
Abstract Answer Set Solvers

Yuliya Lierler
University of Texas at Austin

yuliya@cs.utexas.edu

Abstract

Nieuwenhuis, Oliveras, and Tinelli showed how to describe enhancements
of the Davis-Putnam-Logemann-Loveland algorithm using transition systems, in-
stead of pseudocode. We design a similar framework for threealgorithms that
generate answer sets for logic programs:SMODELS, ASP-SAT with Backtracking,
and a newly designed and implemented algorithmSUP. This approach to describ-
ing answer set solvers makes it easier to prove their correctness, to compare them,
and to design new systems.

1 Introduction

Most state-of-the-art Satisfiability (SAT) solvers are based on variations of the Davis-
Putnam-Logemann-Loveland (DPLL) procedure [1]. Usually enhancements ofDPLL

are described fairly informally with the use of pseudocode.It is often difficult to un-
derstand the precise meaning of these modifications and to prove their properties on
the basis of such informal descriptions. In [2], the authorsproposed an alternative
approach to describingDPLL and its enhancements (for instance, backjumping and
learning). They describe each variant ofDPLL by means of a transition system that can
be viewed as an abstract framework underlyingDPLL computation. The authors fur-
ther extend the framework to the algorithms commonly used inSatisfiability Modulo
Background Theories.

The abstract framework introduced in [2] describes what ”states of computation”
are, and which transitions between states are allowed. In this way, it defines a di-
rected graph such that every execution of theDPLL procedure corresponds to a path in
this graph. Some edges may correspond to unit propagation steps, some to branching,
some to backtracking. This allows the authors to model aDPLL algorithm by a math-
ematically simple and elegant object, graph, rather than a collection of pseudocode
statements. Such an abstract way of presentingDPLL simplifies the analysis of its
correctness and facilitates formal reasoning about its properties. Instead of reasoning
about pseudocode constructs, we can reason about properties of a graph. For instance,
by proving that the graph corresponding to a version ofDPLL is acyclic we demon-
strate that the algorithm always terminates. On the other hand, by checking that every
terminal state corresponds to a solution we establish the correctness of the algorithm.

1

The graph introduced in [2] is actually an imperfect representation ofDPLL in the
sense that some paths in the graph do not correspond to any execution of DPLL (for
example, paths in which branching is used even though unit propagation is applicable).
But this level of detail is irrelevant when we talk about correctness. Furthermore, it
makes our correctness theorems more general. These theorems cover not only execu-
tions of the pseudo-code, but also some computations that are prohibited by its details.

In this paper we take the abstract framework for describingDPLL-like procedures
for SAT solvers as a starting point and design a similar framework for three algo-
rithms that generate answer sets for logic programs. The first one is theSMODELS

algorithm [3], implemented in one of the major answer set solvers1. The other algo-
rithm is calledSUP and can be seen as a simplification ofSMODELS algorithm.2 We
implemented this algorithm in the new, previously unpublished systemSUP3. The last
algorithm that we describe isASP-SAT with Backtracking4 [4]. It computes models of
the completion of the given program usingDPLL and tests them until an answer set is
found.

We start by reviewing the abstract framework forDPLL developed in [2] in a form
convenient for our purposes. We demonstrate how this framework can be modified to
describe an algorithm for computing supported models of a logic program, and then
extend it to theSMODELS algorithm for computing answer sets. We show that for a
large class of programs, called tight, the graph representingSMODELSis closely related
to the graph representing the application ofDPLL to the completion of the program.
As a step towards extending these ideas toASP-SAT with Backtracking, we analyze
a modification of the originalDPLL graph that includes testing the models found by
DPLL. We then show how a special case of this construction corresponds toASP-SAT

with Backtracking.
We hope that the analysis of algorithms for computing answersets in terms of

transition systems described in this paper will contributeto clarifying computational
principles of answer set programming and to the developmentof new systems.

2 Review: Abstract DPLL

For a setσ of atoms, astaterelative toσ is either a distinguished stateFailStateor a
list M of literals overσ such thatM contains no repetitions, and each literal inM has
an annotation, a bit that marks it as adecisionliteral or not. For instance, the states
relative to a singleton set{a} of atoms are

FailState, /0, a, ¬a, ad, ¬ad,a¬a, ad ¬a,

a ¬ad, ad ¬ad,¬a a, ¬ad a, ¬a ad, ¬ad ad,

1SMODELS: http://www.tcs.hut.fi/Software/smodels .
2The idea of simplifying theSMODELS algorithm in this manner was suggested to us by Mirosław

Truszczyński (August 2, 2007).
3SUP: http://www.cs.utexas.edu/users/tag/sup . In fact,SUPimplements a more sophis-

ticated form of the algorithm that is enhanced with learning.
4A more sophisticated form of this algorithm,ASP-SAT with Learning, is implemented in system

CMODELS: http://www.cs.utexas.edu/users/tag/cmodels .

2

where by /0 we denote the empty list. The concatenation of twosuch lists is denoted
by juxtaposition. Frequently, we considerM as a set of literals, ignoring both the
annotations and the order between its elements. We writeld to emphasize thatl is a
decision literal. A literall is unassigned byM if neitherl nor l belongs toM.

If C is a disjunction (conjunction) of literals then byC we understand the conjunc-
tion (disjunction) of the complements of the literals occurring inC. We will sometimes
identifyC with the set of its elements.

For any CNF formulaF (a set of clauses), we will define itsDPLL graphDPF . The
set of nodes ofDPF consists of the states relative to the set of atoms occurringin F . We
use the terms “state” and “node” interchangeably. If a stateis consistent and complete
then it represents a truth assignment forF.

The set of edges ofDPF is described by a set of “transition rules”. Each transition
rule has the formM =⇒ M′ followed by a condition, so that

• M andM′ are symbolic expressions for nodes ofDPF , and

• if the condition is satisfied there is an edge between nodeM andM′ in the graph.

There are four transition rules that characterize the edgesof DPF :

Unit Propagate: M =⇒ M l if C∨ l ∈ F and C⊆M

Decide: M =⇒ M ld if l is unassigned byM

Fail: M =⇒ FailState if

{

M is inconsistent, and
M contains no decision literals

Backtrack: P ld Q =⇒ P l if

{

P ld Q is inconsistent, and
Q contains no decision literals

Note that an edge in the graph may be justified by several transition rules.
This graph can be used for deciding the satisfiability of a formulaF simply by con-

structing an arbitrary path leading from node /0 until a terminal nodeM is reached. The
following proposition shows that this process always terminates, thatF is unsatisfiable
if M is FailState, and thatM is a model ofF otherwise.

Proposition 1. For any CNF formula F,

(a) graphDPF is finite and acyclic,

(b) any terminal state ofDPF other than FailState is a model of F,

(c) FailState is reachable from/0 in DPF if and only if F is unsatisfiable.

For instance, letF be the set consisting of the clauses

a∨b
¬a∨c.

3

Here is a path inDPF with every edge annotated by the name of a transition rule that
justifies the presence of this edge in the graph:

/0 =⇒ (Decide)
ad =⇒ (Unit Propagate)
ad c =⇒ (Decide)
ad c bd

(1)

Since the statead c bd is terminal, Proposition 1(b) asserts that{a,c,b} is a model ofF.
Here is another path inDPF from /0 to the same terminal node:

/0 =⇒ (Decide)
ad =⇒ (Decide)
ad ¬cd =⇒ (Unit Propagate)
ad ¬cd c =⇒ (Backtrack)
ad c =⇒ (Decide)
ad c bd

(2)

Path (1) corresponds to an execution ofDPLL; path (2) does not, because it usesDecide
instead ofUnit Propagate.

Note that the graphDPF is a modification of theclassical DPLLgraph defined in [2,
Section 2.3]. It is different in three ways. First, the description of the classical DPLL
graph involves a “PureLiteral” transition rule, which we have dropped. Second, its
states are pairsM ‖ F for all CNF formulasF . For our purposes, it is not necessary to
includeF . Third, in the definition of that graph, eachM is required to be consistent. In
case of the DPLL, due to the simple structure of a clause, it ispossible to characterize
the applicability ofBacktrackin a simple manner: when some of the clauses become
inconsistent with the current partial assignment,Backtrackis applicable. In ASP, it is
not easy to describe the applicability ofBacktrackif only consistent states are taken
into account. We introduced inconsistent states in the graph DPF to facilitate our work
on extending this graph to model theSMODELSalgorithm.

3 Background: Logic Programs

A (propositional) logic programis a finite set of rules of the form

a0← a1, . . . ,am,not am+1, . . . ,not an, (3)

where eachai is an atom. ByBodies(Π,a) we denote the (multi-)set of the bodies of
all rules ofΠ with heada. We will identify the body of (3) with the conjunction of
literals

a1∧ . . .∧am∧¬am+1∧ . . .¬an.

and (3) with the implication

a1∧ . . .∧am∧¬am+1∧ . . .¬an→ a0.

4

For any setM of literals, byM+ we denote the set of positive literals fromM. We
assume that the reader is familiar with the definition of an answer set (stable model) of
a logic program [5]. For any consistent and complete setM of literals (assignment), if
M+ is an answer set for a programΠ, thenM is a model ofΠ. Moreover, in this case
M is asupportedmodel ofΠ, in the sense that for every atoma∈M, M |= B for some
B∈ Bodies(Π,a).

4 Generating Supported Models

In the next section we will define, for an arbitrary programΠ, a graphSMΠ representing
the application of theSMODELSalgorithm toΠ; the terminal nodes ofSMΠ are answer
sets ofΠ. As a step in this direction, we describe here a simpler graphATLEASTΠ. The
terminal nodes ofATLEASTΠ are supported models ofΠ.

The set of nodes ofATLEASTΠ consists of the states relative to the set of atoms
occurring inΠ. The edges of the graphATLEASTΠ are described by the transition rules
Decide, Fail, Backtrackintroduced above in the definition ofDPF and the additional
transition rules5:

Unit Propagate LP: M =⇒ M a if a← B∈Π andB⊆M

All Rules Cancelled: M =⇒ M ¬a if B∩M 6= /0 for all B∈ Bodies(Π,a),

Backchain True: M =⇒ M l if

a← B∈Π,

a∈M,

B′∩M 6= /0 for all B′ ∈ Bodies(Π,a)\B ,
l ∈ B

Backchain False: M =⇒ M l if

a← l ,B ∈ Π,

¬a∈M, and
B⊆M

Note that each of the rulesUnit Propagate LPandBackchain Falseis similar toUnit
Propagate: the former corresponds toUnit PropagateonC∨ l wherel is the head of
the rule, and the latter corresponds toUnit PropagateonC∨ l wherel is an element of
the body of the rule.

This graph can be used for deciding whether programΠ has a supported model by
constructing a path from /0 to a terminal node:

Proposition 2. For any programΠ,

(a) graphATLEASTΠ is finite and acyclic,

(b) any terminal state ofATLEASTΠ other than FailState is a supported model ofΠ,

(c) FailState is reachable from/0 in ATLEASTΠ if and only if Π has no supported
models.

5The names of some of these rules follow [6].

5

For instance, letΠ be the program

a← not b
b← not a
c← a
d← d.

(4)

Here is a path inATLEASTΠ:

/0 =⇒ (Decide)
ad =⇒ (Unit Propagate LP)
ad c =⇒ (All Rules Cancelled)
ad c¬b =⇒ (Decide)
ad c¬b dd

(5)

Since the statead c ¬b dd is terminal, Proposition 2(b) asserts that{a,c,¬b,d} is a
supported model of programΠ.

The assertion of Proposition 2 will remain true if we drop thetransition rules
Backchain TrueandBackchain Falsefrom the definition ofATLEASTΠ.

The transition rules definingATLEASTΠ are closely related to procedureAtleast[3,
Sections 4.1], which is one of the core procedures of theSMODELSalgorithm.

5 Smodels

Recall that a setU of atoms occurring in a programΠ is said to beunfounded[7] on
a consistent setM of literals w.r.t.Π if for every a ∈U and everyB ∈ Bodies(Π,a),
M |= ¬B orU ∩B+ 6= /0.

We now describe the graphSMΠ that represents the application of theSMODELS

algorithm to programΠ. SMΠ is a graph whose nodes are the same as the nodes of the
graphATLEASTΠ. The edges ofSMΠ are described by the transition rules ofATLEASTΠ
and the additional transition rule:

Unfounded: M =⇒ M ¬a if

{

M is consistent, and
a∈U for a setU unfounded onM w.r.t. Π

This transition rule ofSMΠ is closely related to procedureAtmost [3, Sections 4.2],
which together with the procedureAtleastforms the core of theSMODELSalgorithm.

The graphSMΠ can be used for deciding whether programΠ has an answer set by
constructing a path from /0 to a terminal node:

Proposition 3. For any programΠ,

(a) graphSMΠ is finite and acyclic,

(b) for any terminal state M ofSMΠ other than FailState, M+ is an answer set ofΠ,

(c) FailState is reachable from/0 in SMΠ if and only if Π has no answer sets.

6

To illustrate the difference betweenSMΠ and ATLEASTΠ, assume again thatΠ
is program (4). Path (5) in the graphATLEASTΠ is also a path inSMΠ. But state
ad c ¬b dd, which is terminal inATLEASTΠ, is not terminal inSMΠ. This is not sur-
prising, since the set{a,c,d} of atoms that belongs to this state is not an answer set
of Π. To get to a state that is terminal inSMΠ, we need two more steps:

...
ad c¬b dd =⇒ (Unfounded, U = {d})
ad c¬b dd ¬d =⇒ (Backtrack)
ad c¬b ¬d.

(6)

Proposition 3(b) asserts that{a,c} is an answer set ofΠ.
The assertion of Proposition 3 will remain true if we drop thetransition rulesAll

Rules Cancelled, Backchain True, andBackchain Falsefrom the definition ofSMΠ.

6 Sup

In this section we show how to extend the graphATLEASTΠ by the modification of
transition ruleUnfoundedso that terminal nodes of the resulting graph correspond to
answer sets ofΠ.

The graphSUPΠ is the subgraph ofSMΠ such that its nodes are the same as the
nodes of the graphSMΠ and its edges are described by the transition rules ofATLEASTΠ
and the following modification of the ruleUnfoundedof SMΠ:

Unfounded SUP: M =⇒ M ¬a if

no literal is unassigned byM,
M is consistent, and
a∈U for a setU unfounded onM w.r.t. Π

This graph can be used for deciding whether a programΠ has an answer set by con-
structing a path from /0: Proposition 3 remains correct after replacing graphSMΠ with
SUPΠ.

The only difference betweenSUPΠ and SMΠ is due to the additional restriction
in Unfounded SUP: it is applicable only to the states that assign all atoms inΠ. To
illustrate the difference betweenSUPΠ andSMΠ, assume thatΠ is program (4). Path (6)
in SMΠ is also a path inSUPΠ. On the other hand the path

/0 =⇒ (Unfounded, U = {d})
¬d

of SMΠ does not belong toSUPΠ
We can view the graphSUPΠ as a description of a particular strategy for traversing

SMΠ, i.e., an edge corresponding to an application ofUnfoundedto a state inSMΠ is
considered only if a transition ruleDecide is not applicable in this state. Note that
systemSMODELS implements the opposite strategy, i.e., an edge corresponding to an
application ofDecideis considered only ifUnfoundedis not applicable. Nevertheless,
the strategy described bySUPΠ may be reasonable for many problems. For instance,

7

it is easy to see that transition ruleUnfoundedis redundant for tight programs. Fur-
thermore, the analogous strategy has been successfully used in SAT-based answer set
solversASSAT6 [8] and CMODELS (see Footnote 4) [4]. These systems first compute
the completion of a program and then test each model of the completion whether it
is an answer set (this can be done by testing whether it contains unfounded sets). In
fact, the work onASSAT andCMODELS inspired the development of systemSUP. Un-
like ASSAT and CMODELS, SUP does not compute the completion of a program but
performs its inference directly on the the program by means of transition rules of the
graphSUPΠ.

We have implemented systemSUP(see Footnote 3), whose underlying algorithm is
modelled by the graphSUPΠ. In the implementation, we used

• the interface of SAT-solverMINISAT 7 (v1.12b) that supports non-clausal con-
straints [9] in order to implement inferences described byUnit Propagate LP,
All Rules Cancelled, Backchain True, Backchain False, Decide, andFail,

• parts of theCMODELS code that support transition ruleUnfounded SUP.

Note that systemSUP also implements conflict-driven backjumping and learning.
Preliminary results available atSUP web site (see Footnote 3) comparingSUP with
other answer set solvers are promising.

The implementation ofSUPproofs that the abstract framework for answer set solvers
introduced in this work may suggest new designs for solvers.

7 Tight Programs

We now recall the definitions of the positive dependency graph and a tight program.
Thepositive dependency graphof a programΠ is the directed graphG such that

• the nodes ofG are the atoms occurring inΠ, and

• G contains the edges froma0 to ai (1≤ i ≤m) for each rule (3) inΠ.

A program istight if its positive dependency graph is acyclic. For instance, program (4)
is not tight since its positive dependency graph has a cycle due to the ruled← d. On
the other hand, the program constructed from (4) by removingthis rule is tight.

Recall that for any programΠ and any assignmentM, if M+ is an answer set ofΠ
thenM is a supported model ofΠ. For the case of tight programs, the converse holds
also:M+ is an answer set forΠ if and only if M is a supported model ofΠ [10].

It is also well known that the supported models of a program can be characterized
as models of its completion in the sense of [11]. It turns out that for tight programs the
graphSMΠ is “almost identical” to the graphDPF , whereF is the (clausified) comple-
tion of Π. To make this claim precise, we need the following terminology.

We say that an edgeM =⇒ M′ in the graphSMΠ is singularif

• the only transition rule justifying this edge isUnfounded, and

6ASSAT: http://assat.cs.ust.hk/ .
7MINISAT : http://minisat.se/ .

8

• some edgeM =⇒ M′′ can be justified by a transition rule other thanUnfounded.

For instance, letΠ be the program

a← b
b← c.

The edge
ad bd ¬cd =⇒ (Unfounded, U = {a,b})
ad bd ¬cd ¬a

in the graphSMΠ is singular, because the edge

ad bd ¬cd =⇒ (All Rules Cancelled)
ad bd ¬cd ¬b

belongs toSMΠ also.
From the point of view of actual execution of theSMODELS algorithm, singular

edges of the graphSMΠ are inessential:SMODELS never follows a singular edge. By
SM−Π we denote the graph obtained fromSMΠ by removing all singular edges.

Recall that for any programΠ, its completion consists ofΠ and the formulas that
can be written as

¬a∨
∨

B∈Bodies(Π,a)

B (7)

for every atoma in Π. CNF-Comp(Π) is the completion converted to CNF using
straightforward equivalent transformations. In other words,CNF-Comp(Π) consists of
clauses of two kinds:

1. the rulesa← B of the program written as clauses

a∨B, (8)

2. formulas (7) converted to CNF using the distributivity ofdisjunction over con-
junction8.

Proposition 4. For any tight programΠ, the graphSM−Π is equal to each of the graphs
ATLEASTΠ andDPCNF-Comp(Π).

For instance, letΠ be the program

a← b, not c
b.

This program is tight. Its completion is

(a↔ b∧¬c)∧b∧¬c,

8It is essential that repetitions are not removed in the process of clausification. For instance,
CNF-Comp(a← not a) is the formula(a∨a)∧ (¬a∨¬a).

9

andCNF-Comp(Π) is

(a∨¬b∨c)∧ (¬a∨b)∧ (¬a∨¬c)∧b∧¬c.

Proposition 4 asserts that, for this formulaF, SM−Π coincides withDPF and withATLEASTΠ.
From Proposition 4, it follows that applying theSMODELSalgorithm to a tight pro-

gram essentially amounts to applyingDPLL to its completion. A similar relationship,
in terms of pseudocode representations ofSMODELSandDPLL, is established in [12].

8 Generate and Test

In this section, we present a modification of the graphDPF that includes testing the
models ofF found byDPLL. Let F be a CNF formula, and letX be a set of models
of F . The terminal nodes of the graphGTF,X defined below are models ofF that belong
to X.

The nodes of the graphGTF,X are the same as the nodes of the graphDPF . The edges
of GTF,X are described by the transition rules ofDPF and the additional transition rules:

Fail GT: M =⇒ FailState if

no literal is unassigned byM,

M 6∈ X,

M contains no decision literals

Backtrack GT: P ld Q =⇒ P l if

no literal is unassigned byP ld Q,

P ld Q 6∈ X,

Q contains no decision literals.

It is easy to see that the graphDPF is a subgraph ofGTF,X. Furthermore, when the setX
coincides with the set of all models ofF the graphs are identical. This graph can be
used for deciding whether a formulaF has a model that belongs toX by constructing a
path from /0 to a terminal node:

Proposition 5. For any CNF formula F and any set X of models of F,

(a) graphGTF,X is finite and acyclic,

(b) any terminal state ofGTF,X other than FailState belongs to X,

(c) FailState is reachable from/0 in GTF,X if and only if X is empty.

Note that to verify the applicability of the new transition rulesFail GT andBack-
track GT we need a procedure for testing whether a set of literals belongs toX, but
there is no need to have the elements ofX explicitly listed.

ASP-SAT with Backtracking [4] is a procedure that computes models ofthe com-
pletion of the given program usingDPLL, and tests them until an answer set is found.
The application of theASP-SAT with Backtracking algorithm to a programΠ can be
viewed as constructing a path from /0 to a terminal node in thegraphGTF,X, where

• F is the completion ofΠ converted to conjunctive normal form, and

• X is the set of all assignments corresponding to answer sets ofΠ.

10

9 Related Work

Simons [3] described theSMODELSalgorithm by means of a pseudocode and demon-
strated its correctness. Gebser and Schaub [13] provided a deductive system for de-
scribing inferences involved in computing answer sets by tableaux methods. The ab-
stract framework presented in this paper can be viewed as a deductive system also, but
it is a very different system. For instance, we describe backtracking by an inference
rule, and the Gebser-Schaub system doesn’t. Accordingly, the derivations considered in
this paper describe search process, and derivations in the Gebser-Schaub system don’t.
Also, the abstract framework discussed here doesn’t have any inference rule similar to
Cut; this is why its derivations are paths, rather than trees.

10 Proofs

Lemma 1. For any CNF formula F and a path from/0 to a state l1 . . . ln in DPF , every
model X of F satisfies li if it satisfies all decision literals ld

j with j ≤ i.

Proof. By induction on the length of a path. Since the property trivially holds in the
initial state /0, we only need to prove that all transition rules ofDPF preserve it.

Consider an edgeM =⇒M′ whereM is a sequencel1 . . . lk such that every model
X of F satisfiesl i if it satisfies all decision literalsldj with j ≤ i.

Unit Propagate: M′ is M lk+1. Take any modelX of F such thatX satisfies all
decision literalsldj with j ≤ k+ 1. By the inductive hypothesis,X |= M. From the

definition of Unit Propagate, for some clauseC∨ lk+1 ∈ F , C ⊆ M. Consequently,
M |= ¬C. It follows thatX |= lk+1.

Decide: M′ is M ldk+1. Obvious.
Fail: Obvious.
Backtrack: M has the formP ldi Q whereQ contains no decision literals.M′ is

P l i . Take any modelX of F such thatX satisfies all decision literalsldj with j ≤ i.

We need to show thatX |= l i . By contradiction. Assume thatX |= l i . SinceQ does
not contain decision literals,X satisfies all decision literals inP ldi Q. By the inductive
hypothesis, it follows thatX satisfiesP ldi Q, that is,M. This is impossible becauseM
is inconsistent.

Proposition 1. For any CNF formulaF ,

(a) graphDPF is finite and acyclic,

(b) any terminal state ofDPF other thanFailStateis a model ofF,

(c) FailStateis reachable from/0 in DPF if and only if F is unsatisfiable.

Proof. (a) The finiteness ofDPF is obvious. For any listN of literals by|N| we denote
the length ofN. Any stateM, other thanFailState, has the formM0 l1 M1 . . . lp Mp,
wherel1 . . . lp are all desicion literals ofM; we defineα(M) as the sequence of non-
negative integers|M0|, |M1|, . . . , |Mp|, andα(FailState) = ∞. For any statesM andM′

of DPF , we understandα(M) < α(M′) as the lexicographical order. By the definition

11

of the transition rules defining the edges ofDPF , if there is an edge from a stateM
to M′ in DPF , thenα(M) < α(M′). It follows that if a stateM′ is reachable fromM
thenα(M) < α(M′). Consequently, the graph is acyclic.
(b) Consider any terminal stateM other thanFailState. From the fact thatDecideis not
applicable, we derive thatM assigns all literals. Similarly, since neitherBacktracknor
Fail is applicable,M is consistent. Consequently,M is an assignment. Consider any
clauseC∨ l in F . It follows that ifC 6⊆M thenC∩M 6= /0. SinceUnit Propagateis not
applicable, it follows that ifC⊆M thenl ∈M. We derive thatM |= C∨ l . Hence,M is
a model ofF.
(c) Left-to-right: SinceFailStateis reachable from /0, there is an inconsistent stateM
without decision literals such that there exists a path from/0 to M. By Lemma 1, any
model ofF satisfiesM. SinceM is inconsistent we conclude thatF has no models.

Right-to-left: From (a) it follows that there is a path from /0 to some terminal state.
By (b), this state cannot be different fromFailState, becauseF is unsatisfiable.

Lemma 2. For any programΠ and a path from/0 to a state l1 . . . ln in ATLEASTΠ,
every supported model X forΠ satisfies li if it satisfies all decision literals ld

j with j≤ i.

Proof. By induction on the length of the path. Similar to the proof ofLemma 1. We
will show that the property in question is preserved by the four new rules.

Unit Propagate LP: M′ is M a. Take any modelX of Π such thatX satisfies all
decision literalsldj with j ≤ k. From the inductive hypothesis it follows thatX |= M.
By the definition ofUnit Propagate LP, B⊆M for some rulea← B. Consequently,
M |= B. SinceX is a model ofΠ we derive thatX |= a.

All Rules Cancelled: M′ is M ¬a, such thatB∩M 6= /0 for everyB∈ Bodies(Π,a).
Consequently,M |= ¬B for every B ∈ Bodies(Π,a). Take any modelX of Π such
thatX satisfies all decision literalsldj with j ≤ k. We need to show thatX |= ¬a. By
contradiction. Assume thatX |= a. By the inductive hypothesis,X |= M. Therefore,
X |= ¬B for everyB∈ Bodies(Π,a). We derive thatX is not a supported model ofΠ.

Backchain True: M′ is M l . Take any supported modelX of Π such thatX satisfies
all decision literalsldj with j ≤ k. We need to show thatX |= l . By contradiction.

AssumeX |= l . Consider the rulea←B corresponding to this application ofBackchain
True. Sincel ∈B, X |=¬B. By the definition ofBackchain True, B′∩M 6= /0 for everyB′

in Bodies(Π,a)\ B. Consequently,M |= ¬B′ for everyB′ in Bodies(Π,a)\ B. By the
inductive hypothesis,X |= M. It follows thatX |= ¬B′ for everyB′ in Bodies(Π,a)\ B.

HenceX is not supported byΠ.
Backchain False: M′ is M l . Take any modelX of Π such thatX satisfies all

decision literalsldj with j ≤ k. We need to show thatX |= l . By contradiction. Assume
that X |= l . By the definition ofBackchain Falsethere exists a rulea← l ,B in Π
such that¬a ∈ M andB⊆M. Consequently,M |= ¬a andM |= B. By the inductive
hypothesis,X |= M. It follows thatX |=¬a andX |= B. SinceX |= l , X does not satisfy
the rulea← l ,B, so that it is not a model ofΠ.

Proposition 2. For any programΠ,

(a) graphATLEASTΠ is finite and acyclic,

(b) any terminal state ofATLEASTΠ other thanFailStateis a supported model ofΠ,

12

(c) FailStateis reachable from/0 in ATLEASTΠ if and only if Π has no supported
models.

Proof. Parts (a) and (c) are proved as in the proof of Proposition 1, using Lemma 2.
(b) LetM be a terminal state. It follows that none of the rules are applicable. From the
fact thatDecideis not applicable, we derive thatM assigns all literals. Since neither
Backtracknor Fail is applicable,M is consistent. SinceUnit Propagate LPis not
applicable, it follows that for every rulea←B∈Π, if B⊆M thena∈M. Consequently,
if M |= B thenM |= a. We derive thatM is a model ofΠ. We now show thatM is a
supported model ofΠ. By contradiction. Suppose thatM is not a supported model.
Then, there is an atoma∈M such thatM 6|= B for everyB∈ Bodies(Π,a). SinceM is
consistent,B∩M 6= /0 for everyB∈ Bodies(Π,a). Consequently,All Rules Cancelled
is applicable. This contradicts the assumption thatM is terminal.

We say that a modelX of a programΠ is unfounded-freeif no non-empty subset of
X is an unfounded set onX w.r.t. Π.

Lemma 3 (Theorem 4.6 [14]). For any model X of a programΠ, X+ is an answer set
for Π if and only if X is unfounded-free.

Lemma 4. For any unfounded set U on a consistent set Y of literals w.r.t. a programΠ,
and any assignment X, if X|= Y and X∩U 6= /0, then X+ is not an answer set forΠ.

Proof. Assume thatX+ is an answer set forΠ. ThenX is a model ofΠ. By Lemma 3,
it follows that X+ is unfounded-free. SinceX ∩U 6= /0 it follows thatX ∩U is not
unfounded onX. This means that for some rulea← B in Π such thata ∈ X ∩U ,
X 6|=¬B andX∩U ∩B+ = /0. SinceX |=Y, it follows thatY 6|=¬B. SinceX satisfiesB,
B+ ⊆ X and consequentlyU ∩B+ = X ∩U ∩B+ = /0. It follows that setU is not an
unfounded set onY.

Lemma 5. For any programΠ and a path from/0 to a state l1 . . . ln in SMΠ, and any
assignment X, if X+ is an answer set forΠ then X satisfies li if it satisfies all decision
literals ldj with j ≤ i.

Proof. By induction on the length of a path. Recall that for any assignmentX, if
X+ is an answer set forΠ, thenX is a supported model ofΠ, and that the transition
systemSMΠ extendsATLEASTΠ by the transition ruleUnfounded. Given our proof of
Lemma 2, we only need to demonstrate that application ofUnfoundedpreserves the
property.

Consider a transitionM =⇒UnfoundedM′, whereM is a sequencel1 . . . lk. M′ is
M ¬a, such thata∈U , whereU is an unfounded set onM w.r.t Π. Take any assign-
mentX such thatX+ is an answer set forΠ andX satisfies all decision literalsldj with
j ≤ k. By the inductive hypothesis,X |= M. ThenX |= ¬a. Indeed, otherwisea would
be a common element ofX andU , andX∩U would be non-empty, which contradicts
Lemma 4 withM asY.

Since the graphSUPΠ is a subgraph ofSMΠ, Lemma 5 immediately holds forSUPΠ.

Proposition 3. For any programΠ,

13

(a) graphSMΠ [SUPΠ] is finite and acyclic.

(b) for any terminal stateM of SMΠ [SUPΠ] other thanFailState, M+ is an answer
set ofΠ.

(c) FailStateis reachable from/0 in SMΠ [SUPΠ] if and only if Π has no answer sets.

Proof. Parts (a) and (c) are proved as in the proof of Proposition 1, using Lemma 5.
(b) As in the proof of Proposition 2(b) we derive thatM is a model ofΠ. Assume
that M+ is not an answer set. Then, by Lemma 3, there is a non-empty unfounded
setU on M w.r.t. Π such thatU ⊆M. It follows thatUnfounded[Unfounded SUP] is
applicable (with an arbitrarya∈U). This contradicts the assumption thatM is terminal.

Lemma 6. For any programΠ, the graphsATLEASTΠ andDPCNF-Comp(Π) are equal.

Proof. It is easy to see that the states of the graphsATLEASTΠ and DPCNF-Comp(Π)

coincide. We will now show that the edges ofATLEASTΠ andDPCNF-Comp(Π) coincide
also.

It is clear that there is an edgeM =⇒ M′ in ATLEASTΠ justified by the ruleDecide
if and only if there is an edgeM =⇒ M′ in DPCNF-Comp(Π) justified byDecide. The
same holds for the transition rulesFail andBacktrack.

We will now show that if there is an edge from a stateM to a stateM′ in the
graphDPCNF-Comp(Π) justified by the transition ruleUnit Propagatethen there is an
edge fromM to M′ in ATLEASTΠ. Consider a clauseC∨ l ∈ CNF-Comp(Π) such that
M |= ¬C. We will consider two cases, depending on whetherC∨ l comes from (8) or
from the CNF of (7).

Case 1:C∨ l is a∨B corresponding to a rulea← B.
Case 1.1:l is a. Then there is an edge fromM to M′ in ATLEASTΠ justified by the

transition ruleUnit Propagate LP.
Case 1.2:l is an element ofB. ThenB has the forml ,D andC is a∨D. From

C⊆M, we derive thatD⊆M and¬a∈M. There is an edge fromM to M′ in the graph
ATLEASTΠ justified by the following instance ofBackchain False

M =⇒ M l if

a← l ,D ∈ Π,

¬a∈M, and
D⊆M

Case 2:C∨ l has the form¬a∨D, whereD is one of the clauses of the CNF of
∨

B∈Bodies(Π,a)

B.

ThenD has the form
∨

B∈Bodies(Π,a)

f (B)

where f is a function that maps everyB∈ Bodies(Π,a) to an element ofB.
Case 2.1:l is ¬a. ThenC is D, so thatD⊆M. Consequently,B∩M 6= /0 for every

B∈ Bodies(Π,a). There is an edge fromM to M′ in ATLEASTΠ justified byAll Rules
Cancelled.

14

Case 2.2:l is an element ofD. From the construction ofD, it follows that l =
f (B) ∈ B for some rulea← B. ThenC is

¬a∨
∨

B′∈Bodies(Π,a)\B

f (B′).

FromC⊆M we derive thata∈M and thatf (B′) ∈M for everyB′ ∈ Bodies(Π,a)\B.
Since f (B′) is a conjunctive term ofB′, it follows thatB′ ∩M 6= /0. Then there is an
edge fromM to M′ in ATLEASTΠ justified byBackchain True.

We will now show that if there is an edge from a stateM to a stateM′ in the
graphATLEASTΠ justified by one of the transition rulesUnit Propagate LP, All Rules
Cancelled, Backchain True, andBackchain Falsethen there is an edge fromM to M′

in DPCNF-Comp(Π).
Case 1: The edge is justified byUnit Propagate LP. Then there is a rulea←

B ∈ Π whereB ⊆ M, andM′ is M a. By the construction ofCNF-Comp(Π), a∨
B∈ CNF-Comp(Π). There is an edge fromM to M′ in DPCNF-Comp(Π) justified by the
following instance ofUnit Propagate:

M =⇒ M a if

{

B∨a∈ CNF-Comp(Π) and
B⊆M.

Case 2: The edge is justified byAll Rules Cancelled. By the definition ofAll Rules
Cancelled, there is an atoma such that for allB ∈ Bodies(Π,a), B∩M 6= /0; andM′

is M ¬a. Consequently,M contains the complement of some literal inB. Denote that
literal by f (B), so thatf (B) ∈M. From the construction ofCNF-Comp(Π),

¬a∨
∨

B∈Bodies(Π,a)

f (B)

belongs toCNF-Comp(Π). By the choice off ,
∨

B∈Bodies(Π,a)

f (B) ⊆M.

There is an edge fromM to M′ in DPCNF-Comp(Π) justified by the following instance of
Unit Propagate:

M =⇒ M ¬a if

∨

B∈Bodies(Π,a)

f (B)∨¬a∈ CNF-Comp(Π),

∨

B∈Bodies(Π,a)

f (B)⊆M.

Case 3: The edge is justified byBackchain True. By the definition ofBackchain
True, there is a rulea←B∈Π and a literall such thata∈M; for all B′ ∈Bodies(Π,a) \B,
B′∩M 6= /0; l ∈ B; andM′ is M l . Let f (B′) be an element ofB′ such thatf (B′) ∈M.
From the construction ofCNF-Comp(Π),

¬a∨ l ∨
∨

B′∈Bodies(Π,a)\B

f (B′)

15

belongs toCNF-Comp(Π). By the choice off ,

∨

B′∈Bodies(Π,a)\B

f (B′)⊆M.

There is an edge fromM to M′ in DPCNF-Comp(Π) justified by the following instance of
Unit Propagate:

M =⇒ M l if

¬a∨ l ∨
∨

B′∈Bodies(Π,a)\B

f (B′) ∈CNF-Comp(Π),

(¬a∨
∨

B′∈Bodies(Π,a)\B

f (B′))⊆M.

Case 4: The edge is justified byBackchain False. By the definition ofBackchain
False, there is a rulea← l ,B ∈ Π such that¬a ∈ M, B⊆M, andM′ is M l . By the
construction ofCNF-Comp(Π), a∨B∨ l ∈ CNF-Comp(Π). There is an edge fromM
to M′ in DPCNF-Comp(Π) justified by the following instance ofUnit Propagate:

M =⇒ M l if

{

a∨B∨ l ∈ CNF-Comp(Π) and

a∨B⊆M.

Lemma 7. For any tight programΠ and any non-empty unfounded set U onΠ w.r.t.
a consistent set X of literals there is an atom a such that a∈ U and for every B∈
Bodies(Π,a), B∩X 6= /0.

Proof. By contradiction. Assume that, for everya∈U there existsB∈ Bodies(Π,a)
such thatB∩X = /0. Consequently,X 6|= ¬B. By the definition of an unfounded set
it follows that for every atoma ∈U there isB ∈ Bodies(B,a) such thatU ∩B+ 6= /0.
Consequently the subgraph of the positive dependency graphof Π induced byU has
no terminal nodes. Then, the programΠ is not tight.

Proposition 4. For any tight programΠ, the graphSM−Π is equal to each of the graphs
ATLEASTΠ andDPCNF-Comp(Π).

Proof. In view of Lemma 6, it is sufficient to prove thatSM−Π equalsATLEASTΠ; or, in
other words, that every edge ofSMΠ justified by the ruleUnfoundedonly is singular.
Consider such an edgeM =⇒ M′. We need to show that some transition rule other
thanUnfoundedis applicable toM. By the definition ofUnfounded, M is consistent
and there exists a non-empty setU unfounded onM w.r.t. Π. By Lemma 7, it follows
that there is an atoma∈U such that for everyB∈ Bodies(Π,a), B∩M 6= /0. Therefore,
the transition ruleAll Rules Cancelledis applicable toM.

Lemma 8. For any CNF formula F and a set X of models of F, and a path from/0 to a
state l1 . . . ln in GTF,X, any model Y∈ X satisfies li if it satisfies all decision literals ld

j
with j ≤ i.

Proof. Similar to the proof of Lemma 1. There are two more rules to consider:
Fail GT: Obvious.

16

Backtrack GT: M has the formP ldi Q whereQ contains no decision literals,M 6∈X.
Then,M′ is P l i . Take any modelE of F in X such thatE satisfies all decision literals
ldj with j ≤ i. We need to show thatE |= l i . By contradiction. AssumeE |= l i . By

the inductive hypothesis, and the fact thatM′ is P ldi Q whereQ contains no decision
literals, it follows thatE |= M. SinceM has no unassigned literals,E = M. This
contradicts the assumption thatM 6∈ X.

Proposition 5. For any CNF formulaF and a setX of models ofF,

(a) graphGTF,X is finite and acyclic,

(b) any terminal state ofGTF,X other thanFailStatebelongs toX,

(c) FailStateis reachable from/0 in GTF,X if and only if X is empty.

Proof.Part (a) and part (c) right-to-left are proved as in the proofof Proposition 1.
(b) LetM be any terminal state other thanFailState. As in the proof of Proposition 1(b)
it follows that M is a model ofF. NeitherFail GT nor Backtrack GTis applicable.
Then,M belongs toX.
(c) Left-to-right: SinceFailStateis reachable from /0, there is a stateM without decision
literals such that it is reachable from /0 and either transition rule Fail or Fail GT is
applicable.

Case 1.Fail is applicable. Then,M is inconsistent. By Lemma 8, any model ofF
in X satisfiesM. SinceM is inconsistent we conclude thatX is empty.

Case 2. Fail GT is applicable. Then,M assigns all literals andM 6∈ X. From
Lemma 8, it follows that for anyY ∈ X, Y = M. SinceM 6∈ X, we conclude thatX is
empty.

11 Conclusions

In this paper we showed how to model algorithms for computinganswer sets of a
program by means of simple mathematical objects, graphs. This approach simplifies
the analysis of the correctness of algorithms and allows us to study the relationship
between various algorithms using the structure of the corresponding graphs. For exam-
ple, we used this method to establish that applying theSMODELSalgorithm to a tight
program essentially amounts to applyingDPLL to its completion. It also suggests new
designs for answer set solvers, as can be seen from our work onSUP. In the future we
will investigate the generalization of this framework to backjumping and learning per-
formed by theSMODELScc algorithm [6], toSUPwith Learning, and toASP-SAT with
Learning [4]. We also would like to generalize this approachto the algorithms used in
disjunctive answer set solvers.

Acknowledgements

We are grateful to Marco Maratea for bringing to our attention the work by Nieuwen-
huis et al. (2006), to Vladimir Lifschitz for the numerous discussions, to Martin Geb-
ser and Michael Gelfond for valuable comments. The author was supported by the
National Science Foundation under Grant IIS-0712113.

17

References

[1] Davis, M., Logemann, G., Loveland, D.: A machine programfor theorem prov-
ing. Communications of ACM5(7) (1962) 394–397

[2] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SATand SAT mod-
ulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to
DPLL(T). Journal of the ACM53(6) (2006) 937–977

[3] Simons, P.: Extending and Implementing the Stable ModelSemantics. PhD
thesis, Helsinki University of Technology (2000)

[4] Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on
propositional satisfiability. Journal of Automated Reasoning 36 (2006) 345–377

[5] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In
Kowalski, R., Bowen, K., eds.: Proceedings of International Logic Programming
Conference and Symposium, MIT Press (1988) 1070–1080

[6] Ward, J.: Answer Set Programming with Clause Learning. PhD thesis, The
University of Cincinnati (2004)

[7] Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general
logic programs. Journal of ACM38(3) (1991) 620–650

[8] Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logicprogram by SAT
solvers.9 Artificial Intelligence157 (2004) 115–137

[9] Een, N., Sörensson, N.: An extensible sat-solver. In: SAT. (2003)

[10] Fages, F.: Consistency of Clark’s completion and existence of stable models.
Journal of Methods of Logic in Computer Science1 (1994) 51–60

[11] Clark, K.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and Data
Bases. Plenum Press, New York (1978) 293–322

[12] Giunchiglia, E., Maratea, M.: On the relation between answer set and SAT pro-
cedures (or, between smodels and cmodels). In: 21st International Conference on
Logic Programming (ICLP’05). (2005) 37–51

[13] Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: 22d
International Conference on Logic Programming (ICLP’06).(2006) 11–25

[14] Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: Unfounded
sets, fixpoint semantics, and computation. Information andComputation135(2)
(1997) 69–112

9Revised version:http://www.cs.ust.hk/faculty/flin/papers/assat-aij-revised
.pdf .

18

