\Volume title 1
The editors
(© 2007 Elsevier All rights reserved

Chapter 1

Knowledge Representation and
Question Answering

Marcello Balduccini, Chitta Baral and Yulia
Lierler

1.1 Introduction

Consider an intelligence analyst who has a large body of documents of various kinds. He
would like answers to some of his questions based on the information in these documents,
general knowledge available in compilations such as fact books, and commonsense. A
search engine or a typical information retrieval (IR) system like Google does not go far
enough as it takes keywords and only gives a ranked list of documents which may contain
those keywords. Often this list is very long and the analyst still has to read the documents
in the list. Other reasons behind the unsuitability of an IR system (for an analyst) are that
the nuances of a question in a natural language can not be adequately expressed through
keywords, most IR systems ignore synonyms, anabt IR systems cannot reasdivhat
the intelligence analyst would like is a system that can take the documents and the analyst’s
question as input, that can access the data in fact books, and that can do commonsense
reasoning based on them to provide answers to questions. Such a system is referred to
as a question answering system or a QA system. Systems of this type are useful in many
domains besides intelligence analysis. Examples include a Biologist who needs answers to
his questions, say about a particular set of genes and what is known about their functions
and interactions, based on the published literature; a lawyer looking for answers from a
body of past law cases; and a patent attorney looking for answers from a patent database.
A precursor to question answering is database querying where one queries a database
using a database query language. Question Answering takes this to a whole other dimen-
sion where the system has increasing body of documents (in natural languages, possibly
including multimedia objects and possibly situated in the web and described in a web lan-
guage) and it is asked a query in natural language. It is expected to give an answer to the
question, not only using the documents, but also using appropriate commonsense knowl-

2 1.

edge. Moreover, the system needs to be able to accommodate new additions to the body of
documents. The interaction with a question answering system can also go beyond a single

query to a back and forth exchange where the system may ask questions back to the user so
as to better understand and answer the user’s original question. Moreover, many questions
that can be asked in English can be proven to be inexpressible in most existing database

guery languages.

The response expected from a QA system could also be more general than the answers
expected from standard database systems. Besides yes/no answers and factual answers,
one may expect a QA system to give co-operative answers, give relaxed answers based
on user modeling and come back with clarifying questions leading to a dialogue. An
example of co-operative answering [31] is that when one asks the question “Does John
teach Al at ASU in Fall'06”, the answer “the course is not offered at ASU in Fall'06,” if
appropriate, is a co-operative answer as opposed to the answer “no”. Similarly, an example
of relaxed answering [30] is that when one asks for a Southwest connection from Phoenix
to Washington DC National airport, the system realizing that Baltimore is close to DC, and
Southwest does not fly to DC, offers the flight schedules of Southwest from Phoenix to
Baltimore.

QA has a long history and [53] contains an overview of that as well as various papers
on the topic. Its history ranges from early attempts on natural language queries for
databases [39], deductive question answering [40], story understanding [19], web based
QA systems [4], to recent QA tracks in TREC [72], ARDA supported QA projects and
Project Halo [29]. QA involves many aspects of Artificial Intelligence ranging from
natural language processing, knowledge representation and reasoning, information
integration and machine learning. Recent progress and successes in all of these areas and
easy availability of software modules and resources in each of these areas now make it
possible to build better QA systems. Some of the modules and resources that can be used
in building a QA system include natural language parsers, WordNet [54, 26], document
classifiers, text extraction systems, IR systems, digital fact books, and reasoning and
model enumeration systems. However, most QA systems built to date are not strong in
knowledge representation and reasoning, although there has been some recent progress in
that direction. In this chapter we will discuss the role of knowledge representation and
reasoning in developing a QA system, discuss some of the issues and describe some of the
current attempts in this direction.

1.1.1 Role of knowledge representation and reasoning in QA

To understand the role of knowledge representation and reasoning in a QA system let us
consider several pairs of texts and questions. We assume that the text has been identified
by a component of the QA system from among the documents given to it, as relevant to the
given query.

1. Text John and Mike took a plane from Paris to Baghdad. On the way, the plane
stopped in Rome, where John was arrested.

Questions Where is Mike at the end of this trip? Where is John at the end of this
trip? Where is the plane at the end of this trip? Where would John be if he was not
arrested?

Marcello Balduccini, Chitta Baral and Yulia Lierler 3

Analysis The commonsense answers to the above questions are Baghdad, Rome,
Baghdad and Baghdad respectively. To answer the first and the third question the
QA system has to reason about the effect of the action of taking a plane from Paris
to Baghdad. It has to reason that at the end of the action the plane and its occupants
will be in Baghdad. It has to reason that the action of John getting arrested changes
his status as an occupant of the plane. To reason about John’s status if he was not
arrested, the QA system has to do counterfactual reasoning.

. Text John, who always carries his laptop with him, took a flight from Boston to
Paris on the morning of Dec 11th.

QuestionsIn which city is John’s laptop on the evening of Dec 10th? In which city
is John’s laptop on the evening of Dec 12th?

Analysis The commonsense answers to the above questions are Boston and Paris
respectively. Here, as in the previous case, one can reason about the effect of John
taking a flight from Boston to Paris, and conclude that at the end of the flight, John
will be in Paris. However, to reason about the location of John’s laptop one has to
reason about the causal connection between John’s location and his laptop’s location.
Finally, the QA system needs to have an idea about the normal time it takes for a
flight from Boston to Paris, and the time difference between them.

. Text John took the plane from Paris to Baghdad. He planned to meet his friend
Mike, who was waiting for him there.

Question Did John meet Mike?

Analysis To answer the above question, the QA systems needs to reason about
agent’s intentions. From commonsense theory of intentions [18, 22, 74], agents
normally execute their intentions. Using that one can conclude that indeed John met
Mike.

. Text John, who travels abroad often, is at home in Boston and receives a call that he
must immediately go to Paris.

Questions Can he just get on a plane and fly to Paris? What does he need to do to
be in Paris?

Analysis The commonsense answer to the first question is ‘no’. In this case the QA

system reasons about the precondition necessary to perform the action of flying and
realizes that for one to fly one needs a ticket first. Thus John can not just get on a
plane and fly. To answer the second question, one needs to construct a plan. In this
case, a possible plan is to buy a ticket, get to the airport and then to get on the plane.

. Text John is in Boston on Dec 1. He has no passport.

Question Can he go to Paris on Dec. 4?

Analysis With the general knowledge that it takes more than 3 days to get a passport
the commonsense answer to the above is ‘no’.

. Text On Dec 10th John is at home in Boston. He made a plan to get to Paris by
Dec 11th. He then bought a ticket. But on his way to the airport he got stuck in the
traffic. He did not make it to the flight.

Query: Would John be in Paris on Dec 11th, if he had not gotten stuck in the traffic?

Analysis This is a counterfactual query whose answer would be “yes.” The reason-
ing behind it would be that if John had not been stuck in the traffic, then he would
have made the flight to Paris and would have been in Paris on Dec 11th.

The above examples show the need for commonsense knowledge and domain knowl-
edge; and the role of commonsense reasoning, predictive reasoning, counterfactual reason-
ing, planning and reasoning about intentions in question answering. All these are aspects
of knowledge representation and reasoning. The examples are not arbitrarily contrived ex-
amples, but rather are representative examples from some of the application domains of
QA systems. For example, an intelligence analyst tracking a particular person’s movement
would have text like the above. The analyst would often need to find answers for what if,
counterfactual and intention related questions. Thus, knowledge representation and rea-
soning ability are very important for QA systems. In the next section we briefly describe
attempts to build such QA systems and their architecture.

1.1.2 Architectural overview of QA systems using knowledge representation
and reasoning

We start with a high level description of approaches that are used in the few QA systems [1,
57, 71, 62] or QA-like systems that incorporate knowledge representation and reasoning.

1. Logic Form based approach:

In this approach an information retrieval system is used to select the relevant
documents and relevant texts from those documents. Then the relevant text is
converted to a logical theory. The logical theory is then added to domain
knowledge and commonsense knowledge resulting in a Knowledge Base KB.
(Domain knowledge and common-sense knowledge will be together referred to as
“background knowledge” and sometimes as “background knowledge base.”) The
question is converted to a logic form and is posed against KB and a theorem prover
is then used. This approach is used in the QA systems [1, 20] franguage
Computer/LCC.

2. Information extraction based approach:

Here also, first an information retrieval system is used to select the relevant

documents and relevant texts from those documents. Then with a goal to extract
relevant facts from these text, a classifier is used to determine the correct script and
the correct information extractor for the text. The extracted relevant facts are added
to domain knowledge and commonsense knowledge resulting in the Knowledge

Base KB. The question is translated to the logical language of KB and is then posed
against it. An approach close to this is used in the story understanding system
reported in [62].

3. Using logic forms in information extraction:

A mixed approach of the above two involves processing the logic forms to obtain the
relevant facts from them and then proceed as in (2) above.

1 http://www.languagecomputer.com

Marcello Balduccini, Chitta Baral and Yulia Lierler 5

We now describe the above approaches in greater detail. We start by examining various
techniques to translate English to logical theories. Next, we describe COGEX and DD,
two systems that perform inference starting from the logic form of English sentences. Sec-
tion 1.5 presents an approach where the output of a semantic parser is used directly in ob-
taining the relevant facts, and background knowledge is employed to reduce semantic am-
biguity. In Section 1.6, we describe Nutcracker, a system for recognizing textual entail-
ment based on first-order representation of sentences and first-order inference tools. Sec-
tion 1.7 examines an approach based on the use of Event Calculus for the semantic repre-
sentation of the text. Finally, in Section 1.8 we draw conclusions.

1.2 From English to logical theories

An ambitious and bold approach of doing reasoning in a question answering system is to
convert English (or any other natural language for that matter) text to a logical representa-
tion and then use a reasoning system to reason with the resulting logical theory. Here, we
discuss some of the attempts [1, 20] in this direction.

The most popular approach for the translation from English to a logical representation
is based on the identification of tlsgntactic structuref the sentence, usually represented
as a tree (the “parse tree”) that systematically combines the phrases in which the English
text can be divided and whose leaves are associated with the lexical items. As an example,
the parse tree of the sentence “John takes a plane” is shown in Figure 1.1. Once the
syntactic structure is found, it is used to derive a logical representation of the discourse.

/\

NNP VB / \
John takes a plane

Figure 1.1: Parse tree o§6hn takes a plané

The derivation of the logical representation typically consists of:

e Assigning a logic encoding to the lexical items of the text.

e Describing how logical representations of sub-parts of the discourse are to be com-
bined in the representation of larger parts of it.

Consider the parse tree in Figure 1.1 (for the sake of simplicity, let us ignore the
determiner “a”). We can begin by stating that lexical items “John” and “plane” are
represented by constantshn andplane. Next, we need to specify how the verb phrase

is encoded from its sub-parts. A possible approach is to use andtam), wherep is

the verb andy is the constant representing the syntactic direct object of the verb phrase.
Thus, we obtain an atomake(x, plane), wherez is an unbound variable. Finally, we can
decide to encode the sentence by replacing the unbound variable in the atom for the verb
phrase with the constant denoting the syntactic subject of the sentence. Hence, we get to
take(john,plane).

Describing formally how the logical representation of the text is obtained is in general
a non trivial task that requires a suitable way of specifying how substitutions are to be
carried out in the expressions.

Starting with theoretical attempts in [59] to a system implementation in [7], attempts
have been made to usambda calculugo tackle this problem. In fact, lambda calculus
provides a simple and elegant way to mark explicitly where the logical representation of
smaller parts of the discourse is to be inserted in the representation of the more complex
parts. Here we describe the approach from [14].

Lambda calculus can be seen as a notational extension of first-order logic containing
a newbinding operator\. Occurrences of variables bound hyntuitively specify where
each substitution has to occur. For example, an expression

Azx.plane(x)

says that, once is bound to a value, that value will be used as the argument of relation
plane. The application of a lambda expression is denoted by symbol @. Hence, the
expression

Az.plane(x) @ boeingT67.

is equivalent taplane(boeing767). Notice that, in natural language, nouns such as plane
are preceded by “a”, “the”, etc. In the lambda calculus based encatimgepresentation
of nouns is connected to that of the rest of the sentence by the enconding of the article.

In order to provide the connection mechanism, the lambda expressions for articles are
more complex than the ones shown above. Let us consider, for example, the encoding
of “a” from [14]. There, “a” is intuitively viewed as describing a situation in which an
element of a class has a particular property. For example, “a woman walks” says that an
element of class “woman” “walks”. Hence, the representation of “a” is parameterized by
the classw, and the property;, of the objecty:

Aw Az Ty (w @y Az @y).

Marcello Balduccini, Chitta Baral and Yulia Lierler 7

In the expressiony is a placeholder for the lambda expression describing the class that
the object belongs to. Similarly,is a placeholder for the lambda expression denoting the
property of the object. Notice the implicit assumption thilaé lambda expressions
substituted tav and z are of the form\z. f () — that is, they lack the “ @" part. This
assumption is critical for the proper merging of the various components of a sentence:
when w, in w @y above, is replaced with the actual property of the object, say
Az.plane(x), we obtain\z.plane(x) @ y. Because of the use of parentheses, dirly at

this pointthat the @y part of the expression above can be used to perform a substitution.
Hence \z.plane(x) @ y is simplified intoplane(y), as one would expect.

To see how the mechanism works on the complete representation of “a”, let us look at
how the representation of the phrase “a plane” is obtained by combining the encoding of
“a” with the one of “plane” (which provides the class information for “a”):

Aw Az Jy.(w @y Az @y) @ \x.plane(z) =
Az 3y.(Az.plane(z) @y ANz @y) =
Az 3y.(plane(y) Az @ y).

Note that this lambda expression encodes the assumption that the noun phrase is followed
by a verb. This is achieved by introduciags a placeholder for the verb.

The representation of proper names is designed, as well, to allow the combination of
the name with the other parts of the sentence. For instance, “John” is represented by:

Au.(u @ john),

wherew is a placeholder for a lambda expression of the foumf(x), which can be
intuitively read (if f(-) is an action) “an unnamed actorperformed actiornf.” So, for
example, the sentence “John didis represented as:

Au.(u @ john) @ Ax. f(x).
As usual, the right part of the expression can be substitutedwdich leads us to:

Az f(z) @ john.

The expression can be immediately simplified into:

f(john).

The encoding of (transitive) verb phrases is based on a relation with both subject and
direct object as arguments. The subject and direct object are introduced in the expression
as placeholders, similarly to what we saw above. For example, the verb “take” is encoded
as:

2w Az (w @ Ax.take(z,),

where z and = are the placeholders for subject and direct object respectively. The
assumption, here, is théte lambda expression of the direct object contains a placeholder
for the verh such asz in Az.3y.(plane(y) A z @y) above. Hence, when the
representation of the direct object is substitutedstdhe placeholder for the verb can be

8 1.

replaced by\x.take(z,z). Consider how this mechanism works on the phrase “takes a
plane.” The lambda expressions of the two parts of the phrase are directly combined into:

Aw.Az.(w @ Az.take(z,z)) @ Aw.Ty.(plane(y) A w @ y),
As we said, the expression for the direct object is substituted tgiving:
Az.(Aw.Jy.(plane(y) AN w @y) @ Az.take(z,x)).

Now, the placeholder for the verh, in the encoding of the direct object is replaced by
(the remaining part of) the expression for the verb.

Az.(Fy.(plane(y) A Az.take(z,z) @y) =

Az.(Fy.(plane(y) A take(z,y))).

At this point we are ready to find the representation of the whole sentence, “John takes a
plane.” “John” and “takes a plane” are directly combined into:

Au.(u @ john) @ Az.(3y.(plane(y) A take(z,y)))
which simplifies to:

Az.(Fy(plane(y) Atake(z,y))) @ john
and finally becomes:

Jy(plane(y) A take(john,y)).

It is worth stressing that the correctness of the encoding depends on the proper identifica-
tion of subject, verb, and objects of the sentences. If, in the example above, “John” were to
be identified as direct object of the verb, the resulting encoding would be quite different.

As this example shows, lambda calculus offers a simple and elegant way to determine
the logical representation of the discourse, in terms of first-order logic formulas encoding
the meaning of the text. Notice, however, that the lambda calculus specification alone does
not help in dealing with some of the complexities of natural language, and in particular
with ambiguities Consider the sentence “John took a flower”. A possible first-order rep-
resentation of its meaning is:

Jy(flower(y) A take(john,y)).

Although in this sentence verb “take” has a quite different meaning from the one of “take a
plane,” the logical representations of the two sentences are virtually identical. We describe
now a different approach that is aimed at providing information to help disambiguate the
meaning of sentences.

This alternative approach translates the discourse into logical statements that we will
call LCC-style Logic FormgLLF for short). Logic forms of this type were originally
introduced in [44, 45], and later substantially extended in e.g. [42, 21]. (Note that as
mentioned in Chapter 8 of [6], there have been many other logic form proposals, such as

Marcello Balduccini, Chitta Baral and Yulia Lierler 9

[73, 60, 66].) Here, by LLF, we refer to the extended type of logical representation of
[42, 21]. In the LLF approach, a tripléase, pos, sense) is associated with every noun,

verb, adjective, adverb, conjunction and preposition, wihese is the base form of the

word, pos is its part-of-speech, anénse is the word’s sense in the classification found in

the WordNet database [54, 26]. Notice that such tuples provide richer information than the
lambda calculus based approach, as they contain sense information about the lexical items
(which helps understand their semantic use).

In the LLF approach, logic constants are (roughly) associated with the words that in-
troduce relevant parts of the sentence (sometimes dadlads of the phrasgsThe asso-
ciation is obtained by atoms of the form:

base_pos_sense(c, ag, . . ., ap)

wherebase, pos, sense are the elements of the triple describing the head woid,the
constant that denotes the phrase, @and. . , a,, are constants denoting the sub-parts of the
phrase. For example, “John takes a plane” is represented by the collection of atoms:

John_ NN (z1), take .V B_11(el, x1,22), plane_-NN _1(x2)

The first atom says thatl denotes the noun (NN) “John” (the sense number is omitted
when the word has only one possible meaning). The second atom describes the action
performed by John. The word “take” is described as a verb (VB), used with meaning
number 11 from the WordNet 2.1 classification (i.e. “travel or go by means of a certain
kind of transportation, or a certain route”). The corresponding part of the discourse is
denoted by1. The second argument of relatiewke_V B_11 denotes the syntactic subject

of the action, while the third is the syntactic direct object.

The relations of the formhase_pos_sense can be classified based on the type of phrase
they describe. More precisely, there are six different types of predicates:

1. verb predicates

2. noun predicates

3. complement predicates
4. conjunction predicates

5. preposition predicates

6. complex nominal predicates

In recent papers [56], verb predicates have been used with variable number of argu-
ments, but no less than two. The first required argument is catigdn/eventuality The
second required argument denotes the subject of the verb. Practical applications of logic
forms [1] appear to use the oldixed slot allocatiorschema [58], in which verbs always
have three arguments, and dummy constants are used when some parts of the text are miss-
ing. For sake of simplicity, in the rest of the discussion, we consider only the fixed slot
allocation schema.

10 1.

Noun predicates always have arity one. The argument of the relation is the constant
that denotes the noun.

Complement relations have as argument the constant denoting the part of text that they
modify. For example, “run quickly” is encoded as (the tag RB denotes an adverb):

run_-VB_1(el, z1,22), quickly_-RB(el).

Conjunctions are encoded with relations that have a variable number of arguments,
where the first argument represents the “result” of the logical operation induced by the
conjunction [65, 58]. The other arguments encode the parts of the text that are connected
by the conjunction. For example “consider and reconsider carefully” is represented as:

and_CC'(el,e2,e3), consider V B_2(e2,x1,x2),
reconsider_ V B_2(e3,x3,x4), carefully_RB(el).

One preposition atom is generated for each preposition in the text. Preposition relations
have two arguments: the part of text that the prepositional phrase is attached to, and the
prepositional object. For example, “play the position of pitcher” is encoded as:

play V B_1(el, x1,22), position_ NN 9(x2),
of IN(x2,23), pitcher_N N _4(x3).

Finally, complex nominals are encoded by connecting the composing nouns by means
of thenn_NNC relation. Thenn_NNC predicate has a variable number of arguments,
which depends on the number of nouns that have to be connected. For example, “an orga-
nization created for business ventures” is encoded as:

organization NN _1(x2), create VB _2(el, z1,x2),
for_IN(el,x3),
nn_NNC(z3, 24, x5), business_ NN _1(x4), venture_N N _3(z5).

An important feature of the LLF approach is that the logic forms are also augmented
with named-entity tagsased onexical chains among concepi3]. Lexical chains are
sequences of concepts such that adjacent concepts are connected by an hypernymy
relatiorf. Lexical chains allow to add to the logic forms informatimnplied by the text
but not explicitly stated. For example, the logic form of “John takes a plane” contains a
named-entity tag:

human_NE(z1),

stating that John (the part of the sentence denotedibys a human being. The named-
entity tag is derived from the lexical chain connecting name “John” to concept “human
(being).”

A recent extension of this approach consists in further augmenting the logic forms
by means osemantic relations- relations between two words or concepts that provide a

2Recall that a word is a hypernym of another if the former is more generic or has broader meaning than the
latter.

Marcello Balduccini, Chitta Baral and Yulia Lierler 11

somewhat deeper description of the meaning of the tébre than30 different types of
semantic relations have been identified, including:

e PossessionROS_SR(X,Y)): X is a possession df.

e Agent (AGT_SR(X,Y)): X performs or causes the occurrence’of

e Location, Space, DirectiolfOC_SR(X,Y)): X is the location ofY".

e Manner M NR_SR(X,Y)): X is the way in which event” takes place.

For example, the agent in the sentence “John takes a plane” is identified by:
AGT_SR(x1,el).

Notice that the entity specified b§GT_S R does not always coincide with the subject of
the verb.

The key step in the automation of the generation of logic forms is the construction
of a parse tree of the text by a syntactic parser. The parser begins by performing word-
sense disambiguation with respect to WordNet senses [54, 26] and determines the parts of
speech of the words. Next, grammar rules are used to identify the syntactic structure of the
discourse. Finally, the parse tree is augmented with the word sense numbers from WordNet
and with named-entity tags.

The logic form is then obtained from the parse tree by associating atoms to the nodes
of the tree. For each atom, the relation is determined from the t(lplée, pos, sense)
that identifies the node. For nouns, verbs, compound nouns and coordinating conjunction,
a fresh constant is used as first argumamdépendent argumenof the atom and denotes
the corresponding phrase. Next, the other argumeetofdary argumentsf the atoms
are assigned according to the arcs in the parse tree. For example, in the parse tree for “John
takes a plane”, the second argumentadfe_V B_11 is filled with the constant denoting the
sub-phrase “John”, and the third with the constant denoting “plane.”

Named-entity tagging substantially contributes to the generation of the logic form when
the parse tree contains ambiguities. Consider the sentences [56]:

1. They gave the visiting team a heavy loss.
2. They played football every evening.

Both sentences contain a verb followed by two noun phrases. In (1), the direct object of
the verb is represented by the second noun phrase. This is the typical interpretation used
for sentences of this kind. However, it is easy to see that (2) is an exception to the general
rule, because there the direct object is given byfilsenoun phrase.

3Further information can be found at:

http://www.hlt.utdallas.edu/ ~moldovan/CS6373.06/
IS Knowledge _Representation _from _Text.pdf ,
http://iwww.hlt.utdallas.edu/ ~moldovan/CS6373.06/IS _SC.pdf , and

http://www5.languagecomputer.com/demo/polaris/PolarisDefinitions.pdf

12 1.

Named-entity tagging allows the detection of the exception. In fact, the phrase “every
evening” is tagged as an indicator of time. The tagging is taken into account in the assign-
ment of secondary arguments, which allows to exclude the second noun phrase as a direct
object and correctly assign the first noun phrase to that role.

Finally, semantic relations are extracted from text with a pattern identification process:
1. Syntactic patterns are identified in the parse tree.

2. The features of each syntactic pattern are identified.

3. The features are used to select the applicable semantic relations.

Although the extraction of semantic relations appears to be at an early stage of develop-
ment (the process has not yet been described in detail by the LCC research group), prelim-
inary results are very encouraging (see Section 1.4 for an example of the use of semantic
relations).

The approach for the mapping of English text into LLF has been used, for example, in
the LCC QA systenfrowerAnswefl, 20].

In the next section, we turn our attention to the reasoning task, and briefly describe the
reasoning component of the LCC QA system.

1.3 The COGEX logic prover of the LCC QA system

The approach used in many recent QA systems is roughly based on detecting matching
patterns between the question and the textual sources provided, to determine which ones
are answers to the question. We call the textual sources available to the sgsidiciate
answers Because of the ambiguity of natural language and of the large amount of syn-
onyms, however, these systems have difficulties reaching high success rates (see e.qg. [20]).
In fact, although it is relatively easy to find fragments of text that possibly contain the an-
swer to the question, it is typically difficult to associate to them some kind of measure al-
lowing to select one or moteest answersSince the candidate answers can be conflicting,

the inability to rank them is a substantial shortcoming.

To overcome these limitations, the LCC QA system has been recently extended with a
prover calledcoGex[20]. In high-level termscOGEX s used to analyze the connection
between the question in input and the candidate answers obtained using traditional QA
techniques. Consider the question “Did John visit New York City on Dec, 1?” and assume
that the QA system has access to data sources containing the fragments “John flew to the
City on Dec, 1” and “In the morning of Dec., 1, John went down memory lane to his trip
to Australia.” COGEX is capable of identifying that the connection between question and
candidate answer requires the knowledge that “New York City” and “City” denote the same
location, and that “flyingo a location” implies that the location will be visited. The type
and number of these differences is used as a measure of how close a question and candidate
answer are — in our example, we would expect that the first answer will be considered the
closest to the question (as the second does not descridetaal travel on Dec, 1). This
measure gives an ordering of the candidate answers, and ultimately allows the selection of
the best matches.

Marcello Balduccini, Chitta Baral and Yulia Lierler 13

The analysis carried out bgoGEX is based on world knowledge extracted from
WordNet (e.g. the description of the meaning of “fly (to a location)”) as well as
knowledge about natural language (allowing to link “New York City” and “City”). In this
context, the descriptions of the meaning of words are often cgliestes

To be used in the QA system, glosses from WordNet have been collected and mapped
into logic forms. The resulting pair&uord, gloss_LLF") provide definitions ofword.
Part of the associations needed to link “fly” and “visit” in the example above are encoded
in COGEX by axioms (encoding complete definitions, from WordNet, of those verbs with
the meanings used in the example) such as

Jzs, x4 Ver, 21, 22
fly-VB9(ey,x1,22) =
travel VB_1(e1,x1,x4) Ain_IN(ey,xz3) A airplane_ NN (x3)

31:37 L4, X9 Velv Ty1,T2
visit_-VB_2(ey,x1,T2) =
go_-VB_1(e1,x1,29) Ato_IN(e1,x3) A certain_JJ(xz3) A place_ NN (x3) A
as_for_IN(e1,x4) A sightseeing NN (x4).

(As discussed above, variableg, x4 in the first formula and:g in the second are place-
holders, used because verbs “fly,” “travel,” and “go” are intransitive.)

The linguistic knowledge is aimed at linking different logic forms that denote the same
entity. Consider for instance the complex nominal “New York City” and the name “City.”
The corresponding logic forms are

New_NN(z1), York_-NN(z3), City-NN(x3), nn-NNC (4,21, x2,T3)
and
City NN (zs).

As the reader can see, although in English the two names sometimes denote the same entity,
their logic forms alone do not allow to conclude thdt and x4 denote the same object.

This is an instance of a known linguistic phenomenon, in which an object denoted by a
sequence of nouns can also be denoted by one element of the sequence. In order to find
a match between question and candidate ansvasgEX automatically generates and uses
axioms encoding instances of this and other pieces of linguistic knowledge. The following
axiom, for example, allows to connect “New York City” and “City.”

Vo1, T2, T3, T4
New_NN(z1) ANYork_NN(z2)A
City NN (z3) Ann_NNC(xy4,21,22,23) — City_NN(x4).

Another example of linguistic knowledge usedd®gGEXis about equivalence classes
of prepositions. Consider prepositions “in” and “into”, which are often interchangeable.

4 To complete the connection, axioms for “travel” and “go” are also needed.

14 1.

Also usually interchangeable are the pairs “at, in” and “from, of.” It is often important for
the prover to know about the similarities between these prepositions. Linguistic knowledge
about it is encoded by axioms such as:

Vai,xe (inIN(x1,x9) < into_IN (z1,z2)).

Other axioms are included with knowledge about appositions, possessives, etc.

From a technical point of view, for each candidate answer, the task of the prover is that
of refuting the negation of the (logic form of the) question using the candidate answer and
the knowledge provided. If the prover is successful, a correct answer has been identified.
If the proof fails, further attempts are made by iterativeliaxingthe question and finding
a new proof. The introduction of the two axioms above, allowing the matching of “New
York City” with “City” and of “in” with “into”, provides two examples of relaxation. Other
forms of relaxation consist of uncoupling arguments in the predicates of the logic form, or
removing prepositions or modifiers (when they are not essential to the meaning of the
discourse). The system keeps track of how many relaxation steps are needed to find a
proof. This number is the measure of how close an answer and a questierttaechigher
the value, the farther apart they are. If no proof is found after relaxing the question beyond
a given threshold, the procedure is assumed to have failed. This indicates that the candidate
is notan answer to the question.

Empirical evaluations o€EOGEX have given encouraging results. [20] reports on ex-
periments in which the LCC QA system was tested, with and witb@d@EX, on the ques-
tions from the 2002 Text REtrieval Conference (TREC). According to the authors, the ad-
dition of coGEx caused &0.9% performance increase.

Notice that, while the use of the prover increased performance, it did not bring any
significant addition to thelass of questionthat can be answered. These systems can
do a reasonable job at matching parts of the question with other text to find candidate
answers, but they are not designed to perform inference (e.g. predictidhg story that
the question contains

That is why the type of reasoning carried out by these QA systems is sometimes called
shallow reasoning Systems that can reason on the domain described by the question are
instead said to performieep reasoningAlthough the above mentioned systems do not use
domain knowledge and common-sense knowledge (recall that together they are referred to
as background knowledge) that is needed for deep reasoning, they could do so. However it
is not clear whether the ‘iterative relaxing’ approach would work in this case.

In the following two sections we describe two QA systems capable of deep reasoning,
which use extraction of relevant facts from natural language text as a first step. We start
with the DD system that takes as input a logical theory obtained from natural language
text, as was described in this section.

1.4 Extracting relevant facts from logical theories and its use in the
DD QA system about dynamic domains and trips

The DD system focuses on answering questions in natural language about the evolution
of dynamic domains and is able to answer the kind of questions (such as reasoning about

Marcello Balduccini, Chitta Baral and Yulia Lierler 15

narratives, predictive reasoning, planning, counterfactual reasoning, and reasoning about
intentions) we presented in Section 1.1.1. Its particular focus is on travel and trips. For
example, given a paragraph statinlphn is in Paris. He packs the laptop in the carry-on
luggage and takes a plane to Baghdaahd a queryWhere is the laptop now?"'DD wiill
answer “Baghdad.”

Notice that the task of answering questions of this kind requires fairly deep reasoning,
involving not only logical inference, but also the ability tepresent and reason about
dynamic domains and defaults

To answer the above question, the system has to know, for instance, that whatever is
packed in the luggage normally stays there (unless moved), and that one’s carry-on luggage
normally follows him during trips. An important piece of knowledge is also that the action
of taking a plane has the effect of changing the traveler’s location to the destination.

In DD, the behavior of dynamic domains is modeledttansition diagramg37, 38],
directed graphs whose nodes denote states of the domain and whose arcs, labeled by ac-
tions, denote state transitions caused by the execution of those actions. The theory encod-
ing a domain’s transition diagram is called hemedel of the domain

The language of choice for reasoning in DD is AnsProlog [33, 9] (also called
A-Prolog [35, 36, 32]) because of its ability to both model dynamic domains and encode
commonsense knowledge, which is essential for the type of QA task discussed here. As
usual, problem solving tasks are reduced to computing models, called answer sets, of
suitable AnsProlog programs. Various inference engines exist that automate the
computation of answer sets.

1.4.1 The overall architecture of the DD system

The approach followed in the DD system for understanding natural language consists of
translating the natural language discourse, in various steps, isenitantic representation

(a similar approach can also be found in [14]), a collection of facts describing the semantic
content of the discourse and a few linking rules. The task of answering queries is then
reduced to performing inference on the theory consisting of the semantic representation
and model of the domain.

More precisely, given a discourgéin natural language, describing a particular history
of the domain, and a questiap, as well in natural language, the DD system:

1. obtains logic forms fo{ and@);

2. translates the logic forms fdf and@ into aQuasi-Semantic Representati@Sh,
consisting of AnsProlog facts describing properties of the objects of the domain
and occurrences of events that alter such properties. The representation cannot be
considered fully semantic, because some of the properties are still described using
syntactic elements of the discourse (hence the attrituds). The encoding of the
facts is independent of the particular relations chosen to encode the model of the
domain;

3. maps the QSR into a®bject Semantic Representati(@SH, a set of AnsProlog
atoms which describe the contentsiéfand @ using the relations with which the

16 1.

domain model is encoded. The mapping is obtained by means of AnsProlog rules,
calledOSR rules

4. computes the answer sets of the AnsProlog program consisting of the OSR and the
model of the domain and extracts the answer(s) to the question from such answer
sets.

Although, in principle, steps 2 and 3 can be combined in a single mappingHramd
Q@ into the OSR, their separation offers important advantages. First of all, separation of
concerns: step 2 is mainly concerned with mappth@nd(@ into AnsProlog facts, while
3 deals with producing a semantic representation. Combining them would significantly
complicate the translation. Moreover, the division between the two steps allows for a
greater modularity of the approach: in order to use different logic form generators, only
the translation at step 2 needs to be modified; conversely, we only need to act on step 3 to
add to the system the support for new domains (assuming the vocabuldrgrod does
not change). Interestingly, this multi-layered approach is also similar to one of the most
widely accepted text comprehension models from cognitive psychology [48].

We now illustrate the above steps in detail using an example.

1.4.2 From logic forms to QSR facts: an illustration
Consider

e a historyH consisting of the sentenceddhn is in Paris. He packs the laptop in the
carry-on luggage and takes a plane to Baghdad,

e aqueryQ, “Where is the laptop at the end of the trip?”

The first step consists in obtaining logic forms férand@. This task is performed by
the logic form generator described in Section 1.2, that here we call LLF generator. Recall
that LLFs consist of a list of atoms encoding the syntactic structure of the discourse aug-
mented with some semantic annotations. Horthe LLF generator returns the following
logic form, H;;:

John_NN(x1) & _human_NE(x1) & be_VB_3(el,x1,x27) &
in_IN(e1,x2) & Paris_NN(x2) & _town_NE(x2) &
AGT_SR(xl,el) & LOC_SR(x1,x2) &

pack_VB_1(e2,x1,x9) &

laptop_NN_1(x9) & in_IN(e2,x11) &
carry-on_JJ_1(x12,x11) &

luggage NN_1(x11) & and_CC(el5,e2,e3) &
take_VB_11(e3,x1,x13) & plane_NN_1(x13)

& to_TO(e3,x14) & Baghdad_NN(x14) &
_town_NE(x14) &

TMP_SR(x5,e2) & AGT_SR(x1,e2) & THM_SR(x9,e2) &
PAH_SR(x12,x11) & AGT_SR(x1,e3) &
THM_SR(x13,e3) & LOC_SR(x14,e3)

Marcello Balduccini, Chitta Baral and Yulia Lierler 17

Here,John_N N (z1) says that constantl will be used in the logic form to denote noun
(NN) “John”. Atom be_V B_3(el,x1,227) says that constanrtl denotes a verb phrase
formed by “to be”, whose subject is denotedby. Hence, the two atoms correspond to
“John is.’®

One feature of the LLF generator that is important for the DD system is its ability to
insert in the logic form simple semantic annotations and ontological information, most
of which are extracted from the WordNet database [54, 26]. Recall that, for example,
the suffix 3 in be_V B_3(el, z1,227) says that the third meaning of the verb from the
WordNet classification is used in the phrase (refer to Section 1.2 for more details). The
availability of such annotations helps to identify the semantic contents of sentences, thus
substantially simplifying the generation of the semantic representation in the following
steps. For instance, the logic form of verb “take” abdwée V B_11(e3, 21, 213) makes
it clear that John did not actualgyraspthe plane.

The logic form,Q;, for Q is:
laptop_NN_1(x5) & LOC_SR(x1,x5)

It can be noticed that the LLF generator does not generate atoms representing the verb.
This is the feature that distinguishes the history frehere is/was/..andwhen is/was/...
queries at the level of logic forfn In the interpretation of the logic form of such queries,

an important role is played by tteemantic relationsntroduced by the LLF generator.
Semantic relations are intended to give a rough description of the semantic role of various
phrases in the discourse. For exampl€)C_SR(x1,x5) says that the location of the
object denoted by5 is #1. Notice, though, that1 is not used anywhere else ;:

x1 is in fact a placeholder for the entity that must be identified to answer the question.
In general, in the LCC Logic Forms of this type of questions, the object of the query is
identified by the constant that is not associated with any lexical ittmthe example
above,z2 is associated to John bjohn_N N (x2), while 1 is not associated with any
lexical item, as it only occurs iBOC_SR(x1, x5).

The second step of the process consists in deriving the QSRAfgnand ;. The
steps in the evolution of the domain described by the QSR are calbadents Atoms of
the formtrue_at(F L, M) are used in the QSR to state that propéry is true at moment
M of the evolution. For example, the phrase correspondirbg 16 B_3(el, 1, 227) (and
associated atoms) is encoded in the QSR as:

true_at(at(john,paris), m(el)).

whereat(john, paris) (“John is in Paris”) is the property that holds at momerite1).

In fact, the third meaning of verb “to be” in the WordNet database is “occupy a certain
position or area; be somewhere.” Propeityjohn, paris) is obtained from the atom
in_IN(el,x2) as follows:

e in_IN is mapped into propertyt;

5As this sense of verb “to be” does not admit a predicative complement, corgtaig unused.

6Yes/no questions have a simpler structure and are not discussed here to save space. The translation of the
LLFs of Where-andWhenegueries that do not rely on verb “to be” (e.g. “where did John pack the laptop”) has
not yet been fully investigated.

18 1.

o the first argument of the property is obtained by extracting from the LLF the actor
of el: first, the constant denoting the actor is selected foery B_3(el, x1, 227);
next, the constant is replaced by the lexical item it denotes, using the LLF
John_NN (z1).

Events that cause a change of state are denoted by atoms of the form
event(EVENT_NAME,EVENT WORD,MEANING, M), stating that the event
denoted byEVENT_NAME and corresponding t&&V ENT _WORD occurred at
moment M (with MEANING being the index of the meaning of the word in
WordNet's classification). For instance, the QSR of the phrase associated with
take -V B_11(e3,z1,x13) is:

event(e3,take,11,m(e3)). actor(e3,john). object(e3,plane).
parameter(e3,to,baghdad).

The first fact states that the event of type “take” occurred at momei8) (with the
meaning “travel or go by means of a certain kind of transportation, or a certain route”)
and is denoted by3. The second and third fact specify the actor and the object of the
event. Atomparameter(e3, to, baghdad) states that the parameter of tyjeeof the event

is Baghdad.

A default temporal sequence of the moments in the evolution of the domain is extracted
from H;¢ by observing the order in which the corresponding verbs are listed in the logic
form. Hence, the QSR faff;; contains facts:

next(m(el),m(e2)). next(m(e2),m(e3)).

The first fact states that the moment in which John is said to be in Paris precedes the one in
which he packs. Notice that the actual order of events may be modified by words such as
“after”, “before”, “on his way”, etc. Although the issues involved in adjusting the order of

events haven't been investigated in detail, we believe that the default reasoning capabilities

of AnsProlog provide a powerful way to accomplish the task.

Finally, the QSR of); ; is obtained by analyzing the logic form to identify the property
that is being queried. AtomOC_SR(z1, 25) tells us that the query is about the location
of the object denoted hy5. The corresponding property as(laptop, C'), where variable
C needs to be instantiated with the location of the laptop as a result of the QA task. All the
information is condensed in the QSR:

answer_true(C) :- eventually_true(at(laptop,C)).
The statement says that the answer to the quetliisit(laptop, C) is predicted to be true
at the end of the story.

1.4.3 OSR: from QSR relations to domain relations

The next step consists in mapping the QSR relations to the domain relations. Since the
translation depends on the formalism used to encode the transition diagram, the task is
accomplished by aimterface modulessociated with the domain model. The rules of the
interface module are called Object Semantic Representation rules (OSR rules for short).

Marcello Balduccini, Chitta Baral and Yulia Lierler 19

The domain model used in our example is ttevel domain11, 34], a commonsense
formalization of actions involving travel. The two main relations used in the formalization
areh — which stands for holds and states which fluéhisid at each time point — ang—
which stands for occurs and states which actions occur at each time point.

The key object of the formalization is thep. Properties of a trip are its origin, des-
tination, participants, and means of transportation. Actiemn(Actor, T'rip) is a com-
pound action that consists in embarking in the trip and departing.

Hence, the mapping from the QSR of event “take”, shown above, is obtained by the
following OSR rules (some rules have been omitted to save space):

o(go_on(ACTOR,trip(Obj)), T) :- event(E,take,11,M),
actor(E,ACTOR),
object(E,Obj),
time_point(M,T).

h(trip_by(trip(Obj),0bj),T) :- event(E,take,11,M),
object(E,Obj),
time_point(M,T).

dest(trip(Obj),DEST) :- event(E take,11,M),
parameter(E,to,DEST),
object(E,Obj).

The first rule states that, if the QSR mentions event “take” with sense 11 (in the Word-
Net database, this sense refers to travel), the actor of the evéatdi®) R and the object
is Obj, then the reasoner can conclude that actiown(ACTOR, trip(Obj)) occurs at
time pointT'. In this example, the time point is computed in a straightforward way from
the sequence of moments encoded by relatiort described in the previous sectfoNo-
tice that the name of the trip is for simplicity obtained by applying a functiap to the
means of transportation used, but in more realistic cases this needn't be.

Explicit information on the means of transportation used for the trip is derived by the
second rule. The rule states that the object of event “take” semantically denotes the means
of transportation. Because, in general, the means of transportation can change as the trip
evolvestrip_by is a fluent.

The last rule defines the destination of the trip. A similar rule is used to define the
origin®.

Atoms of the formtrue_at(F' L, M) from the QSR are mapped into domain atoms by
the rule:

“Fluents are relevant properties of the domain whose truth value may change over time [37, 38].

8 Recall that, in more complex situations, the definition of relatiéme_point can involve the use of
defaults, to allow the assignment of time points to be refined during the mapping.

9Since in the travel domain the origin and destination of trips do not change over time, the formalization
is designed to allow to specify the origin using a static relation rather than a fluent. This simplification is not
essential and can be easily lifted.

20 1.

h(FL,T) :- true_at(FL,M),
time_point(M,T).

The mapping of relatioaventually_true, used in the QSR for the definition of relation
answer _true, is symmetrical:

eventually_true(FL) :- h(FL,n).

wheren is the constant denoting the time point associated with the end of the evolution of
the domain.

Since the OSR rules are written in AnsProlog, the computation of the OSR can be
combined with the task of finding the answer given the OSR: in our approach, the answer
to @ is found by computing, in a single step, the answer sets of the AnsProlog program
consisting of the QSR, the OSR rules, and the model of the travel domain. A convenient
way of extracting the answer whemobeLSY is used as inference engine, is to add the
following two directives to the AnsProlog program:

#hide. #show answer_true(C).
As expected, for our exampEMODELSreturns®:

answer_true(baghdad).

1.4.4 An early travel module of the DD system

As mentioned earlier, and as is necessary in any QA system performing deep reasoning,
the DD system combines domain knowledge and common-sense knowledge together with
information specific to the instance, extracted from text, questions, and the mapping rules
(of the previous subsection). As a start the DD system focused on domain knowledge about
travels and trips (which we briefly mention in the previous subsection) and contained rules
for commonsense reasoning about dynamic domains. In this section we briefly describe
various parts of an early version of this background knowledge base, which is small enough
to be presented in its entirety, but yet shows various important aspects of representation and
reasoning.

Facts and basic relations in the travel module

The main objects in the travel modules arg¢ions, fluents andt¢rips. In addition there
are various domain predicates and a Geography module.

1. Domain predicates: The predicates include predicates such passon(X),
meaningX is a person{(Y’), meaningY is a possible location of a trigime_point(X),
meaningX is a time pointiravel_documents(X), meaningX is a travel document such
as passports and ticketslongings(X), meaningX is a belonging such as a laptop or a
book; luggage(carry-on(X)), meaningX is a carry-on luggageluggage(lugg(X)),

10 http://wvww.tes.hut.fi/fSoftware/smodels/
11The issue of translating the answer back into natural language will be addressed in future versions of the
system.

Marcello Balduccini, Chitta Baral and Yulia Lierler 21

meaning X is a regular (non carry-on) luggageiossession(X), meaningX is a
possessioniype of transp(X), meaningX is a type of transportationaction(X)
meaningX is an action;fluent(X) meaningX is a fluent; andlay(X) meaningX is a
day.

2. The Geography module and related factéte DD system has a simple geography
module with predicatesity(X) denoting X is a city; country(X) denoting X is a
country;union(X) denotingX is a union of countries such as the European Union; and
in(X City,Y) denotingX C'ity is in the country or uniofY. In addition it has facts such
as owns(P, X), meaning persor® owns luggageX; vehicle(X,T) meaningX is a
vehicle of typeT’; h(X,T) meaning fluenfX holds at time poinf’; andtime(T, day, D)
meaning the day corresponding to time point T is D.

3. The Trips: The DD system has the specification of an activity “trip”. Origins and
destinations of trips are explicitly stated by the faetgin(j, C'1) anddest(j, C2).

4. Actions and actors:The DD system has various actions suchdapart(.J),
meaning trip.J departs from its origin;stop(J, C), meaning tripJ stops at cityC;
go_on(P,J), meaning persorP goes on tripJ; embark(P,J), meaning persorP
embarks on trip/; anddisembark(P, J), meaning perso® disembarks from trip/. In
each of these actionkrefers to a trip. Other actions incluget(P, PP), meaning person
P gets possessio®?P; pack(P, PP,C), meaning persorP packs possessioRP in
containerC'; unpack(P, PP,C), meaning persotP packs possessioR P in container
C; andchange_to(J,T), meaning tripJ changes to the type of transportati®h The
domain contains facts about actions and actors. For example thectaet (depart(j))
means thatlepart(j) is an action; and the faetctor(depart(j), 7) means thay is the
actor of the actiomlepart(j).

5. Fluents: The DD system has various fluents suctu&{&, D), meaning the person
P is at locationD; participant(P, J), meaning the persof is a participant of trip/;
has_with_him(P, PP), meaning perso® has possessioR P with him; inside(B, C),
meaningB is inside the containef’; andtrip_by(J, T), meaning the trip/ is using the
transportation typé".

The rules in the travel module

We now present various rules of the travel module. We arrange these rules in groups that
have a common focus on a particular aspect.

6. Inertia: The following two rules express the commonsense law of inertia that nor-
mally fluents do not change their value.

h(FI,T+1) :- T < n, h(FI,T), not -h(FI,T+1).
-h(FI,T+1) - T < n, -h(FI,T), not h(FI,T+1).

7. Default values of some fluentghe following two rules say that, normally, people
have their passport and their luggage with them at the beginning of the'$tefgre, 0

12 Obviously these defaults are meaningful only in the context of travel-related stories, and can be suitably
qualified in AnsProlog . We omit the qualification to simplify the presentation.

22 1.

denotes initial time point. (A different number could have been used with minor changes
in few other rules.)

h(has_with_him(P,passport(P)),0) :-

not -h(has_with_him(P,passport(P)),0).
h(has_with_him(P,Luggage),0) :-

owns(P,Luggage),

not -h(has_with_him(P,Luggage),0).

8. Agent starting a journeyThe following two rules specify that normally people start
their journey at the origin of the journey.

h(at(J,C),0) :- o(go_on(P,J),0), origin(J,C),
not -h(at(J,C),0).

h(at(P,C),0) :- o(go_on(P,J),0), origin(J,C),
not -h(at(P,C),0).

9. Direct and Indirect effect of the actiamnbark: The effects of the actioambark
and its executability conditions are expressed by the rules given below.

The following rule expresses that a person after embarking on a journey on a plane no
longer has his luggage with him.

-h(has_with_him(P,lugg(P)),T+1) :- o(embark(P,J),T),
h(trip_by(J,plane),T).

The following three rules express conditions under which a person can embark on a
journey: he must be a participant; he must be at the location of the journey and he must
have all that he needs to embark on that journey.

-o(embark(P,J),T) :- -h(participant(P,J),T).

-o(embark(P,J),T) :- h(at(P,D1),T), h(at(J,D2),T),
neq(D1,D2).

-o(embark(P,J),T) :- need(P,TD,J),
-h(has_with_him(P,TD),T).

The following rules define what person needs to go embark on a trip. The first rule says
he normally needs a passport if he is traveling between two different countries. The third
rule states an exception that one traveling between two European Union countries does not
need a passport. The fourth rule states that one normally needs a ticket for a journey. The
fifth rule states an exception that for a car trip one does not need a ticket. The last two rules
define a car trip as a trip which started as a car trip and which has not changed its mode of
transportation.

need(P,passport(P),J) :- place(embark(P,J),C1),
dest(J,C2), diff_countries(C1,C2),
not -need(P,passport(P),J).
diff_countries(C1,C2) :- in(C1,Countryl), in(C2,Country2),

Marcello Balduccini, Chitta Baral and Yulia Lierler 23

neq(Countryl,Country?2).
-need(P,passport(P),J) :- citizen(P,eu),

place(embark(P,J),C1),

dest(J,C2), in(C1l,eu), in(C2,eu).

need(P,tickets(J),J) :- not -need(P,tickets(J),J).
-need(P tickets(J),J) :- car_trip(J).

-car_trip(J) - h(trip_by(J, TypeOfTransp),T),
neq(TypeOfTransp,car).
car_trip(J) - h(trip_by(J,car),0),

not -car_trip(J).

10. Direct and Indirect effect of the actialisembark: The direct and indirect effects
of the actiondisembark and its executability conditions are expressed by the rules given
below.

The first two rules express that by disembarking a person is no longer a participant of a
trip and unless his luggage is lost, he has his luggage with him. The third and fourth rules
specify that one can not disembark from a trip at a particular time if he is not a participant
at that time, or if the journey is en route at that time.

-h(participant(P,J), T+1) :- o(disembark(P,J),T).
h(has_with_him(P,lugg(P)),T+1) :-
o(disembark(P,J),T),
o(embark(P,J),T1),
h(has_with_him(P,lugg(P)),T1),
not h(lost(lugg(P)),T+1).

-o(disembark(P,J),T) :- -h(participant(P,J),T).
-o(disembark(P,J),T) :- h(at(J,en_route),T).

11. Rules about the actiojv_on: The actiongo_on is viewed as a composite action
consisting of first embarking and then departing. This is expressed by the first two rules
below. The third rule states that a plane trip takes at most a day.

o(embark(P,J),T) :- o(go_on(P,J),T).
o(depart(J),T+1) :- o(go_on(P,J),T).

time(T2,day,D) | time(T2,day,D + 1) :- o(go_on(P,J),T1),
o(disembark(P,J),T2),
time(T1,day,D),
h(trip_by(J,plane), T1).

12. Effect of the actioget: The first rule below states that if one gets something then
he has it. The second rule states that getting a passport could take at least three days. Rules
that compute the duration of an action are discussed later in item 16.

h(has_with_him(P,PP),T+1) :- o(get(P,PP),T).
:- duration(get(P,passport(P)),Day), Day < 3.

24 1.

13. Effect axioms and executability conditions of the actjpng: andunpack:

The first two rules below state the effect of packing and unpacking a possession inside
a container. The third and fourth rule state when one can pack a possession and the fifth
and sixth rules state when one can unpack a possession.

h(inside(PP,Container), T+1) :- o(pack(P,PP,Container),T).
-h(inside(PP,Container), T+1) :- o(unpack(P,PP,Container),T).
-o(pack(P,PP,Container),T) :- -h(has_with_him(P,PP),T).
-o(pack(P,PP,Container),T) :- -h(has_with_him(P,Container),T).

-o(unpack(P,PP,Container),T) :- -h(has_with_him(P,Container),T).
-o(unpack(P,PP,Container),T) :- -h(inside(P,Container),T).

14. Direct and Indirect effects (including triggers) of the actialapart and stop:

The first two rules below express the impact of departing and stopping. The third
rule says that a stop at the destination of a journey is followed by disembarking of the
participants of that journey. The fourth rule says that a stop in a non-destination is normally
followed by a depart action. The fifth and sixth rules give conditions when departing and
stopping is not possible. The seventh rule says that normally a trip goes to its destination.
The eighth rule says that after departing one stops at the next stop. The last rule states that
one can stop at only one place at a time.

h(at(J,en_route), T+1) :- o(depart(J),T).
h(at(J,C),T+1) - o(stop(J,C),T).

o(disembark(P,J),T+1) :- h(participant(P,J),T),
o(stop(J,D),T), dest(J,D).

o(depart(J),T+1) ;- o(stop(J,C),T), not dest(J,C),
not -o(depart(J),T+1).

-o(depart(J),T) - h(at(J,en_route),T).
-o(stop(J,C),T) - -h(at(J,en_route),T).
o(stop(J,C),T) - h(at(J,en_route),T), dest(J,C),
not -o(stop(J,C),T).
o(stop(J,C2),T+1) - leg_of(3,C1,C2), h(at(J,C1),T),
o(depart(J),T).
-o(stop(J,C),T) - 0o(stop(J,C1),T), neq(C,C1).

15. Effect of changing the type of transportation:

h(trip_by(J,Transp),T+1) :- o(change_to(J,Transp),T).

16. State constraints about the dynamic domdihe following are rules that encode
constraints about the dynamic domain. The first rule states that an object can only be in
one place at a particular time. The second rule states that a trip can only have one type of
transportation at a particular time. The third rule states that if a person is at a location then

Marcello Balduccini, Chitta Baral and Yulia Lierler 25

his possessions are also at the same location. The fourth rules states that a participant of a
trip is at the same location as the trip. The fifth rules states that if a person has a container
then he also has all that is inside the container. The last rule defines the duration of an
action based on the mapping between time points and days. (It assumes that all actions
occurring at a time point have the same duration.)

-h(at(O,D1),T) - h(at(0,D2),T), neq(D1,D2).
-h(trip_by(J,Transp2),T) :- h(trip_by(J,Transpl),T),
neq(Transpl,Transp2).

h(at(PP,D),T) .- h(has_with_him(P,PP),T), h(at(P,D),T).
h(at(P,D),T) :- h(participant(P,J),T), h(at(J,D),T).

h(has_with_him(P,PP),T) :- h(inside(PP,Container),T),
h(has_with_him(P,Container),T).

duration(A,D) :- action(A), o(A,T), time(T,day,D1),
time(T+1,day,D2), D = D2 - D1.

1.4.5 Other enhancements to the travel module

The module in the previous section is only sufficient with respect to some of the text ques-
tion pairs of Section 1.1.1. For others we need additional modules, such as planning mod-
ules, modules for reasoning about intentions, and modules that can map time points to a
calender.

Planning

Planning with respect to a goal can be done by writing rules about whether a goal is sat-
isfied at the desired time points; writing rules that eliminate models where the goal is not
satisfied and then writing rules that enumerate possible action occurrences. With respect
to the example in Section 1.1.1 (fifth item), the following rules suffice.

answer_true :- o(go_on(john,j,T)), origin(j,boston),
dest(j,paris), time(T,day,4).
yes :-answer_true.

- not yes.
{o(Act,T) : action(Act) : actor(Act,P)}1 :- T < n-1.

The first rule states that the answer to queiy “true” if John performs the action of going
to Paris on day 4. The next two rules say that it is impossible for the answer not to be
“true.” Finally, the last rule states that any action can occur at any time step.

Reasoning about intentions

To reason about intentions one needs to formalize commonsense rules about intentions
[10]. One such rule is that an agent after forming an intention will normally attempt to

26 1.

achieve it. Another rules is that an agent will not usually give up on its intentions without
good reason; i.e., intentions persist. We now give a simple formalization of these. We
assume that intentions are a sequence of distinct actions.

In the followingintended_seq(S, I) means that the sequence of actiéhis intended
starting from time pointf. Similarly, intended_action(A, I) means that the actioA is
intended (for execution) at time point

intended_action(A,l) .- intended_seq(S,l), seq(S,1,A).

intended_action(B,K+1) :- intended_seq(S,l), seq(S,J,A),
occurs(A,K), time_point(K),
Seq(Sv‘J+lvB)

occurs(A,l) .- action(A), intended_action(A,l),
time_point(l), not -occurs(A,l).

intended_action(A,lI+1) :- action(A), time_point(l),
intended_action(A,l),
not occurs(A,l).

The first rule above encodes that an individual actida intended for execution at time
point 1, if, Ais the first action of a sequence which is intended to be executed starting from
time point/. The second rule encodes that an individual actias intended for execution
at time pointK+1, if B is the J+1th action of a sequence intended to be executed at an
earlier time point and théth action of that sequence iswhich is executed at time point
K. The third rule encodes the notion that intended actions occur unless they are prevented.
The last rule encodes the notion that if an intended action does not occur as planned then
the intention persists.

1.5 From natural language to relevant facts in the ASU QA System

In the previous section relevant facts and some question-related rules were obtained from
natural language by processing a logic form of the natural language. In this section we
briefly mention an alternative approach from [71] where the output of a semantic parser is
used directly in obtaining the relevant facts. In addition we illustrate the use of knowledge
in reducing semantic ambiguities. Thus knowledge and reasoning is not only useful in
obtaining answers but also in understanding natural language.

In the ASU QA system to extract the relevant facts from sentences, Link Grammar [70]
is used to parse the sentences so that the dependent relations between pairs of words are
obtained. Such dependent relations are knowliinks. The Link Grammar parser outputs
labeled links between pairs of words for a given input sentence. For instance, ifivisord
associated with word through the link “S”,a is identified as the subject of the sentence
while b is the finite verb related to the subject From the links between pairs of words,

a simple algorithm is then used to generate AnsProlog facts. A simplified subset of the
algorithm is presented as follows:

Input: Pairs of words with their corresponding links produced by the Link Grammar
parser.

Marcello Balduccini, Chitta Baral and Yulia Lierler 27

Output: AnsProlog facts.

Suppose; is the current event numbiérand the event is described in tjeh sentence
of the story.

1. Form the factsn_sentence(e;, j) andevent_num(e;).

2. If word « is associated with word through the link “S” (indicating: is a subject
noun related to the finite verb), then form the factsvent_actor(e;,a) and
event_nosense(e;,b). If a appears in the name database, then form the fact
person(a).

3. If word « is associated with wordl through the link “MV” (indicatinga is a verb
related to modifying phras®, andb is also associated with wordthrough the link
“J" (indicating b is a preposition related to objecf), then form the fact
parameter(e;, b, c). If c appears in the city database, then form the fégt(c).

4. If word « is associated with wordthrough the link “O” (indicating: is a transitive
verb related to objedt), then form the factaoun(b) andobject(e;, b).

5. If word a is associated with worblthrough the link “ON” (indicating: is the prepo-
sition “on” related to certain time expressiénandb is also associated with word
through the link “TM” (indicatingb is a month name related to day numbgrthen
form the factoccurs(e;, b, c).

6. If word a is associated with word through the link “Dmcn” (indicating: is the
clock time and is AM or PM), then form the factlock _time(a). (Herea is a time
as one reads in a clock and hence is more fine grained than the information in the
earlier used predicatéme_point.)

7. If word a is associated with word through the link “TY” (indicatingb is a year
number related to datg , then form the facbccurs_year(e;, b).

8. If word a is associated with wortlthrough the link “D” (indicatingz is a determiner
related to noum), then form the fachoun(b).

To illustrate the algorithm, the Link Grammar output for the sentence “The train stood
at the Amtrak station in Washington DC at 10:00 AM on March 15, 2005.” is shown below
in figure 1.2.

The following facts are extracted based on the Link Grammar output:

event_num(el). in_sentence(el,1).
event_actor(el,train). event_nosense(el,stood).
parameter(el,at,amtrak_station).
parameter(el,in,washington_dc).

parameter(el,at,t10_00am). occurs(el,march,15).

13we use a complex sentence processer that processes complex sentences to a set of simple sentences. Thus
we assume that there is one event in each sentence. We assign event numbers sequentially from the start of the
text. This is a simplistic view and there have been some recent work on more sophisticated event analysis, such
as in [47].

28 1.

e L £
——————————————————————— MV et |
L -V p- = S -4 | |
| s e + | |
| | -==0s + dmemm——a JE==——— L e = -4 |
+=-Os—+—585—+-MVp—+ | +-——-AN——+ | fr==ge=t | +0mcnt+ +-—
I

| | [| |] | { | | |
the train.n stocd.v at the Amtrak station.n in Washington DC at 10:00 BM on
o —TT-———+
ON4+=TM-+ +=-Xd+¥Xc+
| [l [
March 15 , 2005 .

Figure 1.2: Output of the Link Grammar Parser fadiht train stood at the Amtrak station
in Washington DC at 10:00 AM on March 15, 2005

occurs_year(el,2005). person(john).
city(washington_dc). verb(stood).
noun(train). noun(amtrak_station).

clock_time(t10_00am).

In the above extracted facts, the constants an identifier that identifies related facts
extracted from the same sentence. Atoms suchh@sn(train), verb(stood) are
event independent and thus no event number is assigned to such facts. The atom
event_nosense(el, stood) indicates that word sense has yet to be assigned to the word
stood

After extracting the facts from the sentences, it is necessary to assign the correct mean-
ings of nouns and verbs with respect to the sentence. The process of identifying the types
utilizes WordNet hypernyms. Word is a hypernym of word if a has a “is-a” relation
with b. In the travel domain, it is essential to identify nouns that are of the types transporta-
tion (denoted agran) or person (denoted asrson). Such identification is performed
using predefined sets of hypernyms for both transportation and persorf, s a set
of hypernyms for typé. Nouna belongs to type if a is a hypernym ofh € H;, and a
AnsProlog factt(a) is formed. The predefined sets of hypernyms of transportation and
person areH,, = {travel, public transport, conveyarjcand H,,s,, = {persor}. For
instance, the hypernym of the notrain is conveyance So we assign a AnsProlog fact
transportation(train).

A similar process is performed for each extracted verb by using the hypernyms of
WordNet. The component returns all possible senses of a given verb. Given the verb
andv has hypernym/’, then the component returns the faeta(v, v'). From the various
possible senses of verbs, the correct senses are matched by utilizing the extracted facts
related to the same event. AnsProlog rules are written to match the correct senses of verbs.
The following rule is used to match the correct senses of a verb that has the meadnéng of

event(E,be) :- event_actor(E,TR),
is_a(V,be), event_nosense(E,V),
parameter(E,at,C), parameter(E,at,T).

Marcello Balduccini, Chitta Baral and Yulia Lierler 29

The intuition of the above AnsProlog rule is that véfthas the meaning dfeif event
E has transportatiofi’ R as the actor and’ involves cityC, clock timeT andV has the
hypernymbe With the extracted facts, we can assign the meaningtaidto have the
meaning ofbein our example sentence.

Using the extracted facts together with verbs and nouns with their correct senses, rea-
soning is then done with an AnsProlog background knowledge base similar to the one in
the DD system described in the previous section.

1.6 Nutcracker — System for Recognizing Textaul Entailment

In the problem of recognizing textual entailment, the goal is to decide, given deagikt

and a hypothesiblypothesisexpressed in a natural language, whether a human reasoner
would call the hypothesiklypothesisa consequence of the text. The following example is
part of Text Hypothesigair No. 633 in the collection of problems proposed as the Second
PASCAL Recognizing Textual Entailment Challenge [8]:

Text Yoko Ono unveiled a statue of her late husband, John Lennon.
Hypothesis Yoko Ono is John Lennon’s widow.
Expected entailmentres

We can see recognizing textual entailment (RTE) as a special case of the question answer-
ing problem. It is a textual answering task that covers only some aspects of general QA
problem. Most of the systems that are designed to solve this problem [24, 8] reason di-
rectly on a natural language input by applying various statistical methods. These methods
generally encounter problems when reasoning involves background knowledge. To recog-
nize the fact thaHypothesids “entailed” by Text we often need to use some background
commonsense knowledge. For instance, in the example above it is essential that “being a
late wife” is a the same as “being a widow”.

One approach to the RTE problem is to use first-order reasoning tools to check whether
the hypothesis can be derived from the text conjoined with relevant background knowledge,
after expressing all of them by first-order formulas. Bos and Markert employ this method
in [17] and implemented in the system NutcradkeRelated work is described in [5, 28].

We can summarize the approach to recognizing textual entailment employed by Bos
and Markert as follows:

1. TextandHypothesisare represented first by discourse representation structures [46]
and then by first-order formulas andC respectively,

2. potentially relevant background knowledge is identified and expressed by a first-
order formulaBK,

3. an automated reasoning system, first-order logic theorem prover or model builder, is
used to check whether the implication

TABK— C

is logically valid.

L4nttp:/ivww.cogsci.ed.ac.uk/ ~jbos/RTE/ .

30 1.

Step 1 of this approach employs similar ideas as described in Section 1.2 where
lambda calculus is used to build semantic representation of a text in the form of first-order
logic formula. Instead, lambda calculus is used to build semantic representation of a text
in the form of discourse representation structure (DRS) [16]. Next, discourse
representation structure is translated into first-order logic formula as described in [15].
The intermediate step of building DRS for the text, for instance, allows the Nutcracker
system to use the anaphora resolution mechanism that discourse representation
theory [46] about DRSs provides. Consider

Text Yoko Ono unveiled a statue of her late husband, John Lennon.

It has the following first-order logic representation produced by Nutcracker

dx y z e (p-ono(x) A p_yoko(x) Ar_of (z, z)A
n_statue(y) Ar-of (y, z)A
alate(z) A n_husband(z) A plennon(z) A p_john(z)A
n_event(e) A v_unveil(e) A r_agent(e,) A r_patient(e,y)).

It is interesting to note different prefixes , n_ ,v_, r_,p_ that intuitively stand for
adjective, noun, verb, relation, and person. The fact that Yoko Ono is a person or statue is
a noun is available to Nutcracker from a syntax parse tree of a sentence produced by
Combinatorial Categorial Grammar (CCG) patSeemployed by the system. On the
other hand unary predicatesevent, r_agent andr_patient are fixed symbols that are
generated during the semantic analysis of the sentence by associating the transitive verb
unveilwith the event whose agent is Yoko Ono and patient is the statue.

Nutcracker approach benefits by choosing first-order logic as the formal language for
representing semantic meaning of the sentence. First-order logic allows occurrence of
negation, disjunction, implication, universal and existential quantifiers in the formula with
arbitrary nesting. This provides a possibility to formally express various natural language
phenomena. For example, for sentence “John has all documents.”, Nutcracker produces
the following first-order logic formula

Fz(p-john(z)A
Yy (n_document(y) —
Jde (n_event(e) A v_have(e) A r_agent(e,x) A r_patient(e,y))).

To the best of our knowledge logic form employed by the LCC method described in Sec-
tion 1.2 is not capable of properly representing the sentences of such type. l.e., the infor-
mation about generalized quantifedt used in the sentence will be lost.

Unlike the LCC method that performs word sense disambiguation while producing
logic form of the sentence, Nutcracker disregards this issue.

Step 2 of Nutcracker system that identifies potentially relevant background knowledge
is based on the following principles. Words occurringifextandHypothesisare used as
triggers for finding necessary background knowledge that is represented as a set of first-
order logic axiom®BK. Nutcracker generates the form& using hand coded database
of background knowledge and automatically generated axioms.

L5http://svn.ask.it.usyd.edu.au/trac/candc/wiki/

Marcello Balduccini, Chitta Baral and Yulia Lierler 31

Hand coded knowledge is of two types. One is domain specific, as for example first-
order logic formula

Vo y (n-husband(z) A alate(z) Ar-of(x,y)) — (nowidow(y) Ar-of (y,x)))

that encodes the fact thatifis a late husband af theny is a widow ofz*. Other hand
coded axioms represent the generic knowledge that cover the semantics of possessives,
active-passive alternation, and spatial knowledge. Bos and Markert in [17] present the
axiom

Ve x y (n-event(e) A r_agent(e,z) A f-in(e,y) — f-in(z,y))

as an example. It states that if an event occurs in some location then the agent of this event
is at the same location. Note that restating this axiomnasrhally if an event occurs in

some location then the agent of this event is at the same location” is a nontrivial task for the
first-order logic formalism. On the other hand, the approach described in Section 1.4 and
Section 1.5 where nonmonotonic AnsProlog language is used to represent the background
knowledge suits well for representing such axioms.

Automatically generated knowledge is created by two means. One uses hypernym
relations of WordNet to create an ontology for the nouns and verbs occurring in the text that
corresponds to some snapshot of the general WordNet database. Such ontology is called
MiniWordnet and its construction mechanism is described in [16]. Its general structure
is a tree whose nodes represent the words and the edges stand for the hypernym relations
between the words. For example, MiniWordnet will, among others, contain the following
hypernym relation for the sentence “Yoko Ono is John Lennon’s widow.tvidow is a
hypernym ofn_person. Nutcracker produces two kinds of first-order logic formulas that
encode the knowledge represented by the MiniWordnet. First, it creates the implication for
each hypernym relation that occurs in the ontology. If MiniWordnet contains information
that n_widow is a hypernym ofn_person then the corresponding first-order formula is
generated

YV (n-widow(x) — n_person(x)).

It naturally can happen that one of the nodes in MiniWordnet has several children, i.e., sev-
eral words are in hypernym relation with the node. Linguistic evidence suggests that the
concepts (honsynonyms) that are in hypernym relation with the same word are mutually
exclusive. For instance, node that containgerson might have two children that stand

for n_widow andn_husband. In such case, Nutcracker generates the following two impli-

cations forBK
YV (nawidow(x) — —~n_husband(z))

YV (n_husband(x) — —n_widow(z)).

The second type of background knowledge automatically generate by the Nutcracker
uses the syntax and lexical information provided by the parser. For instance, when the
parser recognizes th&toko is a person, the system will generate the following first-order
logic formula

Yz (p-yoko(x) — n_person(x)).

18|n fact such an axiom has a flaw. Consider a following J&ixt “Abraham is the husband of Sarah.
Abraham is the father of Isaac. Isaac is the husband of RebeccaMyputhesis “Abraham is the husband of
Rebecca.” Given a first-order logic representation of the pair and this aXmxtentailsHypothesis Resolving
such issues is the problem of farther investigation.

32 1.

The last step of the Nutcracker approach involves the use of an automated reasoning
system, first-order logic theorem prover or model builder, to check whether the implication

TABK—C (1.1)

is logically valid. The formulag™ andC' are created during the Step 1 and correspond to
TextandHypothesigespectively. FormulBK, on the other hand, is the conjunction of the
first-order formulas construction of which is described above.

Bos and Markert [17] propose the use of first-order logic tools in the following manner:

1. if a theorem prover finds a proof for the formula (1.1), Nutcracker concludes that
TextentailsHypothesis

2. if a theorem prover finds a proof for the formula
—(T ABK) A C,

then Nutcracker concludes thaxtdoes not entail thélypothesisdue to the fact
that they are inconsistent.

3. if a model builder finds a model for the negation of the formula (1.1)
T ABKA=C (1.2)
then the system concludes that there is no entailment.

It is interesting to note that if the formula (1.2) belongs to the class of “effectively
propositional,” or “near-propositional” formulas [67] then it would be sufficient to only
use, so called, effectively propositional reasoning (EPR) solvers to find an entailment.
Effectively propositional formula is the universal closure of a quantifier-free formula in
conjunctive normal form. On the class of such formulas the above three invocations of first-
order tools can be reduced to one. For instance, model builseaDOX!’ can also be seen
as an EPR-solver, as it always recognizes a formula that can be converted into effectively
propositional formula and is able to either find its models or state that the formula has
no model. Furthermore, for effectively propositional formulas logic programming under
stable model semantics can be used to verify the entailment.

This approach to RTE is related to QA approach described in Section 1.4 and
Section 1.5. First, Bos and Markert also consider the step of acquiring the related
background knowledge as a vital element of a successful system for solving the RTE
problem. Second, this method uses the first-order logic as the semantic representation
language for the texts and background knowledge. Similarly, the systems described in
Sections 1.4, 1.5 translate the natural language input and background knowledge into the
AnsProlog rules. In both cases the representations have a formal model-theoretic
semantics. Afterwards the approaches use general-purpose inference mechanisms
designed for first-order logic and answer set programming inference respectively.

http://vww.math.chalmers.se/ ~koen/paradox/

Marcello Balduccini, Chitta Baral and Yulia Lierler 33

1.7 Mueller’s story understanding system

A different technique for obtaining a semantic representation of the discourse is described
by Mueller in [62]. The technique usdsvent Calculug69, 55, 61] (which originated

from [49] and evolved through [68]) for the semantic representation of the text. There,
the discourse is initially mapped into a collectiontemplates- descriptions of the events
consisting of frames with slots and slot fillers. Consider the text (this example is taken
from [62]):

Bogota, 15 Jan 90 — In an action that is unprecedented in Colombia’s history of
violence, unidentified persons kidnapp&d people in the strife-torn banana-growing
region of Uraba, the Antiougia governor’s office reported today. The incident took place
in Puerto Bello, a village in Turbo municipality, 460 Km northwest of Bogota [...].

Information extraction systems [2, 3] can be used to generate a template such as:
0. MESSAGE: ID DEV-MUC3-0040 (NNCOSC)
1. MESSAGE: TEMPLATE 1
2. INCIDENT: DATE - 15 JAN 90
3. INCIDENT: LOCATION COLOMBIA: URABA (REGION):

TURBO (MUNICIPALITY): PUERTO BELLO (VILLAGE)

4. INCIDENT: TYPE KIDNAPPING
5. INCIDENT: STAGE OF EXECUTION ACCOMPLISHED
[

]

PERP: INCIDENT CATEGORY TERRORIST ACT
PERP: INDIVIDUAL ID “UNIDENTIFIED PERSONS"/[...]
]

19: HUM TGT: NAME —

20. HUM TGT: DESCRIPTION: “VILLAGERS”

21. HUM TGT: NUMBER 31: “VILLAGERS”

22. HUM TGT: FOREIGN NATION —

23. HUM TGT: EFFECT OF INCIDENT —

24. HUM TGT: TOTAL NUMBER —

Next, each template is analyzed to find g®@ipt active in the template. The script
determines the type of commonsense knowledge that the reasoner will use to understand
the discourse. The above template is classified as matchirkidtheppingscript.

The pair consisting of the template and the script is then mapped tdmanonsense
reasoning problenencoding the initial state and narrative of events that take place in the
story. Differently from what happens in the DD system, the commonsense reasoning
problems for a particular script have a rather rigid structure: events listed in the script are
alwaysassumed to occur (apparently, even in the presence of contrary evidence from the
text), while events mentioned in the story but not in the script are disregarded.

For the kidnapping script, the initial state and sequence of events are:

1. Initially the human targets are at a first location and the perpetrator is at a second
location.

2. Initially the human targets are alive, calm, and uninjured.

34 1.

. The perpetrator loads a gun.

. The perpetrator walks to the first location.

. The perpetrator threatens the human targets with the gun.

. The perpetrator grabs the human targets.

. The perpetrator walks to the second location with the human targets.

. The perpetrator walks inside a building.

© 00 N o o b~ W

. The perpetrator lets go of the human targets.
10. For each human target:

a) If the effect on the human target (from the templatedésith the perpetrator
shoots the human target resulting in death.

b) Otherwise, if the effect on the human targeinigiry, the perpetrator shoots the
human target resulting in injury.

c) Otherwise if the effect on the human targetrégained freedomthe human
target leaves the building and walks back to the first location.

Finally, reasoning is reduced to performing inferences on the theory formed by the
commonsense reasoning problem and the commonsense knowledge selected based on the
active script. The commonsense knowledge consists of Event Calculus axioms such as:

% An object can be only in one location at a time.
HoldsAt(At(object, locationl), time) A
HoldsAt(At(object, location2), time) =
locationl = location?2.

% For an actor to activate a bomb, he must be holding it.

Happens(BombActivate(actor, bomb), time) =
HoldsAt(Holding(actor, bomb), time).

Next, we describe how Event Calculus theories can be used for question answering.
Notice that the approach described in [62] does not explain how the questions are to be
mapped into their logical representation.

For yes-no question answering about space:

Was actor ‘a

present when eventé” occurred?

o If for every time pointt at whiche occurs, the locations af and that of the actor of
e coincide,the answer is “yes”

o If for every time pointt at whiche occurs, the two locations diffethe answer is
“no.”

Marcello Balduccini, Chitta Baral and Yulia Lierler 35

o Otherwisethe answer is “some of the times.”

For yes-no question answering about time:

Was fluentf true before event occurred?

o If fistrue for all time points less than or equaliidhe answer is “yes”

o If fis false for all time points less than or equakithe answer is “no.”

It is also possible to deal with more complex questions whose answer is a phrase, such
as “Where is the laptop?” Given an event or a flugmthose i* argument is the one being
asked, one can return an answer consisting of the conjunction éf thiguments of all the
events of fluents in the model that matgin all the arguments except thé i To answer
the question about John’s laptop, for example, the reasoner will return a conjunction of all
the fluents of the fornat(laptop, L) that occur in the model of the theory.

1.8 Conclusion

To answer natural language questions posed with respect to natural language text, one
either needs to develop a reasoning engine directly in natural language [52, 24, 41, 25] or
needs a way to translate natural language to a formal language for which reasoning engines
are available. While the first approach is commonly used for textual answering tasks such
as in PASCAL [24] where the system needs to determine if a certairftdgtiows from

a textT', at this point it is not developed enough to be used for answering the questions
of the kind in Section 1.1.1. For questions of this kind there is an additional issue besides
translating natural language to formal language; the need for commonsense knowledge,
domain knowledge and specific reasoning modules. These are needed because often to
answer a question with respect to a given text one needs to go beyond the text. The only
exception is when the answer is a fact that is directly present or contradicted by the text.

In this paper we discussed two approaches to go from natural langauge to a formal
representation. The first approach converts natural language to particular representations
in classical logic. We discussed two such attempts: one does a syntactic parsing of the
text, disambiguates the meaning of sentences using WordNet, creates a logic form, and
uses a specialized reasoning engine; the second uses parsing but does not disambiguate,
constructs first-order representations of knowledge and then uses first-order reasoning
tools.

The second approach extracts relevant facts from the natural language. We discussed
three such attempts: one that obtains relevant facts from the logic form mentioned earlier;
the second that uses the semantic parser Link Grammar, the WordNet database and back-
ground knowledge to obtain relevant facts; and the third that uses an information extraction
system to fill slots in templates.

In regards to background knowledge (domain knowledge plus commonsense knowl-
edge) and specific reasoning modules, we illustrated their use in the DD QA system. In
that system the knowledge representation language AnsProlog [32] is used for the most
part. Recently, [63] also uses AnsProlog for natural language question answering. Mueller

36 1.

in [62] uses event calculus while LCC uses LLF and COGEX-based inference in their var-
ious QA systems. In this regard, one system that we did not cover so far is the CYC QA
system. We are told that they use Link Grammar for understanding natural language and
the CYC knowledge base [50, 23] for expressing domain knowledge. Since details of the
CYC language, especially its semantics, are not available to us, we were not able to discuss
the CYC system in more detail. However secondary sources such as [64] mention that the
CYC system did not have axioms for reasoning about action and change, a very important
component of commonsense reasoning. (It did have a rich ontology of actions and events.)

In the DD QA system and in general, by domain knowledge we refer to knowledge
about specific topics such as the calendar, and world geography. By commonsense knowl-
edge we refer to axioms such as the rule of inertia. By reasoning modules we refer to mod-
ules such as planning module, and reasoning about intentions module. The DD QA system
is a prototype and at present focuses only on a few types of domain knowledge, common-
sense knowledge and reasoning modules.

To develop a broad QA system one needs a much larger background knowledge base
than is in the DD system. In this regard CYC and its founders could be considered as pio-
neers. However by limiting its development to be within the company and by using a pro-
prietary unvetted (outside CYC) language its usefulness to the general research commu-
nity has become limited. This is despite CYC's effort to release ResearchCYC and other
subsets of CYC. Thus what is needed is a community wide effort to build a knowledge
repository that is open and to which anyone can contribute. To do that several sociological
and technical issues still remain. Some of these issues are:

1. Which formal langauge(s) should be used by the community?

While many are more comfortable with propositional and first-order logic, others
prefer non-monotonic logics that are more appropriate for knowledge
representation. In this regard a recent development [51], whereby algorithms have
been developed to translate theories in non-monotonic knowledge representation
languages such as AnsProlog and circumscriptive theories to propositional theories,
is useful. It allows one to write knowledge in the more suitable and compact
non-monotonic logics, while the models can be enumerated using the efficient and
ever improving propositional solvers.

2. How do we organize knowledge modules and how do we figure out which modules
(say from among the travel module, calendar module, etc.) are needed to answer a
particular question with respect to a particular text collection? For example in lan-
guages like JAVA there exists a large library of classes and methods. A program-
mer can include (i.e., reuse) these classes and methods in their program and needs
to write much less code than if she had to write everything from scratch. Currently
most knowledge bases outside CYC are written from scratch.

A start in this regard has been made in the AAAIO6 Spring Symposium on

Knowledge repositories. It includes several papers on modular knowledge
representation. We hope the community pursues this effort and similar to linguistic
resources such as the WordNet [54, 26], FrameNet [27], the various large scale
biological databases, and the large libraries of various programming languages, it
develops an open knowledge base about everything in the world. A step in this

Marcello Balduccini, Chitta Baral and Yulia Lierler 37

direction would be to combine existing open source knowledge bases. Several of
them are listed in http://www.cs.utexas.edu/users/mfkb/related.html.

3. If more than one logic needs to be used how do modules in different logics interact
seamlessly?

It seems to us that no single logic or formalization will be appropriate for different
kinds of reasoning or for representing different kinds of knowledge. For example,
while it is easier to express inertia axioms in AnsProlog, to deal with large numbers
and constraints between them it is at present more efficient to use constraint logic
programming. Thus there is a need to develop methodologies that would allow
knowledge modules to be written in multiple logics and yet one will be able to use
them together in a seamless manner. An initial attempt in this direction, with
respect to AnsProlog and Constraint logic programming is made in [13].

Finally, two other large research issues loom. First, to answer questions about calcu-
lating probabilities, one needs to be able to integrate probabilistic reasoning with logical
reasoning without limiting the power and expressiveness of one or the other. Most exist-
ing approaches, except [12], limit the power of one or the other. Second, one needs to be
able to develop ways to automatically learn some of the domain knowledge, commonsense
knowledge and reasoning modules. While there has been some success in learning domain
knowledge (and ontologies), learning commonsense knowledge and reasoning modules is
still in its infancy.

Acknowledgements

We would like to thank Michael Gelfond, Richard Scherl, Luis Tari, Steve Maiorano, Jean-
Michel Pomarede and Vladimir Lifschitz for their feedback on drafts of this paper. The
Section 1.5 was mostly written by Luis. The second reader Erik Mueller's comments were
extremely insightful and improved the paper substantially. This research was supported by
DTO contract ASU-06-C-0143 and NSF grant 0412000.

Bibliography

[1] The Language Computer Corporation Web Site, http://www.languagecomputer.com/.

[2] Proceedings of the Third Message Understanding Conference (MUGI&)gan
Kaufmann, 1991.

[3] Proceedings of the Fourth Message Understanding Conference (MUMIgtgan
Kaufmann, 1992.

[4] 1996. http://www.askjeeves.com.

[5] Elena Akhmatova. Textual entailment resolution via atomic propositiong2rdn
ceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment
2005.

[6] J. Allen. Natural Language Understandin@enjamin Cummings, 1995.

[7] Hiyan Alshawi, editor. The Core Language EngineMIT Press, Cambridge, MA,
1992,

38 1.

[8] Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo
Magnini, and Idan Szpektor. The Second PASCAL Recognising Textual Entailment
Challenge. InProceedings of the Second PASCAL Challenges Workshop on Recog-
nising Textual Entailmen¥/enice, Italy, 2006.

[9] C. Baral. Knowledge representation, reasoning and declarative problem solving
Cambridge University Press, 2003.

[10] Chitta Baral and Michael Gelfond. Reasoning about intended actioRsoteedings
of AAAI 05 pages 689-694, 2005.

[11] Chitta Baral, Michael Gelfond, Gregory Gelfond, and Richard Scherl. Textual Infer-
ence by Combining Multiple Logic Programming ParadigmsARKAI'05 Workshop
on Inference for Textual Question Answeri2g05.

[12] Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic Reasoning with
Answer Sets. IfProceedings of LPNMR;pages 21-33, Jan 2004.

[13] S. Baselice, P. Bonatti, and M. Gelfond. Towards an integration of answer set and
constraint solving. IfProc. of ICLP’05 pages 52—-66, 2005.

[14] Patrick Blackburn and Johan BofRepresentation and Inference for Natural Lan-
guage CSLI Studies in Computational Linguistics. CSLI, 2005.

[15] Johan Bos. Underspecification, resolution, and inferenoegic, Language, and
Information 12(2), 2004.

[16] Johan Bos. Towards wide-coverage semantic interpretatioRAroceedings of Sixth
International Workshop on Computational Semantics (IWC®d&)es 42-53, 2005.

[17] Johan Bos and Katja Markert. Recognising textual entailment with logical infer-
ence. InProceeding of the Conference on Empirical Methods in Natural Language
Processing (EMNLR)pages 628-635, 2005.

[18] Michael E. Bratman.Intention, Plans, and Practical Reasomarvard University
Press, Cambridge, MA, 1987.

[19] E. Charniak. Toward a model of children’s story comprehension. Technical Report
AITR-266, MIT, 1972.

[20] Christine Clark, S. Harabagiu, Steve Maiorano, and D. Moldovan. COGEX: A Logic
Prover for Question Answering. Broc. of HLT-NAACL pages 87-93, 2003.

[21] Christine Clark and D. Moldovan. Temporally Relevant Answer SelectiorPrén
ceedings of the 2005 International Conference on Intelligence Analsig 2005.

[22] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitrAetix.
ficial Intelligence 42:213-261, 1990.

[23] J. Curtis, G. Matthews, and D. Baxter. On the Effective Use of CYC in a Ques-
tion Answering System. liProceedings of the IJCAl Workshop on Knowledge and
Reasoning for Answering Questio2§05.

[24] 1. Dagan, O. Glickman, and M. Magnini. The PASCAL Recognizing Textual Entail-
ment Challenge. IfProc. of the First PASCAL Challenge Workshop on Recognizing
Textual Entailmentpages 1-8, 2005.

[25] Rodrigo de Salvo Braz, Roxana Girju, Vasin Punyakanok, Dan Roth, and Mark Sam-
mons. An inference model for semantic entailment in natural languageroln of
AAAI, pages 1043-1049, 2005.

[26] Christiane Fellbaum, editoVordNet: An Electronic Lexical Databas®lIT Press,
1998.

[27] C. Fillmore and B. Atkins. Towards a frame-based organization of the lexicon: The
semantics of risk and its neighbors. In A. Lehrer and E. Kittay, editerames,

Marcello Balduccini, Chitta Baral and Yulia Lierler 39

Fields, and Contrast: New Essays in Semantics and Lexical Organizatges 75—
102. Hillsdale: Lawrence Erlbaum Associates, 1992.

[28] Abraham Fowler, Bob Hauser, Daniel Hodges, lan Niles, Adrian Novischi, and Jens
Stephan. Applying COGEX to recognize textual entailmentPioceedings of the
PASCAL Challenges Workshop on Recognising Textual Entail2@0i.

[29] Noah S. Friedland, Paul G. Allen, Michael Witbrock, Gavin Matthews, Nancy Salay,
Pierluigi Miraglia, Jurgen Angele, Steffen Staab, David J. Israel, Vinay Chaudhri,
Bruce Porter, Ken Barker, and Peter Clark. Towards a quantitative, platform-
independent analysis of knowledge systems. In Didier Dubois, Christopher A. Welty,
and Mary-Anne Williams, editor§roceedings of the Ninth International Conference
on Principles of Knowledge Representation and Reasomages 507-515, Menlo
Park, CA, 2004. AAAI Press.

[30] T. Gaasterland, P. Godfrey, and J. Minker. Relaxation as a platform for cooperative
answering.Journal of Intelligenet Information Systend43,4):293—-321, Dec 1992.

[31] Terry Gaasterland, Parke Godfrey, and Jack Minker. An overview of cooperative
answering.Journal of Intelligent Information Systeniq2):123-157, 1992.

[32] M. Gelfond. Answer set programming. In Vladimir Lifschitz Frank van Hermelen
and Bruce Porter, editorslandbook of Knowledge Representati&tsevier, 2006.

[33] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editor¢,ogic Programming: Proc. of the Fifth Int'l
Conf. and Symppages 1070-1080. MIT Press, 1988.

[34] Michael Gelfond. Going places - notes on a modular development of knowledge
about travel. IPAAAI Spring 2006 Symposium on Knowledge RepositR2{&36.

[35] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. InProceedings of ICLP-8&ages 1070-1080, 1988.

[36] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databasedlew Generation Computingages 365—-385, 1991.

[37] Michael Gelfond and Vladimir Lifschitz. Representing Action and Change by Logic
Programs.Journal of Logic Programmingl7(2—4):301-321, 1993.

[38] Michael Gelfond and Vladimir Lifschitz. Action Languagddectronic Transactions
on Al, 3(16), 1998.

[39] B. Green, A. Wolf, C. Chomsky, and K. Laughery. BASEBALL: An automatic Ques-
tion Answer. InComputers and Thoughpages 207-216. 1963.

[40] C. Green.The application of theorem proving to question-answering systé&hb
thesis, Stanford University, 1969.

[41] A. Haghighi, A. Ng, and C. Manning. Robust textual inference via graph matching.
In Proc. of HLT-EMNLR 2005.

[42] S. Harabagiu, George A. Miller, and D. Moldovan. WordNet 2 - A morphologically
and semantically enhanced resourcePtaceedings of SIGLEX-99ages 1-8, Jun
1999.

[43] S. Harabagiu and D. Moldovan. A Parallel Inference Systi#t&E Transactions on
Parallel and Distributed Systempages 729-747, Aug 1998.

[44] Jerry Hobbs. Ontological Promiscuity. Rroceedings of the 23rd Annual Meeting
of the Association for Computational Linguistiggges 61-69, Jul 1985.

[45] Jerry Hobbs. The Logical Notation: Ontological Promiscuity. 1985.

[46] Hans Kamp and Uwe Reyl&rom discourse to logicvolume 1,2. Kluwer, 1993.

[47] Graham Katz, James Pustejovsky, and Frank Schilder, editor&tating, Extracting

40 1.

and Reasoning about Time and Events, 10.-15. April 2@8ltime 05151 obagstuhl
Seminar Proceedings, Dagstuhl Seminar Proceedipg85.

[48] Walter Kintsch.Comprehension : A Paradigm for Cognitio@ambridge University
Press, 1998.

[49] R. Kowalski and M. Sergot. A logic-based calculus of eveniéew Generation
Computing 4:67-95, 1986.

[50] D. Lenat and R. GuhaBuilding large knowledge base system&ddison Wesley,
1990.

[51] F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic program by SAT
solvers.Atrtificial Intelligence 157(1-2):115-137, 2004.

[52] Hugo Liu and Push Singh. Commonsense reasoning in and over natural language. In
Mircea Gh. Negoita, Robert J. Howlett, and Lakhmi C. Jain, editdrmwledge-
Based Intelligent Information and Engineering Systemtdume 3215 ofLecture
Notes in Computer Sciengeages 293-306. Springer, Berlin, 2004.

[53] M. Maybury. New directions in question answeringAAIl Press/MIT Press, 2004.

[54] George A. Miller. WordNet: A lexical database for Englisbommunications of the
ACM, pages 39-41, 1995.

[55] Rob Miller and Murray Shanahan. Some alternative formulations of the event cal-
culus. In Antonis C. Kakas and Fariba Sadri, edit@emputational Logic: Logic
Programming and Beyond, Essays in Honour of Robert A. Kowalski, Raroliime
2408, pages 452-490. Springer Verlag, Berlin, 2002.

[56] A. Mohammed, D. Moldovan, and P. Parker. Senseval-3 logic forms: A system
and possible improvements. Rroceedings of Senseval-3: The Third International
Workshop on the Evaluation of Systems for the Semantic Analysis gbdgas 163—
166, Jul 2004.

[57] D. Moldovan, S. Harabagiu, R. Girju, P. Morarescu, A. Novischi, F. Lacatusu,
A. Badulescu, and O. Bolohan. Lcc tools for question answering. In E. Voorhees
and L. Buckland, editor®roceedings of TREC 2002002.

[58] D. Moldovan and Vasile Rus. Transformation of WordNet Glosses into Logic Forms.
In Proceedings of FLAIRS 2001 Conferenktay 2001.

[59] Richard Montague. The Proper Treatment of Quantification in Ordinary English.
Formal Philosophy: Selected Papers of Richard Montagages 247-270, 1974.

[60] R. Moore. Problems in logical form. IRroc. of 19th ACl. pages 117-124, 1981.

[61] E. Mueller. Event calculus. In Vladimir Lifschitz Frank van Hermelen and Bruce
Porter, editorsHandbook of Knowledge Representati&fsevier, 2006.

[62] Erik T. Mueller. Understanding script-based stories using commonsense reasoning.
Cognitive Systems Researéi4):307-340, 2004.

[63] F. Nouioua and P. Nicolas. Using answer set programming in an inference-based
approach to natural language semanticsPioc. of Inference in Computational Se-
mantics (IC0S-5), Buxton, England, 20 - 21 Ap?i006.

[64] Aarati Parmar. The representation of actions in KM and Cyc. Technical Report
FRG-1, Stanford, CA: Department of Computer Science, Stanford University, 2001.
http://www-formal.stanford.edu/aarati/techreports/action-reps-frg-techreport .ps.

[65] Vasile Rus. Logic Forms for WordNet GlossesPhD thesis, Southern Methodist
University, May 2002.

[66] L. Schubert and F. Pelletier. From english to logic: Context free computation of
conventional logical translation. WJCL, volume 1, pages 165176, 1982.

Marcello Balduccini, Chitta Baral and Yulia Lierler 41

[67] Stephan Schulz. A comparison of different techniques for grounding near-
propositional CNF formulae. IRroceedings of the 15th International FLAIRS Con-
ference pages 72—76, 2002.

[68] M. Shanahan. A circumscriptive calculus for evenggtificial Intelligence 75(2),
1995.

[69] Murray ShanahanSolving the frame problem: A mathematical investigation of the
commonsense law of inertidIT Press, 1997.

[70] D. D. Sleator and D. Temperley. Parsing English with a link grammarTHind
International Workshop on Parsing Technologi#993.

[71] Luis Tari and Chitta Baral. Using AnsProlog with Link Grammar and WordNet for
QA with deep reasoning. 1AAAI Spring Symposium Workshop on Inference for
Textual Question Answering005.

[72] E. Voorhees. Overview of the TREC 2002 Question Answering TracRrdn. of the
11th Text retrieval evaluation conferendd ST Special Publication 500-251, 2002.

[73] W. Woods. Semantics and quantification in natural language question answering. In
M. Yovitz, editor,Advances in Computergolume 17. Academic Press, 1978.

[74] M. Wooldridge.Reasoning about Rational AgentdIT Press, 2000.

