
A transition system for AC language algorithms

Yuliya Lierler1 and Yuanlin Zhang2

1 University of Kentucky
2 Texas Tech University

Abstract. Recently a logic programming language AC was proposed
by Mellarkod et al. (2008) to integrate answer set programming (ASP)
and constraint logic programming. In a similar vein, Gebser et al. (2009)
proposed a clingcon language integrating ASP and finite domain con-
straints. A distinguishing feature of these languages is their capacity to
allow new efficient inference algorithms that combine traditional ASP
procedures and other efficient methods in constraint programming. In
this paper we show that a transition system introduced by Nieuwenhuis
et al. (2006) can be extended to model the “hybrid” acsolver algorithm,
by Mellarkod et al., designed for processing a class of simple AC pro-
grams. We also define a new class of weakly-simple programs and show
how the introduced transition system describes a class of algorithms for
such programs. Finally, we demonstrate that any clingcon program can
be seen as an AC program.

1 Introduction

Mellarkod et al. [11] introduced a knowledge representation language AC extend-
ing the syntax and semantics of answer set programming (ASP) with constraint
processing features. The AC language allows not only new modeling features but
also a novel computational methods that combine traditional ASP algorithms
with constraint logic programming (CLP) algorithms. Mellarkod et al. [11] pre-
sented a “hybrid” acsolver system for finding answer sets of AC programs that
combines both ASP and CLP computational tools. The key feature of this system
is that it processes a “regular” part of a given program using ASP technology
and a “defined” part using CLP tools.

In this paper we show that transition systems introduced by Nieuwenhuis,
Oliveras, and Tinelli [13] to model and analyze SAT solvers can be adapted to
model such a system as acsolver. The smodels algorithm [12] is a classical
method for computing answer sets of a program that is also a basis of the ASP
search procedure implemented in acsolver. Lierler [9] introduced a transition
system (graph), called smΠ , to model this algorithm. In fact, the graph smΠ

captures a class of algorithms that also includes smodels. It has been shown,
for instance in [12] and [9], that transition systems are well-suited for proving
correctness and analyzing algorithms. In this paper we extend the system smΠ

so that it may capture a class of hybrid acsolver-like algorithms. We call a
new transition system ACΠ . This allows us to provide an alternative description
of the acsolver system and an alternative proof of its correctness.

The acsolver algorithm was proved to be correct for a class of “simple”
programs [11]. We define a more general class of weakly-simple programs and
demonstrate how the graph ACΠ immediately provides the means for describing
a class of algorithms for such programs and demonstrating their correctness.

We also formally relate the language implemented in the constraint answer
set solver clingcon [6]with the language of acsolver. It turns out that any
clingcon program can be mapped in a straightforward manner into an ac-
solver program. We discuss the possibility of capturing the clingcon algo-
rithm by a transition system.

The structure of the paper is as follows. We start by reviewing AC logic
programs, notion of an answer set for such programs, and a class of simple pro-
grams. We then review a transition system introduced by Lierler [9] to model
the smodels algorithm. In Section 4, we extend this transition system to model
the computation of the acsolver algorithm. Section 5 shows how the newly
defined graph can be used to characterize the computation behind the system
acsolver. In the subsequent section we generalize the concept of simple pro-
grams to weakly-simple and show how the formal results demonstrating the cor-
rectness of the acsolver algorithm on simple programs extend to weakly-simple
programs. At last we outline some of the concepts and ideas needed for proving
major statements in this paper. In an appendix we conclude with a discussion
on the relation between the clingcon and acsolver languages.

2 Review: AC Logic Programs

A sort (type) is a non-empty countable collection of strings over some fixed
alphabet. Strings of a sort S will be referred to as constants of S. A signature Σ is
a collection of sorts, properly typed predicate symbols, constants, and variables.
Sorts of Σ are divided into regular and constraint sorts. All variables in Σ are
of a constraint sort. A term of Σ is either a constant or a variable. An atom is
of the form p(t1, . . . , tn) where p is an n-ary predicate symbol, and t1, ..., tn are
terms of the proper sorts. Normally, a constraint sort is often a large numerical
set with primitive constraint relations.

The partitioning of sorts induces a partition of predicates of the AC lan-
guage. Regular predicates denote relations among constants of regular sorts;
constraint predicates denote primitive constraint relations on constraint sorts.
Defined predicates denote relations between constants which belong to regular
sort and objects which belong to constraint sorts. They are defined in terms
of constraint, regular, and defined predicates. Mixed predicates denote relations
between constants which belong to regular sort and objects which belong to
constraint sorts. Mixed predicates are not defined by the rules of a program and
are similar to abducible relations of abductive logic programming.

An atom formed by a regular predicate is called regular. Similarly for con-
straint, defined, and mixed atoms. We assume that any mixed atom is of the
following restricted form – m(r,X), where r is a sequence of regular constants
and X is a variable.

2.1 Regular Programs

A regular program is a finite set of rules of the form

a0 ← a1, . . . , al, not al+1, . . . , not am, (1)

where

– a0 is ⊥ or a regular atom, and
– each ai (1 ≤ i ≤ m) is ⊥, ⊤ or a regular atom. 3

The expression a0 is the head of the rule. If a0 = ⊥, we often omit ⊥ from the
notation. If B denotes the body

a1, . . . , al, not al+1, . . . , not am (2)

of (1), we write Bpos for the elements occurring in the positive part of the body,
i.e., Bpos = {a1, . . . , al} and Bneg for the elements occurring in the negative
part of the body, i.e., Bneg = {al+1, . . . , am}.

For a regular program Π by Π∗ we denote the program constructed from Π

by dropping the rules where ⊥ in Bpos or ⊤ in Bneg; dropping ⊤ and not ⊥
from the remaining rules.

For instance, let Π1 be a regular program

a ← ⊥, not b

b ← c,⊤, not ⊤
d ← ⊤, not a,

then Π∗

1 is a program d ← not a.

A set X of atoms is an answer set for a regular program Π if X is an answer
set in the sense of [7] for Π∗. For instance, {d} is the only answer set of Π1.

2.2 AC Programs

An (AC) logic program is a finite set of rules of the form (1) where

– a0 is ⊥ or a regular or defined atom,
– each ai, 1 ≤ i ≤ l, is an arbitrary atom if a0 is ⊥ or a regular atom
– each ai, 1 ≤ i ≤ l, is a regular, defined, or constraint atom if a0 is a defined

atom
– each ai, l + 1 ≤ i ≤ m, is a regular, defined, or constraint atom.

Note that this definition restricts the occurrence of mixed and constraint atoms:
mixed atoms may occur only in the positive part of the body of a rule whose
head is either a regular atom or ⊥; constraint atoms may occur only in the body
of a rule.

3 In the paper, we do not use the term literal to refer to not a. We reserve the term
literal exclusively for expressions of the form a and ¬a.

We frequently identify the body (2) of a rule (1) with the conjunction of its
elements (in which not is replaced with the classical negation connective ¬):

a1 ∧ · · · ∧ al ∧ ¬al+1 ∧ · · · ∧ ¬am.

Similarly, we often interpret a rule (1) as a clause

a0 ∨ ¬a1 ∨ · · · ∨ ¬al ∨ al+1 ∨ · · · ∨ am (3)

(in the case when a0 = ⊥ in (1) a0 is absent in (3)). Given a program Π, we
write Πcl for the set of clauses (3) corresponding to all rules in Π.

Rule (1) is called a defined rule if ao is a defined atom. A part of the AC
program Π that consists of such rules is called a defined part that we denote
by ΠD. By ΠR we will denote a non-defined part of Π, i.e., Π \ ΠD.

For instance, let signature Σ1 contain two regular sorts step = {0}, action =
{a} and two constraint sorts time = 0..200, machine = 1..2; a mixed predicate
at(step, time), a regular predicate occurs(action, step), and two defined predi-
cates acceptableT ime(time) and machineAvailable(machine, time). A sample
AC program over Σ1 follows

machineAvailable(1, T) ← T ≤ 5
machineAvailable(2, 106) ←
acceptableT ime(T) ← T ≤ 10,machineAvailable(1, T)
acceptableT ime(T) ← T ≥ 100,machineAvailable(2, T)
← occurs(a, 0), at(0, T), T 6= 1, not acceptableT ime(T)
occurs(a, 0) ←

(4)

The first four rules of the program form its defined part.
For an AC program Π over signature Σ, by the set ground(Π) we denote

the set of all ground instances of all rules in Π. The set ground⊤,⊥(Π) is called
a basic ground instantiation of Π and obtained from ground(Π) by replacing
each constraint atom occurring in ground(Π) by

– ⊤ if it is true under the intended interpretation of its symbols, and
– ⊥ if it is false under the intended interpretation of its symbols.

For instance, let ground(Π) consist of two rules

acceptableT ime(100) ← 100 > 100, machineAvailable(2, 100)
acceptableT ime(101) ← 101 > 100, machineAvailable(2, 101)

then ground⊤,⊥(Π) is

acceptableT ime(100) ← ⊥, machineAvailable(2, 100)
acceptableT ime(101) ← ⊤, machineAvailable(2, 101)

We say that a sequence of (regular) constants r is specified by a mixed
predicate m if r follows the sorts of the regular arguments of m. For instance,
for program (4) a sequence 0 of constants (of type step) is the only sequence

specified by mixed predicate at. For a set X of atoms, we say that a sequence r of
regular constants is bound in X by a (constraint) constant c w.r.t. predicate m

if there is an atom m(r, c) in X.
We say that a set M of ground mixed atoms is functional over the underly-

ing signature if for every mixed predicate m, every sequence of regular constants
specified by m is bound in M by a unique constraint constant w.r.t. m. For
instance, for the signature of program (4) sets {at(0, 1)} and {at(0, 2)} are func-
tional whereas {at(0, 1) at(0, 2)} is not a functional set because 0 is bound in M

by two different constants 1 and 2 w.r.t. at.
For an AC program Π, a set X of atoms is called an answer set of Π if there

is a functional set M of ground mixed atoms of Σ such that X is an answer set
of ground⊤,⊥(Π) ∪ M .

For example, the set of atoms

{at(0, 0), occurs(a, 0),
machineAvailable(1, 0), . . . ,machineAvailable(1, 5), machineAvailable(2, 106),
acceptableT ime(0), . . . , acceptableT ime(5), acceptableT ime(106)}

is an answer set of (4).
The definition of an answer set for AC programs presented here is different

from the original definition given in [11]. It is easy to see that there is a close
relation between the answer sets defined in this paper and the answer sets given
in [11].

Proposition 1. For an AC program Π over signature Σ and the set S of all
true ground constraint literals over Σ, X is an answer set of Π if and only if
X ∪ S is an answer set (in the sense of [11]) of Π.

Mellarkod et al. [11] considered programs of more sophisticated syntax than
discussed here. For instance, in [11] classical negation may precede atoms in rules.
Also signature Σ may contain variables of regular sort. On the other hand, the
acsolver algorithm introduced in [11] for processing AC programs considers
programs of more restricted class than defined in this section. Since the primary
goal of this paper is modeling the acsolver procedure, we restricted our review
only to the special case of AC programs relevant to acsolver.

2.3 Simple AC Logic Programs

In [11] a class of simple AC programs was defined. The correctness of the ac-
solver algorithm was shown for such programs. To be more precise, the ac-
solver algorithm was proved to be correct for a class of “safe canonical” pro-
grams. Canonical programs are a special case of simple programs so that any
simple program may be converted to a canonical program by means of syntactic
transformations given in [11]. In this section we review simple programs.

We say that an AC program Π is safe [11] if every variable occurring in a
non defined rule in Π also occurs in a mixed atom of this rule. We say that an
AC program Π is super safe if Π is safe and

1. if a mixed atom m(c,X) occurs in Π then a mixed atom m(c,X ′) does not
occur in Π (where X and X ′ are distinct variable names),

2. if a mixed atom m(c,X) occurs in Π then neither a mixed atom m′(c′,X)
such that c 6= c

′ nor a mixed atom m′(c,X) such that m 6= m′ occurs in Π.

We note that any safe AC program Π may be converted to a super safe
program so that the resulting program has the same answer sets:

Proposition 2. For any safe AC program Π, there is a transformation on Π

that produces a super safe AC program which has the same answer sets as Π.

In Section 7 we present such a transformation.
We say that an AC program Π is simple if it is super safe, and its defined

part contains no regular atoms and has a unique answer set. 4 For instance,
program (4) is a simple program.

3 Review: Abstract Smodels

Most state-of-the-art answer set solvers are based on algorithms closely related
to the dpll procedure [2]. Nieuwenhuis et al. described dpll by means of a
transition system that can be viewed as an abstract framework underlying dpll
computation [13]. Lierler [9] proposed a similar framework, smΠ , for specifying
an answer set solver smodels [12]. Our goal is to design a similar framework for
describing an algorithm behind acsolver. As a step in this direction we review
the graph smΠ that underlines an algorithm of smodels (and also acsolver)
for a special case of AC programs that contain only regular atoms (we call such
programs – r-programs). The presentation follows Lierler [9].

For a set σ of atoms, a record relative to σ is an ordered set M of literals
over σ, some possibly annotated by ∆, which marks them as decision literals.
A state relative to σ is a record relative to σ possibly preceding symbol ⊥. For
instance, some states relative to a singleton set {a} of atoms are

∅, a, ¬a, a∆, a ¬a, ⊥, a⊥, ¬a⊥, a∆⊥, a ¬a⊥

We say that a state is inconsistent if either ⊥ or two complementary literals
occur in the state. For instance, states a ¬a and a⊥ are inconsistent. Frequently,
we consider a state M as a set of literals possibly with the symbol ⊥, ignoring
both the annotations and the order between its elements. If neither a literal l

nor its complement occur in M , then l is unassigned by M . For a set M of
literals, by M+ and M− we denote the set of positive and negative literals in M

respectively. For instance, {a,¬b}+ = {a} and {a,¬b}− = {b}.

4 An original definition of a simple program given in [11] is less restrictive, i.e., such
program is not required to be super safe. On the one hand, the “super safe” restriction
is important for correctness results stated later in the paper. On the other hand, it
is not essential: (i) any AC program may be transformed into a safe program and
(ii) any safe program may be converted to super safe program by Proposition 2.

If C is a disjunction (conjunction) of literals then by C we understand the
conjunction (disjunction) of the complements of the literals occurring in C. In
some situations, we will identify disjunctions and conjunctions of literals with
the sets of these literals.

By Bodies(Π, a) we denote the set of the bodies of all rules of an AC pro-
gram Π with the head a. We recall that a set U of atoms occurring in an
r-program Π is unfounded [14] on a consistent set M of literals w.r.t. Π if for
every a ∈ U and every B ∈ Bodies(Π, a), M |= B or U ∩ Bpos 6= ∅.

Each r-program Π determines its Smodels graph smΠ . The set of nodes of
smΠ consists of the states relative to the set of atoms occurring in Π. The edges
of the graph smΠ are specified by the transition rules presented in Figure 1.

Unit Propagate: M =⇒ M l if C ∨ l ∈ Πcl and C ⊆ M

Decide: M =⇒ M l∆ if l is unassigned by M

Fail : M =⇒ ⊥ if



M is inconsistent, and
M contains no decision literals

Backtrack : P l∆ Q =⇒ P l if



P l∆ Q is inconsistent, and
Q contains no decision literals

All Rules Cancelled : M =⇒ M ¬a if B ∩ M 6= ∅ for all B ∈ Bodies(Π, a)

Backchain True: M =⇒ M l if



a ← B ∈ Π, a ∈ M, l ∈ B,

B′ ∩ M 6= ∅ for all B′ ∈ Bodies(Π, a) \ B

Unfounded : M =⇒ M ¬a if



M is consistent, and
a ∈ U for a set U unfounded on M w.r.t. Π

Fig. 1. The transition rules of the graph smΠ .

A node is terminal in a graph if no edge leaves this node.

The graph smΠ can be used for deciding whether an r-program Π has an
answer set by constructing a path from ∅ to a terminal node.

Proposition 3 (Proposition 3 in [9]). For any r-program Π,

(a) graph smΠ is finite and acyclic,

(b) for any terminal state M of smΠ other than ⊥, M+ is an answer set of Π,

(c) state ⊥ is reachable from ∅ in smΠ if and only if Π has no answer sets.

4 Abstract acsolver

In order to present the transition system suitable for capturing the acsolver
algorithm we first need to introduce a few concepts used in the description of
this system, i.e., queries and query satisfiability.

Query, Query Interpretation, and Satisfiability: Given an AC program Π

and a set p of predicate symbols, a set X of atoms is an input answer set of Π

w.r.t. p if X is an answer set of Π ∪ X(p) where by X(p) we denote the set
of atoms in X whose predicate symbols are different from the ones occurring
in p5. For instance, let X be a set {a(1), b(1)} of atoms and let p be a set {a} of
predicates, then X(p) is {b(1)}. The set X is an input answer set of a program
a(1) ← b(1) w.r.t. p. On the other hand it is not an input answer set for the
same program with respect to a set {a, b} of predicates.

For a set S of literals, by SR we denote the set of regular literals occurring
in S.

A query is a set of defined, regular, and constraint literals. A consistent set I

of ground literals over signature Σ is called a query interpretation for a query Q

w.r.t. an AC program Π when

1. there is a (sort respecting) substitution γ of variables in Σ by ground terms
such that the result, Qγ, of this substitution is I itself,

2. if a constraint literal l ∈ I then l is true under the intended interpretation
of its symbols, and

3. there is an input answer set A of ΠD w.r.t. defined predicates of Π such
that Q+

R ⊆ A, Q−

R ∩ A = ∅, and
– if a ∈ I and a is a defined atom then a ∈ A,
– if ¬a ∈ I and a is a defined atom then a 6∈ A.

We say that a query Q is satisfiable w.r.t. an AC program Π if there exists
a query interpretation for Q w.r.t. Π.

For example, {acceptableT ime(2), 2 6= 1} is a query interpretation for
a query {acceptableT ime(T), T 6= 1} w.r.t. program (4). It is clear that
{acceptableT ime(T), T 6= 1} is a satisfiable query.

The graph ACΠ : We say that a set U of regular atoms occurring in an AC
program Π consisting of the rules of the form (1) is unfounded on a consistent
set M of literals w.r.t. Π if for every a ∈ U and every B ∈ Bodies(Π, a), M |= B

or U ∩ Bpos 6= ∅.
For an AC program Π, by Πm

R we denote a program ΠR whose mixed atoms
are dropped. For instance, let Π be (4), then ΠR consists of the rules

← occurs(a, 0), at(0, T), T 6= 1, not acceptableT ime(T)
occurs(a, 0) ←

5 Intuitively set p denotes a set of so called intensional predicates [4]. Also, the concept
of an input answer set w.r.t. p is closely related to the concept of “p-stable model”
in [3]. We make this claim precise in Section 7. It is also related to the concept of
an input answer set introduced in [10].

and Πm
R consists of the rules

← occurs(a, 0), T 6= 1, not acceptableT ime(T)
occurs(a, 0) ←

For a set S of literals by SD,C we denote the set of defined and constraint
literals occurring in S. By |S| we denote the set of atoms occurring in S (either
positively or negatively). For instance, |{a,¬b}| = {a, b}.

For a state M , by query(M) we denote the set MD,C ∪ M ′ where M ′ is the
largest subset of MR such that |M ′| is a subset of regular atoms occurring in ΠD.
It is easy to see that for simple programs, query(M) = MD,C .

Let Π be an AC logic program. The nodes of ACΠ are the states relative to
the set of atoms occurring in Πm

R . The edges of the graph ACΠ are described
by the transition rules of smΠm

R
and the additional transition rule

Query Propagation: M =⇒ M ⊥ if query(M) is unsatisfiable w.r.t. ΠD

The graph ACΠ can be used for deciding whether a simple AC program Π

has an answer set by constructing a path from ∅ to a terminal node:

Proposition 4. For any simple AC program Π,

(a) graph ACΠ is finite and acyclic,
(b) for any terminal state M of ACΠ other than ⊥, M+

R is a set of all regular
atoms in some answer set of Π,

(c) state ⊥ is reachable from ∅ in ACΠ if and only if Π has no answer sets.

Proposition 4 shows that algorithms that correctly find a path in the graph
ACΠ from ∅ to a terminal node can be regarded as AC solvers for simple pro-
grams. It also provides a proof of correctness for every AC solver that can be
shown to work in this way. In the next section we use the ACΠ graph to describe
such solver, i.e., acsolver.

For instance, let Π be an AC program (4). Here is a path in ACΠ with every
edge annotated by the name of a transition rule that justifies the presence of
this edge in the graph:

∅ =⇒Unit Propagate occurs(a, 0) =⇒Decide occurs(a, 0) T 6= 1∆

=⇒Unit Propagate occurs(a, 0) T 6= 1∆ acceptableT ime(T).

Since the last state in the path is terminal, Proposition 4 asserts that occurs(a, 0)
is a set of all regular atoms in some answer set of Π.

5 acsolver Algorithm

We can view a path in the graph ACΠ as a description of a process of search
for a set of regular atoms in some answer set of Π by applying transition rules.
Therefore, we can characterize an algorithm of a solver that utilizes the transition
rules of ACΠ by describing a strategy for choosing a path in this graph. A

strategy can be based, in particular, on assigning priorities to transition rules of
ACΠ , so that a solver never applies a rule in a state if a rule with higher priority
is applicable to the same state. A strategy may also include restrictions on how
a rule is applied.

We use this approach to describe the acsolver algorithm [11, Fig.1]. The
acsolver selects edges according to the priorities on the transition rules of the
graph ACΠ as follows:

Backtrack,Fail >> Unit Propagate,All Rules Cancelled,Backchain True >>

Unfounded >> Query Propagation >> Decide (if unassigned literal l is regular).

Note that acsolver only follows a transition due to the rule Decide where
unassigned literal l is regular.

We recall that the acsolver algorithm is applicable to simple AC pro-
grams only. Its implementation consists of two interacting parts: an smodels
like algorithm and a CLP solver [8]. The former makes decisions and computes
consequences (by applying the transition rules Unit Propagate, All Rules Can-
celled, and Backchain True) and unfounded sets (by applying Unfounded). In
the process, queries consisting of defined and constraint literals are created. The
satisfiability of queries is checked using a CLP solver that is based on a depth
first search on a derivation tree constructed for the queries in terms of ΠD [8].
We note that the use of the CLP solver in the implementation of the acsolver
algorithm puts additional restrictions on the program ΠD. In particular, this
program should be acyclic [1, Definition 1.4, Corollary 4.3].

Mellarkod et al. [11] demonstrated the correctness of the acsolver algo-
rithm by analyzing the properties of its pseudocode. Proposition 4 provides an
alternative proof of correctness to the acsolver algorithm that relies on the
transition system ACΠ suitable for describing acsolver. Proposition 4 encap-
sulates the proof of correctness for a class of algorithms that can be described
using ACΠ . Therefore, for instance, it immediately follows that the acsolver
algorithm modified in a way that it may follow an arbitrary transition due to
the rule Decide is still correct.

6 Weakly-simple AC Logic Programs

In this section we define a more general class of programs than simple and call
them weakly-simple programs. Proposition 4 still holds when we replace “simple”
there by “weakly-simple”. This finding immediately makes any algorithm based
on the graph ACΠ applicable to a more general class of programs.

For any atom p(t), by p(t)0 we denote its predicate symbol p. For any AC
program Π, the predicate dependency graph of Π is the directed graph that (i)
has all predicates occurring in Π as its vertices, and (ii) for each rule (1) in Π

has an edge from a0
0 to a0

i where 1 ≤ i ≤ l. A similar definition of predicate
dependency graph was given in [4] for programs of more general syntax.

We say that an AC program Π is weakly-simple if it is super safe and each
strongly connected component of the predicate dependency graph of Π is a

subset of either regular predicates of Π or defined predicates of Π. It is easy to
see that any simple program is also a weakly-simple program but not the other
way around.

Let Σ2 extend the signature Σ1 of program (4) by a regular sort power =
{on, off} and a regular predicate switch(power). The following weakly-simple
program over Σ2 results from modifying the first two rules of simple program (4)
and adding a fact switch(off):

machineAvailable(1, T) ← T ≤ 5, switch(on)
machineAvailable(2, 106) ← switch(on)
acceptableT ime(T) ← T ≤ 10,machineAvailable(1, T)
acceptableT ime(T) ← T ≥ 100,machineAvailable(2, T)
← occurs(a, 0), at(0, T), T 6= 1, not acceptableT ime(T)
occurs(a, 0) ←
switch(off) ←

(5)

Finally, Proposition 4’, obtained from Proposition 4 by replacing “simple”
with “weakly-simple”, holds. Consequently any algorithm based on the graph
ACΠ may be applied to program (5). As for an implementation of such an al-
gorithm, since ΠD contains regular atoms, a classical CLP solver is not directly
applicable to evaluate query(M) in the Query Propagation transition rule. To
overcome this issue, one way is to apply this rule only when every regular atom
of ΠD occurs in some literal of query(M). In such case, we can reduce ΠD to
defined rules without regular atoms using the following transformation. First,
every regular atom a in ΠD is replaced by ⊤ if a ∈ query(M) and by ⊥ if
¬a ∈ query(M). We denote the resulting program by Π ′

D. We construct a pro-
gram (Π ′

D)∗ from Π ′

D by dropping the rules where ⊥ (⊤) occurs in Bpos (Bneg)
and dropping ⊤ and not⊥ from the remaining rules. Under a condition that the
program (Π ′

D)∗ is acyclic [1, Definition 1.4], a CLP solver can test the satisfia-
bility of the query query(M) in terms of (Π ′

D)∗.

7 Outlines of Some Proofs

Proposition 2 For any safe AC program Π, there is a transformation on Π

that produces a super safe AC program which has the same answer sets as Π.

Let T denote the following transformation on an AC program

For each sequence c of constants and each m such that c is specified by m

Associate a unique new variable with < m, c >;
For each rule r of Π

Let r′ be the same as r;
For each variable X of r

Let m1(c1,X), ...mk(ck,X) be the mixed atoms of r and
Yi be the unique new variable associated with < mi, ci > for i ∈ 1..k;

Replace mi(ci,X) in r′ with mi(ci, Yi) for i ∈ 1..k;
Add Y1 = Y2 = . . . = Yi to the body of r′;
Replace each occurrence of X in r′ by Y1.

The key to the proof of Proposition 2 is to demonstrate that a program Π ′

produced by the transformation T from a safe AC program Π has the same
answer sets as Π and is super safe.

Proposition 4′ For any weakly-simple AC program Π,

(a) graph ACΠ is finite and acyclic,
(b) for any terminal state M of ACΠ other than ⊥, M+

R is a set of all regular
atoms in some answer set of Π,

(c) state ⊥ is reachable from ∅ in ACΠ if and only if Π has no answer sets.

The proof of Proposition 4’ relies on an alternative characterization of the answer
sets of weakly-simple programs that we state as Lemma 1 in this section. To state
the lemma we will introduce several concepts.

For an AC program Π, by atomsR(Π) we denote the set of regular atoms
occurring in Π. By atomsD,C(Π) we denote the set of defined and constraint
atoms occurring in Π. We say that a query Q is based on an AC program Π if
|QD,C | = atomsD,C(ΠR), and |QR| = atomsR(ΠD).

For instance, for program (4) there are four queries based on Π:

{acceptableT ime(T), T 6= 1} {acceptableT ime(T), ¬T 6= 1}
{¬acceptableT ime(T), T 6= 1} {¬acceptableT ime(T), ¬T 6= 1}

For a query Q and an AC program Π, by Π(Q) we denote a program con-
structed from Π by

1. eliminating ΠD,
2. replacing each occurrence of a mixed atom by ⊤,
3. replacing each ai (1 ≤ i ≤ m) in (1) such that ai or ¬ai is in QD,C by ⊤ if

ai ∈ Q, and ⊥ if ¬ai ∈ Q.
4. for each regular literal l ∈ QR adding a rule

– ← not l if l is an atom, and
– ← a if l is a literal ¬a.

It is easy to see that for a query Q based on an AC program Π, Π(Q) is a reg-
ular program. For instance, let Π be program (4) and Q be {acceptableT ime(T), T 6=
1}, then Π(Q) consists of two rules

← occurs(a, 0),⊤, ⊤, not ⊤
occurs(a, 0) ←

Weakly-simple AC programs satisfy important syntactic properties that al-
low to characterize their answer sets by means of queries based on them. The
lemma below makes this claim precise. This lemma is also a key to proving
Proposition 4’.

Lemma 1. For a weakly-simple AC program Π, Π has an answer set iff there
is a query Q based on Π such that Q is satisfiable w.r.t. Π and Π(Q) has an
answer set. Furthermore, if I is a query interpretation for Q w.r.t. Π and X is
an answer set of Π(Q) then X ∪ I+

D is a subset of an answer set of Π.

The proof of this lemma heavily relies on the (symmetric) Splitting Theo-
rem in [4] and the following relation between an input answer set of a regular
program Π and a p-stable model [3]:

Proposition 5. For a regular logic program Π, a complete set X of literals,
and a set p of predicate symbols such that pred(Heads(Π)) ⊆ p, X+ is an input
answer set of Π iff X is a model of SMp[Π] (i.e., p-stable model of Π).

Proposition 4’ follows immediately from Lemma 1 and the following result:

Lemma 2. For any weakly-simple AC program Π,

(a) graph ACΠ is finite and acyclic,
(b) for any terminal state M of ACΠ other than ⊥, query(M) is a satisfiable

query based on Π and M+

R is an answer set of Π(query(M)),
(c) state ⊥ is reachable from ∅ in ACΠ if and only if Π has no answer sets.

The proof of this lemma is similar in its structure to the proof of Proposition 3
given in [9].

8 Appendix: clingcon Algorithm

Let us consider a subset of the AC language, AC−, so that any AC program
without defined atoms is an AC− program. It is easy to see that for any AC−

program, its defined part is empty so that any super safe AC− program is simple.
The language of the constraint answer set solver clingcon defined in [6]

is strongly related to the AC language.6 In fact, it can be seen as a syntactic
variant of the AC− language.

We now review the clingcon programs and show how they map into AC−

programs.
We say that an atom is a clingcon atom over (sorted) signature Σ if it has

the following form

p1(r1) ⊕ · · · ⊕ pk(rk) ⊕ ck+1 ⊕ · · · ⊕ cm ⊙
pm+1(rm+1) ⊕ · · · ⊕ pl(rl) ⊕ cl+1 ⊕ · · · ⊕ cn,

(6)

where pi is a mixed predicate and ri is a vector of regular constants; ci is a
constraint constant; ⊕ is a primitive constraint operation; and ⊙ is a primitive
constraint relation. We call expressions of the form pi(ri) clingcon variables.

A clingcon program is a finite set of rules of the form (1) where

– a0 is ⊥ or a regular atom, and
– each ai, 1 ≤ i ≤ m is a regular atom or clingcon atom.

Any clingcon program Π can be rewritten as an AC− program using a func-
tion V that maps the set of clingcon variables occurring in Π to the set of distinct
variables over Σ. For a clingcon variable c, cV denotes a variable assigned to c

by V. For each occurrence of clingcon atom (6) in some rule r of Π

6 The system clingcon accepts programs of more general syntax than discussed in [6]
(for instance, aggregates such as #count are allowed by clingcon).

– add a set of mixed atoms p1(r1, p1(r1)V), . . . , pl(rl, pl(rl)
V) to the body of r,

– replace (6) in r by a constraint atom

p1(r1)V ⊕ · · · ⊕ pk(rk)V ⊕ ck+1 ⊕ · · · ⊕ cm ⊙
pm+1(rm+1)V ⊕ · · · ⊕ pl(rl)

V ⊕ cl+1 ⊕ · · · ⊕ cn.

We denote resulting AC− program by ac(Π). It is easy to see that ac(Π) is super
safe program.

Proposition 6. For a clingcon program Π over signature Σ, a set X is a con-
straint answer set of Π according to the definition in [6] iff there is a functional
set M of ground mixed atoms of Σ such that X ∪M is an answer set of ac(Π).

Based on Proposition 6 and the fact that for a clingcon program Π, ac(Π)
is a super-safe AC− program it follows that a class of algorithms captured by
the graph ACΠ is applicable to clingcon programs. Nevertheless the graph ACΠ

is not suitable for describing the clingcon system. This system is based on
tight coupling of the answer set solver clasp [5] and the constraint (CSP) solver
gecode7. The clingcon starts its computation by building the “completion”
of a clingcon program so that its propagation relies not only on the program
but also on the program’s propositional formula counterpart. Furthermore, it
implements such backtracking search techniques such as backjumping, learning,
forgetting, and restarts. Lierler and Truszczynski [10] introduced the transi-
tion system sml(asp)F,Π and demonstrated how it can be used to capture the
computation of clasp. The graph sml(asp)F,Π extended with the transition
rule Query Propagation (in a similar manner as the graph smΠ was extended
with Query Propagation in this paper) is appropriate for describing the system
clingcon. Furthermore, sml(asp)F,Π extended with the transition rule Query
Propagation would provide a generic description of a class of algorithms imple-
menting backjumping and learning for the case of weakly-simple AC programs.
The detailed description of this graph is out of the scope of this paper.

9 Conclusions

In this paper, we designed a transition system ACΠ that is well-suited for de-
scribing an algorithm behind the system acsolver. The language defined by
Gebser et al. [6] for the system clingcon is formally related to a subset, AC−,
of AC language (see appendix). As a result, the transition system ACΠ is also
applicable to a class of algorithms for the clingcon language. (Although, it is
not adequate to specify the procedure implemented in the system clingcon.)
Compared with traditional pseudo-code description of algorithms, transition sys-
tems use a more uniform (i.e., graph based) language and offer more modular
proofs. The graph ACΠ offers a convenient tool to describe, compare, analyze,
and prove correctness for a class of algorithms. Furthermore, the transition sys-
tem for acsolver results in new algorithms for solving a larger class of AC

7 http://www.gecode.org .

programs – weakly-simple programs. Neither the acsolver nor clingcon pro-
cedures presented in [11] and [6], respectively, can deal with such programs. In
the future we will consider ways to use current ASP/CLP technologies to design
a solver for weakly-simple programs.

Acknowledgments

We are grateful to Michael Gelfond, Vladimir Lifschitz, and Miroslaw Truszczyn-
ski for useful discussions related to the topic of this work. Yuliya Lierler was
supported by a CRA/NSF 2010 Computing Innovation Fellowship, and Yuanlin
Zhang was partially supported by NSF under grant IIS-1018031.

References

1. Apt, K., Bezem, M.: Acyclic programs. New Generation Computing 9, 335–363
(1991)

2. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5(7), 394–397 (1962)

3. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial
Intelligence 175, 236–263 (2011)

4. Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general
theory of stable models. In: IJCAI. pp. 797–803 (2009)

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: IJCAI. pp. 386–392 (2007)

6. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Interna-
tional Conference on Logic Programming (ICLP). pp. 235–249 (2009)

7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
International Logic Programming Conference and Symposium (1988)

8. Jaffar, J., Maher, M.J.: Constraint Logic Programming. Journal of Logic Program-
ming 19/20, 503–581 (1994)

9. Lierler, Y.: Abstract answer set solvers. In: International Conference on Logic
Programming (ICLP) (2008)

10. Lierler, Y., Truszczynski, M.: Transition systems for model generators — a unifying
approach. In: International Conference on Logic Programming (ICLP) (2011)

11. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and
constraint logic programming. Ann of Math and Artif Intell (2008)

12. Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and weight
constraints. In: Logic-Based Artificial Intelligence, pp. 491–521 (2000)

13. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theo-
ries: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (2006)

14. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic
programs. Journal of ACM 38(3), 620–650 (1991)

