Parsing Combinatory Categorial Grammar via
Planning in Answer Set Programming

Yuliya Lierler! and Peter Schiiller?

! Department of Computer Science, University of Kentucky
yulia@cs.uky.edu
2 Institut fiir Informationssysteme, Technische Universitit Wien
ps@kr.tuwien.ac.at

Abstract. Combinatory categorial grammar (CCG) is a grammar formalism used for natural language
parsing. CCG assigns structured lexical categories to words and uses combinatory rules to combine
these categories to parse a sentence. In this work we propose and implement a new approach to CCG
parsing that relies on a prominent knowledge representation formalism, answer set programming (ASP)
— a declarative programming paradigm. We formulate the task of CCG parsing as a planning problem
and use an ASP computational tool to compute solutions that correspond to valid parses. Compared to
other approaches, there is no need to implement a specific parsing algorithm using such a declarative
method. Our approach aims at producing all semantically distinct parse trees for a given sentence. From
this goal, normalization and efficiency issues arise, and we deal with them by combining and extending
existing strategies. We have implemented a CCG parsing tool kit — ASPCCGTK— that uses ASP as its
main computational means. The C&C supertagger can be used as a preprocessor within ASPCCGTK,
which allows us to achieve wide-coverage natural language parsing.

1 Introduction

The task of parsing, i.e., recovering the internal structure of sentences, is an important task in natural lan-
guage processing. Combinatory categorial grammar (CCG) is a popular grammar formalism used for this
task. It assigns basic and complex lexical categories to words in a sentence and uses a set of combinatory
rules to combine these categories to parse the sentence. In this work we propose and implement a new
approach to CCG parsing that relies on a prominent knowledge representation formalism, answer set pro-
gramming (ASP) — a declarative programming paradigm. Our aim is to create a wide-coverage® parser
which returns all semantically distinct parse trees for a given sentence.

One major challenge of natural language processing is ambiguity of natural language. For instance,
many sentences have more than one plausible internal structure, which often provide different semantics to
the same sentence. Consider a sentence

John saw the astronomer with the telescope.

It can denote that John used a telescope to see the astronomer, or that John saw an astronomer who had a
telescope. It is not obvious which meaning is the correct one without additional context. Natural language
ambiguity inspires our goal to return all semantically distinct parse trees for a given sentence.

CCG-based systems OPENCCG [31] and TCCG [1, 3] (implemented in the LKB toolkit) can provide
multiple parse trees for a given sentence. Both use chart parsing algorithms with CCG extensions such
as modalities or hierarchies of categories. While OPENCCG is primarily geared towards generating sen-
tences from logical forms, TCCG targets parsing. However, both implementations require lexicons* with
specialized categories. Generally, crafting a CCG lexicon is a time—consuming task. An alternative method
to using a hand-crafted lexicon has been implemented in a wide-coverage CCG parser — C&C [6, 7].
C&C relies on machine learning techniques for tagging an input sentence with CCG categories as well
as for creating parse trees with a chart algorithm. As training data, C&C uses CCGbank— a corpus of

3 The goal of wide-coverage parsing is to parse sentences that are not within a controlled fragment of natural language,
e.g., sentences from newspaper articles.
* A CCG lexicon is a mapping from each word that can occur in the input to one or more CCG categories.

CCG derivations and dependency structures [20] based on the translation of the Penn Treebank® using
CCQG. It pairs syntactic derivations with sets of word-word dependencies which approximate the underly-
ing predicate-argument structure. The parsing algorithm of C&C returns a single most probable parse tree
for a given sentence®.

In the approach that we describe in this paper we formulate the task of CCG parsing as a planning
problem. Then we solve it using answer set programming [24, 26]. ASP is a declarative programming
formalism based on the answer set semantics of logic programs [18]. The idea of ASP is to represent a
given computational problem by a program whose answer sets correspond to solutions, and then use an
answer set solver to generate answer sets for this program. Utilizing ASP for CCG parsing allows us to
control the parsing process with declarative descriptions of constraints on combinatory rule applications
and parse trees. Moreover, there is no need to implement a specific parsing algorithm, as an answer set
solver is used as a computational vehicle of the method. In our ASP approach to CCG parsing we formulate
a problem in such a way that multiple parse trees are computed.

An important issue inherent to CCG parsing are spurious parse trees: a given sentence may have many
distinct parse trees which yield the same semantics. Various methods for eliminating such spurious parse
trees have been proposed [6, 12,32]. We adopt some of these syntactic methods in this work.

We implemented our approach in an ASPCCGTK toolkit. The toolkit equips a user with two possibilities
for assigning plausible categories to words in a sentence: it can either use a given (hand-crafted) CCG
lexicon or it can take advantage of the C&C supertagger [7] for this task. The second possibility provides
us with wide-coverage CCG parsing capabilities. The ASPCCGTK toolkit computes best-effort parses in
cases where no full parse can be achieved with CCG, resulting in parse trees for as many phrases of a
sentence as possible. This behavior is more robust than completely failing in producing a parse tree. It is
also useful for development, debugging, and experimenting with rule sets and normalizations. In addition
to producing parse trees, ASPCCGTK contains a module for visualizing CCG derivations. The following
table compares ASPCCGTK to CCG parsers discussed earlier.

Properties OPENCCG TCCG C&C AspCcGTK
multiple parses v v v
wide-coverage v v

A number of theoretical characterizations of CCG parsing exists. They differ in their use of specialized
categories, their sets of combinatory rules, or specific conditions on applicability of rules. We see an ASP
approach to CCG parsing implemented in ASPCCGTK as a basis of a generic tool for encoding different
CCQG category and rule sets in a declarative and straightforward manner. Such a tool provides a test-bed
for experimenting with different theoretical CCG frameworks without the need to craft specific parsing
algorithms.

The structure of this paper is as follows: we start by reviewing planning, ASP, and CCG. We describe
our new approach to CCG parsing by formulating this task as a planning problem in Section 3. The imple-
mentation and framework for realizing this approach using ASP technology is the topic of Section 4. We
conclude with a discussion of future work directions and challenges.

2 Preliminaries

2.1 Planning

Automated planning [5] is a widely studied area in Artificial Intelligence. In planning, given knowledge
about

(a) available actions, their executability, and effects,
(b) an initial state, and
(c) a goal state,

Shttp://www.cis.upenn.edu/ treebank/.
6 Parser C&C defines “most probable” based on categories co-occurrence statistics derived from CCGbank corpus.

the task is to find a sequence of actions that leads from the initial state to the goal state. A number of special
purpose planners have been developed in this sub-area of Artificial Intelligence. Answer set programming
provides a viable alternative to special-purpose planning tools [13,23, 26].

2.2 Answer Set Programming (for Planning)

Answer set programming (ASP) [24,26] is a declarative programming formalism based on the answer set
semantics of logic programs [18, 19]. The idea of ASP is to represent a given computational problem by a
program whose answer sets correspond to solutions, and then use an answer set solver to generate answer
sets for this program. In this work we use the CLASP system with its front-end (grounder) GRINGO [16],
which is currently one of the most widely used answer set solvers.

A common methodology to solve a problem in ASP is to design GENERATE, DEFINE, and TEST [23]
parts of a program. The GENERATE part defines a large collection of answer sets that could be seen as
potential solutions. The TEST part consists of rules that eliminate the answer sets of the GENERATE part
that do not correspond to solutions. The DEFINE section expresses additional concepts and connects the
GENERATE and TEST parts.

A typical logic programming rule has the form of a Prolog rule. For instance, program

p.
q <~ p, not r.

is composed of such rules. This program has one answer set {p, ¢}. In addition to Prolog rules, GRINGO
also accepts rules of other kinds — “choice rules” and “constraints”. For example, rule

{p,q,r}.

is a choice rule. Answer sets of this one-rule program are arbitrary subsets of the atoms p, g, r. Choice rules
are typically the main members of the GENERATE part of the program. Constraints often form the TEST
section of a program. Syntactically, a constraint is the rule with an empty head. It encodes the conditions
on the answer sets that have to be met. For instance, the constraint

«— p, not q.

eliminates the answer sets of a program that include p and do not include q.

System GRINGO allows the user to specify large programs in a compact way, using rules with schematic
variables and other abbreviations. A detailed description of its input language can be found in the online
manual [16]. Grounder GRINGO takes a program “with abbreviations” as an input and produces its propo-
sitional counterpart that is then processed by CLASP. Unlike Prolog systems, the inference mechanism of
CLASP is related to that of Propositional Satisfiability (SAT) solvers [17].

The GENERATE-DEFINE-TEST methodology is suitable for modeling planning problems. To illustrate
how ASP programs can be used to solve such problems, we present a simplified part of the encoding of a
classic toy planning domain blocks world given in [23]. In this domain, blocks are moved by a robot. There
are a number of restrictions including the fact that a block cannot be moved unless it is clear.

Lifschitz [23] models the blocks world domain by means of five predicates: time/I, block/1, location/I,
move/3, on/3; a location is a block or the table. The constant maxsteps is an upper bound on the length of
a plan. States of the domain are modeled by the ground atoms of the form on(b,l,t) stating that block b is
at location [at time ¢. Actions are modeled by ground atoms move(b,l,t) stating that block b is moved to
location [at time ¢.

The GENERATE section of a program consists of a single rule

{move(B,L,T)} « block(B), location(L), time(T), T < maxsteps.

that defines a potential solution to be an arbitrary set of move actions executed before maxsteps.

"http://potassco.sourceforge.net/.

The fact that moving a block to a position at time 7" forces a block to be at this position at time 741 is
encoded in DEFINE part of the program by the rule

on(B, L, T+1) < move(B, L,T), block(B), location(L), time(T), T<mazsteps.

The rule below specifies the commonsense law of inertia for a predicate on stating that unless we know that
the block is no longer at the same position it remains where it was:

on(B,L,T+1) « on(B,L,T), not mon(B, L, T+1), block(B), location(L),
time(T), T < mazsteps.

The following constraint in TEST encodes the restriction that a block cannot be moved unless it is clear

— move(B, L,T), on(B1,B,T), block(B), block(B1),
location(L), time(T), T < mazsteps.

Given the rest of the encoding and the description of an initial state and of the goal state, answer sets of
the resulting program represent plans. The ground atoms of the form move(b,lt) present in an answer set
form the list of actions of a corresponding plan.

2.3 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) [29] is a linguistic grammar formalism. CCG uses a small set of
combinatory rules — combinators — to combine rich lexical categories of words.

Categories in CCG are either atomic or complex. For instance, noun N, noun phrase NP, and sen-
tence .S are atomic categories. Complex categories are functors that specify the type and direction of the
arguments and the type of the result. A complex category

S\NP

is a category for English intransitive verbs (such as walk, hug), which states that a noun phrase is required
to the left, resulting in a sentence. A category

(S\NP)/NP

for English transitive verbs (such as like and bite) specifies that a noun phrase is required to the right and
yields the category of an English intransitive verb, which (as before) requires a noun phrase to the left to
form a sentence.

Given a sentence and a lexicon containing a set of word-category pairs, we can replace words in the
sentence by appropriate categories. For example, for a sentence

The dog bit John @)
and a lexicon containing pairs
The - NP/N; dog - N; bit - (S\NP)/NP; John - NP 2)
we obtain
The @ bit John
NP/N N (S\NP)/NP NP .

Words may have multiple categories, e.g., “bit” is also an intransitive verb and a noun. To simplify the
presentation of parsing in this paper we limit out attention to the case when there is a unique category cor-
responding to each word. Nevertheless, our framework is able to handle multiple categories by considering
all combinations of word categories.

To parse English sentences a number of combinators are required [29]: forward and backward appli-
cation (> and <, respectively), forward and backward composition (>B and <B), forward and backward

type raising (>T and <T), backward cross composition, backward cross substitution, and coordination.
Specifications of some of these combinators follow:

A/B B A/B B/C A
a7 ac B miea T

B A\B B\C A\B A
A< ac B Bsm) T

where A, B, C are variables that can be substituted by CCG categories such as N or S\ NP. An instance
of a CCG combinator is obtained by substituting CCG categories for variables. For example,

NP/N N
NP (3

is an instance of the forward application combinator (>). A CCG combinatory rule combines one or more
adjacent categories and yields exactly one output category. To parse a sentence is to apply instances of CCG
combinators so that the final category S is derived at the end. A sample CCG derivation for sentence (1)
follows

The dog bit John (@]
initial state (time 0) NP/N N (S\NP)/NP NP
> > two > actions at time 0
state (time 1) NP S\NP

one < action at time 1

goal state (time 2) S

On the left and right side of the derivation we give an intuition about how we translate the CCG parsing
task into action planning. Section 3.1 gives a formal definition of this translation.

Type Raising and Spurious Parses: CCG restricted to application combinators generates the same lan-
guage as CCG restricted to application, composition, and type raising rules [10,27]. One of the motivations
for type raising are non-constituent coordination constructions® that can only be parsed with the use of
raising [2, Example (2)] and the additional coordination rule shown below (coordinating words such as

“and” receive category CONJ).
A CONJ A
)]

Unrestricted applications of composition and type raising combinators often create spurious parse trees
which are semantically equivalent to parse trees derived using application rules only. Eisner [12, Exam-
ple (3)] presents a sample sentence with 12 words and 252 parses but only 2 distinct meanings. An example
of a spurious parse for sentence (1) is the following derivation

The @
NP/N N
T; bit
S/(S\NP) (S\NP)/NP o John
S/NP NP
g ” 5)

which utilizes application, type raising, and composition combinators. Both derivations (4) and (5) have the
same semantic value (in a sense, the difference between (4) and (5) is not essential for subsequent semantic
analysis).

8 E.g, in the sentence “We gave Jan a record and Jo a book”, neither “Jan a record” nor “Jo a book” is a linguistic
constituent of the sentence. With raising we can produce meaningful categories for these non-constituents and
subsequently coordinate them using “and”.

In this work we aim at the generation of parse trees that have different semantic values so that they
reflect a real ambiguity of natural language, and not a spurious ambiguity that arises from the underlying
CCG formalism. Various methods for dealing with spurious parses have been proposed such as limiting type
raising only to certain categories [6], normalizing branching direction of consecutive composition rules by
means of predictive combinators [32] or restrictions on parse tree shape [12]. We combine and extend these
ideas to pose restrictions on generated parse trees within our framework. Details about normalizations and
type raising limits that we implement are discussed in Section 3.3.

3 CCG Parsing via Planning

3.1 Problem Statement

We start by defining precisely the task of CCG parsing. We then state how this task can be seen as a
planning problem.

A sentence is a sequence of words. An abstract sentence representation (ASR) is a sequence of cat-
egories annotated by a unique id. Recall that given a lexicon, we can replace words in the sentence by
appropriate categories. As a result we can turn any sentence into ASR using a lexicon. For instance, for
sentence (1) and lexicon (2) a sequence

[NP/N', N2% (S\NP)/NP? NP*. (6)

is an ASR of (1). We refer to categories annotated by id’s as annotated categories. Members of (6) are
annotated categories.
Recall that an instance of a CCG combinator C has a general form

D, CT. %
vy C
We say that the sequence [X,...,X,] is a precondition sequence of C, whereas Y is an effect of ap-
plying C'. The precondition sequence and the effect of instance (3) of the combinator > are [NP /N, N]|
and NP, respectively.
Given an instance C of a CCG combinator we may annotate it by

— assigning a distinct 7d to each member of its precondition sequence, and
— assigning the id of the left most annotated category in the precondition sequence to its effect.

We call such an instance an annotated (combinator) instance. For example,
NP/N' N?
—_— >
NP! (7

is an annotated instance w.r.t. (3).

An annotated instance C' is applied to an ASR sequence A by replacing the substring of A corre-
sponding to the precondition sequence of C by its effect. For example, applying (7) to (6) yields ASR
[NP', (S\NP)/NP? NP*]. In the following we will often say annotated combinator in place of anno-
tated instance.

To view CCG parsing as a planning problem we need to specify states and actions of this domain. In
CCQG planning, states are ASRs and actions are annotated combinators. So the task is given the initial ASR,
e.g., [X1,...,X"], to find a sequence of annotated combinators that leads to the goal ASR — [S?].

Let C; denote annotated combinator (7), Cy denote

(S\NP)/NP? NP* -
S\NP? ,

and C3 denote
NP' S\NP?
R — >
Sl

Given ASR (6) a sequence of actions Cy, Cs, and C3 forms a plan:

Time 0: [NP/N', N2 (S\NP)/NP* NP*|
action: C;
Time 1: [NP', (S\NP)/NP* NP,
action: Cs ®)
Time 2: [NP', S\NP?],
action: Cs
Time 3: [S1].

This plan corresponds to parse tree (4) for sentence (1). On the other hand, a plan formed by a sequence of
actions Cs, Cy, and C3 also corresponds to (4).

In planning the notion of serializability is important. Often given a plan, applying several consecutive
actions in the plan in any order or in parallel does not change the effect of their application. Such plans
are called serializable. Consequently, by allowing parallel execution of actions one may represent a class
of plans by a single one. This is a well-known optimization in planning. For example, plan

Time 0: [NP/N', N2?, (S\NP)/NP? NP*
actions: C1,Cs

Time 1: [NP', S\NP?,
action: Cs

Time 2: [S1]

may be seen as an abbreviation for a group of plans, i.e., itself, plan (8), and a plan formed by a sequence
Ca, Cy, and Cs. In CCG parsing as a planning problem, we are interested in finding plans of this kind, i.e.,
plans with concurrent actions.

Next we present the ASP encoding of the planning problem. In order to enforce normalizations that
limit spurious parses, in the encoding the planning problem presented so far is extended further to eliminate
some redundant plans.

3.2 ASP Encoding

In an ASP approach to CCG parsing, the goal is to encode the planning problem as a logic program so that
its answer sets correspond to plans. As a result answer sets of this program will contain the sequence of
annotated combinators (actions, possibly concurrent) such that the application of this sequence leads from
a given ASR to the ASR composed of a single category S. We present a part of the encoding ccg . asp’
in the GRINGO language that solves a CCG parsing problem by means of ideas presented in Section 2.2.

First, we need to decide how we represent states — ASRs — by sets of ground atoms. To this end,
we introduce symbols called “positions” that encode annotations of ASR members. In ccg. asp, relation
posCat(p, c, t) states that a category c is annotated with (position) p at time ¢. Relation

posAdjacent(pr,pr,t)

states that a position py, is adjacent to a position ppr at time ¢. In other words, a category annotated by pr,
immediately precedes a category annotated by pr in an ASR that corresponds to a state at time ¢ (intu-
itively, L and R denote left and right, respectively.) These relations allow us to encode states of a CCG
planning domain. For example, given an ASR (6) as the initial state, we can encode this state by the fol-
lowing set of facts

posCat(1, rfunc(“NP”, “N"),0). posCat(2, “N”,0).
posCat (3, rfunc(lfunc(“S”, “NP”), “NP”),0). posCat(4, “NP”,0). ©)
posAdjacent(1,2,0). posAdjacent(2,3,0). posAdjacent(3,4,0).

° The complete listing of ccg. asp is available at
http://www.kr.tuwien.ac.at/staff/ps/aspccgtk/ccg.asp

Next we need to choose how we encode actions. The combinators mentioned in Section 2.3 are of two
kinds: the ones whose precondition sequence consists of a single element (i.e., >T and <T) and of two
elements (e.g., > and <). Coordination combinator is of a third type, i.e., its precondition sequence contains
three elements. We simplify the presentation of the encoding by omitting the details of this case. We call
the combinators from Section 2.3 unary and binary respectively. Reification of actions is a technique used
in planning that allows us to talk about common properties of actions in a compact way. To utilize this idea,
we first introduce relations unary(a) and binary(a) for every unary and binary combinator a respectively.
For a unary combinator a, a relation occurs(a, p, ¢, t) states that a type raising action a occurring at time ¢
raises a category identified with position p (at time t) to category c. For a binary combinator a a relation
occurs(a, p,t) states that an action a applied to positions p (and the position adjacent to p to the right)
occurs at time ¢. For instance, given the initial state (9)

— occurs(ruleFPwdTypeR, 4, (S\NP)/NP,0) represents an application of the annotated combinator

__NP*__ >T
(S\NP)/NP*

to (9) at time 0,
— occurs(ruleFwdAppl, 1,0) represents an application of (7) to (9) at time 0.

Given an atom occurs(a, p, ¢, t) or occurs(a, p,t) we often say that action a modifies position p at time ¢.
Recall that solutions of this formalization correspond to parse trees so that each application of a com-
binator forms an edge (or a set of edges) in a tree. We introduce an auxiliary action named

placeEdgeTag(p,t,tag),

which states that there is an edge placed at position p at time ¢ tagged by a tag unary or binary. Intuitively
occurrence of an atom placeEdgeTag(p, t, unary) (or placeEdgeTag(p, t, binary)) in a solution guaran-
tees that an atom of the form occurs(a, p, ¢,t) (or occurs(a, p,t)) is also present in the solution. In other
words, some unary (or binary) action modifies a position p at time ¢. Introducing this auxiliary relation
allows us to state some constraints on solutions by referring only to the type of combinators (i.e., unary or
binary) rather than their kind (i.e., ruleF'wd TypeR or ruleFwdAppl).

The GENERATE section of ccg. asp contains a choice rule

0{placeEdgeTag(P,T, TAG) : type(TAG)}1 — posASR(P,T), time(T), T < mazsteps.

where posASR is an auxiliary relation specifying that a position p is part of an ASR encoded by a state at
time ¢. This rule states that for “ASR” positions it is possible to place a single edge either of type unary or
binary. Another sample GENERATE rule

1{occurs(A, P,T) : binary(A)}1 « placeEdgeTag(P, T, binary).

specifies that if a binary edge is placed at position P then one of the binary actions must occur at this time
modifying P. Such choice rules describe a potential solution to the planning problem as an arbitrary set of
actions executed before maxsteps.

In order to state effects of actions and executability conditions the DEFINE part of a program introduces
an auxiliary relation precCat for each action corresponding to a CCG combinator. For example,

precCat(ruleFwdAppl, L, T, A) «— posAdjacent(L, R,T), time(T),
posCat(L, rfunc(A, B),T), posCat(R,B,T).

states that if there are two adjacent positions such that the category of the left and right positions are
A/ B and B respectively then preconditions of binary action ruleFwdAppl are satisfied and the resulting
category of applying rule FwdAppl to this position is A.

A rule that models effects of actions in the CCG parsing domain using the precCat relation follows

posCat(P,C,T+1) «— precCat(A, P,T,C), occurs(A, P,T), time(T).

It states that an application of a combinator A at time 7" causes a category annotated by P to be C' at the
next time point. Note that this rule takes advantage of reification and provides means for compact encoding
of common effects of all binary actions. On the other hand, following rules

prec(A, L, T) « precCat(A,L,T,C).
— occurs(A, P,T), not prec(A, P,T).

formulate executability conditions by forbidding a combinator A to occur modifying position P at time T’
unless its preconditions are satisfied.

The following rule characterizes another effect of combinators and defines the posAffected concept
which is useful in stating several normalization conditions described in Section 3.3:

posAffected(P, T+1) < 1{placeEdgeTag(P,T,TAG) : type(TAG)} time(T), T < mazsteps.

Relation posAffected(P, T+1) holds if the element annotated by P in the ASR was modified by a com-
binator at time 7. Note that this rule takes advantage of auxiliary relation placeEdgeTag that provides
means for compact encoding of common effects of all unary, binary (and ternary) actions. Furthermore,
posAffected is used to state the law of inertia for the predicate posCat

posCat(P,C,T+1) «— posCat(P,C,T), not posAffected(P,T+1),
time(T), T < maxsteps.

stating that a category of a position stays the same unless it is affected.

In the TEST section of the program we encode such restrictions as no two combinators may modify the
same position simultaneously and the fact that the goal has to be reached. We allow two possibilities for
specifying a goal. In one case, the goal is to reach an ASR composed of a single category S by mazsteps.
In another case, the goal is to reach the shortest possible ASR sequence by mazxsteps.

The TEST section also includes a set of constraints modeling conditions when it is impossible for an
action a to modify position p at time ¢. These rules form the main mechanism by which normalization
techniques are encoded in ccg . asp. For instance, a rule

— occurs(ruleFwdAppl, P,T), occurs(ruleFwdRaise, P, X, TLast—1),
posLastAffected(P, TLast,T), time(TLast), time(T), T < maxsteps.

states that a forward application modifying position P may not occur at time T if the last action modify-
ing P was forward type raising (posLastAffected is an auxiliary predicate that helps to identify the last
action modifying an element of the ASR). This corresponds to one of the normalization rules discussed
in [12] and reviewed in the following subsection.

We pose additional restrictions, which ensure that only a single plan is produced when multiple serial-
izable plans correspond to the same parse tree.

Finally, we devised punctuation specific combinators which have been described in [8, Appendix A]
and are based on Sections 02-21 of CCGbank.

Given ccg. asp and the set of facts describing the initial state (ASR representation of a sentence) and
the goal state (ASR containing a single category .5), answer sets of the resulting program encode plans
corresponding to parse trees. The ground atoms of the form occurs(a, p, t) and occurs(a, p, ¢, t) present in
an answer set form the list of actions of a matching plan.

3.3 Normalizations

Currently, ccg. asp implements a number of normalization techniques and strategies for improving effi-
ciency and eliminating spurious parses:

e One of the techniques used in C&C to improve its efficiency is to limit type raising to certain categories
based on the most commonly used type raising rule instantiations in Sections 2-21 of CCGbank [6]. We
adopt this idea by limiting type raising to be applicable only to noun phrases, NP, so that NP can be raised
using categories S, S\NP, or (S\NP)/NP. This technique reduces the size of the ground program for
ccg.asp and subsequently the performance of ccg. asp considerably. We plan to extend limiting type
raising to the full set of categories used in C&C that proved to be suitable for wide-coverage parsing.

e We normalize branching direction of subsequent functional composition operations [12]. This is realized
by disallowing functional forward composition to apply to a category on the left side that has been created
by functional forward composition. (And similar for backward composition.)

e We disallow some combinations of rule applications if the same result can be achieved by other rule
applications as shown in the following

X)YY/Z Z ¢ XY Y/ZZ X Y\X g X Y\X
>B s —_—> >T E <
X/Z : Y Y/(Y\X) - Y
X = X Yy >

where the left-hand side is the spurious parse and the right-hand side the normalized parse. These two nor-
malizations (plus analogous normalizations for backward composition and backward type raising) elimi-
nate spurious parses like (5) and have been discussed in [3, 12].

4 ASPCCG Toolkit

We have implemented ASPCCGTK— a python!® framework for using ccg . asp. The framework is avail-
able online!!, including documentation and examples.

Figure 1 shows a block diagram of ASPCCGTK. We use GRINGO and CLASP for ASP solving and
control these solvers from python using a modified version of the BioASP library [14]. BioASP is used for
calling ASP solvers as subtasks, parsing answer sets, and writing these answer sets to temporary files as
facts.

Input for parsing can be

— anatural language sentence given as a string, or
— a sequence of words and a dictionary providing possible categories for each word, both given as ASP
facts.

In the first case, the framework uses C&C supertagger'? [7] to tokenize and tag this sentence. The result
of supertagging is a sequence of words of the sentence, where each word is assigned a set of likely CCG
categories. From the C&C supertagger output, ASPCCGTK creates a set of ASP facts representing the
sequence of words and a corresponding set of likely CCG categories. This set of facts is passed to ccg . asp
as the initial state. In the second case the input can be processed directly by ccg. asp. The maximum
parse tree depth (i.e., the maximum plan length — maxsteps) currently has to be specified by the user. Auto
detection of useful depth values is subject of future work.

ASPCCGTK first attempts to find a “strict” parse which requires that the resulting parse tree yields a
category S (by mazsteps). If this is impossible, we do “best-effort” parsing using CLASP optimization
features to minimize the number of categories left by the time maxsteps. For instance, consider a lexicon
that provides a single category for “bit”, namely (S\NP)/NP, then the following derivation

The dog bit (10)
NP/N N (S\NP)/NP
NP g
>T
S/(S\NP) .
S/NP

corresponds to a best-effort parse.
Answer sets resulting from ccg. asp represent parse trees. ASPCCGTK passes them to a visualiza-
tion component, which invokes GRINGO+CLASP on another ASP encoding ccg2idpdraw.asp.!® The

" http://www.python.org/

"http://www.kr.tuwien.ac.at/staff/ps/aspccgtk/

2 nttp://svn.ask.it.usyd.edu.au/trac/candc

13 This visualization component could be put directly into ccg . asp. However, for performance reasons it has proved
crucial to separate the parsing calculation from the drawing calculations.

resulting answer sets of ccg2idpdraw.asp contain drawing instructions for the IDPDraw tool [33],
which is used to produce a two-dimensional image for each parse tree. Figure 2 demonstrates an image
generated by IDPDraw for parse tree (4) of sentence (1). If multiple parse trees exist, IDPDraw allows to
switch between them.

! ASPCCGTK

1
/ Sentence (string) /—H C&C supertagger‘
OR

Sequence of words + category tags for each word

GRINGO + CLASP

Parser answer sets

Sequence of words

+
Dictionary

— GRINGO + CLASP -
+ IDPDraw <—/ ccg21dpdraw.asp/

Fig. 1. Block diagram of the ASPCCG framework. (Arrows indicate data flow.)

"the" "dog" "bit" "John"
"NP/N" "N" "(S\NP)/NP" "NP"
fa fa
| "NP" | ["S\NP" [
ba
l "S" I

Fig. 2. Visualization of parse tree (4) for sentence (1) using IDPDraw.

5 Experimental Evaluation

We evaluated the efficiency of ccg.asp on Section 00 of CCGbank [20] (about 2000 sentences). CCG-
bank contains a gold-standard parse tree for each sentence where words are annotated by unique categories.
We extracted these categories and used them as input for ccg. asp. This method for evaluating parsing
performance is used in [8, 9] as well. Figure 3 presents the experimental results that summarize the ef-
ficiency of ccg.asp. The experiments were run on Xeon X5355 @ 2.66GHz. The runtimes presented
account for solving time of CLASP v 2.0.2 on ccg.asp. The timeout was set to 1200 seconds. Further-
more, in the experiments we only considered the task of finding a single parse tree. We present the results
by splitting the sentences from Section 00 of CCGbank into 8 groups depending on the number of words
occurring in them (any punctuation symbol is also treated as a word). The second line in Figure 3 speci-
fies how many sentences each of the groups contains. The third line presents average number of words in
the sentences of the corresponding group. The fourth line accounts for average maxsteps parameter of a
plan to be searched for. We used the height of gold-standard parse tree from CCGbank as maxsteps for a
corresponding instance. The last four lines present average runtime and number of timeouts for two con-
figurations of CLASP that we denote CLASP? and CLASP?. The configuration CLASP? is the default call to
the system, whereas CLASP! stands for a commandline

clasp --sat-p=-1,-1,120,-1,0 —--backprop=1 --eg=1 --trans—-ext=dynamic \

—-—seed=-1 —--save-progress=0 —--local-restarts=1 —--initial-lookahead=-1 \
—--strengthen=yes —--del=1.5,1.1,3.0 —-loops=no —--reduce-on-restart=0 \
—--otfs=0 --rand-watches=0 --heuristic=Vsids --contraction=120 \

—--restarts=100,1.5,10000 —--reverse-arcs=0 —--rand-freqg=0.02 \
—-—recursive-str=1

The automatic algorithm configuration tool PARAMILS'* [21] (version 2.3.5) was used to inspect numerous
parameter settings of CLASP resulting in configuration CLASP? attuned to instances in our domain. The
portfolio toolkit BORG'> was used to evaluate the CLASP' configuration together with 25 configurations of
CLASP used in portfolio answer set solver CLASPFOLIO v 1.0.1 ' in order to select the best performing one.
CLASP! proved to be the best configuration. The details on the described evaluation are presented in [28].

Groups: Number of Words 1-10 11-15 16-20 21-25 26-30 31-35 36-40 41+
Number of Sentences 191 282 342 319 278 217 114 118
Average Number of Words 73 132 181 229 279 33.0 37.8 47.3
Average Maxsteps 6.6 100 11.6 13.7 15.2 16.2 17.8 19.3
cLAsP? Average Time 0.13 278 2441 13487 364.74 529.82 609.14 655.86

Number of Timeouts 0 0 0 4 58 123 99 111
CLASP" Average Time 0.09 095 561 2836 97.58 228.36 457.78 560.18

Number of Timeouts 0 0 0 0 1 8 28 73

Fig. 3. Experimental results on CLASP using ccg. asp on Section 00 of CCGbank.

These experiments demonstrate that for sentences of length 20 and less, the presented approach to CCG
parsing is viable.

6 Discussion and Future Work

To increase parsing efficiency of ASPCCGTK we consider to reformulate the CCG parsing problem as a
“configuration” problem. This might improve performance. At the same time the framework would keep
its beneficial declarative nature. Investigating applicability of incremental ASP [15] to enhance system’s
performance is another direction of future research. Furthermore, deciding whether a sentence is in the
language of a given CCG grammar can be done in polynomial time [30] (if there is unique category for
each word in the sentence). In [30] the authors described a recognition algorithm for CCG grammar based
on the Cocke-Younger-Kasami (CYK) chart parsing algorithm for Context Free grammars. In the future,
we would like to mimic the algorithm in [30] by means of ASP so that the task of enumerating CCG
parse trees would rely on its result. We expect substantial performance gains by adopting this approach.
Both OPENCCG and C&C rely on variants of CYK algorithm. Also Drescher and Walsh [11] described
ASP-based formulation of CYK algorithm for Context Free grammar. Extending the recognition algorithm
in [30] to multiple categories makes the problem computable in nondeterministic polynomial time.

It might seem tempting to realize the planning task described in this work in a planning language
such as PDDL [25] and use specialized planning tools to compute all parse trees. However CCG parsing
requires objects with inner structure, i.e., nested forward and backward slashes in fluent constants, that is
cumbersome to encode in planning languages. Furthermore, it is unclear how executability conditions on
actions enforcing normalizations maybe stated using standard planing languages.

Yhttp://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
Bhttp://nn.cs.utexas.edu/pages/research/borg/ .
Y nttp://potassco.sourceforge.net/ .

Preliminary experiments on using the C&C supertagger as a front-end of ASPCCGTK yielded promis-
ing results for achieving wide-coverage parsing. The supertagger of C&C not only provides a set of likely
category assignments for the words in a given sentence but also includes probability values for assigned
categories. C&C uses a dynamic tagging strategy for parsing. First only very likely categories from the
tagger are used for parsing. If this yields no result then less likely categories are also taken into account. In
the future, we will implement a similar approach in ASPCCGTK.

Creating semantic representations for sentences is an important task in natural language processing.
Boxer [4] is a tool which accomplishes this task, given a CCG parse tree from C&C. To take advantage of
this advanced computational semantics tool, we aim at creating an output format for ASPCCGTK that is
compatible with Boxer.

As our framework is a generic parsing framework, we can easily compare different CCG rule sets
with respect to their efficiency and normalization behavior. We also suspect that improving scalability of
ccg. asp is possible using an alternative combinatory rule set in place of the one currently implemented
in ccg.asp. Type raising is a core source of nondeterminism in CCG parsing and is one of the reasons
for spurious parse trees and long parsing times. In the future we would like to evaluate an approach that
partially eliminates type raising by pushing it into all non-type-raising combinators. A similar strategy has
been proposed for composition combinators by Wittenburg [32].!7 Combining CCG rules this way creates
more combinators, however these rules contain fewer nondeterministic guesses about raising categories.
The reduced nondeterminism should improve solving efficiency without losing any CCG derivations.
Acknowledgments. We would like to thank John Beavers and Vladimir Lifschitz for valuable detailed
comments on the workshop paper that presented the preliminary results on this work [22]. We are especially
grateful to Bryan Silverthorn for sharing with us the experimental results presented in Figure 3. We are
indebted to Jason Baldridge, Marcello Balduccini, Johan Bos, Esra Erdem, Michael Fink, Michael Gelfond,
Joohyung Lee, and Miroslaw Truszczynski for useful discussions and comments related to the topic of this
work. Yuliya Lierler was supported by a CRA/NSF 2010 Computing Innovation Fellowship. Peter Schiiller
was supported by the Vienna Science and Technology Fund (WWTF) project ICT08-020.

References

1. Beavers, J.: Documentation: A CCG implementation for the LKB. Tech. rep., Stanford University, Center for the
Study of Language and Information (2003)

2. Beavers, J., Sag, I.: Coordinate ellipsis and apparent non-constituent coordination. In: International Conference on
Head-Driven Phrase Structure Grammar (HPSG’04). pp. 48-69 (2004)

3. Beavers, J.: Type-inheritance combinatory categorial grammar. In: International Conference on Computational
Linguistics (COLING’04) (2004)

4. Bos, J.: Wide-coverage semantic analysis with boxer. In: Bos, J., Delmonte, R. (eds.) Semantics in Text Processing.
STEP 2008 Conference Proceedings. pp. 277-286. Research in Computational Semantics, College Publications
(2008)

5. Cimatti, A., Pistore, M., Traverso, P.: Automated planning. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.)
Handbook of Knowledge Representation. Elsevier (2008)

6. Clark, S., Curran, J.R.: Log-linear models for wide-coverage CCG parsing. In: SIGDAT Conference on Empirical
Methods in Natural Language Processing (EMNLP-03) (2003)

7. Clark, S., Curran, J.R.: Parsing the WSJ using CCG and log-linear models. In: Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics (ACL’04). pp. 104—111. Barcelona, Spain (2004)

8. Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with CCG and log-linear models. Computational
Linguistics 33(4), 493-552 (2007)

9. Djordjevic, B., Curran, J.R.: Efficient combinatory categorial grammar parsing. In: Proceedings of the 2006 Aus-
tralasian Language Technology Workshop (ALTW). pp. 3-10 (2006)

10. Dowty, D.: Type raising, functional composition, and non-constituent conjunction. In: Oehrle, R.T., Bach, E.,
Wheeler, D. (eds.) Categorial grammars and natural language structures, vol. 32, pp. 153-197. Dordrecht, Reidel
(1988)

17 Wittenburg introduced a new set of combinatory rules by combining the functional composition combinators with
other combinators. By omitting the original functional composition combinators, certain spurious parse trees can no
longer be derived.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

Drescher, C., Walsh, T.: Modelling grammar constraints with answer set programming. In: Gallagher, J.P., Gelfond,
M. (eds.) Technical Communications of the 27th International Conference on Logic Programming, ICLP 2011.
vol. 11, pp. 28-39 (2011)

Eisner, J.: Efficient normal-form parsing for combinatory categorial grammar. In: Proceedings of the 34th annual
meeting on Association for Computational Linguistics (ACL’96). pp. 79-86 (1996)

Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to knowledge-state plan-
ning: Semantics and complexity. ACM Trans. Comput. Logic 5, 206-263 (April 2004)

Gebser, M., Konig, A., Schaub, T., Thiele, S., Veber, P.: The BioASP library: ASP solutions for systems biology.
In: 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI’10). vol. 1, pp. 383-389
(2010)

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an incremental asp
solver. In: Proceedings of International Logic Programming Conference and Symposium (ICLP’08) (2008)
Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp,
clingo, and iclingo. (2010), http://sourceforge.net/projects/potassco/files/potassco_
guide/2010-10-0%4/guide.pdf

Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Proceedings of 20th
International Joint Conference on Artificial Intelligence (IICAI’07). pp. 386-392. MIT Press (2007)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.)
Proceedings of International Logic Programming Conference and Symposium (ICLP’88). pp. 1070-1080. MIT
Press (1988)

Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Com-
puting 9, 365-385 (1991)

Hockenmaier, J., Steedman, M.: CCGbank: A corpus of CCG derivations and dependency structures extracted
from the Penn Treebank. Comput. Linguist. 33, 355-396 (2007)

Hutter, F., Hoos, H., Leyton-Brown, K., Stiitzle, T.: ParamILS: An automatic algorithm configuration framework.
Journal of Artificial Intelligence Research 36, 267-306 (2009)

Lierler, Y., Schiiller, P.: Parsing combinatory categorial grammar with answer set programming: Preliminary re-
port. In: Workshop on Logic programming (WLP) (2011)

Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138, 39-54 (2002)

Marek, V., Truszczynski, M.: Stable models and an alternative logic programming paradigm. In: The Logic Pro-
gramming Paradigm: a 25-Year Perspective, pp. 375-398. Springer Verlag (1999)

McDermott, D., et al.: PDDL — the Planning Domain Definition Language. Tech. rep., Yale Center for Computa-
tional Vision and Control (1998), CVC TR-98-003/DCS TR-1165

Niemeld, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Math-
ematics and Artificial Intelligence 25, 241-273 (1999)

Partee, B., Rooth, M.: Generalized conjunction and type ambiguity. In: Baeuerle, R., Schwarze, C., von Stechov,
A. (eds.) Meaning, Use, and Interpretation. pp. 361-383 (1983)

Silverthorn, B., Lierler, Y., , Schneider, M.: Surviving solver sensitivity: An asp practitioner’s guide (2012), under
review

Steedman, M.: The syntactic process. MIT Press, London (2000)

Vijay-Shanker, K., Weir, D.J.: Polynomial time parsing of combinatory categorial grammars. In: Proceedings of
the 28th annual meeting on Association for Computational Linguistics. pp. 1-8. ACL "90 (1990)

White, M., Baldridge, J.: Adapting chart realization to CCG. In: European Workshop on Natural Language Gen-
eration (EWNLG’03) (2003)

Wittenburg, K.: Predictive combinators: a method for efficient processing of combinatory categorial grammars. In:
25th Annual Meeting of the Association for Computational Linguistics (ACL’87). pp. 73-80 (1987)

Wittocx, J.: IDPDraw (2009), Katholieke Universiteit Leuven, http://dtai.cs.kuleuven.be/krr/
software/download

