi-)set of the bodies of
all rules of M with heada. We will identify the body of (3) with the conjunction of
literals

Ao ANAmA "8me1 A ... an.

and (3) with the implication

yA...NamA-8@my1 /A ... aq — Qo.

For any set of literals, byM™ we denote the set of positive literals frdvh We
assume that the reader is familiar with the definition of aswaer set (stable model) of
a logic program [5]. For any consistent and complete\self literals @ssignment if
M™ is an answer set for a progrdm thenM is a model ofl1. Moreover, in this case
M is asupporteanodel ofl1, in the sense that for every atae M, M = B for some
B € BodiegI,a).

4 Generating Supported Models

Inthe next section we will define, for an arbitrary progr8na graptsMp representing
the application of themoDELSsalgorithm tol; the terminal nodes admp are answer
sets off1. As a step in this direction, we describe here a simpler grapBASTR. The
terminal nodes oATLEASTH are supported models oF.

The set of nodes OATLEASTR consists of the states relative to the set of atoms
occurring inlM. The edges of the graptTLEASTRH are described by the transition rules
Decide Fail, Backtrackintroduced above in the definition ofrr and the additional
transition rules:

Unit Propagate LP M — Maif a<—BelandBCM
All Rules Cancelled M = M —a if BNM # 0 for all B € Bodieg,a),

a—Bell,

aeM,

B'NM # 0 for all B’ € Bodieg,a) \ B,
leB

Backchain True M= MI if

a—1,B e N,
Backchain False M = MI if { —aeM, and
BCM

Note that each of the ruldgnit Propagate LPandBackchain Falsés similar toUnit
Propagate the former corresponds tdnit Propagateon C v | wherel is the head of
the rule, and the latter corresponddnit PropagateonC Vv | wherel is an element of
the body of the rule.

This graph can be used for deciding whether progfahas a supported model by
constructing a path from 0 to a terminal node:

Proposition 2. For any prograntl,
(a) graphATLEASTR is finite and acyclic,
(b) any terminal state oATLEASTR other than FailState is a supported modelf

(c) FailState is reachable from in ATLEASTR if and only if M has no supported
models.

5The names of some of these rules follow [6].

For instance, leffl be the program

a<—noth
b~ nota
C—a (4)
d«—d.
Here is a path IRTLEASTR:
0 — (Decide
ad = (Unit Propagate LB
alc = (All Rules Cancelled (5)
ac-b = (Decide
ad c—b g

Since the state ¢ —b d is terminal, Proposition 2(b) asserts tHat c,—b,d} is a
supported model of program.

The assertion of Proposition 2 will remain true if we drop th@nsition rules
Backchain TruendBackchain Falsérom the definition ofATLEAST.

The transition rules definingTLEAST are closely related to proceduddeast[3,
Sections 4.1], which is one of the core procedures ofktheDELSalgorithm.

5 Smodes

Recall that a sdt) of atoms occurring in a prograf is said to beunfounded7] on
a consistent sa¥l of literals w.r.t.1N if for everya € U and everyB € BodiegI,a),
M= —-BorUnB* #0.

We now describe the grapdmp that represents the application of thRODELS
algorithm to progranfil. sMp is a graph whose nodes are the same as the nodes of the
graphATLEASTR. The edges asmp are described by the transition rules\df EASTR
and the additional transition rule:

M is consistent, and

Unfounded M = M —a if { ac U for a setU unfounded orM w.r.t. I

This transition rule ofsmp is closely related to procedurmost[3, Sections 4.2],
which together with the proceduigleastforms the core of themoDELSalgorithm.

The graphsMp can be used for deciding whether progrBinhas an answer set by
constructing a path from 0 to a terminal node:

Proposition 3. For any prograntl,
(a) graphsmp is finite and acyclic,
(b) for any terminal state M a§mp other than FailState, M is an answer set of1,

(c) FailState is reachable frofdin smp if and only if N has no answer sets.

To illustrate the difference betweesmp and ATLEASTR, assume again thai
is program (4). Path (5) in the grap{TLEASTR is also a path irsMp. But state
a% ¢ —b d¥, which is terminal inATLEASTR, is not terminal insMp. This is not sur-
prising, since the sefta,c,d} of atoms that belongs to this state is not an answer set
of M. To get to a state that is terminal M, we need two more steps:

ad ¢ —b g = (UnfoundedU = {d}) (6)
adc-bd!-d — (Backtrack

Proposition 3(b) asserts thga, ¢} is an answer set dil.
The assertion of Proposition 3 will remain true if we drop trensition rulesAll
Rules CancelledBackchain TrueandBackchain Falsérom the definition ofsmp.

6 Sup

In this section we show how to extend the gragheAsTh by the modification of
transition ruleUnfoundedso that terminal nodes of the resulting graph correspond to
answer sets dfl.

The graphsum is the subgraph ofmp such that its nodes are the same as the
nodes of the graptimp and its edges are described by the transition rulesofAS T
and the following modification of the ruldnfoundedf smn:

no literal is unassigned by,
UnfoundedSUP M =— M —a if M is consistent, and
ac U for a setU unfounded oM w.r.t. I

This graph can be used for deciding whether a prograhas an answer set by con-
structing a path from 0: Proposition 3 remains correctrattplacing graptsmp with
SUM.

The only difference betweeaur; and smp is due to the additional restriction
in Unfounded SUPIt is applicable only to the states that assign all atomBlinTo
illustrate the difference betweawm; andsmp, assume thdi is program (4). Path (6)
in SMp is also a path irsuRy. On the other hand the path

0 = (UnfoundedU = {d})
-d

of sMp does not belong taumy

We can view the graphum, as a description of a particular strategy for traversing
SMp, i.e., an edge corresponding to an applicatiotdofoundedo a state irsmp is
considered only if a transition rulPecideis not applicable in this state. Note that
systemsMODELS implements the opposite strategy, i.e., an edge correapgia an
application ofDecideis considered only infoundeds not applicable. Nevertheless,
the strategy described tsur; may be reasonable for many problems. For instance,

it is easy to see that transition rulinfoundeds redundant for tight programs. Fur-
thermore, the analogous strategy has been successfutliuS§AT-based answer set
solversassaT® [8] and CMODELS (see Footnote 4) [4]. These systems first compute
the completion of a program and then test each model of theplstion whether it
is an answer set (this can be done by testing whether it centaifounded sets). In
fact, the work ommssAT andcMODELS inspired the development of systesop. Un-
like ASSAT andCcMODELS, SUP does not compute the completion of a program but
performs its inference directly on the the program by medrsaasition rules of the
graphsum.

We have implemented systeswp (see Footnote 3), whose underlying algorithm is
modelled by the grapbum. In the implementation, we used

e the interface of SAT-solverINISAT (v1.12b) that supports non-clausal con-
straints [9] in order to implement inferences describedJmit Propagate LR
All Rules CancelledBackchain TrueBackchain FalseDecide andFail,

e parts of thecMODELS code that support transition rulinfounded SUP

Note that systensup also implements conflict-driven backjumping and learning.
Preliminary results available a&up web site (see Footnote 3) compariagp with
other answer set solvers are promising.

The implementation cdupPproofs that the abstract framework for answer set solvers
introduced in this work may suggest new designs for solvers.

7 Tight Programs

We now recall the definitions of the positive dependency lgrapd a tight program.
The positive dependency graplfia progranTl is the directed grap® such that

¢ the nodes o are the atoms occurring I, and
e G contains the edges fromp to a; (1 < i < m) for each rule (3) irff1.

A program istightif its positive dependency graph is acyclic. For instancegmm (4)
is not tight since its positive dependency graph has a cyaetal the ruled < d. On
the other hand, the program constructed from (4) by remaiisgule is tight.

Recall that for any prografi and any assignmeM, if M™ is an answer set d
thenM is a supported model d¢1. For the case of tight programs, the converse holds
also:M* is an answer set fdil if and only if M is a supported model ¢ [10].

It is also well known that the supported models of a programhmcharacterized
as models of its completion in the sense of [11]. It turns bat for tight programs the
graphsmp is “almost identical” to the grapbpg, whereF is the (clausified) comple-
tion of . To make this claim precise, we need the following termigglo

We say that an edgd — M’ in the graptsmp is singularf

e the only transition rule justifying this edge iinfoundegand

6ASSAT: http://assat.cs. ust. hk/ .
"MINISAT: ht t p: // mi ni sat . se/ .

e some edg® —> M” can be justified by a transition rule other tHanfounded
For instance, lefl be the program

a«— b
b+~ c.

The edge
ad b —~cd = (UnfoundedU = {a,b})
ad bd —c? -a

in the graphsmp is singular, because the edge

ad bd —cd = (All Rules Cancellegd
ad b —c¥ -b

belongs tosmp also.

From the point of view of actual execution of tis@ODELS algorithm, singular
edges of the graphmMp are inessentialsMoDELS never follows a singular edge. By
SMp we denote the graph obtained frawmn by removing all singular edges.

Recall that for any program, its completion consists dfl and the formulas that
can be written as

-av.\/ B (7)
BeBodiegl.a)
for every atoma in M. CNF-Comgll) is the completion converted to CNF using
straightforward equivalent transformations. In otherdsp€NF-Comgl) consists of
clauses of two kinds:

1. the rulesa < B of the program written as clauses

aVvB, 8)

2. formulas (7) converted to CNF using the distributivitydi$junction over con-
junctiorf.

Proposition 4. For any tight prograntl, the graphsmp, is equal to each of the graphs
ATLEASTR andDPenE-comgn) -

For instance, lefl be the program

a< b, notc
b.

This program is tight. Its completion is

(a<>bA—-C)AbA—C,

8t is essential that repetitions are not removed in the m®cef clausification. For instance,
CNF-Compa < not a) is the formula(aVv a) A (-aV —a).

andCNF-Comgll) is
(av-bvc)A(-aVvb)A(-aV-c) AbA-cC.

Proposition 4 asserts that, for this form#&asmy coincides withbPr and WithATLEAST.
From Proposition 4, it follows that applying tis&oDELSalgorithm to a tight pro-

gram essentially amounts to applyipgLL to its completion. A similar relationship,

in terms of pseudocode representationsbDELSandDPLL, is established in [12].

8 Generateand Test

In this section, we present a modification of the grapha that includes testing the
models ofF found byppLL. Let F be a CNF formula, and le&X be a set of models
of F. The terminal nodes of the grapite x defined below are models Bfthat belong
to X.

The nodes of the graphire x are the same as the nodes of the graph The edges
of GTg x are described by the transition rulesod= and the additional transition rules:

no literal is unassigned by,

Fail GT: M — FailState if M ¢ X,
M contains no decision literals

. no literal is unassigned by 19 Q,
Backtrack GT PI19Q = Pl if { PI9Q¢X,
Q contains no decision literals.

Itis easy to see that the graphr is a subgraph o6 Tr x. Furthermore, when the skt
coincides with the set of all models &fthe graphs are identical. This graph can be
used for deciding whether a formutahas a model that belongsXoby constructing a
path from 0 to a terminal node:

Proposition 5. For any CNF formula F and any set X of models of F,
(a) graphGTex is finite and acyclic,
(b) any terminal state o6 Tr x other than FailState belongs to X,
(c) FailState is reachable frofin GTg x if and only if X is empty.

Note that to verify the applicability of the new transitiamesFail GT andBack-
track GT we need a procedure for testing whether a set of literalsnigsléo X, but
there is no need to have the elementXa@xplicitly listed.

ASP-SAT with Backtracking [4] is a procedure that computes modelthefcom-
pletion of the given program usimpLL, and tests them until an answer set is found.
The application of thesp-SAT with Backtracking algorithm to a prografh can be
viewed as constructing a path from 0 to a terminal node irgth@hGTe x, where

e F is the completion of1 converted to conjunctive normal form, and

e X is the set of all assignments corresponding to answer séts of

10

9 Redated Work

Simons [3] described themoDELS algorithm by means of a pseudocode and demon-
strated its correctness. Gebser and Schaub [13] providediactive system for de-
scribing inferences involved in computing answer sets bjetaux methods. The ab-
stract framework presented in this paper can be viewed aductiee system also, but

it is a very different system. For instance, we describe tracking by an inference
rule, and the Gebser-Schaub system doesn’t. Accorditgyglérivations considered in
this paper describe search process, and derivations indhsgtSchaub system don't.
Also, the abstract framework discussed here doesn’t haweésrence rule similar to
Cut; this is why its derivations are paths, rather than trees

10 Proofs

Lemma 1. For any CNF formula F and a path frofito a state ... I, in DPF, every
model X of F satisfies If it satisfies all decision Iiteralsfl with j <.

Proof. By induction on the length of a path. Since the property atlyiholds in the
initial state 0, we only need to prove that all transitiofesulofDPr preserve it.

Consider an edgel =—> M’ whereM is a sequench ... lx such that every model
X of F satisfied; if it satisfies all decision Iiteralls]d with j <.

Unit Propagate M’ is M Iy, 1. Take any modeK of F such thatX satisfies all
decision IiteraIsIJd with j <k+ 1. By the inductive hypothesi¥ = M. From the
definition of Unit Propagate for some claus€ v ly.; € F, C C M. Consequently,
M & —C. It follows thatX = Iy 1.

Decide M"is M I, ;. Obvious.

Fail: Obvious.

Backtrack M has the formP Iid Q whereQ contains no decision literalsM’ is
P I;. Take any modeX of F such thatX satisfies all decision Iiterallﬁ’ with j <.
We need to show that = I;. By contradiction. Assume that |= li. SinceQ does
not contain decision literal¥ satisfies all decision literals id I Q. By the inductive
hypothesis, it follows thaX satisfiesP Iid Q, that is,M. This is impossible becausé
is inconsistent.

Proposition 1. For any CNF formuléd ,
(a) graplpbPe is finite and acyclic,
(b) any terminal state afPg other tharFailStateis a model of-,
(c) FailStateis reachable fror in DPg if and only ifF is unsatisfiable.

Proof. (a) The finiteness abpg is obvious. For any lisi of literals by|N| we denote
the length ofN. Any stateM, other tharFailState has the formMg I3 My...1p Mp,
wherel; ...l are all desicion literals of1; we definea(M) as the sequence of non-
negative integerfo|, [My|,...,|Mp|, anda (FailStatg = . For any stateM andM’

of DPg, we understand (M) < a(M’) as the lexicographical order. By the definition

11

of the transition rules defining the edgesor, if there is an edge from a stah@
to M’ in DPg, thena (M) < a(M’). It follows that if a stateM’ is reachable fronM
thena (M) < a(M’). Consequently, the graph is acyclic.
(b) Consider any terminal staké other tharfailState From the fact thaDecideis not
applicable, we derive thadl assigns all literals. Similarly, since neithgacktracknor
Fail is applicableM is consistent. Consequent, is an assignment. Consider any
clauseC V1 in F. It follows that ifC ¢ M thenCNM = 0. SinceUnit Propagateis not
applicable, it follows that i€ C M thenl € M. We derive thaM =CV|. HenceM is
a model ofF.
(c) Left-to-right: SinceFailStateis reachable from 0, there is an inconsistent skate
without decision literals such that there exists a path flbta M. By Lemma 1, any
model ofF satisfiedM. SinceM is inconsistent we conclude thiathas no models.
Right-to-left: From (a) it follows that there is a path frdirid some terminal state.
By (b), this state cannot be different frdrailState becausé is unsatisfiable.

Lemma 2. For any programil and a path fron® to a state{ ... I, in ATLEASTR,
every supported model X foF satisfiesilif it satisfies all decision Iiteralsfl with j <.

Proof. By induction on the length of the path. Similar to the prooLeinma 1. We
will show that the property in question is preserved by the feew rules.

Unit Propagate LP M’ is M a. Take any modeX of M such thatX satisfies all
decision literald¢ with j < k. From the inductive hypothesis it follows th¥t= M.
By the definition ofUnit Propagate LR B C M for some rulea < B. Consequently,
M = B. SinceX is a model off1 we derive thaK = a.

All Rules CancelledM’ is M —a, such thaBNM # 0 for everyB € BodiegI, a).
ConsequentlyM = —B for everyB € Bodiegl,a). Take any modeK of I such
thatX satisfies all decision Iiteral:§i with j < k. We need to show that = —a. By
contradiction. Assume tha = a. By the inductive hypothesi¥ = M. Therefore,
X |= =B for everyB € BodiegIl,a). We derive thaX is not a supported model of.

Backchain TrueM’ is M |. Take any supported mod¥lof I such thalX satisfies
all decision IiteraIsIJd with j < k. We need to show that = 1. By contradiction.

AssumeX |= 1. Consider the rula < B corresponding to this application Backchain
True Sincel € B, X = —B. By the definition oBackchain TrugB’NM # 0 for everys’

in Bodiegl,a)\ B. ConsequentlyM = —B' for everyB' in Bodieg,a)\ B. By the
inductive hypothesis = M. It follows thatX = —B' for everyB' in BodiegI,a)\ B.

HenceX is not supported bl.

Backchain False M’ is M . Take any modeK of I such thatX satisfies all
decision Iiteralled with j < k. We need to show that |=I. By contradiction. Assume
that X = I. By the definition ofBackchain Falsghere exists a rula — |,B in 1
such that-a € M andB C M. ConsequentlyM = —-a andM = B. By the inductive
hypothesisX = M. It follows thatX = —aandX |= B. SinceX =, X does not satisfy
the rulea < |, B, so that it is not a model dfl.

Proposition 2. For any prograni,
(a) graphaTLEASTR s finite and acyclic,

(b) any terminal state afTLEASTR other tharFailStateis a supported model &f,

12

(c) FailStateis reachable fromd in ATLEASTR if and only if 1 has no supported
models.

Proof. Parts (a) and (c) are proved as in the proof of Propositiosibgl.emma 2.

(b) LetM be a terminal state. It follows that none of the rules areiapple. From the
fact thatDecideis not applicable, we derive th&t assigns all literals. Since neither
Backtracknor Fail is applicable,M is consistent. Sincé&nit Propagate LPis not
applicable, it follows that for every ruke— B € I, if BC M thena € M. Consequently,
if M = BthenM = a. We derive thaM is a model off1. We now show thaM is a
supported model ofl. By contradiction. Suppose thit is not a supported model.
Then, there is an atome M such thaM = B for everyB € Bodiegl1,a). SinceM is
consistentBNM = 0 for everyB € BodiegI,a). ConsequentlyAll Rules Cancelled
is applicable. This contradicts the assumption Mas terminal.

We say that a mode&{ of a progrant1 is unfounded-fred no non-empty subset of
Xis an unfounded set o w.r.t. 1.

Lemma 3 (Theorem 4.6 [14]) For any model X of a prograrfl, X* is an answer set
for M if and only if X is unfounded-free.

Lemma4. For any unfounded setU on a consistent setY of literals v& programi,
and any assignment X, if 6 Y and XnU # 0, then X' is not an answer set fd.

Proof. Assume thaX ™ is an answer set fdil. ThenX is a model offl. By Lemma 3,
it follows that X* is unfounded-free. Sinc¥ NU # 0 it follows thatX NU is not
unfounded onX. This means that for some ruée— B in N such thata € XNU,
X j£—=BandXNUNB" =0. SinceX =Y, it follows thatY (£ —B. SinceX satisfiesB,
B* C X and consequently NBT = XNU NB* = 0. It follows that seU is not an
unfounded set oM.

Lemma 5. For any programl1 and a path fronD to a state ... I, in sMp, and any
assignment X, if X is an answer set foffl then X satisfies If it satisfies all decision
literals 19 with j <i.

Proof. By induction on the length of a path. Recall that for any assigntX, if
X* is an answer set fdf, thenX is a supported model df, and that the transition
systemsmp extendsATLEASTR by the transition rulé&Jnfounded Given our proof of
Lemma 2, we only need to demonstrate that applicatiobmfbundedpreserves the
property.

Consider a transitioM —Unfoundedyy \yhereM is a sequench ... I. M’ is
M —a, such thata € U, whereU is an unfounded set o w.r.t 1. Take any assign-
mentX such thaiX™ is an answer set fdil andX satisfies all decision Iiteral? with
j < k. By the inductive hypothesi¥X &= M. ThenX | —a. Indeed, otherwisa would
be a common element &f andU, andX NU would be non-empty, which contradicts
Lemma 4 withM asY.

Since the grapBumy is a subgraph o$mMp, Lemma 5 immediately holds faums.
Proposition 3. For any prograni,

13

(a) graphsmn [sum] is finite and acyclic.

(b) for any terminal stat&! of sMp [SUPL] other tharFailState M™ is an answer
set off1.

(c) FailStateis reachable from in smMp [SUR] if and only if 1T has no answer sets.

Proof. Parts (a) and (c) are proved as in the proof of Propositiosibgl.emma 5.

(b) As in the proof of Proposition 2(b) we derive thdtis a model ofl1. Assume
thatM™ is not an answer set. Then, by Lemma 3, there is a non-empbundéd
setU onM w.r.t. T such thaty C M. It follows thatUnfoundedUnfounded SUPis
applicable (with an arbitrarg € U). This contradicts the assumption tihis terminal.

Lemma 6. For any progranTl, the graphs\TLEASTR and DPce.comgn) @re equal.

Proof. It is easy to see that the states of the graphsEASTn and DPcng.compgn)
coincide. We will now show that the edgesAfLEASTn andDPcnr.comgny COINCide
also.

Itis clear that there is an ed¢ =— M’ in ATLEASTR justified by the ruledDecide
if and only if there is an edgbl = M’ in DPcnE.comgn) justified byDecide The
same holds for the transition rul€ail andBacktrack

We will now show that if there is an edge from a staeto a stateM’ in the
graph DPcnr.comgn) Justified by the transition rul&nit Propagatethen there is an
edge fromM to M’ in ATLEASTR. Consider a claus8 vl € CNF-Comygn) such that
M = —C. We will consider two cases, depending on whetberl comes from (8) or
from the CNF of (7).

Case 1CVl isaV B corresponding to a rule < B.

Case 1.11 isa. Then there is an edge from to M’ in ATLEASTR justified by the
transition ruleUnit Propagate LP

Case 1.21 is an element oB. ThenB has the form,D andC is av D. From
C C M, we derive thaD C M and—a € M. There is an edge froid to M’ in the graph
ATLEAST justified by the following instance d@dackchain False

a—1,D e,
M — MI if -a€ M, and
DCM

Case 2C V| has the formaV D, whereD is one of the clauses of the CNF of

\/ B

BeBodieglM.a)

ThenD has the form

V(B

BeBodiegl,a)

wheref is a function that maps eveB/e Bodieg[,a) to an element oB.

Case 2.11 is —a. ThenC is D, so thafD C M. ConsequenthyB M =# 0 for every
B € Bodiegl,a). There is an edge froml to M’ in ATLEASTy justified byAll Rules
Cancelled

14

Case 2.2 is an element oD. From the construction db, it follows thatl =
f(B) € B for some rulea — B. ThenCis

—aVv \V f(B').

B'cBodiegl,a)\B

FromC C M we derive that € M and thatf (B') € M for everyB’ € Bodiegll,a) \ B.
Since f(B') is a conjunctive term oB', it follows thatB’ "M # 0. Then there is an
edge fromM to M’ in ATLEASTR justified byBackchain True

We will now show that if there is an edge from a staeto a stateM’ in the
graphATLEASTR justified by one of the transition rulésnit Propagate LR All Rules
Cancelled Backchain TrueandBackchain Falsghen there is an edge from to M’
in DPCNE-Compg) -

Case 1. The edge is justified ynit Propagate LP Then there is a rula «
B N whereBC M, andM’ is M a. By the construction o£NF-Comg), aV
B € CNF-Comgll). There is an edge froml to M in DPcye.comgn) justified by the
following instance ofJnit Propagate

Bvae CNF-Comygrl) and

MZ}MaIf{BgM.

Case 2: The edge is justified Byl Rules CancelledBy the definition ofAll Rules
Cancelled there is an atona such that for alB € Bodieg,a), BNM # 0; andM’
is M —a. ConsequentlyM contains the complement of some literaBn Denote that

literal by f(B), so thatf (B) € M. From the construction &8NF-ComgI),
-av. \/ f(B)

BeBodiegl.a)

belongs taCNF-Comggl). By the choice off,

\V fB)CMm.

BeBodiegl,a)

There is an edge frol to M’ in DPcE.comgn) Justified by the following instance of
Unit Propagate

\/ f(B)Vv—ae CNF-Comgn),
BeBodiegM.a)
M= M-a if

\/ f(B M.

BeBodiegl.a)

Case 3: The edge is justified IBackchain True By the definition ofBackchain
True thereis arule«— B e M and a literal such that € M; for all B’ € BodiegI, a) \B,
B'NM #0;1 € B; andM’ isM I. Let f(B') be an element a8’ such thatf (B') € M.
From the construction dENF-CompgI),

—avlyv \V f(B)
B'cBodiegl,a)\B

15

belongs taCNF-Comggl). By the choice off,

\V f(B') C M.

B'cBodieg,a)\B

There is an edge fro to M’ in DPcE.comgn) Justified by the following instance of
Unit Propagate

-avlv \/ f(B') € CNF-Comgmn),
B/cBodiegl,a)\B
M= MI if

(-av \ f(B')) C M.
B'cBodiesl,a)\B

Case 4: The edge is justified Backchain False By the definition ofBackchain
False there is a rule — |,B € M such that-ac€ M, BC M, andM’ is M I. By the
construction ofCNF-Coml), avB VI € CNF-Comg). There is an edge from
to M’ in DPcnE-comg) Justified by the following instance dfnit Propagate

M — MT if a\/E\/I € CNF-Comggl) and

avBC M.
Lemma 7. For any tight programi1 and any non-empty unfounded set U [dmw.r.t.
a consistent set X of literals there is an atom a such thatla and for every Be
BodiegM,a), BN X # 0.

Proof. By contradiction. Assume that, for eveayc U there exist8 € Bodiegl,a)
such thaBN X = 0. ConsequentlyX = —B. By the definition of an unfounded set
it follows that for every atoma € U there isB € BodiegB, a) such thall NB* # 0.
Consequently the subgraph of the positive dependency graphinduced byU has
no terminal nodes. Then, the progréms not tight.

Proposition 4. For any tight prograri, the graptsmy, is equal to each of the graphs
ATLEASTR andDPee.comgr) -

Proof. In view of Lemma 6, it is sufficient to prove thaw equalsaTLEASTR; of, in
other words, that every edge sl justified by the rulddnfoundedonly is singular.
Consider such an edd¢ — M’. We need to show that some transition rule other
thanUnfoundeds applicable tavi. By the definition ofUnfounded M is consistent
and there exists a non-empty §etunfounded oM w.r.t. . By Lemma 7, it follows
that there is an atome U such that for ever3 € BodiegM,a), BNM = 0. Therefore,
the transition ruléAll Rules Cancelleds applicable tav.

Lemma 8. For any CNF formula F and a set X of models of F, and a path ficima
state b ... Inin GTe x, any model Ye X satisfiesilif it satisfies all decision Iiterals?l
with j <.

Proof. Similar to the proof of Lemma 1. There are two more rules tosater:
Fail GT: Obvious.

16

Backtrack GTM has the fornP Iid Q whereQ contains no decision literals] ¢ X.
Then,M’ is P I;. Take any modeE of F in_X such thaE satisfies all decision literals
IJd with j <i. We need to show thd& = |;. By contradiction. Assumé& = |;. By

the inductive hypothesis, and the fact tivitis P Iid Q whereQ contains no decision
literals, it follows thatE = M. SinceM has no unassigned literalg, = M. This
contradicts the assumption thdtZ X.

Proposition 5. For any CNF formul& and a seK of models of-,
(a) graphsTex is finite and acyclic,
(b) any terminal state atTr x other tharFailStatebelongs tdX,
(c) FailStateis reachable frord in GTg x if and only if X is empty.

Proof. Part (a) and part (c) right-to-left are proved as in the padfdfroposition 1.
(b) LetM be any terminal state other thBailState As in the proof of Proposition 1(b)
it follows thatM is a model ofF. NeitherFail GT nor Backtrack GTis applicable.
Then,M belongs toX.
(c) Left-to-right: SincdrailStateis reachable from 0, there is a stdavithout decision
literals such that it is reachable from 0 and either trémsitule Fail or Fail GT is
applicable.

Case 1/Fail is applicable. Thery is inconsistent. By Lemma 8, any model®f
in X satisfiedM. SinceM is inconsistent we conclude thdtis empty.

Case 2. Fail GT is applicable. ThenM assigns all literals ant¥ ¢ X. From
Lemma 8, it follows that for any € X, Y = M. SinceM ¢ X, we conclude thaX is
empty.

11 Conclusions

In this paper we showed how to model algorithms for computingwer sets of a
program by means of simple mathematical objects, graphis agproach simplifies
the analysis of the correctness of algorithms and allowugudy the relationship
between various algorithms using the structure of the speding graphs. For exam-
ple, we used this method to establish that applyingshe@DbDELSs algorithm to a tight
program essentially amounts to applyibgLL to its completion. It also suggests new
designs for answer set solvers, as can be seen from our wakmrin the future we
will investigate the generalization of this framework takmmping and learning per-
formed by thesMODELS algorithm [6], tosupPwith Learning, and taaspP-SAT with
Learning [4]. We also would like to generalize this approtcthe algorithms used in
disjunctive answer set solvers.

Acknowledgements

We are grateful to Marco Maratea for bringing to our attemtive work by Nieuwen-
huis et al. (2006), to Vladimir Lifschitz for the numerousdlissions, to Martin Geb-
ser and Michael Gelfond for valuable comments. The authar svgported by the
National Science Foundation under Grant [1S-0712113.

17

References

[1] Davis, M., Logemann, G., Loveland, D.: A machine progrmtheorem prov-
ing. Communications of ACM(7) (1962) 394-397

[2] Nieuwenhuis, R., Oliveras, A., Tinelli C.: Solving SAand SAT mod-
ulo theories: From an abstract Davis-Putnam-Logemanrelao procedure to
DPLL(T). Journal of the ACMB3(6) (2006) 937-977

[3] Simons, P.: Extending and Implementing the Stable M&@hantics. PhD
thesis, Helsinki University of Technology (2000)

[4] Giunchiglia, E., Lierler, Y., Maratea, M.: Answer setqgramming based on
propositional satisfiability. Journal of Automated Redsgr86 (2006) 345377

[5] Gelfond, M., Lifschitz, V.: The stable model semantiosliogic programming. In
Kowalski, R., Bowen, K., eds.: Proceedings of Internatidmayic Programming
Conference and Symposium, MIT Press (1988) 1070-1080

[6] Ward, J.: Answer Set Programming with Clause LearnindgaD Rhesis, The
University of Cincinnati (2004)

[7] Van Gelder, A., Ross, K., Schlipf, J.: The well-foundezhsantics for general
logic programs. Journal of ACN8(3) (1991) 620—650

[8] Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logirogram by SAT
solvers? Atrtificial Intelligence157 (2004) 115-137

[9] Een, N., Sorensson, N.: An extensible sat-solver. II.$2003)

[10] Fages, F.: Consistency of Clark’s completion and exisé of stable models.
Journal of Methods of Logic in Computer Scieric€1994) 51-60

[11] Clark, K.: Negation as failure. In Gallaire, H., Minkek,, eds.: Logic and Data
Bases. Plenum Press, New York (1978) 293—-322

[12] Giunchiglia, E., Maratea, M.: On the relation betweeswer set and SAT pro-
cedures (or, between smodels and cmodels). In: 21st InienadConference on
Logic Programming (ICLP’05). (2005) 37-51

[13] Gebser, M., Schaub, T.: Tableau calculi for answer setjmamming. In: 22d
International Conference on Logic Programming (ICLP’@8R06) 11-25

[14] Leone, N., Rullo, P., Scarcello, F.: Disjunctive sabhodels: Unfounded
sets, fixpoint semantics, and computation. Information@achputationl35(2)
(1997) 69-112

9Revised versionht t p: / / www. ¢s. ust . hk/facul ty/flin/ papers/assat-aij-revised
. pdf .

18

