
A Tarskian Informal Semantics for Answer Set
Programming∗

Marc Denecker1, Yulia Lierler2, Miroslaw Truszczynski2, and Joost
Vennekens3

1 Department of Computer Science, K.U. Leuven
3001 Heverlee, Belgium
marc.denecker@cs.kuleuven.be

2 Department of Computer Science, University of Kentucky
Lexington, KY 40506-0633, USA
yulia|mirek@cs.uky.edu

3 Campus De Nayer | Lessius Mechelen | K.U. Leuven
2860 Sint-Katelijne-Waver, Belgium
joost.vennekens@cs.kuleuven.be

Abstract
In their seminal papers on stable model semantics, Gelfond and Lifschitz introduced ASP by casting
programs as epistemic theories, in which rules represent statements about the knowledge of a rational
agent. To the best of our knowledge, theirs is still the only published systematic account of the intuitive
meaning of rules and programs under the stable semantics. In current ASP practice, however, we find
numerous applications in which rational agents no longer seem to play any role. Therefore, we propose
here an alternative explanation of the intuitive meaning of ASP programs, in which they are not viewed as
statements about an agent’s beliefs, but as objective statements about the world. We argue that this view
is more natural for a large part of current ASP practice, in particular the so-called Generate-Define-Test
programs.

1998 ACM Subject Classification D.1.6 Logic Programming; I.2.4 Knowledge Representation For-
malisms and Methods

Keywords and phrases Answer set programming, informal semantics, generate-define-test

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

The key postulate of declarative programing is that programs reflect the way information about a
domain of discourse is described in natural language. The syntax must align with linguistic patterns
we use and the formal semantics must capture the way we understand them. To put it differently, a
declarative programming formalism (logic) must have an informal semantics, an intuitive and precise
link between the formal syntax and semantics of the logic, and informal intended meanings of natural
language expressions describing the “real world”. This informal semantics explains what programs
mean or, in other words, provides programs with an informal but precise natural language reading.

Having an informal semantics is important to a declarative programming formalism. It facilitates
effective coding by offering intuitions to guide the programmer, and provides a basis for the program-
ming methodology. It promotes understanding of code and helps in teaching how to program. It

∗ The first and the fourth author are supported by Research Foundation-Flanders (FWO-Vlaanderen) and by GOA
2003/08 "Inductive Knowledge Bases". The second author was supported by a CRA/NSF 2010 Computing Innovation
Fellowship. The third author was supported by the NSF grant IIS-0913459.

© Marc Denecker, Yulia Lierler, Miroslaw Truszczynski and Joost Vennekens;
licensed under Creative Commons License NC-ND

28th International Conference on Logic Programming.
Editors: Agostino Dovier, Vítor Santos Costa; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 A Tarskian Informal Semantics for ASP

suggests extensions of the logic to facilitate expressing new types of knowledge, and it helps explain
the relationship to other logics. The postulate is essential anywhere the emphasis on declarativeness
is paramount, in particular, in addition to declarative programming, also in knowledge representation
and database query languages and, more generally, in all contexts where we need to think how
information about a domain of discourse has been or is to be encoded in a logic.

First-order (FO) logic has a clear informal semantics aligned with the classical Tarskian formal
semantics of the logic. Indeed, the constructors of the FO language directly correspond to natural
language connectives and expressions “for all” and “there is”. The formal Tarskian semantics of
these syntactic constructors is given by interpretations (structures), which are abstract mathematical
representations of informally understood “possible objective state of affairs,” and it literally reflects
the informal understanding of the natural language connectives and quantifying expressions. It is that
informal semantics that makes FO sentences legible and their intended meaning clear, and is largely
responsible for the widespread use of FO logic in declarative programming, knowledge representation
and database query languages.

Our main goal in this work is to analyze the role of informal semantics in the development
of answer set programming (ASP) and its effective use. The key step is to clarify what informal
semantics we have in mind. According to the intuitions Gelfond and Lifschitz exploited when
introducing the stable-model (answer-set) semantics [10, 11], a program is a formal representation
of a set of epistemic propositions believed by a rational introspective agent, and stable models of
the program represent that agent’s belief sets. This epistemic informal semantics linked ASP to
autoepistemic logic by Moore [16] and default logic by Reiter [20], and supported applications in
nonmonotonic reasoning. However, the epistemic perspective does not seem to be relevant to the way
ASP is predominantly used now, as a formalism for modeling search problems [14, 17]. We argue
that for such use of ASP a Tarskian informal semantics, not unlike the one for the FO logic, fits the
bill better.

Interestingly, while the Tarskian informal semantics of ASP seems to have been implicitly
followed by a vast majority of ASP users, it has never been explicitly identified or analyzed. We do so
in this paper. We describe that informal semantics and show how it explains the way ASP developed
and how it is intimately related to the currently dominating form of ASP, the generate-define-test
(GDT) ASP [12]. We point out how the Tarskian informal semantics connects GDT ASP with the
logic FO(ID). We argue that taking the Tarskian informal semantics seriously strongly suggests that
the language of GDT ASP can be streamlined while in the same time generalizing the current one.

We present the Tarskian informal semantics for ASP in the context of a more general formalism,
which we introduce first. We call it first-order answer set programming of ASP-FO for short. ASP-FO
can be viewed as a modular first-order generalization of GDT ASP with unrestricted interpretations as
models, with open and closed domains, non-Herbrand functions, and FO constraints and rule bodies.
It is closely connected to the logic FO(ID) [3, 6] and has formal connections to the equilibrium logic
[18]. ASP-FO generalizes GDT ASP and so the informal semantics we develop for ASP-FO applies
to GDT ASP, too.

2 Generate-Define-Test methodology

GDT is an effective methodology to encode search problems in ASP. In GDT, a programmer conceives
the problem as consisting of three parts: GENERATE, DEFINE and TEST [12]. The role of GENERATE

is to generate the search space. Nowadays this is often encoded by a set of choice rules:

{A} ← B1, . . . , Bn, not C1, . . . , not Cm, (1)

where A, Bi and Ci are atoms. Such a rule states that atom A can be arbitrarily true or false, if the
condition expressed by the rule’s body holds. This condition may refer to other generated predicates,

M. Denecker, Y. Lierler, M. Truszczynski, J. Vennekens 3

or to defined predicates. The DEFINE part is a set of definitions of some auxiliary predicates. Each
definition is encoded by a group of rules

A← B1, . . . , Bn, not C1, . . . , not Cm, (2)

where A,Bi, Cj are atoms and A is the auxiliary predicate that is being defined. These rules describe
how to derive the auxiliary predicates from the generated predicates or from other defined predicates,
typically in a deterministic way. Finally, the TEST part eliminates generated answer sets that do not
satisfy desired constraints. They are represented by constraint rules:

← B1, . . . , Bn, not C1, . . . , not Cm, (3)

A set of these three types of rules will be called a GDT program.
For instance, the GDT-program (4) below encodes the Hamiltonian cycle problem. The example

illustrates that an ASP program conceived in the GDT way typically shows a rich internal structure.

GENERATE {In(x, y)} ← Edge(x, y).
DEFINE Node(V). . . . Node(W).

Edge(V, V ′). . . . Edge(W, W ′).
T (x, y)← In(x, y).
T (x, y)← T (x, z), T (z, y).

TEST ← In(x, y), In(x, z), y 6= z.

← In(x, z), In(y, z), x 6= y.

← Node(x), Node(y), not T (x, y).

(4)

Each of the three parts may again consist of independent components. For instance, TEST in the
example above consists of three independent constraints; DEFINE contains separate definitions for
three predicates Node, Edge and T . This internal structure exists in the mind of programmers, but is
not explicit in ASP programs and often becomes apparent only when we investigate the dependencies
between predicates. This motivates us to define a logic which does make the internal structure of a
GDT-program explicit.

3 Concepts of Tarskian model semantics

A vocabulary Σ is a set of predicate and function symbols, each with a non-negative integer arity.
Terms, formulas and sentences are defined as in FO.

An interpretation (or structure) A of a vocabulary Σ is given by a non-empty set dom(A), the
domain of A, and, for each symbol τ of Σ, a value τA, the interpretation of τ . If τ is an n-ary
function symbol, τA is an n-ary total function over dom(A). If τ is an n-ary predicate symbol, τA is
an n-ary relation over dom(A). If A is an interpretation of a vocabulary Σ, we call Σ the vocabulary
of A and write it as ΣA. An interpretation of the empty vocabulary consists only of its domain.

If Σ′ ⊆ ΣA, we define the projection of A on Σ′, written A|Σ′ , to be the interpretation of Σ′ with
the same domain and the same interpretation of each symbol τ ∈ Σ′ as A. We then also say that A is
an extension of its projection A|Σ′ .

Let A and A′ be interpretations of the same vocabulary Σ, having the same domain, and assigning
the same values to every function symbol in Σ. We say that A is a subinterpretation of A′, written
A ⊆ A′, if, for every predicate symbol P of Σ, the relation PA interpreting this predicate symbol in
A is a subset of the corresponding relation PA′

.
A variable assignment θ for an interpretation A assigns to each variable v an element θ(v) in

dom(A). When x is a variable and d an element of dom(A), we write θ[x : d] for a variable

ICLP 2012

4 A Tarskian Informal Semantics for ASP

assignment that assigns d to x but is otherwise the same as θ. The interpretation tA,θ of a term in an
interpretation A under variable assignment θ is defined through the standard induction. As usual, we
assume that ∧,∀,⇒ are defined in terms of ¬,∨ and ∃.

I Definition 1 (Satisfiability relation A, θ |= ϕ). Let ϕ be an FOL formula and A a structure over
a vocabulary containing all function and relation symbols in ϕ. We define A, θ |= ϕ by induction on
the structure of ϕ:

– A, θ |= P (t̄) if t̄ A,θ ∈ PA;

– A, θ |= ψ ∨ φ if A, θ |= ψ or A, θ |= φ;

– A, θ |= ¬ψ if A, θ 6|= ψ;

– A, θ |= ∃x ψ if for some d ∈ dom(I), A, θ[x : d] |= ψ.
When ϕ is a sentence (no free variables), then θ is irrelevant and we write A |= ϕ.

In a Tarskian model semantics, a structure represents a potential state of affairs. For a sentence
ϕ and a structure A, A |= ϕ formalizes that ϕ is true in the state of affairs as given by A. If all we
know about the state of affairs is that ϕ is true in it, then a structure A is a possible state of the world,
or a possible world, if and only if A |= ϕ.

4 The logic ASP-FO

We introduce a modular form of ASP to represent the different kind of modules in GDT programs.
We define a G-module, D-module and T-module.

I Definition 2. A choice rule is an expression of the form: ∀x̄ ({P (t̄)} ← ϕ), where ϕ is an FO
formula, P (t̄) is an atom and x̄ includes all free variables appearing in the rule. A G-module is a set
of choice rules with the same predicate in their head.

I Definition 3. A D-module D is a pair 〈Ext,Π〉 where Ext is a set of predicates, called defined or
output predicates, and Π is a set of rules of the form

∀x̄ (P (t̄)← ϕ), (5)

where P (t̄) is an atom with P ∈ Ext, and ϕ is an FO formula with all its free variables amongst x̄.

For a D-module D, we denote the set of its defined predicate symbols by Ext(D). We write
Par(D) for the set of all other symbols in Π. We call Par(D) the set of parameter or input symbols.
For a set of rules Π, we denote by heads(Π), the set of all predicate symbols appearing in the head
of a rule r ∈ Π. In the following we identify a D-module 〈heads(Π),Π〉 with Π.

I Definition 4. A T-module is an FO sentence.

I Definition 5. An ASP-FO-theory is a set of G-modules, D-modules and T-modules.

There is an obvious syntactical match between these language constructs and those used in ASP
to express GENERATE, DEFINE and TEST modules. For instance, an ASP constraint (3) corresponds
to the T-module– FO sentence: ∀x̄(¬(B1 ∧ · · · ∧ Bn ∧ ¬C1 ∧ · · · ∧ ¬Cm)), where x̄ is the set
of variables occurring in (3), and we identify normal rules (2) with the universal closure of A ←
B1 ∧ · · · ∧Bn ∧ ¬C1 ∧ · · · ∧ ¬Cm.

M. Denecker, Y. Lierler, M. Truszczynski, J. Vennekens 5

Note that an ASP-FO theory preserves the internal structure of the GENERATE, DEFINE and TEST

parts. For instance, we may write the Hamiltonian cycle theory as:

GENERATE {∀x∀y({In(x, y)} ← Edge(x, y))}
DEFINE {V ertex(V)← t, . . . , V ertex(W)← t}

{Edge(V, V ′)← t, . . . , Edge(W, W ′)← t}{
∀x∀y(T (x, y)← In(x, y))
∀x∀y(T (x, y)← In(x, z) ∧ In(z, y))

}
TEST ∀x∀y∀z¬(In(x, y) ∧ In(x, z) ∧ y 6= z)

∀x∀y∀z¬(In(x, z) ∧ In(y, z) ∧ x 6= y)
∀x∀y(V ertex(x) ∧ V ertex(y)⇒ T (x, y))

(6)

In defining the formal semantics of ASP-FO, we aim to ensure that three conditions are satisfied.
First, the structures are to be viewed as possible worlds, i.e., they should represent possible states
of affairs, not states of belief. We do not restrict to Herbrand interpretations. Second, to respect the
modular structure of an ASP-FO theory, its semantics should be modular, that is, defined in terms of
the semantics of its modules. We therefore simply define that a structure A is a model of a ASP-FO
theory T iff it is a model of each of its modules. In other words, an ASP-FO theory can be understood
as a monotone conjunction of its modules. Third, as ASP-FO is to reflect the GDT methodology,
ASP-FO theories resulting from GDT programs must have the same meaning.

The definition of satisfaction of a T-module, i.e., an FO sentence, is standard (Definition 1). It
follows that ASP-FO is a conservative extension of FO.

The semantics for a D-module is a generalization of the stable semantics to arbitrary structures
and to FO rule bodies. For reasons explained in the next section, we use the semantics that was
introduced by Pelov et al. [19] and, in the way we follow here, by Vennekens et al. [22]. It uses a pair
of interpretations to simulate the construction of the Gelfond-Lifschitz reduct.

I Definition 6 (Satisfaction by pairs of interpretations). Let ϕ be an FO formula, A and B

interpretations of all symbols in ϕ having the same domain and assigning the same values to all
function symbols, and let θ be a variable assignment. We define the relation (A,B), θ |= ϕ by
induction on the structure of ϕ:
– (A,B), θ |= P (t̄) if A, θ |= P (t̄),
– (A,B), θ |= ¬ϕ if (B,A), θ 6|= ϕ,
– (A,B), θ |= ϕ ∨ ψ if (A,B), θ |= ϕ or (A,B), θ |= ψ

– (A,B), θ |= ∃xψ if for some d ∈ dom(I), (A,B), θ[x : d] |= ψ.
This truth assignment interprets positive occurrences of atoms in A, and negative occurrences in B.
Indeed, (positive) atoms are interpreted in A, but every occurrence of ¬ switches the role of A and B.

For two structures A and B that have the same domain and interpret disjoint vocabularies, A ◦B
denotes the structure that interprets the union of the vocabularies of A and B, has the same domain as
A and B, and coincides with A and B on their respective vocabularies.

I Definition 7 (Parameterized stable-model semantics). For a D-module D, an interpretation
M of Ext(D) is a stable model of D relative to an interpretation Ap of Par(D) ifM is the least1

of all interpretations A of Ext(D) that have the same domain as Ap, interpret function symbols in
the same way as Ap and for each rule ∀x̄ (P (t̄) ← ϕ) of D and each variable assignment θ, if
(Ap ◦ A,Ap ◦M), θ |= ϕ then A, θ |= P (t̄).

1 The term “least” is understood with respect to the notion of subinterpretation defined earlier. One can show that such
a least interpretation always exists.

ICLP 2012

6 A Tarskian Informal Semantics for ASP

This parameterized stable-model semantics generalizes the original one in three ways: it is
parameterized, i.e., it builds stable models on top of a given interpretation of the parameter symbols;
it handles FO bodies; and it works for arbitrary (not only Herbrand) interpretations.

I Definition 8. A structure A is a model of a D-module D (notation A |= D) if A|Ext(D) is a stable
model of D relative to A|Par(D).

We now turn our attention to G-modules. We note that the point of a choice rule is to “open up”
certain atoms P (d̄) – to allow them to be true without forcing them to be true.

I Definition 9. A structureM is a model of a G-module G if for each variable assignment θ such
thatM, θ |= P (x̄) there is a choice rule ∀ȳ ({P (t̄)} ← ϕ) in G such that t̄M,θ = x̄θ andM, θ |= ϕ.

A G-module can be translated to an equivalent singleton G-module, using a process similar to
predicate completion. First, we note that any choice rule ∀x̄ ({P (t̄)} ← ϕ) can be rewritten as
∀ȳ ({P (ȳ)} ← ∃x̄(ȳ = t̄ ∧ ϕ)). Next, any finite set of choice rules ∀x̄ ({P (x̄)} ← ϕi) can be
combined into a single choice rule ∀x̄ ({P (ȳ)} ← ϕ1 ∨ · · · ∨ ϕn)). It is straightforward to show that
these transformations are equivalence-preserving. Together with this result, the following theorem
implies that each (finite) G-module is equivalent to an FO sentence. Thus, G-modules are redundant
in ASP-FO, since they can be simulated by T-modules.

I Theorem 10. An interpretationM satisfies a singleton G-module {∀x̄ ({P (x̄)} ← ϕ)} if and
only ifM satisfies ∀x̄ (P (x̄)⇒ ϕ).

For instance, the singleton G-module of the GENERATE part of (4) corresponds to the following
FO sentence: ∀x∀y(In(x, y)⇒ Edge(x, y)).

ASP-FO is an open domain logic with uninterpreted function symbols. Logic programming and
ASP often restrict the semantics to Herbrand interpretations only.

I Definition 11. The Herbrand module over a set σ of function symbols is the expressionH(σ).
We say thatM |= H(σ) if dom(M) is the set of variable-free terms that can be built from σ and for
each such term t, tM = t.

Herbrand modules are useful in applications with complete knowledge of the domain. By adding
H(σ) for the set σ of all function symbols of Σ to an ASP-FO theory, we limit its semantics to
Herbrand models of σ. By adding H(σ) for a strict subset σ of function symbols, the remaining
function symbols behave as uninterpreted symbols and take arbitrary interpretation in the Herbrand
universe consisting of the terms of σ. Herbrand modules can be expressed by means of D- and
T-modules (as in the logic FO(ID) [3]). Thus, they are redundant.
Relationship with FO and ASP. ASP-FO is not only a conservative extension of FO but also of the
basic ASP language of normal programs. Note that a set of normal rules can be seen as a D-module
defining all predicates.

I Theorem 12. For a normal program Π over vocabulary Σ, a structure A is a stable model of Π
if and only if A is a model of the ASP-FO theory {(ΣP ,Π),H(ΣF)}, where ΣP ,ΣF is the set of all
predicate and function symbols of Σ, respectively.

This theorem allows us to represent an entire normal logic program as a single D-module (and an
auxiliary Herbrand module). However, as stated before, what we would like to show is the equivalence
of GDT-programs in ASP and the corresponding ASP-FO theories.

Let us now consider a GDT-program Π consisting of a set of choice rules of form (1), normal
rules of form (2) and constraints of form (3). We define the (positive) predicate dependency graph
of Π as the directed graph with all predicate symbols of Π as its vertices and with an edge from P to

M. Denecker, Y. Lierler, M. Truszczynski, J. Vennekens 7

Q whenever P appears in the head of a rule and Q occurs positively in the body of that rule (i.e., in
the scope of an even number of negations).

Without loss of generality we assume that each predicate of Π appears in the head of at least one
of its rules. By heads(Π) we denote the set of all predicate symbols appearing in the heads of the
rules of the form (1) or (2) in Π. A partition Π0, . . . ,Πn of Π is a splitting2 of Π if:
– for each i, Πi is either a singleton containing a constraint, the set of all choice rules for some

predicate P , or a normal logic program;
– heads(Πi) ∩ heads(Πj) = ∅ for i 6= j;
– for any strongly connected component S of the predicate dependency graph of Π, S ⊆ heads(Πi)

for some i;
– for any predicate symbol P occurring in the head of some choice rule in Π there is no edge from

P to P in the predicate dependency graph of Π.

We can identify each Πi in a splitting with an ASP-FO module in the obvious way: a Πi that
consists of a constraint corresponds to a T-module, a Πi consisting of choice rules corresponds to a
G-module, and a Πi consisting of normal rules corresponds to a D-module.

I Theorem 13. For a GDT-program Π, if Π0, . . . ,Πn is a splitting of Π, then an interpretation
M is answer set of Π if and only ifM is a model of {M0, . . . ,Mn,H(Σ)}, where each Mi is the
ASP-FO module corresponding to Πi.

For instance, the horizontal lines within GENERATE, DEFINE, and TEST parts of the Hamiltonian
cycle program (4) identify a partition that satisfies the conditions of a splitting. Theorem 13 states
that the answer sets of (4) coincide with models of the ASP-FO theory (6).

The practice of ASP demonstrates that the vast majority of GDT programs admit a splitting.
Theorem 13 shows that ASP-FO (i) extends this fragment of ASP in a direct way, and (ii) interprets
those ASP programs as the monotone conjunction of their components.

Theorem 13 fails to take into account three common extensions of the ASP language: aggregates
(or weight expressions), disjunction in the head, and strong negation. Each of these limitations can be
lifted (we do not discuss the details due to space restrictions).
Relation to FO(ID). A theory in FO(ID) is a set of FO sentences and inductive definitions.3 These
definitions are syntactically identical to D-modules of ASP-FO, but are interpreted under a two-valued
parameterized variant of the well-founded semantics, rather than the parameterized stable-model
semantics used in ASP-FO.

I Definition 14. A Σ-interpretation A is a model of an FO(ID) definition ∆ (notation A |= ∆) if
A|Ext(D) is the well-founded model of ∆ relative to A|Par(D), as defined in [7].

Denecker and Ternovska [6] introduced the notion of a total definition. An FO(ID) definition is
total if it has only two-valued well-founded models and hence expresses a total, deterministic function
from Par(D)-interpretations to Ext(D)-interpretations. Syntactic conditions such as no negative
occurrences of defined symbols in the bodies of rules (defining the class of positive definitions),
predicate stratification and local stratification all guarantee that a definition is total. Thus, many
definitions occurring in practice are total. For total definitions (D-modules), the well-founded
and stable models coincide [19]. Consequently, the logics ASP-FO and FO(ID) restricted to total
definitions (D-modules) coincide, too.

2 The conditions on splitting follow the requirements stated in the Symmetric Splitting Theorem in [9].
3 Some versions of FO(ID) allow also boolean combinations of FO formulas and definitions [6].

ICLP 2012

8 A Tarskian Informal Semantics for ASP

Looking back at the ASP-FO theory for the Hamiltonian circuit program, we see that all three of
its D-modules are positive. Hence, it is equivalent to the FO(ID) theory of the same syntactic form.
Relation to the equilibrium logic first-order ASP. There is a formal connection between ASP-FO
D-modules and extensions of ASP to the first-order setting based on equilibrium logic [18] and the
operator SM [8]. We consider the latter two under the restriction to formulas representing rules of the
form (5). In this case, the semantics coincide if the bodies of rules (5) have no nested occurrences of
negation [21]. However, the two generalizations of ASP differ if nested occurrences are allowed. For
instance, the D-module {P ← ¬¬P} has only ∅ as a model, while in these generalizations also {P}
is a model. More importantly though, they differ at the conceptual level. The logic ASP-FO directly
extends FO. The equilibrium logic version of first-order ASP is based on the quantified logic HT that
differs substantially from FO and, arguably, lacks its direct connection to everyday linguistic patterns.

5 Informal semantics of ASP-FO and the Generate-Define-Test
methodology

A formal semantics is just a mathematical definition and therefore, by itself, it does not yet explain
how expressions in a logic relate to the real world. For this, also an informal semantics is needed, i.e.,
an intuitive interpretation for the logic’s syntactic and semantic objects. In this paper, we interpret an
answer set as a Tarskian representation of a possible state of the world. The aim of this section is to
investigate in detail how the connectives of ASP should be understood in this new perspective.

It is a common adage in knowledge representation that humans are only able to comprehend a
large theory if its meaning is composed from the meanings of its components through a simple and
natural semantic composition operator. The most basic composition operator is simple conjunction.
It is the use of this operator that causes FO to be monotonic. The meaning of an ASP-FO theory is
constructed from the meaning of its individual modules by precisely the same form of conjunction.
This is in perfect agreement with our intuition of modules as imposing constraints on possible worlds,
independently from each other. Whatever analysis remains to be done has then to be concerned with
individual modules.
Informal semantics of T-modules/FO sentences. FO sentences express propositions about an
objective world, not about beliefs, intentions, or other propositional attitudes. In Tarskian model
semantics, a structure A serves as a mathematical abstraction of an objective world. The recursive
rules of the definition of truth of a sentence in A (Definition 1) specify the formal semantics of FO
simply by translating each formal connective into an informal one: ∧ into the natural language “and”,
∨ into “or”, etc. Iterated application of these rules translates an FO sentence into a natural language
sentence that accurately captures its meaning.

The existence of this informal semantics does not mean that each FO sentence has a self-evident
meaning. Sentences with three or more nestings of quantifiers are hard to understand. The material
implication ψ ⇒ ϕ also may cause difficulties. Nevertheless, for a core fragment of FO, sentences
have an accurate and reliable informal semantics. For example, given the informal meaning of the
symbols Node and T in the Hamiltonian circuit example, the informal semantics of

∀x∀y(Node(x) ∧Node(y)⇒ T (x, y))

is the proposition that each node can be reached from every other one.
Informal semantics of choice rules. Choice rules in ASP are often explained in a computational
way, as generators of the search space. Here we propose a declarative interpretation. The set of ASP
choice rules for predicate P

{P (t̄1)} ← ϕ1. . . . {P (t̄n)} ← ϕn.

M. Denecker, Y. Lierler, M. Truszczynski, J. Vennekens 9

constitutes a G-module in ASP-FO which can be further translated in

∀x(P (x̄) ⇒ (x̄ = t̄1 ∧ ϕ1) ∨ · · · ∨ (x̄ = t̄n ∧ ϕn))

In the Tarskian possible-world perspective, this sentence says that P is universally false with ex-
ceptions explicitly listed in the consequent of the implication. In other words, a G-module ex-
presses the local closed world assumption (LCWA) on P , together with an exception mechanism
to relax this LCWA and reinstall the open world assumption (OWA) on certain parts of the do-
main. For instance, ∀x∀y(In(x, y) ⇒ Edge(x, y)), the ASP-FO image of the ASP choice rule
{In(x, y)} ← Edge(x, y), states that In(x, y) is false except when Edge(x, y) is true, in which
case In(x, y) might be either true or false.

This analysis of ASP choice rule modules as FO sentences shows that logical connectives in
choice rule bodies, including negation, have their standard FO meaning. However, the meaning of
a choice module as a whole is not composed from the meaning of its individual rules by monotone
conjunction. Instead, adding a rule to a module corresponds to adding a disjunct to its FO axiom.
Hence, the underlying composition operator of this sort of module is actually anti-monotonic: the
module becomes weaker with each rule added. This agrees with the role of a choice rule as expressing
an exception to the LCWA imposed by the module. The more exceptions there are, the weaker this
LCWA.
Informal semantics of D-modules. In the GDT methodology, D-modules serve to define a set of
auxiliary predicates and do so using a rule-based, potentially recursive syntax [12]. Even though
current ASP practice tacitly assumes that the stable-model semantics is a correct semantics for such
modules, this is actually far from trivial. As far as we know, this issue has not yet been addressed in
the literature. Our results allow us to present the following argument to fill this gap.

Informal rule-based definitions (such as Definition 1) abound in mathematics. They express
a precise, objective form of informal knowledge. A formal rule-based definition construct should
match with the informal one. The three most common forms of definitions in formal sciences are
non-inductive definitions, monotone inductive definitions (e.g., transitive closure) and definitions by
induction over a well-founded order (e.g., the definition of |= in FO, cf. Definition 1). Denecker
[2, 3] was first to argue that rules under the well-founded semantics provide a uniform and correct
formalization of these. Later, Denecker et al. [5] and Denecker and Ternovska [6] extended the
original arguments. A full discussion of the arguments is beyond the scope of this paper but the essence
is that an informal inductive definition describes how to construct the defined relation by iterated
application of rules and that the well-founded semantics correctly “simulates” this construction for
the three aforementioned forms of definitions.

Not every formal rule set can be understood as a “good” informal inductive definition (i.e., one
that a formal scientist would accept). In particular, a “good” definition should define for each object
whether it is an element of the defined set or not. In formal terms, this means that a “good” formal rule
set should have a total, i.e., 2-valued, well-founded model. Accordingly, such definitions are called
total [3, 6]. Since parameterized stable and well-founded semantics coincide for total definitions, the
above arguments apply immediately also to total D-modules. Therefore, the work by Denecker and
his coauthors also provides a detailed explanation of why total D-modules under the stable model
semantics correctly formalize the natural language concept of an inductive definition. To the best of
our knowledge, such an explanation has not yet appeared in print before.

It does not apply to all of ASP, though. First, the analysis by Denecker and co-authors consistently
interprets structures as possible worlds; therefore, our argument does not apply to the epistemic
interpretation of stable models. Second, when we go beyond total D-modules, the correspondence
to FO(ID) breaks down. In FO(ID), such rule sets are unsatisfiable, whereas in ASP-FO, they may
have 0, 1 or more models. How such rule sets can be interpreted is an open question, but in practice

ICLP 2012

10 A Tarskian Informal Semantics for ASP

there seems little need for non-total D-modules. Indeed, D-modules are non-total only in case of
cycles over negation. In early applications of ASP, such cycles over negation were used to encode the
generate and test parts of the search problem. However, more recently, these roles have been taken
over by choice rules and constraints. Consequently, cycles over negation in D-modules have become
very rare. In fact, in the current practice of ASP, D-modules almost always seem to be either positive
or to contain only locally stratified negation. (but see below for an exception).

Comparison with the epistemic view. It is most interesting that the same mathematical principle
can play a very different role depending on whether we take an epistemic or a possible world view
on ASP. Under the stable model semantics, no atom belongs to an answer set unless it is derived
by some rule (in an appropriate cycle-free manner). Under the epistemic view of an answer set,
the informal explanation is that a rational agent should only believe an atom (or literal) if he has a
justification for doing so. In the Tarskian setting, this explanation does not work, simply because
the presence of an atom in an answer set does not reflect that it is believed but rather that it is true
in the possible world. Thus, what the stable semantics expresses in the Tarskian view is that atoms
cannot be true unless there is a reason for them to be so, which is a form of Closed World Assumption
(CWA). In particular, it is a global CWA on all predicates. Of course, this is a strong assumption
that often needs to be relaxed and this is where choice rules naturally step in. In epistemic ASP,
on the other hand, no implicit CWA is imposed; if CWA is desired it must be stated explicitly, e.g.,
by rules ∼P (x̄)← not P (x̄) involving strong negation [11]. Since there is, therefore, no implicit
global CWA to “open,” the role of choice rules is difficult to explain in this context. A remarkable
conclusion is that the mathematical principle to formalize rationality in the epistemic view of stable
models actually expresses a form of CWA in the possible world view of stable models. A more
detailed discussion on the importance of the informal semantics of the “models” of a logic program
can be found in [4].

The form of CWA implemented by the parameterized stable-model semantics in ASP-FO differs
from other instances of CWA. It is local, i.e., applied only to the defined predicates Ext(D), and it is
also parameterized, in the sense that it is applied given the parameter AP . For instance, the D-module
({P}, {P ← Q}) imposes CWA on P but it does not entail ¬P . This is due to the parameter Q,
which causes the ASP-FO semantics to admit two models: if the parameter Q is true, then P can
be derived, so {Q,P} is a model; if the parameter Q is false, then P cannot be derived and, by the
CWA, must be false, so ∅ is also a model. Strikingly, this particular form of CWA, which deviates
from standard forms of CWA, coincides for the important fragment of total D-modules with the
precise and well-known mathematical principle of definition by induction. Whether the form of CWA
underlying D-modules has natural KR applications beyond total definitions is an intriguing question.
Such applications might be found in ASP programs that utilize cycles over negation for purposes
other than to express choices or constraints, e.g., to express causal rules as in [13].

On the nature of negation and rule operator. Taking a possible world view also forces us to modify
our interpretation of negation as failure. The embedding of ASP constraints and choice rules in FO
shows that ASP’s unary rule operator← for constraints as well as negation as failure not in such
rules are the same as classical negation. As for negation in D-modules, we started this section by
noting that in a Tarskian view, negation cannot be epistemic. Indeed, let us look at what negation
means in informal definitions, for instance, in the following (informal) rule from our (informal)
Definition 1: A, θ |= ¬ψ if A, θ 6|= ψ. The definition is by structural induction, hence this rule should
not be applied before rules deriving subformulas of ¬ψ. Once this condition is met, the rule derives
I, θ |= ¬ϕ when it is not the case that A, θ |= ψ. This is standard objective negation as formalized by
classical negation in FO.

The difference between a rule ∀x (P (t̄) ← ϕ) in an FO(ID) definition or a D-module and a
material implication ∀x (P (t̄)⇐ ϕ) therefore does not lie in the interpretation of the connectives of ϕ.

M. Denecker, Y. Lierler, M. Truszczynski, J. Vennekens 11

Instead, it lies in the rule operator←, which differs from material implication⇐. Previous studies of
inductive definitions called this operator also the production operator, reflecting its role of producing
new elements of the defined relation. As discussed in [7], part of its meaning is the restriction
that such elements should be produced in accordance with the well-founded order over which the
induction is happening. This makes a rule indeed quite different from a material implication.

6 Discussion

Interpreting the answer-set semantics as a Tarskian possible-world semantics is a major mental leap
which affects our interpretation of the ASP formalism, its composition laws, and the meaning of
its connectives. While many ASP researchers may have already made this leap in their day-to-
day programming under the Generate-Define-Test methodology, this paper offers the first detailed
discussion of its consequences. To conduct our analysis, we presented the formalism ASP-FO, whose
modular structure is geared specifically towards the GDT paradigm. By studying our possible-world
perspective on ASP-FO, we obtained an informal semantics for the GDT fragment of ASP, which
combines modules by means of the standard conjunction, and captures the roles of different modules
in GDT-based programs.

We proposed ASP-FO as a theoretical mechanism to study GDT and ASP from a Tarskian
perspective. However, ASP-FO is also a viable ASP logic for which several efficient ASP tools exists.
Similarly to FO(ID), ASP-FO is an open domain logic and its models can be infinite. In general, the
satisfiability problem is undecidable (and not just co-semidecidable) — the result can be obtained
by adapting the corresponding result concerning the logic FO(ID) [6]. In many search problems,
however, a finite domain is given. That opens a way to practical problem solving. One can apply
finite Herbrand model generation or model expansion [15] and the corresponding tools [1]. Also, the
IDP system [23] implements both the FO(ID) and ASP-FO semantics.

Finally, let us put the goals of this paper in a broader historical perspective. First, both logic
programming and nonmonotonic reasoning were anti-theses to classical logic (FO), motivated by
respectively computational and representational issues with the latter. The work on ASP-FO and
earlier on FO(ID) effectively presents a synthesis of these paradigms with FO. Second, the view of
logic programs as definitions was already present in Clark’s view, albeit implicitly, and his completion
semantics is not fully adequate to formalize this idea. Later, Gelfond and Lifschitz proposed to
interpret logic programs as epistemic theories. The view on D-modules presented in this paper is a
proposal to “backtrack” to Clark’s original view.

References

1 A. Aavani, X. Wu, S. Tasharrofi, E. Ternovska, and D. G. Mitchell. Enfragmo: A system for
modelling and solving search problems with logic. In N. Bjørner and A. Voronkov, editors, Pro-
ceedings of the 18th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning, LPAR 2012, volume 7180 of LNCS, pages 15–22, Berlin, 2012. Springer.

2 M. Denecker. The well-founded semantics is the principle of inductive definition. In J. Dix, L. Far-
iñas del Cerro, and U. Furbach, editors, Proceedings of the European Workshop on Logics in Artifi-
cial Intelligence, JELIA 1998, volume 1489 of LNCS, pages 1–16, Berlin, 1998. Springer.

3 M. Denecker. Extending classical logic with inductive definitions. In J.W. Lloyd, V. Dahl, U. Fur-
bach, M. Kerber, K.-K. Lau, C. Palamidessi, L.M. Pereira, Y. Sagiv, and P.J. Stuckey, editors,
Proceedings of First International Conference on Computational Logic, CL 2000, volume 1861 of
LNCS, pages 703–717, Berlin, 2000. Springer.

4 M. Denecker. What’s in a model? Epistemological analysis of logic programming. In D. Dubois,
C.A. Welty, and M.-A. Williams, editors, Proceedings of the 9th International Conference on Prin-

ICLP 2012

12 A Tarskian Informal Semantics for ASP

ciples of Knowledge Representation and Reasoning, pages 106–113, Palo Alto, CA, 2004. AAAI
Press.

5 M. Denecker, M. Bruynooghe, and V.W. Marek. Logic programming revisited: Logic programs as
inductive definitions. ACM Transactions on Computational Logic, 2(4):623–654, 2001.

6 M. Denecker and E. Ternovska. A logic of nonmonotone inductive definitions. ACM Transactions
on Computational Logic, 9(2):1–50, 2008.

7 M. Denecker and J. Vennekens. Well-founded semantics and the algebraic theory of non-monotone
inductive definitions. In C. Baral, G. Brewka, and J.S. Schlipf, editors, Proceedings of the 9th
International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2007,
volume 4483 of LNCS, pages 84–96, Berlin, 2007. Springer.

8 P. Ferraris, J. Lee, and V. Lifschitz. Stable models and circumscription. Artificial Intelligence,
175:236–263, 2011.

9 P. Ferraris, J. Lee, V. Lifschitz, and R. Palla. Symmetric splitting in the general theory of stable
models. In Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI-
2009, pages 797–803, Palo Alto, CA, 2009. AAAI Press.

10 M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. Kowalski
and K. Bowen, editors, Proceedings of International Logic Programming Conference and Sympo-
sium, pages 1070–1080, Cambridge, MA, 1988. MIT Press.

11 M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New
Generation Computing, 9:365–385, 1991.

12 V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138:39–54,
2002.

13 V. Lifschitz and H. Turner. Representing transition systems by logic programs. In M. Gelfond,
N. Leone, and G. Pfeifer, editors, Proceedings of International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR), volume 1730 of LNCS, pages 92–106, Berlin, 1999.
Springer.

14 V.W. Marek and M. Truszczynski. Stable models and an alternative logic programming paradigm.
In K.R. Apt, V.W. Marek, M. Truszczynski, and D.S. Warren, editors, The Logic Programming
Paradigm: a 25-Year Perspective, pages 375–398. Springer, Berlin, 1999.

15 D.G. Mitchell and E. Ternovska. A framework for representing and solving NP search problems. In
Proceedings of the 20th National Conference on Artificial Intelligence, AAAI 2005, pages 430–435,
Palo Alto, CA, 2005. AAAI Press.

16 R. C. Moore. Semantical considerations on nonmonotonic logic. Artificial Intelligence, 25(1):75–
94, 1985.

17 I. Niemelä. Logic programs with stable model semantics as a constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25:241–273, 1999.

18 D. Pearce and A. Valverde. Quantified equilibrium logic and foundations for answer set programs.
In Proceedings of the 24th International Conference on Logic Programming, ICLP 2008, volume
5366 of LNCS, pages 546–560, Berlin, 2008. Springer.

19 N. Pelov, M. Denecker, and M. Bruynooghe. Well-founded and stable semantics of logic programs
with aggregates. Theory and Practice of Logic Programming, 7(3):301–353, 2007.

20 R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
21 M. Truszczynski. Connecting first-order asp and the logic FO(ID) through reducts, In E. Erdem,

Y. Lierler, Y. Lierler, and D. Pearce, editors, Correct Reasoning, Essays of Logic-Based AI in
Honour of Vladimir Lifschitz, volume 7265 of LNCS, Berlin, 2012. Springer.

22 J. Vennekens, J. Wittocx, M. Mariën, and M. Denecker. Predicate introduction for logics with a
fixpoint semantics. Part I: Logic programming. Fundamenta Informaticae, 79(1-2):187–208, 2007.

23 J. Wittocx, M. Mariën, and M. Denecker. The IDP system: a model expansion system for an
extension of classical logic. In M. Denecker, editor, Logic and Search, Computation of Structures
from Declarative Descriptions, LaSh 2008, pages 153–165, 2008.

	Introduction
	Generate-Define-Test methodology
	Concepts of Tarskian model semantics
	The logic ASP-FO
	Informal semantics of ASP-FO and the Generate-Define-Test methodology
	Discussion

