
Weighted-Sequence Problem: ASP vs CASP
and Declarative vs Problem-Oriented Solving

Yuliya Lierler, Shaden Smith, Miroslaw Truszczynski, Alex Westlund

Department of Computer Science, University of Kentucky, Lexington, KY
40506-0633, USA

Abstract. Search problems with large variable domains pose a chal-
lenge to current answer-set programming (ASP) systems as large variable
domains make grounding take a long time, and lead to large ground the-
ories that may make solving infeasible. To circumvent the “grounding
bottleneck” researchers proposed to integrate constraint solving tech-
niques with ASP in an approach called constraint ASP (CASP). In the
paper, we evaluate an ASP system clingo and a CASP system cling-
con on a handcrafted problem involving large integer domains that is
patterned after the database task of determining the optimal join or-
der. We find that search methods used by clingo are superior to those
used by clingcon, yet the latter system, not hampered by grounding,
scales up better. The paper provides evidence that gains in solver tech-
nology can be obtained by further research on integrating ASP and CSP
technologies.

1 Introduction

ASP [9, 11] is a declarative programming formalism based on the answer-set se-
mantics of logic programs [6]. It is oriented towards combinatorial search prob-
lems. Search problems with large variable domains pose a major challenge to
the current generation of answer-set programming (ASP) systems, which re-
quire that the answer-set program representing the problem first be grounded
by an ASP grounder and only then solved by an ASP solver [2]. The difficulty is
that large variable domains make grounding take long, sometimes prohibitively
long, time and result in large ground theories that often make solving infeasible,
even though the problem may in fact be quite easy. Typical examples of prob-
lems with variables ranging over large domains are optimization problems, which
require variables to represent possible values of goal function, and planning and
scheduling problems that require variables to represent times when events can
take place.

Constraint ASP [10, 5, 1] (CASP) integrates ASP with tools and techniques
developed for constraint satisfaction problems (CSP). The goal of CASP systems
is to address the grounding bottleneck of ASP. CASP solvers address the problem
by performing partial grounding only, not grounding variables whose values range
over large domains, but delegating the task of finding appropriate values for them
to specialized algorithms such as constraint solvers.



In the work we report here we experimentally evaluated ASP and CASP sys-
tems. For our study we selected the highly optimized ASP system clingo1 [4]
that is based on the ASP grounder gringo [3] and the ASP solver clasp [4], and
a CASP system clingcon2 [5] that is based on modifications of gringo, clasp,
and the constraint solver gecode3. To conduct the experiments we handcrafted
a benchmark called a weighted-sequence problem. The key features of the prob-
lem are inspired by the important industrial problem of finding an optimal join
order by cost-based query optimizers in database systems. When selecting and
designing the problem, we were motivated by the fact that it involved variables
with large domains of integers, which made it well suited for our study. We
were also motivated by the practical relevance of that problem and its hardness.
Current query optimizers attempt to find an optimal join order only for joins
consisting of relatively few tables (five tables in the case of the oracle optimizer
[7, Page 416]). We modified the problem by introducing additional complexities
to enrich its structure and create possibilities for non-trivial modeling enhance-
ments requiring a deeper understanding of problem properties.4

In our experiments we aimed to understand relative advantages of sophisti-
cated search procedures involving conflict-driven clause learning and backjump-
ing of the ASP solver clingo versus the idea of limiting grounding and dele-
gating some constraint solving tasks to a specialized constraint solver employed
by clingcon – an idea central to CASP. We experimented with two sets of
instances: a small set of 30 instances, where the integer parameters were quite
small, and a large set also of 30 instances, where the integer parameters were
substantially larger. Our key findings are that: the effectiveness of the search pro-
cedure used by clingcon lags behind that of clingo; and that circumventing
the grounding bottleneck makes clingcon scale up substantially better.

The former finding is demonstrated by the running times we observed on
instances in the small set, where the integer parameters are low and grounding
is not a major factor. On these instances, clingo in general performed better.
Further evidence in support of that claim came from experiments with several en-
codings of the weighted-sequence problem, one of which represented the problem
requirements literally as they appeared in the problem statement, while others
also included constraints not given explicitly but derived from those stated di-
rectly. clingo was much less sensitive to modeling enhancements, suggesting
that its learning techniques could infer at least some of the derived constraints.
However, including these “derived” constraints had a major positive effect on
clingcon, suggesting its search methods are not yet powerful enough to infer
useful constraints when they are not given explicitly.

1 http://potassco.sourceforge.net/
2 http://www.cs.uni-potsdam.de/clingcon/
3 http://www.gecode.org/
4 The benchmark was submitted to and used in the Third Answer Set Programming

Competition (https://www.mat.unical.it/aspcomp2011/OfficialProblemSuite).
It was referred to as benchmark number 28, Weight-Assignment Tree.



The latter key finding concerning the scalability was evidenced by the results
concerning the large set of instances showing that when the parameters get
larger, large sizes of grounded programs slow down clingo dramatically, while
even less sophisticated search methods of clingcon are capable to find solutions
quickly.

Our results strongly suggest the validity of the CASP approach but also point
out that there is still much room for improvement in the way CASP systems do
learning.

2 Problem Statement

In the weighted-sequence problem we are given a set of leaves (nodes) and an
integer m — maximum cost. Each leaf is a pair (weight, cardinality) where
weight and cardinality are integers. Every sequence (permutation) of leaves is
such that all leaves but the first are assigned a color. A colored sequence is
associated with the cost. The task is to find a colored sequence with the cost at
most m.

For a set S of leaves and an integer m, we denote the corresponding weighted-
sequence problem by [S,m]. We say that an integer m is optimal with respect
to a set S of leaves if m is the least integer u such that the weighted-sequence
problem [S, u] has a solution.

Let M be a sequence of n leaves l0, . . . , ln−1. For each leaf li, 0 ≤ i ≤ n− 1,
by w(li) and c(li) we denote its weight and cardinality, respectively. We color
each leaf li, 1 ≤ i ≤ n−1, green, red, or blue; the leaf l0 is not colored. We define
the costs of leaves as follows. For the leaf l0, we set

cost(l0) = w(l0).

For every colored leaf li, 1 ≤ i ≤ n− 1, we set

cost(li) =

w(li) + c(li) if li is green
cost(li−1) + w(li) if li is red
cost(li−1) + c(li) if li is blue.

The cost of the sequence M is the sum of the costs of its colored leaves:

cost(M) = cost(l1) + · · ·+ cost(ln−1).

3 ASP: Generate and Test Methodology

Answer set programming [9, 11] is a declarative programming formalism based on
the answer set semantics of logic programs [6]. The idea of ASP is to represent
a given computational problem by a program whose answer sets correspond
to solutions. A common methodology to solve a problem in ASP is to design
two main parts of a program: generate and test [8]. The former defines a
larger collection of answer sets that could be seen as potential solutions. The



latter consists of rules that eliminate the answer sets that do not correspond
to solutions. Often a third part of the program, define, is also necessary to
express auxiliary concepts that are used to encode the conditions of generate
and test. Thus, when we represent a problem in ASP, two kinds of rules have
a special role: those that generate many answer sets corresponding to possible
solutions, and those that can be used to eliminate the answer sets that do not
correspond to solutions.

A typical logic programming rule has a form

a0 ← a1, . . . , am, not am+1, . . . , not an, (1)

where each ai (0 ≤ i ≤ n) is an atom of the underlying language. We call
the left-hand side (right-hand side) of the arrow symbol in a rule (1) the rule’s
head (body, respectively). Rules are used to describe relations between concepts
represented by their atoms. Together, as a program, they specify a class of special
models the program. These models are called answer sets. Informally speaking,
answer sets are those models of a program that are in some very precise way
“justified” by the program. We refer for the formal definition to the overview by
Brewka et al. [2].

For instance, the program

p.
q ← p, not r.

is composed of two rules. The first rule is often called a fact since its body is
empty and it represents the fact p. The second rule justifies the derivation of q,
as we have p and the program has no way to justify r (no rule has r as its head).
Consequently, by a form of the closed-world assumption, not r is true and the
rule “fires.” In this case, {p, q} is the only model “justified” by the program,
that is, the only answer set, even though the program has additional models.

In addition to rules of the form (1), gringo also accepts rules of other kinds.
Two important examples are choice rules and constraints. For example, the rule

{p, q, r}.

is a choice rule (in this case, with the empty body). Informally, it justifies any
(even empty) subset of {p, q, r}. Thus, any subset of {p, q, r} is an answer set
the program consisting of this rule only. As this example demonstrates, choice
rules generate sets of models and are typically members of the generate part
of the program.

Constraints often form the test section of a program. Syntactically, a con-
straint is the rule with an empty head. It encodes the constraints of the problem
that answer sets must have. For instance, the constraint

← p, not q.

eliminates answer sets that include p and do not include q. When this constraint
and the constraint← r, which eliminates answer sets containing r, are conjoined



with the choice rule above, the resulting program has three answer sets: ∅, {q}
and {p, q}.

The input language of clingo (clingcon) allows the user to specify large
programs in a compact fashion, using rules with schematic variables and other
abbreviations. We refer the reader to the manual of clingo [3] for more details.

When processing, programs are first grounded by a grounder (a program like
gringo). Afterwards, a solver program (for instance, clasp; these programs
share much similarity with propositional SAT solvers) searches for the answer
sets of the propositional output of the grounding phase.5 The problem is that
the output of the grounder may be large. By exploiting constraint (CSP) solvers
for some search tasks, one can get by with a smaller grounding. This is the
idea behind CASP, which we compare here experimentally to the standard ASP
solving method.

4 Encodings

ASP encodings of the weighted-sequence problem represent it as a logic program
so that answer sets of the program correspond to sequences of leaves with the
cost less than or equal to the given bound. Below we present several encodings.
One of them simply represents literally the requirements as they appear in the
problem statement. The remaining ones expand it by imposing additional con-
straints derived by analyzing the problem statement. All these encodings can
be systematically transformed into the corresponding clingcon programs that
take advantage of a special feature of clingcon, constraint atoms. We use the
resulting clingcon programs in our experiments with clingcon.

There are several concepts that are common to all the encodings. Let n and
m be integers giving the number of leaves in a weighted-sequence and the bound
on the total cost of a solution (maximum cost), respectively. Then each encoding
contains the following facts

num(n)
maxCost(m).

The weight and cardinality of each leaf is specified by facts of the form

leafWeightCard(i, w, c)

where i is an integer that ranges from 1 to n and stands for an id of a leaf, and
w and c are the weight and cardinality of this leaf, respectively.

In addition, the define part of every encoding presented here contains the
rules

position(X)← X = 0..N − 1, num(N)
coloredPos(X)← X = 1..N − 1, num(N),

which specify that there are n positions 0 . . . n− 1 in the sequence, and that the
positions 1 . . . n− 1 are colored and the position 0 is not.

5 clingo, the program we study in this paper, simply combines the two programs into
one.



Declarative Encoding: The generate part of a declarative encoding, decl,
consists of two components. The first one generates a sequence by assigning each
leaf its position. It is formed by the following two rules:

1{leafPos(L,P ) : position(P )}1← leaf (L)
1{leafPos(L,P ) : leaf (L)}1← position(P ).

Intuitively, the first rule says that each leaf is assigned exactly one position. The
second rule ensures that each position holds exactly one leaf.

The second component of the generate part assigns exactly one color to
every colored position in a sequence (positions 1, . . . , n− 1). To this end, it uses
the rule

1{posColor(P,C) : color(C)}1← coloredPos(P ). (2)

The define part of the program decl includes the rules that specify the
cost of each colored leaf in a sequence. For instance, the two rules

posCost(0, Cost)← leafWeightCard(L,Cost, C), leafPos(L, 0)
posCost(P,Cost)← coloredPos(P ), posColor(P, red), leafPos(L,P ),

leafWeightCard(L,W,C), posCost(P − 1, Cost′),
Cost = Cost′ + W

(3)

state that (i) the cost of the leaf in position 0 is its weight, and (ii) the cost of
the leaf in position P that is colored red is the sum of its weight and the cost of
the preceding node. Similar rules specify costs of leaves when they are colored
green or blue. The define part of decl also contains rules that define the cost
of a sequence:

seqCost(1, Cost)← posCost(1, Cost)
seqCost(P,Cost)← coloredPos(P ), P > 1, seqCost(P − 1, C),

posCost(P,C ′), Cost = C + C ′.
(4)

Consequently, an answer set contains the ground atom seqCost(n− 1, c) if and
only if c is the number that corresponds to the cost of the sequence determined
by other ground atoms in this answer set (we recall that n is the number of
leaves).

Finally, define includes the rule that introduces an auxiliary predicate exists:

exists← seqCost(N − 1, Cost), num(N), Cost ≤M,maxCost(M) (5)

which affirms that the sequence determined by an answer set has total cost
within the specified bound m.

The test part of decl contains a single constraint:

← not exists

It tests whether an answer set contains the atom exists and eliminates those that
do not. In this way only answer sets determining sequences with the total cost



within the specified bound remain. If no such sequence exists the program has
no answer sets.

We note that the rules in (3) and (4) may be augmented by additional
conditions in the bodies

Cost ≤M, maxCost(M).

This modification is crucial for making grounded instances of programs smaller
and is incorporated in our encodings.

Sequence Encoding: For a leaf l, we define its value val(l) as the smaller of
the two numbers, the weight and the cardinality, associated with l. That is,

val(l) =

{
w(l) if w(l) ≤ c(l),
c(l) otherwise.

Let l and l′ be two leaves in a sequence so that l immediately precedes l′. We
define the color number of the leaf l′ to be

colorNum(l′) = min(w(l′) + c(l′), cost(l) + val(l′)).

Let us assign a color to every leaf l′ in a colored position according to the formula:

color(l′) =

green if colorNum(l′) = w(l′) + c(l′)
red otherwise, if colorNum(l′) = cost(l) + w(l′)
blue otherwise, if colorNum(l′) = cost(l) + c(l′)

where l precedes l′ in the sequence.

Observation 1: Any color assignment different from the one defined above results
in a colored sequence with the same or higher cost.

Observation 1 represents a property of the weighted-sequence problem that
is not explicitly present in the problem statement and so, it is not a part of the
decl encoding. It is the basis for the sequence encoding seq that builds upon the
decl encoding by replacing the “non-deterministic” color-choice rule (2) with a
set of “deterministic rules.” For instance,

posColor(P, green)← P > 1, coloredPos(P ), leafPos(L,P ),
leafWeightCard(L,W,C), leafValue(L, V ),
posCost(P − 1, Cost), W + C < Cost + V

is one of the rules in this set (for a leaf l, leafValue(l, v) is defined to hold precisely
when v = val(l)).

Intuitively, the advantage of the encoding seq over decl is a reduced search
space as color assignment requires no choices. However, by Observation 1, no
optimal solutions are lost while some suboptimal ones are pruned. We note
that an additional (minor) simplification results from the fact that in the decl
encoding, three cases are considered when a position is colored green, red, and
blue. In the encoding seq, with the use of leafValue predicate, it is sufficient to
consider two cases only: when position is colored green and when it is not.



Sequence Encoding+:
Observation 2: Let l and l′ be two consecutive elements in a sequence M (in that
order), neither being a green-colored leaf. It is easy to see that if val(l′) < val(l)
then the sequence M ′ constructed from M by changing the order of l and l′ has
a smaller cost than M , i.e., cost(M ′) < cost(M).

Observation 2 allows us to add the constraint

← coloredPos(P ;P − 1),
not posColor(P, green), not posColor(P − 1, green),
leafPos(L,P − 1), leafPos(L′, P ),
leafValue(L, V ), leafValue(L′, V ′), V > V ′.

(6)

to the seq encoding. We denote the resulting program by seq+.
The idea behind extending the seq encoding with (6) is that it reduces the

search space. Observation 2 implies that no optimal solutions to the weighted-
sequence problem are lost because of the additional constraint, some suboptimal
ones will in general be pruned.

Sequence Encoding++:
Let g1, . . . , gk be a set of all green nodes in a sequence M , that is,

M = M0 g1 M1 . . . gk Mk (7)

where each Mi, 0 ≤ i ≤ k, is a sequence of non-green leaves. We call M0 the 0th
partition of (7) and each gi Mi, 1 ≤ i ≤ k, a green partition of (7).

Observation 3: The fact that the cost of a green node only relies on its own
weight and cardinality makes it evident that the cost of the sequence (7) is the
same as the cost of the sequence M0 P , where P is any permutation of the set
of green partitions of (7), {g1 M1, . . . , gk Mk}.

Observation 3 allows us to add a constraint

← leafPos(L,P ), leafPos(L′, P ′),
posColor(P, green), posColor(P ′, green),
L < L′, P > P ′

to the seq+ encoding. We denote the resulting program by seq++. Intuitively,
the last rule “breaks the symmetry” by enforcing that any answer set to the
program has the green leaves in the corresponding solution sequence sorted ac-
cording to their costs.

Clingcon Encodings: The CASP language of clingcon extends the ASP
language of clingo by introducing “constraint atoms”. These atoms are inter-
preted differently than “typical” ASP atoms. The system clingcon splits the
task of search between two programs: an ASP solver (clasp) and a CSP solver
(gecode). The ASP solver incorporated in clingcon treats constraint atoms
as boolean atoms and assigns them some truth value. The CSP solver, on the
other hand, is used to verify whether the assignments given to the constraint
atoms by the ASP solver of clingcon hold based on their “real” meaning.



Let us note that posCost and seqCost predicates used in all clingo encod-
ings are “functional”. In other words, when this predicate occurs in an answer
set its first argument uniquely determines its second argument. Often, functional
predicates in ASP encodings can be replaced by constraint atoms in CASP en-
codings. Indeed, this is the case in the weighted-sequence problem domain. This
allows us to create alternative encodings for decl, seq and the extensions of
seq.

We note that only the rules containing functional predicates posCost and
seqCost were changed in decl and seq and its extensions to produce clingcon
programs. For instance, the rules in (4) and (5) have the following form in the
clingcon encodings

seqCost(1) =$ posCost(1) ← coloredPos(1)
seqCost(P ) =$ posCost(P ) + seqCost(P − 1) ← P > 1, coloredPos(P )
exists ← seqCost(N − 1) ≤$ M, num(N), maxCost(M),

where

seqCost(1) =$ leafCost(1), seqCost(P ) =$ leafCost(P ), seqCost(N − 1) ≤$ M

are constraint atoms. The rules defining posCost , such as (3), are rewritten in a
similar manner:

posCost(0) =$ Cost← leafWeightCard(L,Cost, C), leafPos(L, 0)
posCost(P ) =$ posCost(P − 1) + W ← coloredPos(P ), posColor(P, red),

leafPos(L,P ), lwc(L,W,C)

where posCost(0) =$ Cost and posCost(P ) =$ posCost(P−1)+W are constraint
atoms.

We may benefit from the clingcon encodings when weights, cardinalities,
and maximum cost of a given weighted-sequence problem are “large” integers. In
such cases, any clingo encoding (that we were able to come up with) faces the
grounding bottleneck. The size of the grounded clingo program heavily depends
on the integer values provided by the problem specification. On the other hand,
the size of the corresponding grounded clingcon program is only affected by
these integer values to a small degree or, even, not affected at all.

5 Experimental Analysis

We first describe hardware specifications, the instance generation method, and
the procedures used to perform all experiments. Then we discuss the experimen-
tal results reported.

Experiments were performed concurrently on several identical machines, each
with a single-core 3.60GHz Pentium 4 CPU and 3Gb of RAM, and running
Ubuntu Linux version 10.04. Experiments were performed with clingo version
3.0.3 and clingcon version 0.1.2.



Instance generation is driven by two inputs: the number of leaves in the
instance, n, and the maximum value of a weight and cardinality of a single leaf, v.
First, the set S of n leaves is created by generating random weights w0, . . . , wn−1
and cardinalities c0, . . . , cn−1 so that 0 ≤ wi, ci ≤ v. For all instances in small
we used v = 12 and n = 10. For all instances in large we used v = 100 and
n = 8.

As leaves are created they are assigned a unique position in a sequence M .
Positions 1 through n−1 in M are then randomly assigned colors green, red, or
blue. We calculate the total cost m of the resulting colored sequence M and use
it, together with S, as an instance to the weighted-sequence problem, denoted
by [S,m].

Thirty random problem instances generated in the way described above form
the first set of instances, called easy, in the small and in the large sets, re-
spectively. Clearly, all of these instances are satisfiable.

To create harder instances required an encoding and a solver. We chose the
encoding seq++ along with clingcon. We proceeded by starting with an in-
stance [S,m] in the set of easy instances. We used clingcon to solve it, and if
the instance was satisfiable, we calculated the tree cost for the solution found, m̂,
(clearly, m̂ ≤ m). We then repeated the process for the instance [S, m̂−1]. When
[S, m̂− 1] was found unsatisfiable, it indicated that m̂ was optimal with respect
to S, and m̂ − 1 made the set S “barely” unsatisfiable (to be more precise, we
used a version of binary search here to speed the process up). Instances obtained
in this way from the easy instances formed the sets of optimal and unsatisfiable
instances, respectively. The instances [S, m̂+ 5] formed the set of hard instances
in the small set, and the instances [S, m̂+ 50] formed the set of hard instances
in the large set. As before, we constructed groups of thirty hard, optimal and
unsatisfiable instances for both small and large sets.

We used each instance with all encodings we considered. A time limit of
1500 seconds (25:00 minutes) was enforced for each instance. From each solve
the grounding time, solving time, solution, the number of choices and the sizes
of ground theories were recorded for further study.

We now present and discuss the results of our experiments. Due to space lim-
its only summary results are presented here. For the encodings we used and the
complete results, we refer to http://www.csr.uky.edu/WeightedSequence/.
The first two tables, Table 1 and Table 2, concern small and large sets of
instances, respectively. In the case of each set we considered its easy, hard, op-
timal and unsat subsets, and for each subset included a row in the table. There
are two groups of columns in each table, one for clingo and the other one for
clingcon. The columns in each group represent encodings decl, seq, seq+
and seq++. Each entry in the table contains either the average running time of
clingo or clingcon, respectively, for the set of 30 instances in the correspond-
ing easy, hard optimal and unsat subset. However, if for at least one instance in
the group we had a timeout, instead of the average running time we report the
number of timeouts in the group.



Table 1. Small Instances

clingo clingcon

Instance decl seq seq+ seq++ decl seq seq+ seq++

Easy 0.88 0.75 0.81 0.86 0.02 0.06 0.05 0.15
Hard 4.01 1.19 1.77 2.97 to=7 9.50 4.34 5.04
Optimal 26.28 15.75 20.41 15.04 to=27 253.30 203.75 34.57
Unsat 180.62 193.79 162.88 27.88 to=30 to=25 to=17 128.63

Table 2. Large Instances

clingo clingcon

Instance decl seq seq+ seq++ decl seq seq+ seq++

Easy 21.76 15.38 15.35 16.73 0.01 0.07 0.07 0.08
Hard 22.75 13.96 14.41 23.36 to=4 1.76 1.18 0.72
Optimal to=1 97.38 to=1 101.95 to=24 46.58 23.49 5.07
Unsat to=12 to=12 to=10 248.81 to=30 189.38 92.29 10.43

Before we discuss the results as they pertain to comparisons of clingo versus
clingcon, and to the role of explicit modeling of additional domain knowledge,
we note that both tables show the increasing hardness of our instances as we
move from easy to hard to optimal and, finally, to unsat ones. That is, the tables
support the soundness of our approach to generate increasingly harder instances
by lowering the bound for the total weight.

Effectiveness of search. We consider first the small set of instances. When
run on easy instances in that group, clingcon outperforms clingo. However,
already on hard instances, the situation reverses. clingcon running times are
worse and it times out on seven instances under the encoding decl. The trend
continues when we move on to optimal and unsat instances — clingcon per-
formance deteriorates. The results suggest that for problems in that group, due
to relatively small integer parameters used, neither the time needed for the com-
pete grounding nor the size of the ground theory seem to have much negative
effect on clingo, whose efficient and highly optimized search techniques more
than compensate for that. On the other hand, worse (and, in the case of optimal
and unsat instances, significantly worse) performance of clingcon suggests its
search techniques lag behind those of clingo.

Our results provide also support to the claim of the importance of constraint
learning while solving. clingo exploits sophisticated conflict-driven clause learn-
ing algorithm. The encodings we considered differ in that they represent progres-
sively more and more problem constraints. The encoding used has very limited
effect on the performance of clingo, when it is run on instances from the small
set. The only exception comes from the seq++ encoding resulting in a much
better performance of clingo when run on the group of unsat instances. On



the other hand, the choice of the encoding has a major effect on clingcon. The
results concerning instances in the large set (Table 2), show a similar behavior.
The effect of extra domain knowledge on the performance of clingo (while no
longer negligible) is still much smaller that the effect it has on clingcon.

Thus, it seems that search techniques of clingo can learn some or even a
major portion of the missing constraints, while clingcon search methods are
not effective enough in that respect, as they benefit greatly when the constraints
are provided explicitly.

Next, we note that instances in small set where generated for n = 10 leaves
(tables in the join problem), while in the large set for n = 8. The problems
in the large set turn out to be easier for clingcon than those in the small
set. This suggests that clingcon handles increasing weights well but is more
sensitive to changes in other parameters (line n). This observation is yet another
indication of clingcon’s weaker search techniques on the ASP side.

Lastly, we note briefly that while the additional constraints modeled explicitly
in seq and seq+ encodings do help clingcon, it is the symmetry-breaking
constraint used in seq++ that is particularly beneficial. In fact, it also seems to
have a significant positive effect on clingo, as evidenced by the performance of
clingo on unsat instances in the set large (cf. Table 2).

In summary, our discussion above shows that there seem to be much room
for improvement as concerns overall performance of search in CASP tools such
as clingcon. It shows that sophisticated search techniques can compensate for
some of the “derived” constraints not explicitly present in the problem statement,
but also that some types of constraints, such as symmetry-breaking, make a
difference even if solvers use a sophisticated constraint-learning algorithms.

Scalability: The results from Tables 3 and 4 provide evidence that clingcon
scales up better than clingo as weights go up. To argue that we recall (cf.
Table 1) that for the instances in the small set, clingcon performs worse
than clingo (except for instances that are easy). However when we move to
instances in the large set, the situation changes (cf. Table 2). Except for the
encoding decl, where it timed out frequently and much more often than clingo
(as we argued above, due to its inability to learn useful constraints), clingcon
completed the computation for every instance under seq, seq+ and seq++
encodings. clingo, on the other hand, times out on 23 instances under these
three encodings (12 unsat instances under seq, one optimal and 10 unsat under
seq+) and when it does not time out, its running times are much worse than
those of clingo (one order of magnitude difference for the encoding seq++.

These results suggest that clingcon successfully addresses the grounding
bottleneck resulting from large integer domains. To see this let us consider the
sizes of ground theories (measured as the numbers of clauses and reported as
averages over 30 instances that form each group).

First, we note that the sizes of clingcon encoding do not vary as we move
from easy down to unsat instances. It is because these clingcon instantiates
only non-weight, non-cardinality variables (such as the number of leaves and the
number of colored positions) and they do not change. The only parameter that



Table 3. Sizes of ground programs: Small Instances

clingo clingcon

Instance decl seq seq+ seq++ decl seq seq+ seq++

Easy 75268 62739 63099 64719 575 539 899 2519
Hard 29326 26588 26948 28568 575 539 899 2519
Optimal 26842 24495 24855 26475 575 539 899 2519
Unsat 26350 24077 24437 26057 575 539 899 2519

Table 4. Sizes of ground programs: Large Instances

clingo clingcon

Instance decl seq seq+ seq++ decl seq seq+ seq++

Easy 1546714 1162451 1162619 1163207 383 358 526 1114
Hard 434237 377120 377288 377876 383 358 526 1114
Optimal 350933 308383 308551 309139 383 358 526 1114
Unsat 349336 307052 307220 307808 383 358 526 1114

distinguishes between the encodings, the bound on the weight, m, does not affect
clingcon grounding size as, unlike in the clingo encodings, no “groundable”
variable in clingcon encodings ranges over the domain [0..m].

This brings us to the second observation, directly relevant for our study.
Grounded clingcon encodings are much smaller than those resulting from the
clingo ones. For instances in the large set, the ground programs considered
by clingo are quite large (hundreds of thousands of ground rules) and when
constraints become tight (for optimal and unsat problems), very hard for clingo
to process successfully within the time bounds set.

Next, we note that, not surprisingly, it is not only the size of the grounded
program that matters. Easy instances result, after grounding, in much larger
programs than unsat ones but as the constrains are not tight, the search process
can terminate quickly. It is the combination of a large size and tight constraints
that slows clingo down. Tight constraints are clearly a problem for clingcon,
too (cf. the tables reporting the running times). But since the size of the ground
theory it has to deal with is low, it does not hamper its performance on the
ASP side of search, and the types of constraint problems clingcon delegates to
gecode are handled well (at least for our instances) by that CSP solver.

6 Conclusions and Future Work

Our experimental findings suggest several observations. Highly tuned ASP search
algorithms (specifically, clingo) display a similar behavior on both “literal”
(decl) and “sophisticated” (seq, seq+ and seq++) encodings of a weighted-



sequence problem (although, as the instances get larger, symmetry-breaking in-
corporated into seq++ seems to start showing a noticeable benefit). The so-
phisticated encodings impose a number of restrictions on the problem’s search
space in comparison with the literal encoding and, our results show, for hybrid
systems such as clingcon (that combines both ASP and CSP techniques in
its search), it is of importance. Reduced search space that results can have a
significant positive effect on their performance. Thus, our results suggest that
the effectiveness of the search procedure used by clingcon lags behind that
of clingo. They show that the problem seems to be with lack of strong learn-
ing techniques in clingcon. Including extra domain knowledge explicitly into
problem representations greatly improves clingcon performance.

In the same time, we observed that clingcon scales up better than clingo
and we attribute it to the fact that search in clingcon has to process smaller
search spaces due to limiting the scope of grounding. Thus, CASP promises to
become a milestone in declarative problem solving by providing the means of
solving ASP grounding bottleneck. However, based on our work, we believe that
to reach its full potential, CASP search methods need to incorporate learning
to a much larger degree than they do so now. Certainly, other factors may be
of importance, too, such as th enhanced communication between ASP and CSP
processes while solving. The effect of those factors still needs to be evaluated.

We also stress that when we claim better scalability of clingcon we have in
mind scalability with the size of weights (and cardinalities) going up. When we
increase the number of leaves (and keep weight small) we expect the picture most
likely would be different simply because of stronger search methods implemented
in clingo.

This research focused on a single problem. In order to study the degree to
which our findings are generizable, in the future work we will consider additional
problems with large integer parameters and subject them to a similar study. On
the other hand, we will also consider in more depth the problem that inspired
the benchmark we considered here, the optimal join order problem, and study
the effectiveness of ASP/CASP/CSP tools in solving it. This work is already
under way.

Acknowledgments

We are grateful to Philip Cannata for bringing the problem of finding an optimal
join order in query optimization to our attention, to Vladimir Lifschitz and
Yuanlin Zhang for useful discussions related to the topic of this work, and to Max
Ostrowski for suggestions on clingcon encodings. Yuliya Lierler was supported
by a CRA/NSF 2010 Computing Innovation Fellowship, Miroslaw Truszczynski
by the NSF grant IIS-0913459, and Shaden Smith and Alex Westlund by the
NSF REU Supplement to that grant.



References

1. Balduccini, M.: Representing constraint satisfaction problems in answer set pro-
gramming. In: Proceedings of ICLP’09 Workshop on Answer Set Programming and
Other Computing Paradigms (ASPOCP’09) (2009)

2. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Communications of the ACM (2011), to appear in December 2011

3. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T.,
Thiele, S.: A User Guide to gringo, clasp, clingo and iclingo (2010),
http://cdnetworks-us-2.dl.sourceforge.net/project/potassco/potassco_

guide/2010-10-04/guide.pdf

4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: Proceedings of 20th International Joint Conference on Artificial Intel-
ligence (IJCAI’07). pp. 386–392. MIT Press (2007)

5. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Proceed-
ings of ICLP-2009. pp. 235–249 (2009)

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming
Conference and Symposium. pp. 1070–1080. MIT Press (1988)

7. Lewis, J.: Cost-Based Oracle Fundamentals. Apress (2005)
8. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138(1-2),

39–54 (2002)
9. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming

paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–
398. Springer Verlag (1999)

10. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and
constraint logic programming. Annals of Mathematics and Artificial Intelligence
(2008)

11. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273
(1999)


