Constraint Answer Set Programming*

Yuliya Lierler
University of Nebraska at Omaha

Introduction

Constraint answer set programming (CASP) is a novel, promising direction of
research whose roots go back to propositional satisfiability (SAT). SAT solvers
are efficient tools for solving boolean constraint satisfaction problems that arise
in different areas of computer science, including software and hardware verifica-
tion. Some constraints are more naturally expressed by non-boolean constructs.
Satisfiability modulo theories (SMT) extends boolean satisfiability by the in-
tegration of non-boolean symbols defined by a background theory in another
formalism, such as a constraint processing language. Answer set programming
(ASP) extends computational methods of SAT in yet another way, inspired by
ideas from knowledge representation, logic programming, and nonmonotonic
reasoning. As a declarative programming paradigm, it provides a rich, simple
modeling language that, among other features, incorporates recursive defini-
tions. Answer set programming languages also use variables; software tools
called grounders are used as front ends of answer set solvers to eliminate vari-
ables, whereas SAT-like procedures form their back-ends.

Constraint answer set programming draws on both of these extensions of
SAT technology: it integrates answer set programming with constraint pro-
cessing. This new area has already demonstrated promising results, including
the development of the CASP solvers ACSOLVER [I1] (Texas Tech University),
criNnGeoN]] [7] (Potsdam University, Germany), Ezcsif] [1] (KODAK), o] [15]
(KU Leuven), MINGCﬁ [10] (Aalto University, Finland). CASP is a new, powerful
paradigm for declarative programming that provides new modeling features for
answer set programming and also improves grounding and solving performance
by delegating processing of constraints over large and possibly infinite domains
to specialized systems. As a result CASP opens new horizons for declarative
programming applications. The origins of this work go back to [2].

*We are greatful to Marcello Balduccini, Broes de Cat, Vladimir Lifschitz, and Peter
Schiiller for valuable comments.

Thttp://www.cs.uni-potsdam.de/clingcon/

%http://marcy.cjb.net/ezcsp/index.html

Shttp://dtai.cs.kuleuven.be/krr/software/idp

Ihttp://research.ics.aalto.fi/software/asp/

http://www.cs.uni-potsdam.de/clingcon/
http://marcy.cjb.net/ezcsp/index.html
http://dtai.cs.kuleuven.be/krr/software/idp
http://research.ics.aalto.fi/software/asp/

Related Work: HEX-Programs [3] integrate logic programs under answer set
semantics with external computation sources via external atoms. They were
motivated by the need to interface ASP with external computation sources,
for example, to allow the synergy of ASP and description logic computations
within the context of the semantic web. CASP shares a lot in common with
HEX-programs. System DLVHEXH [4] computes models of such programs. It
allows defining plug-ins for inference on external atoms and as such can be used
as a general framework for developing CASP solvers (but it does not provide
any specific computational mechanism by default).

1 Logic Programs with Constraint Atoms

A regular program is a finite set of rules of the form

ap < ai,...,a;, N0t aj41,...,N0t Gy,
not not am41, - ..,not not a,

(1)

where ag is L or an atom, and each a; (1 <4 < n) is an atom. This is a special
case of programs with nested expressions [9]. We refer the reader to the paper
by Lifschitz et al.[9] for details on the definition of an answer set of a logic
program. A choice rule construct {a} [12] of the LPARSE language can be seen
as an abbreviation for a rule a < not not a [B]. We adopt this abbreviation in
the rest of the paper.

A constraint satisfaction problem (CSP) is defined as a triple (X, D,C),
where X is a set of variables, D is a domain of values, and C' is a set of con-
straints. Every constraint is a pair (¢, R), where ¢ is an n-tuple of variables
and R is an n-ary relation on D. An evaluation of the variables is a function
from the set of variables to the domain of values, v : X — D. An evaluation v
satisfies a constraint {(z1,...,x,), R) if (v(z1),...,v(x,)) € R. A solution is
an evaluation that satisfies all constraints.

Consider an alphabet consisting of regular and constraint atoms, denoted
by A and C respectively. By C, we denote the set of all literals over C. The
constraint literals are identified with constraints via a function - : C — C so
that for any literal [, gamma(l) has a solution if and only if gamma(l) does not
have one (where [denotes a complement of [). For a set Y of constraint literals
over C, by 7(Y") we denote a set of corresponding constraints, i.e., {y(c)|c € Y}.
Furthermore, each variable in 'y(C~) is associated with a domain. For a set M of
literals, by M+ and M€ we denote the set of positive literals in M and the set
of constraint literals over C in M, respectively.

A logic program with constraint atoms is a regular logic program over an
extended alphabet A U C such that ag is L or ag € A. Given a logic program
with constraint atoms II, by IT¢ we denote II extended with choice rules {c} for
each constraint atom c¢ occurring in II. We say that a consistent and complete
set M of literals over atoms of II is an answer set of IT if (i) M is an answer
set of TI® and (ii) v(M€) has a solution.

Shttp://www.kr.tuwien.ac.at/research/systems/dlvhex/

http://www.kr.tuwien.ac.at/research/systems/dlvhex/

For example, let II be the program

am+— X <12

lightOn < switch,not am (2)
{switch}

L < not lightOn.

Intuitively, this program states that (a) light is on only if an action of switch
occurs during the pm hours and (b) light is on (according to the last rule in the
program). Consider a domain of X to be integers from 0 till 24. It is easy to
see that a set

{switch, lightOn, = am,~X < 12}

forms the only answer set of program .

2 On the relation of constraint answer set lan-
guages and solvers

In the introduction, we listed a number of CASP systems ACSOLVER, CLINGCON,
EZCSP, IDP, MINGO that were developed in recent years. The core of the lan-
guages of these systems is captured by the definition of a logic program with con-
straint atoms presented here. Yet, relating these languages is not an easy task.
One difficulty lies in the fact that these languages are introduced together with
specific system archetecture in mind that rely on various ASP/CSP/CLP/SMT
technology. The syntactic differences that stam from technological differences
stand on the way of clear understanding of key features of the languages. Re-
lating CASP systems formally is even more complex task. The variations in
underlying technologies complicate clear articulation of their similarities and
differences. For example, the CASP solver CLINGCON [7] is developed using an
ASP solver CLASP [6] and a constraint solver GECODE [I4]. The main building
blocks of the CASP solver ACSOLVER [I1] are the ASP system SMODELS [12] and
SICSTUS PROLOCﬁ In addition, the CASP solvers adopt different communica-
tion schemes among their heterogeneous solving components. For instance, the
system EZCSP relies on blackboz integration of ASP and CSP tools in order to
compute the answer sets of an EzZCSP program [I]. Systems ACSOLVER, CLING-
CON, IDP promote tighter integration of multiple automated reasoning methods.
The broad attention to CASP paradigms suggests a need for a principled and
general study of methods to develop unifying terminology and formalisms suit-
able to capture variants of the languages and solvers. The work by Lierler [§]
can be seen as a step in this direction. It presents a formal account that illus-
trates a precise relationship between the languages of ACSOLVER and CLINGCON
as well as between the respective systems. Usually backtrack search procedures
(Davis-Putnam-Logemann-Loveland (DPLL)-like procedures) that form a back-
bone of CASP computational methods are described in terms of pseudocode.

Shttp://www.sics.se/isl/sicstuswww/site/index.html

http://www.sics.se/isl/sicstuswww/site/index.html

In [I3], the authors proposed an alternative approach to describing DPLL-like
algorithms. They introduced an abstract framework that captures what states
of computation are, and what transitions between states are allowed. In this
way, it defines a directed graph such that every execution of DPLL corresponds
to a path in this graph. Some edges may correspond to a propagation steps,
some to branching, some to backtracking. This approach allows us to model
a DPLL-like algorithm by a mathematically simple and elegant object, graph,
rather than a collection of pseudocode statements. An abstract framework of
the sort served as the main tool for performing precise formal analyses relating
such constraint answer set solvers as ACSOLVER and CLINGCON [g].

References

[1] Marcello Balduccini. Representing constraint satisfaction problems in an-
swer set programming. In Proceedings of ICLP’09 Workshop on Answer
Set Programming and Other Computing Paradigms (ASPOCP’09), 2009.

[2] Sabrina Baselice, Piero A. Bonatti, and Michael Gelfond. Towards an
integration of answer set and constraint solving. In Maurizio Gabbrielli and
Gopal Gupta, editors, ICLP, volume 3668 of Lecture Notes in Computer
Science, pages 52—66. Springer, 2005.

[3] Thomas Eiter, Gerhard Brewka, Minh Dao-Tran, Michael Fink, Giovam-
battista Ianni, and Thomas Krennwallner. Combining Nonmonotonic
Knowledge Bases with External Sources. In Silvio Ghilardi and Roberto
Sebastiani, editors, 7th International Symposium on Frontiers of Combin-
ing Systems (FroCos 2009), volume 5749 of LNAI, pages 18-42. Springer,
September 2009.

[4] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tom-
pits. A uniform integration of higher-order reasoning and external evalu-
ations in answer set programming. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), pages 90-96, 2005.

[6] Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested expres-
sions. Theory and Practice of Logic Programming, 5:45-74, 2005.

[6] Martin Gebser, Benjamin Kaufmann, Andre Neumann, and Torsten
Schaub. Conflict-driven answer set solving. In Proceedings of 20th In-
ternational Joint Conference on Artificial Intelligence (IJCAI'07), pages
386-392. MIT Press, 2007.

[7] Martin Gebser, Max Ostrowski, and Torsten Schaub. Constraint answer
set solving. In Proceedings of 25th International Conference on Logic Pro-
gramming (ICLP), pages 235-249. Springer, 2009.

8]

[14]

[15]

Yuliya Lierler. On the relation of constraint answer set programming lan-
guages and algorithms. In Proceedings of the AAAI Conference on Artificial
Intelligence. MIT Press, 2012.

Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expres-
sions in logic programs. Annals of Mathematics and Artificial Intelligence,
25:369-389, 1999.

Guohua Liu, Tomi Janhunen, and Ilkka Niemelae. Answer set programming
via mixed integer programming. In Principles of Knowledge Representation
and Reasoning: Proceedings of the 13th International Conference, page
3242, 2012.

Veena S. Mellarkod, Michael Gelfond, and Yuanlin Zhang. Integrating an-
swer set programming and constraint logic programming. Annals of Math-
ematics and Artificial Intelligence, 2008.

Ilkka Niemeld and Patrik Simons. Extending the Smodels system with
cardinality and weight constraints. In Jack Minker, editor, Logic-Based
Artificial Intelligence, pages 491-521. Kluwer, 2000.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT modulo theories: From an abstract Davis-Putnam-Logemann-
Loveland procedure to DPLL(T). Journal of the ACM, 53(6):937-977,
2006.

Christian Schulte and Peter J. Stuckey. Efficient constraint propagation
engines. Transactions on Programming Languages and Systems, 2008.

Johan Wittocx, Maarten Marién, and Marc Denecker. The IDP system:
a model expansion system for an extension of classical logic. In Marc
Denecker, editor, LaSh, pages 153-165, 2008.

	Logic Programs with Constraint Atoms
	On the relation of constraint answer set languages and solvers

