
Termination of Grounding is Not Preserved

by Strongly Equivalent Transformations

Yuliya Lierler1 and Vladimir Lifschitz2

1 University of Kentucky (yuliya@cs.uky.edu)
2 University of Texas at Austin (vl@cs.utexas.edu)

Abstract. The operation of a typical answer set solver begins with
grounding—replacing the given program with a program without
variables that has the same answer sets. When the given program
contains function symbols, the process of grounding may not terminate.
In this note we give an example of a pair of consistent, strongly equivalent
programs such that one of them can be grounded by lparse, dlv, and
gringo, and the other cannot.

1 Introduction

The operation of a typical answer set solver, such as smodels,3 dlv
4, or

clingo
5, begins with “intelligent instantiation,” or grounding—replacing the

given program with a program without variables that has the same answer sets.
When the given program contains function symbols, the process of grounding
may not terminate. The grounder employed in the last (2010-10-14) release of
dlv terminates when the input program is finitely ground in the sense of [1].
According to Theorem 5 from that paper, the class of finitely ground programs
is undecidable. Before attempting to ground a program, dlv verifies a decidable
condition that guarantees the termination of grounding. (Conditions of this kind
are known, for instance, from [1, Section 5] and [2].) A command-line option can
be used to override this “finite domain check”; ensuring termination becomes
then the responsibility of the user.

In the course of a public discussion at a recent meeting6, Michael Gelfond
observed that the behavior of the current version of dlv may not be fully
declarative, because of the possibility of nontermination, in the same sense
in which the behavior of standard Prolog systems is not fully declarative: an
“inessential” modification of a Prolog program may affect not only its runtime
but even its termination, even the possibility of getting an output in principle. It
is well known that termination of Prolog can be affected by very minor changes,
such as changing the order of subgoals in the body of a rule, changing the order

3 http://www.tcs.hut.fi/Software/smodels/
4 http://www.dlvsystem.com/
5 http://potassco/sourceforge.net/
6 NonMon@30: Thirty Years of Nonmonotonic Reasoning, Lexington, KY, October

22–25, 2010.



of rules, or inserting trivial rules of the form A ← A. In the case of dlv, such
modifications cannot affect termination. But isn’t it possible that a slightly more
complex transformation that has no effect on the meaning of the program would
make the dlv grounder unusable?

Our goal in this note is to investigate to what degree this suspicion is justified.
To make Gelfond’s question precise, we need to explain what we mean by a
transformation that has no effect on the meaning of the program. One possibility
is consider transformations that are strongly equivalent in the sense of [3, 4].
Recall that logic programs Π1 and Π2 are said to be strongly equivalent to each
other if, for every logic program Π, programs Π ∪Π1 and Π ∪Π2 have the same
answer sets. For instance, changing the order of subgoals in the body of a rule
produces a strongly equivalent program. The same can be said about changing
the order of rules and about inserting a rule of the form A ← A. Further examples
of strongly equivalent transformations are provided by removing rules that are
“subsumed” by other rules of the program. For instance, a program of the form

A ← B

A ← B,C

is strongly equivalent to its first rule A ← B.
In this note, we give an example of a pair of consistent, strongly equivalent

programs Π1 and Π2 such that Π1 is finitely ground, and Π2 is not. Thus one
of these two “essentially identical” programs can be grounded by dlv, and the
other cannot. The behavior of lparse (the grounder of smodels) and gringo

2.0.3 (the grounder of the latest version of clingo) is similar: they terminate
on Π1, but not on Π2.

2 The Example

Program Π1 consists of 4 rules:

p(a)
q(X) ← p(X)
← p(f(X)), q(X)
r(f(X)) ← q(X), not p(f(X)).

According to the answer set semantics [5], Π1 is shorthand for the set of ground
instances of its rules:

p(a)
q(f i(a)) ← p(f i(a))
← p(f i+1(a)), q(f i(a))
r(f i+1(a)) ← q(f i(a)), not p(f i+1(a))

(i = 0, 1, . . . ). It is easy to see that

{p(a), q(a), r(f(a))} (1)



is an answer set of Π1. Indeed, the reduct of Π1 relative to this set is

p(a)
q(f i(a)) ← p(f i(a))
← p(f i+1(a)), q(f i(a))
r(f i+1(a)) ← q(f i(a))

(i = 0, 1, . . . ), and (1) is a minimal set of ground atoms satisfying these rules.
As a matter of fact, each of the three grounders discussed in this note turns Π1

into the set of facts (1) and tells us in this way that (1) is the only answer set
of Π1.

Program Π2 is obtained from Π1 by adding the rule

p(f(X)) ← q(X), not r(f(X)). (2)

We will show that programs Π1 and Π2 are strongly equivalent to each other.
In fact, this claim will remain true even if we drop the first two rules from each
of the programs:

Proposition 1 The program

← p(f(X)), q(X)
r(f(X)) ← q(X), not p(f(X))

(3)

is strongly equivalent to

← p(f(X)), q(X)
r(f(X)) ← q(X), not p(f(X))
p(f(X)) ← q(X), not r(f(X)).

(4)

In other words, if we take any program containing rules (3) and add to it the
last of rules (4) then the answer sets of the program will remain the same.

Second, we will show that Π1 is finitely ground, and Π2 is not. In fact,
Π1 belongs to the class of finite domain programs—the decidable set of finitely
ground programs introduced in [1].

Proposition 2 Π1 is a finite domain program.

Proposition 3 Program Π2 is not finitely ground.

3 Proofs

3.1 Proof of Proposition 1

In view of the main theorem of [4], it is sufficient to prove the following fact:

Lemma The formula

q(x) ∧ ¬r(f(x)) → p(f(x)) (5)



can be derived from the formulas

¬(p(f(x)) ∧ q(x)),
q(x) ∧ ¬p(f(x)) → r(f(x))

(6)

in propositional intuitionistic logic.

Proof of the Lemma. The formula

¬(q(x) ∧ ¬r(f(x))) (7)

can be derived from (6) in classical propositional logic. By Glivenko’s theorem,7

it follows that it can be derived from (6) intuitionistically as well. It remains to
observe that (5) is an intuitionistic consequence of (7).

3.2 Proof of Proposition 2

In this section, and in the proof of Proposition 3 below as well, we assume that
the reader is familiar with the terminology and notation introduced in [1].

To show that Π1 is a finite domain program we need to check that the
arguments p[1], q[1], r[1] of the predicates of Π1 are finite-domain arguments [1,
Definition 10]. Consider the argument p[1]. The only rule of Π1 with p in the
head is p(a). This rule satisfies Condition 1 from Definition 10. Consider the
argument q[1]. The only rule with q in the head is

q(X) ← p(X).

This rule satisfies Condition 2. Consider the argument r[1]. The only rule with r

in the head is
r(f(X)) ← q(X), not p(f(X)).

This rule satisfies Condition 3.

3.3 Proof of Proposition 3

To prove that program Π2 is not finitely ground we need to find a component
ordering ν for Π2 such that the intelligent instantiation of Π2 for ν is infinite [1,
Definition 9]. The only component ordering for Π2 is

〈C{p,q}, C{r}〉,

as can be seen from the dependency graph G(Π2) and the component
graph GC(Π2) of this program [1, Definitions 1–4]; these graphs are shown in
Figure 1. According to [1, Definition 8], the intelligent instantiation of Π2 for

7 This theorem [6], [7, Theorem 3.1] asserts that if a formula beginning with negation
can be derived from a set Γ of formulas in classical propositional logic then it can
be derived from Γ in intuitionistic propositional logic as well.



p q

r

C{p,q}

+

−

C{r}

G(Π2) G
C(Π2)

Fig. 1. The dependency graph and the component graph of program Π2.

this component ordering is the set S2 of ground rules defined by the formulas

S1 = Φ∞
Π2(C{p,q}),S0

(∅),

S2 = S1 ∪ Φ∞
Π2(C{r}),S1

(∅).

The module Π2(C{p,q}) is the program

p(a)
q(X) ← p(X)
p(f(X)) ← q(X), not r(f(X)),

and the k-th iteration of the operator ΦΠ2(C{p,q}),S0
on the empty set, for k ≥ 1,

consists of the rules

p(a),

q(f j(a)) ← p(f j(a)) (0 ≤ j ≤ k
2 − 1),

p(f j+1(a)) ← q(f j(a)), not r(f j+1(a)) (0 ≤ j ≤ k−3
2 ).

It is clear that the union S1 of these iterations is infinite, and so is S2.

4 Conclusion

Our goal was to find two nontrivial programs that have essentially the same
meaning (which we chose to understand as “consistent programs that are
strongly equivalent to each other”) such that one of them can be grounded,
and the other cannot. The pair Π1, Π2 is the simplest example that we could
come up with, and the claim that these programs have essentially the same
meaning is far from obvious (recall the proof of the lemma in Section 3.1). So
the view that the possibility of nontermination makes the behavior of answer set
solvers nondeclarative may not be justified, after all.

The fact that the termination of grounding is not preserved by strongly
equivalent transformations shows, on the other hand, that such a transformation
may serve as a useful preprocessing step before an attempt to ground a program.



Acknowledgements

Thanks to Michael Gelfond and Wolfgang Faber for useful discussions. Yuliya
Lierler was supported by a 2010 Computing Innovation Fellowship. Vladimir
Lifschitz was partially supported by the National Science Foundation under
Grant IIS-0712113.

References

1. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP:
theory and implementation. In: Proceedings of International Conference on Logic
Programming (ICLP). (2008) 407–424

2. Lierler, Y., Lifschitz, V.: One more decidable class of finitely ground programs. In:
Proceedings of International Conference on Logic Programming (ICLP). (2009)

3. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2 (2001) 526–541

4. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Procedings of International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR). (2007)

5. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9 (1991) 365–385

6. Glivenko, V.: Sur quelques points de la logique de M. Brouwer. Académie Royale
de Belgique. Bulletins de la Classe des Sciences, se’rie 5 15 (1929) 183–188

7. Mints, G.: A Short Introduction to Intuitionistic Logic. Kluwer (2000)


