
On the Relation of Constraint Answer Set Programming Languages and
Algorithms
Yuliya Lierler

Department of Computer Secience
The University of Kentucky

329 Rose Street
Lexington, KY 40506

yuliya@cs.uky.edu

Abstract

Recently a logic programming language AC was proposed
by Mellarkod et al. (2008) to integrate answer set program-
ming (ASP) and constraint logic programming. Similarly,
Gebser et al. (2009) proposed a CLINGCON language inte-
grating ASP and finite domain constraints. These languages
allow new efficient inference algorithms that combine tradi-
tional ASP procedures and other methods in constraint pro-
gramming. In this paper we show that a transition system in-
troduced by Nieuwenhuis et al. (2006) to model SAT solvers
can be extended to model the “hybrid” ACSOLVER algorithm
by Mellarkod et al. developed for simple AC programs and
the CLINGCON algorithm by Gebser et al. for clingcon pro-
grams. We define weakly-simple programs and show how the
introduced transition systems generalize the ACSOLVER and
CLINGCON algorithms to such programs. Finally, we state the
precise relation between AC and CLINGCON languages and
the ACSOLVER and CLINGCON algorithms.

Introduction
Mellarkod et al. (2008) introduced a knowledge represen-
tation language AC extending the syntax and semantics of
answer set programming with constraint processing fea-
tures. The origins of their work go back to (Baselice,
Bonatti, and Gelfond 2005). In a similar vein, Gebser et
al. (2009) proposed a CLINGCON language integrating ASP
and finite domain constraints. The AC and CLINGCON lan-
guages allow not only new modeling features but also novel
computational methods that combine traditional ASP algo-
rithms with constraint (logic) programming (CLP/CSP) al-
gorithms. This combined approach opens new horizons for
declarative programming applications. For instance, it al-
lows us to reason about problems with variables whose val-
ues range over very large domains such as dynamic sys-
tems in real time. Mellarkod et al. presented a “hybrid”
ACSOLVER system for finding answer sets of AC programs
that combines both ASP and CLP computational tools. The
key feature of this system is that it processes a “regular”
part of a given program using the ASP algorithm SMOD-
ELS (Niemelä and Simons 2000) and a “defined” part us-
ing CLP tools. Similarly, system CLINGCON (Gebser, Os-
trowski, and Schaub 2009) takes advantage of answer set

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

solver CLASP (Gebser et al. 2007) and constraint solver
GECODE (http://www.gecode.org). It is intuitively
clear that the AC and CLINGCON languages are related as
well as the systems ACSOLVER and CLINGCON. This paper
puts these relationships in precise mathematical terms.

We show that transition systems (graphs) introduced by
Nieuwenhuis et al. (2006) to model and analyze SAT solvers
can be adapted to describe constraint answer set solvers AC-
SOLVER and CLINGCON. By introducing such new transition
systems we provide an alternative description of ACSOLVER
and CLINGCON and also an alternative proof of their cor-
rectness. This abstract view on the systems allows us to state
the relation between them in precise terms by studying the
underlying graph representations. The ACSOLVER algorithm
was proved to be correct for a class of “simple” programs.
We define a more general class of weakly-simple programs
and demonstrate how newly introduced transition systems
immediately capture a class of algorithms for such programs
and demonstrate their correctness.

This work clarifies and extends state of the art develop-
ments in the area of constraint answer set programming and
we believe will promote further progress in the area.

We start by reviewing AC logic programs and a notion of
an answer set for such programs. We introduce a new class
of weakly-simple programs. We then review a transition sys-
tem introduced by Lierler (2008) to model SMODELS. We
extend this transition system to model the ACSOLVER algo-
rithm and show how the newly defined graph can charac-
terize the computation behind the system ACSOLVER. In the
subsequent section we introduce the CLINGCON language
and formally state its relation to the AC language. At last
we define a graph suitable for modeling the system CLING-
CON and state a formal result on the relation between the
ACSOLVER and CLINGCON algorithms.

A preliminary report on some of the results of this paper
has been presented at Workshop on Answer Set Program-
ming and Other Computing Paradigms (Lierler and Zhang
2011).

Review: AC Logic Programs
A sort (type) is a non-empty countable collection of strings
over some fixed alphabet. A signature Σ is a collection of
sorts, properly typed predicate symbols, constants, and vari-
ables. Sorts of Σ are divided into regular and constraint



sorts. All variables in Σ are of a constraint sort. A term
of Σ is either a constant or a variable. An atom is of the
form p(t1, . . . , tn) where p is an n-ary predicate symbol,
and t1, ..., tn are terms of the proper sorts. A constraint sort
is often a large numerical set with primitive constraint rela-
tions. The partitioning of sorts induces a partition of predi-
cates of the AC language:
• Regular predicates denote relations among constants of

regular sorts;
• Constraint predicates denote primitive constraint relations

on constraint sorts;
• Defined predicates denote relations between constants

that belong to regular sort and objects that belong to con-
straint sorts; such predicates can be defined in terms of
constraint, regular, and defined predicates;

• Mixed predicates denote relations between constants that
belong to regular sort and objects that belong to constraint
sorts. Mixed predicates are not defined by the rules of
a program and are similar to abducible relations of ab-
ductive logic programming (Kakas, Kowalski, and Toni
1992).
An atom formed by a regular predicate is called regular.

Similarly for constraint, defined, and mixed atoms. We say
that an atom is a non-mixed atom if it is regular, constraint,
or defined.

A regular program is a finite set of rules of the form

a0 ← a1, . . . , al, not al+1, . . . , not am,
not not am+1, . . . , not not an,

(1)

where a0 is⊥ or a ground (non-constraint) atom, and each ai
(1 ≤ i ≤ n) is a ground (non-constraint) atom. If a0 = ⊥,
we often omit ⊥ from the notation. This is a special case
of programs with nested expressions (Lifschitz, Tang, and
Turner 1999). We assume that the reader is familiar with
the definition of an answer set of a logic program and re-
fer to the paper by Lifschitz et al. (1999) for details. A
choice rule construct {a} (Niemelä and Simons 2000) of the
LPARSE1 language can be seen as an abbreviation for a rule
a← not not a (Ferraris and Lifschitz 2005). We adopt this
abbreviation in the rest of the paper.

An (AC) logic program is a finite set of rules of the
form (1) where
• a0 is ⊥ or a regular or defined atom,
• each ai, 1 ≤ i ≤ l, is an arbitrary atom if a0 is ⊥ or a

regular atom,
• each ai, 1 ≤ i ≤ l, is a non-mixed atom if a0 is a defined

atom,
• each ai, l + 1 ≤ i ≤ m, is a non-mixed atom,
• each ai, m+ 1 ≤ i ≤ n, is a regular atom,
• n = m, if a0 is a defined atom.
Rule (1) is called a defined rule if ao is a defined atom. It is
easy to see that defined rules of a program neither contain
mixed atoms in its body nor contain doubly negated atoms

1http://www.tcs.hut.fi/Software/smodels/ .

(not not a). We assume that any mixed atom occurring in
AC program is of the restricted form m(~r, V ), where ~r is a
sequence of regular constants and V is a variable.

A part of the AC program Π that consists of defined rules
is called a defined part denoted by ΠD. By ΠR we denote a
non-defined part of Π, i.e., Π \ ΠD. For instance, let signa-
ture Σ1 contain two regular sorts step = {0}, action = {a}
and two constraint sorts time = {0..200}, computer =
{1..2}; a mixed predicate at(step, time), two regular pred-
icates occurs(action, step), on, and two defined predicates
okT ime(time) and okComp(computer, time). A sample
AC program over Σ1 follows
okComp(1, T )← T ≤ 5, on
okComp(2, 106)← on
okT ime(T )← T ≤ 10, okComp(1, T )
okT ime(T )← T ≥ 100, okComp(2, T )
← occurs(a, 0), at(0, T ), T 6= 1, not okT ime(T )
occurs(a, 0)←
{on}

(2)

The first four rules of the program form its defined part
whereas the last three rules form ΠR.

Mellarkod et al. (Mellarkod, Gelfond, and Zhang 2008)
considered programs of more sophisticated syntax than dis-
cussed here. For instance, in (Mellarkod, Gelfond, and
Zhang 2008) classical negation may precede atoms in rules.
Also signature Σ may contain variables of regular sort. Nev-
ertheless, the AC language discussed here is sufficient to
capture the class of programs covered by the ACSOLVER al-
gorithm.

The expression a0 is the head of a rule (1). If B de-
notes the body of (1), the right hand side of the arrow,
we write Bpos for the elements occurring in the positive
part of the body, i.e., Bpos = {a1, . . . , al} and Bneg for
the elements occurring under single negation as failure, i.e.,
Bneg = {al+1, . . . , am}. We frequently identify the body
of (1) with the conjunction of its elements (in which not is
replaced with the classical negation connective ¬):
a1 ∧ · · · ∧al ∧¬al+1 ∧ · · · ∧¬am ∧¬¬am+1 ∧ · · · ∧¬¬an.
Similarly, we often interpret a rule (1) as a clause
a0∨¬a1∨· · ·∨¬al∨al+1∨· · ·∨am∨¬am+1∨· · ·∨¬an (3)

(in the case when a0 = ⊥ in (1) a0 is absent in (3)). Given
a program Π, we write Πcl for the set of clauses (3) corre-
sponding to all rules in Π.

For an AC program Π over signature Σ, by the set
ground(Π) we denote the set of all ground instances of
all rules in Π. The set ground∗(Π) is obtained from
ground(Π) by
• dropping the rules where a constraint atom a occurs in
Bpos (Bneg) and a is false (true, respectively) under the
intended interpretation of its symbols,

• dropping all constraint literals from the remaining rules
(here we use the term literal to refer to a and not a.)

It is easy to see that ground∗(Π) is a regular program.
For instance, let ground(Π) consist of two rules

okT ime(100)← 100 > 100, okComp(2, 100)
okT ime(101)← 101 > 100, okComp(2, 101)



then ground∗(Π) is

okT ime(101)← okComp(2, 101).

We say that a sequence of (regular) constants ~r is spec-
ified by a mixed predicate m if ~r follows the sorts of the
regular arguments of m. For instance, for program (2) a se-
quence 0 of constants (of type step) is the only sequence
specified by mixed predicate at. For a set X of atoms, we
say that a sequence ~r of regular constants is bound in X by
a (constraint) constant c w.r.t. predicatem if there is an atom
m(~r, c) in X . A set M of ground mixed atoms is functional
over the underlying signature if for every mixed predicate
m, every sequence of regular constants specified by m is
bound in M by a unique constraint constant w.r.t. m. For in-
stance, for the signature of program (2) sets {at(0, 1)} and
{at(0, 2)} are functional whereas {at(0, 1) at(0, 2)} is not
a functional set because 0 is bound in M by two different
constants 1 and 2 w.r.t. at.
Definition 1 For an AC program Π, a set X of atoms is
called an answer set of Π if there is a functional set M of
ground mixed atoms of Σ such that X is an answer set of
ground∗(Π) ∪M .

For example, sets of atoms

{at(0, 1), occurs(a, 0)} (4)

and
{on, at(0, 0), occurs(a, 0),
okComp(1, 0), . . . , okComp(1, 5), okComp(2, 106),
okT ime(0), . . . , okT ime(5), okT ime(106)}

are answer sets of (2).
The definition of an answer set for AC programs presented

here is different from the original definition in (Mellarkod,
Gelfond, and Zhang 2008), but there is a close relation be-
tween them.
Proposition 1 For an AC program Π over signature Σ such
that Π contains no doubly negated atoms and the set S of all
true ground constraint literals over Σ, X is an answer set
of Π if and only if X ∪ S is an answer set (in the sense of
(Mellarkod, Gelfond, and Zhang 2008)) of Π.

Weakly-Simple AC Programs
The correctness of the ACSOLVER algorithm was shown for
simple AC programs. We start this section by reviewing sim-
ple programs. We then define a more general class of pro-
grams called weakly-simple. In the next section we state
correctness results for ACSOLVER-like algorithms for such
programs.

We say that an AC program Π is safe (Mellarkod, Gelfond,
and Zhang 2008) if every variable occurring in a non defined
rule in Π also occurs in a mixed atom of this rule. An AC
program Π is super safe if Π is safe and

1. if a mixed atom m(~c,X) occurs in Π then a mixed atom
m(~c,X ′) does not occur in Π (where X and X ′ are dis-
tinct variable names),

2. if a mixed atomm(~c,X) occurs in Π then neither a mixed
atom m′(~c ′, X) such that ~c 6= ~c ′ nor a mixed atom
m′(~c,X) such that m 6= m′ occurs in Π.

We note that any safe AC program Π may be converted
to a super safe program so that the resulting program has
the same answer sets by a simple syntactic transformation.
Lierler and Zhang (2011, Section 7) provide such a transfor-
mation. We say that an AC program Π is simple if it is super
safe, and its defined part contains no regular atoms and has
a unique answer set.

For any atom p(~t), by p(~t)0 we denote its predicate sym-
bol p. For any AC program Π, the predicate dependency
graph of Π is the directed graph that (i)
• has all predicates occurring in Π as its vertices, and
• for each rule (1) in Π has an edge from a0

0 to a0
i where

1 ≤ i ≤ l.
We say that an AC program Π is weakly-simple if

• it is super safe,
• all regular atoms occurring in ΠD also occur in ΠR, and
• each strongly connected component of the predicate de-

pendency graph of Π is a subset of either regular predi-
cates of Π or defined predicates of Π.

It is easy to see that any simple program is also a weakly-
simple program but not the other way around. For example,
program (2) is weakly-simple but not simple.

Review: Abstract Smodels
Most state-of-the-art answer set solvers are based on al-
gorithms closely related to the DPLL procedure (Davis,
Logemann, and Loveland 1962). Nieuwenhuis et al. de-
scribed DPLL by means of a transition system that can be
viewed as an abstract framework underlying DPLL com-
putation (Nieuwenhuis, Oliveras, and Tinelli 2006). Lier-
ler (2008) proposed a similar framework, SMΠ, for specify-
ing an answer set solver SMODELS. Our goal is to design a
similar framework for describing an algorithm behind AC-
SOLVER. As a step in this direction we review the graph
SMΠ that underlines an algorithm of SMODELS, one of the
main building blocks of ACSOLVER. The presentation fol-
lows (Lierler 2008).

For a set σ of atoms, a record relative to σ is an ordered
set M of literals over σ, some possibly annotated by ∆,
which marks them as decision literals. A state relative to σ
is a record relative to σ possibly preceding symbol ⊥. For
instance, some states relative to a singleton set {a} of atoms
are

∅, a, ¬a, a∆, a ¬a, ⊥, a⊥, ¬a⊥, a∆⊥, a ¬a⊥.
We say that a state is inconsistent if either ⊥ or two com-

plementary literals occur in it. For example, states a ¬a and
a⊥ are inconsistent. Frequently, we consider a state M as a
set of literals possibly with the symbol ⊥, ignoring both the
annotations and the order between its elements. If neither a
literal l nor its complement occur in M , then l is unassigned
by M . For a set M of literals, by M+ and M− we denote
the set of positive and negative literals in M respectively.
For instance, {a,¬b}+ = {a} and {a,¬b}− = {b}.

If C is a disjunction (conjunction) of literals then by C
we understand the conjunction (disjunction) of the comple-
ments of the literals occurring in C. In some situations, we



will identify disjunctions and conjunctions of literals with
the sets of these literals. We assume that the reader is famil-
iar with the definition of unfounded for the class of regular
programs (Lee 2005).

By Bodies(Π, a) we denote the set of the bodies of
all rules of a regular program Π with the head a. We
recall that a set U of atoms occurring in a regular pro-
gram Π is unfounded (Van Gelder, Ross, and Schlipf 1991;
Lee 2005) on a consistent set M of literals with respect to Π
if for every a ∈ U and every B ∈ Bodies(Π, a), M |= B
(where B is identified with the conjunction of its elements),
or U ∩Bpos 6= ∅.

Each regular program Π determines its Smodels graph
SMΠ. The set of nodes of SMΠ consists of the states rela-
tive to the set of atoms occurring in Π. The edges of the
graph SMΠ are specified by the transition rules

Unit Propagate:
M =⇒ M l if C ∨ l ∈ Πcl and C ⊆M
Decide:
M =⇒ M l∆ if l is unassigned by M
Fail:

M =⇒ ⊥ if
{
M is inconsistent and different from ⊥,
M contains no decision literals

Backtrack:

P l∆ Q =⇒ P l if
{
P l∆ Q is inconsistent, and
Q contains no decision literals

Unfounded:
M =⇒M ¬a if a ∈ U for a set U unfounded on M wrt Π

and the transition rules All Rules Cancelled and Backchain
True whose details we omit in this review. A node is terminal
in a graph if no edge leaves this node.

The graph SMΠ can be used for deciding whether a reg-
ular program Π has an answer set by constructing a path
from ∅ to a terminal node. Following proposition serves as a
proof of correctness and termination for any procedure that
is captured by the graph SMΠ.

Proposition 2 For any regular program Π,

(a) graph SMΠ is finite and acyclic,
(b) for any terminal state M of SMΠ other than ⊥, M+ is an

answer set of Π,
(c) state ⊥ is reachable from ∅ in SMΠ if and only if Π has

no answer sets.

Abstract ACSOLVER
In order to present the transition system suitable for captur-
ing ACSOLVER we introduce several concepts.
Query, Extensions, and Consequences: Given an AC pro-
gram Π and a set p of predicate symbols, a set X of atoms
is a p-input answer set (or an input answer set w.r.t. p) of Π
if X is an answer set of Π ∪ Xp where by Xp we denote
the set of atoms in X whose predicate symbols are different
from the ones occurring in p. 2 For instance, let X be a set

2Intuitively set p denotes a set of intensional predicates (Fer-
raris et al. 2009). The concept of p-input answer sets is closely
related to “p-stable models” in (Ferraris, Lee, and Lifschitz 2011).

{a(1), b(1)} of atoms and let p be a set {a} of predicates,
then Xp is {b(1)}. The set X is a p-input answer set of a
program a(1) ← b(1). On the other hand, it is not an input
answer set for the same program with respect to a set {a, b}.

For a set S of literals, by SR, SD, and SC we denote the
set of regular, defined, and constraint literals occurring in S
respectively. By SR,D and SD,C we denote the unions SR ∪
SD and SD ∪ SC respectively. By At(Π) we denote the set
of atoms occurring in a program Π.

For an AC program Π, a (complete) query Q is a (com-
plete) consistent set of literals overAt(ΠD)R∪At(ΠR)D,C .
For a queryQ of Π, a complete queryE is a satisfying exten-
sion of Q w.r.t. Π if Q ⊆ E and there is a (sort respecting)
substitution γ of variables in E by ground terms so that the
result of this substitution, Eγ, satisfies the conditions

1. if a constraint literal l ∈ Eγ then l is true under the in-
tended interpretation of its symbols, and

2. there is an input answer set A of ΠD w.r.t. defined predi-
cates of Π such that Eγ+

R,D ⊆ A and Eγ−R,D ∩A = ∅.
We say that literal l is a consequence of Π and Q if for

every satisfying extension E of Q w.r.t. Π, l ∈ E. By
Cons(Π, Q), we denote the set of all consequences of Π
and Q. If there are no satisfying extensions of Q w.r.t. Π we
identify Cons(Π, Q) with the singleton {⊥}.

Let Π be (2) and Q be {okT ime(T ), T 6= 1}. A set

{on, okT ime(T ), T 6= 1}
forms a satisfying extension of Q w.r.t. Π. Indeed, consider
a substitution {T/106}. This is the only satisfying exten-
sion of Q w.r.t. Π. Consequently, it forms Cons(Π, Q).
On the other hand, there are no satisfying extensions for
a query {¬on, okT ime(T )} so that {⊥} corresponds to
Cons(Π, Q).
The graph ACΠ: For each constraint and defined atom A
of signature Σ, select a new symbol Aξ, called the name
of A. By Σξ we denote the signature obtained from Σ by
adding all names Aξ as additional regular predicate symbols
(so that Aξ itself is a regular atom).

For an AC program Π, by Πξ we denote a set of rules
consisting of (i) choice rules {aξ} for each constraint and
defined atom a occurring in ΠR, and (ii) ΠR whose mixed
atoms are dropped, and constraint and defined atoms are re-
placed by their names. Note that Πξ is a regular program.

For instance, let Π be (2) then Πξ consists of the rules

{T 6= 1ξ} {okT ime(T )ξ}
← occurs(a, 0), T 6= 1ξ, not okT ime(T )ξ
occurs(a, 0)←
{on}

(5)

For a set M of atoms over Σξ, by Mξ− we denote a
set of atoms over Σ by replacing each name Aξ occurring
in M with a corresponding atom A. For instance, {T 6=
1ξ, okT ime(T )ξ}ξ− is {T 6= 1, okT ime(T )}.

Let Π be an AC logic program. The nodes of the graph
ACΠ are the states relative to the set of atoms occurring
in Πξ.

For a stateM of ACΠ, by query(M) we denote the largest
subset of Mξ− over At(ΠD)R ∪ At(ΠR)D,C . Let Π be (2)



and M be a state occurs(a, 0) ¬on∆ okT ime(T )ξ∆ then
query(M) is {¬on, okT ime(T )}.

The edges of the graph ACΠ are described by the transi-
tion rules of SMΠξ and the additional transition rule

Query Propagate:
M =⇒ M lξ if l ∈ Cons(Π, query(M)),

where we abuse notation and identify ⊥ξ with ⊥ itself.
The graph ACΠ can be used for deciding whether a

weakly-simple AC program Π has an answer set by con-
structing a path from ∅ to a terminal node:

Proposition 3 For any weakly-simple AC program Π,

(a) graph ACΠ is finite and acyclic,
(b) for any terminal state M of ACΠ other than ⊥, (Mξ−)+

R
is a set of all regular atoms in some answer set of Π,

(c) state ⊥ is reachable from ∅ in ACΠ if and only if Π has
no answer sets.

Proposition 3 shows that algorithms that find a path in the
graph ACΠ from ∅ to a terminal node can be regarded as AC
solvers for weakly-simple programs.

Let Π be an AC program (2). Here is a path in ACΠ with
every edge annotated by the name of a transition rule that
justifies the presence of this edge in the graph:

∅ Unit Propagate
=⇒ occurs(a, 0) Decide=⇒ occurs(a, 0) ¬on∆ Decide=⇒

occurs(a, 0) ¬on∆ (okT ime(T )ξ)∆ Query Propagate
=⇒

occurs(a, 0) ¬on∆ (okT ime(T )ξ)∆ ⊥ Backtrack=⇒
occurs(a, 0) ¬on∆ ¬okT ime(T )ξ

Unit Propagate
=⇒

occurs(a, 0) ¬on∆ ¬okT ime(T )ξ ¬T 6= 1ξ

Since the last state in the path is terminal, Proposition 3 as-
serts that occurs(a, 0) is a set of all regular atoms in some
answer set of Π. Indeed, recall answer set (4).
The ACSOLVER algorithm: We can view a path in the graph
ACΠ as a description of a process of search for a set of reg-
ular atoms in some answer set of Π by applying the graph’s
transition rules. Therefore, we can characterize an algorithm
of a solver that utilizes the transition rules of ACΠ by de-
scribing a strategy for choosing a path in this graph. A strat-
egy can be based, in particular, on assigning priorities to
transition rules of ACΠ, so that a solver never follows a tran-
sition due to a rule in a state if a rule with higher priority is
applicable. A strategy may also include restrictions on rule’s
applications.

We use this approach to describe the ACSOLVER algo-
rithm (Mellarkod, Gelfond, and Zhang 2008, Fig.1). The
ACSOLVER selects edges according to the priorities on the
transition rules of the graph ACΠ as follows:

Backtrack,Fail >>
Unit Propagate,All Rules Cancelled,Backchain True >>
Unfounded >> Query Propagate >> Decide.

Note that ACSOLVER also only follows a transition due to the
rule Query Propagate if there are no satisfying extensions of
query(M) w.r.t. ΠD, i.e., Cons(Π, query(M)) = {⊥}.

Mellarkod et al. (2008) demonstrated the correctness of
the ACSOLVER algorithm for the class of safe canonical pro-
grams by analyzing the properties of its pseudocode. Propo-
sition 3 provides an alternative proof of correctness for this
algorithm for a more general class of weakly-simple pro-
grams that relies on the transition system ACΠ. Furthermore,
Proposition 3 encapsulates the proof of correctness for a
class of algorithms that can be described using ACΠ. For
instance, it immediately follows that the ACSOLVER algo-
rithm modified to follow an arbitrary transition due to the
rule Query Propagate is still correct.

The CLINGCON Language
Consider a subset of the AC language, denoted AC−, so
that any AC program without defined atoms is an AC− pro-
gram. It is easy to see that for any AC− program, its de-
fined part is empty. The language of the constraint answer
set solver CLINGCON defined in (Gebser, Ostrowski, and
Schaub 2009) can be seen as a syntactic variant of the AC−
language.

We now review the clingcon programs and show how
they map into AC− programs. For a signature Σ, a cling-
con variable is an expression of the form p(~r), where p is a
mixed predicate and ~r is a sequence of regular constants. For
any clingcon variable p(~r), by p(~r)0 we denote its predicate
symbol p and by p(~r)s we denote its sequence of regular
constants ~r.

We say that an atom is a clingcon atom over Σ if it has the
following form
v1◦· · ·◦vk◦c1◦· · ·◦cm � vk+1◦· · ·◦vl◦cm+1◦· · ·◦cn, (6)

where vi is a clingcon variable; ci is a constraint constant;
◦ is a primitive constraint operation; and � is a primitive
constraint relation.

A clingcon program is a finite set of rules of the form (1)
where (i) a0 is ⊥ or a regular atom, (ii) each ai, 1 ≤ i ≤ m
is a regular atom or clingcon atom, and (iii) each ai,m+1 ≤
i ≤ n is a regular atom.

Any clingcon program Π can be rewritten in AC− using a
function ν that maps the set of clingcon variables occurring
in Π to the set of distinct variables over Σ. For a clingcon
variable v, vν denotes a variable assigned to v by ν.

For each occurrence of clingcon atom (6) in some rule r
of Π (i) add a set of mixed atoms v0

i (vsi , v
ν
i ) for 1 ≤ i ≤ l to

the body of r, and (ii) replace (6) in r by a constraint atom
vν1 ◦· · ·◦vνk ◦c1◦· · ·◦cm � vνk+1◦· · ·◦vνl ◦cm+1◦· · ·◦cn.
We denote resulting AC− program by ac(Π).

For instance, let clingcon program Π over Σ1 consist of a
single rule

← occurs(a, 0), at(0) 6= 1.
Given ν that maps at(0) to T , ac(Π) has the form

← occurs(a, 0), at(0, T ), T 6= 1.
Proposition 4 For a clingcon program Π over signature Σ,
a set X is a constraint answer set of Π according to the def-
inition in (Gebser, Ostrowski, and Schaub 2009) iff there is
a functional set M of ground mixed atoms of Σ such that
X ∪M is an answer set of ac(Π).



Note that ac(Π) is a weakly-simple program (in fact, it
is a simple program). It follows that a class of algorithms
captured by the graph ACΠ is applicable to clingcon pro-
grams after minor syntactic transformations. Nevertheless
the graph ACΠ is not suitable for describing the CLINGCON
system. In the next section we present another graph suitable
for this purpose.

The Basic CLINGCON Algorithm
The CLINGCON system is based on tight coupling of the an-
swer set solver CLASP and the constraint solver GECODE.
Recall that CLASP starts its computation by building a
propositional formula called completion (Clark 1978) of a
given program so that its propagation relies not only on the
program but also on the completion. Furthermore, it imple-
ments such backtracking search techniques as backjump-
ing, learning, forgetting, and restarts. Lierler and Truszczyn-
ski (2011) introduced the transition system SML(ASP)F,Π
and demonstrated how it captures the CLASP algorithm.
It turns out that SML(ASP)F,Π augmented with the tran-
sition rule Query Propagate is appropriate for describing
CLINGCON. The graph SML(ASP)F,Π extends a simpler
graph SM(ASP)F,Π. These extensions are essential for cap-
turing such advanced features of CLASP and CLINGCON as
conflict-driven backjumping and learning. To simplify the
presentation we review the graph SM(ASP)F,Π and show that
augmenting it with the rule Query Propagate captures ba-
sic CLINGCON algorithm implementing a simple backtrack
strategy in place of conflict-driven backjumping and learn-
ing. This abstract view on CLINGCON allows us to compare
it to ACSOLVER in formal terms.
Abstract basic CLINGCON: We write Head(Π) for the set
of nonempty heads of rules in a program Π. For a clause
C = ¬a1 ∨ . . . ∨ ¬al ∨ al+1 ∨ . . . ∨ am we write Cr to
denote the rule

← a1, . . . , al, not al+1, . . . , not am.

For a set F of clauses, we define F r = {Cr | C ∈ F}. For
a set A of atoms, by Π(A) we denote a program Π extended
with the rules {a} for each atom a ∈ A.

The transition graph SM(ASP)F,Π for a set F of clauses
and a regular program Π is defined as follows. The set
of nodes of SM(ASP)F,Π consists of the states relative to
At(F ∪ Π). There are five transition rules that characterize
the edges of SM(ASP)F,Π. The transition rules Unit Propa-
gate, Decide, Fail, Backtrack of the graph SMF r∪Π, and the
transition rule

Unfounded’:

M =⇒M ¬a if
{
a ∈ U for a set U unfounded on M
w.r.t. Π(At(F ∪Π) \Head(Π))

Lierler and Truszczynski (2011) demonstrated how
SM(ASP)ED-Comp(Π),Π models basic CLASP (without conflict
driven backjumping and learning) where ED-Comp(Π) de-
notes clausified completion with the use of auxiliary atoms.

We now define the graph CONF,Π for AC programs that
extends SM(ASP)F,Π in a similar way as ACΠ extends SMΠ.

For an AC logic program Π and a set F of clauses, the
nodes of CONF,Π are the states relative to the setAt(F∪Πξ).
The edges of CONF,Π are described by the transition rules
of SM(ASP)F,Πξ and the transition rule Query Propagate of
ACΠ.

For an AC program Π, a set F of clauses is Π-safe if
1. F |= ¬a, for every a ∈ At(Πξ) \Head(Πξ), and
2. for every answer set X of Πξ there is a model M of F

such that X = M+ ∩Head(Πξ).
In fact, a set F of clauses is Π-safe if it is Πξ-safe according
to the “safeness” definition given in (Lierler and Truszczyn-
ski 2011).

Proposition 5 For any weakly-simple AC program Π and a
Π-safe set F of clauses,

(a) graph CONF,Π is finite and acyclic,
(b) for any terminal state M of CONF,Π other than ⊥,

(Mξ−)+
R ∩ At(Π) is a set of all regular atoms in some

answer set of Π,
(c) state ⊥ is reachable from ∅ in CONF,Π if and only if Π

has no answer sets.

The algorithm behind basic CLINGCON is modeled by means
of the graph CONED-Comp(Πξ),Π with the following priorities

Backtrack,Fail >> Unit Propagate >> Unfounded >>
Query Propagate >> Decide.

Proposition 3 demonstrates that the CLINGCON algorithm is
applicable to a broader class of weakly-simple AC programs.

Following concept helps us to formulate the relation be-
tween ACΠ and CONF,Π precisely. An edge M =⇒ M ′ in
the graph ACΠ (CONF,Π) is singular if:
• the only transition rule justifying this edge is Unfounded,

and
• some edge M =⇒ M ′′ can be justified by a transition

rule other than Unfounded or Decide.
It is easy to see that due to priorities of ACSOLVER and
CLINGCON, singular edges are inessential. We define AC−Π
(CON−F,Π) as the graph obtained by removing all singular
edges from ACΠ (CONF,Π).

Proposition 6 Let Comp(Πξ) be completion clausified in a
straightforward way by applying distributivity. For every AC
program Π, the graphs AC−Π and CON−

Comp(Πξ),Π
are equal.

It follows that the graph CON−
Comp(Πξ),Π

also provides an
abstract model of ACSOLVER. Hence the difference between
ACSOLVER and basic CLINGCON algorithms can be stated
in terms of difference in Π-safe formulas Comp(Πξ) and
ED-Comp(Πξ) that they are applied to.

Conclusions
In this paper, we designed transition systems ACΠ and
CONF,Π for describing algorithms for computing (subsets
of) answer sets of AC programs. We used these graphs to
specify the ACSOLVER and the basic CLINGCON algorithms.
We demonstrated a formal relation between the AC and



CLINGCON languages and the algorithms behind ACSOLVER
and CLINGCON. Compared with traditional pseudo-code de-
scription of algorithms, transition systems use a more uni-
form (i.e., graph based) language and offer more modular
proofs. The graphs ACΠ and CONF,Π offer a convenient tool
to describe, compare, analyze, and prove correctness for a
class of algorithms. In fact we formally show the relation
between the subgraphs of ACΠ and CONF,Π. Furthermore,
the transition systems for ACSOLVER and CLINGCON result
in new algorithms for solving a larger class of AC programs
– weakly-simple programs introduced in this paper. Neither
the ACSOLVER nor CLINGCON procedures, respectively, can
deal with such programs. In the future we will consider ways
to use current ASP/CLP technologies to design a solver for
weakly-simple programs.

Acknowledgments
We are grateful to Yuanlin Zhang, Michael Gelfond,
Vladimir Lifschitz, and Miroslaw Truszczynski for useful
discussions related to the topic of this work. Yuliya Lierler
was supported by a CRA/NSF 2010 Computing Innovation
Fellowship.

References
Baselice, S.; Bonatti, P. A.; and Gelfond, M. 2005. To-
wards an integration of answer set and constraint solving. In
Gabbrielli, M., and Gupta, G., eds., ICLP, volume 3668 of
Lecture Notes in Computer Science, 52–66. Springer.
Clark, K. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds., Logic and Data Bases. New York: Plenum
Press. 293–322.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A ma-
chine program for theorem proving. Communications of the
ACM 5(7):394–397.
Ferraris, P., and Lifschitz, V. 2005. Weight constraints as
nested expressions. Theory and Practice of Logic Program-
ming 5:45–74.
Ferraris, P.; Lee, J.; Lifschitz, V.; and Palla, R. 2009. Sym-
metric splitting in the general theory of stable models. In
Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), 797–803.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Stable models
and circumscription. Artificial Intelligence 175:236–263.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving. In Proceedings
of 20th International Joint Conference on Artificial Intelli-
gence (IJCAI’07), 386–392. MIT Press.
Gebser, M.; Ostrowski, M.; and Schaub, T. 2009. Con-
straint answer set solving. In Proceedings of 25th Interna-
tional Conference on Logic Programming (ICLP), 235–249.
Springer.
Kakas, A.; Kowalski, R.; and Toni, F. 1992. Abductive logic
programming. Journal of Logic and Computation 2(6):719–
770.
Lee, J. 2005. A model-theoretic counterpart of loop for-
mulas. In Proceedings of International Joint Conference on

Artificial Intelligence (IJCAI), 503–508. Professional Book
Center.
Lierler, Y., and Truszczynski, M. 2011. Transition systems
for model generators — a unifying approach. Theory and
Practice of Logic Programming, 27th Int’l. Conference on
Logic Programming (ICLP’11) Special Issue 11, issue 4-5.
Lierler, Y., and Zhang, Y. 2011. A transition system for AC
language algorithms. In Proceedings of ICLP Workshop on
Answer Set Programming and Other Computing Paradigms
(ASPOCP).
Lierler, Y. 2008. Abstract answer set solvers. In Proceedings
of International Conference on Logic Programming (ICLP),
377–391. Springer.
Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested
expressions in logic programs. Annals of Mathematics and
Artificial Intelligence 25:369–389.
Mellarkod, V. S.; Gelfond, M.; and Zhang, Y. 2008. Integrat-
ing answer set programming and constraint logic program-
ming. Annals of Mathematics and Artificial Intelligence.
Niemelä, I., and Simons, P. 2000. Extending the Smodels
system with cardinality and weight constraints. In Minker,
J., ed., Logic-Based Artificial Intelligence. Kluwer. 491–
521.
Nieuwenhuis, R.; Oliveras, A.; and Tinelli, C. 2006. Solv-
ing SAT and SAT modulo theories: From an abstract Davis-
Putnam-Logemann-Loveland procedure to DPLL(T). Jour-
nal of the ACM 53(6):937–977.
Van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The well-
founded semantics for general logic programs. Journal of
ACM 38(3):620–650.


