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Course Title?

Computational Algorithmic Biology

Computational Biology
Big Data in Biology

Applications of Algorithms and Mathematical
Modelling to Biology



Course Title?

Computational Algorithmic Biology
(and Linguistics)

Computational Biology (and Linguistics)
Big Data in Biology (and Linguistics)

Applications of Algorithms and Mathematical
Modelling to Biology (and Linguistics)



Basics

e Course topic: algorithmic problems in biology
and historical linguistics.

* Objective: give overview of some hot topics in
computational biology and computational

historical linguistics, and get started on
research problems.




Today

* Describe some important problems in
computational biology and computational
historical linguistics, for which students in this

course could develop improved methods.
* Explain how the course will be run.

* Answer questions.



Basics

* Prerequisites: Computer Science (algorithm
design and programming), mathematical
maturity (ability to understand proofs). No
background in biology or linguistics is needed!

* Note: if you are not a CS, ECE, or Math major, you
can still take the course — but will do slightly
different homework problems. Please see me.
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Some Problems

Genome Assembly
Phylogeny Estimation
Multiple Sequence Alignment
Metagenomics

Reconstructing Language
Phylogenies
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Genome Assembly
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Genome Assembly Algorithms

e Beautiful Graph Theory and Algorithms:
— DeBruijn Graphs
— Hamiltonian Cycles
— Eulerian Graphs



Genome Assembly Challenges

Sanger sequencing (old approach) produced long reads
with low error rates

Next Generation Sequencing platforms make shorter
reads, but at a greatly reduced cost

lllumina sequencing has few “indels” but very short
reads, while 454 sequencing has longer reads with more
indels

Assembly of genomes from NGS data is much harder
than from Sanger sequencing data.



Genome Assembly Challenges

« Sanger sequencing (old approach) produced long reads
with low error rates

* Next Generation Sequencing platforms make shorter
reads, but at a greatly reduced cost

« Illumina sequencing has few “indels” but very short
reads, while 454 sequencing has longer reads with more
indels

« Assembly of genomes from NGS data is much harder
than from Sanger sequencing data.

New data are not like traditional data, and are
often harder to analyze!



Assembling the Tree of Life

Low-GC Crenarchaeota
Gram positive Plancto- Thefgallo Desulfurococcales
Thermotogales mycetales  Proteales Sulfolobales

Aquificales Euryarchaeota
Spirochaetes Halobacteriales
Chlamydiales A . % Methanosarcinales
Deinococcales == Thermoplasmatales
High-GC, ? e e Archaeoglobales
Bacteria Archaea

Gram posuv‘e - Motharooc
Cyanobacteria g Mitochondria Thermococcales

Proteobacteria Eukaryota

Chloroplasts
Land plan Opisthokonta

Plantae Req algae Choanoflagellates

Green algae>/' \ “.\ ~———Fungi
Glaucophytes " : i

Mycetozoans - S
Pelobionts Cgaoig)zna
Amoebozoa Eiamocbae Rhizaria
Diplomonads /| e Alveolates
Euglenoids Crypto- Stramenopiles
Excavata phytes Haptophytes
Chromalveolata

Nature Reviews | Genetics



Species Tree

From the Tree of the Life Website,
University of Arizona



DNA Sequence Evolution

AAGACTT -3 mil yrs

-2 mil yrs

AAGGCCT TGGACTT

-1 mil yrs

AGGGCAT TAGCCCT AGCACTT

AGGGCAT TAGCCCA TAGACTT AGCACAA AGCGCTT today
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D7H|on Subititution

..ACGGTGCAGTTACCA...
N / '”:f”“’” .ACGGTGCAGTTACC-A...

\
\

.. ACCAGTCACCTA.. ..AC----CAGTCACCTA..

The true multiple alignment
— Reflects historical substitution, insertion, and deletion events

— Defined using transitive closure of pairwise alignments computed on
edges of the true tree



S1
S2
S3
S4

Input: unaligned sequences

AGGCTATCACCTGACCTCCA
TAGCTATCACGACCGC
TAGCTGACCGC
TCACGACCGACA



Phase 1: Alignment

S1 = AGGCTATCACCTGACCTCCA  S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC ~ 83 = TAG-CT----—-- GACCGC--
S4 = TCACGACCGACA S4 = ——————- TCAC--GACCGACA



Phase 2: Construct tree

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--

S3 = TAGCTGACCGC S3 = TAG-CT-—-————-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA
S1 S2

N

S4 S3




Two-phase estimation

Phylogeny methods

Alignment methods
Clustal
POY (and POY™)
Probcons (and Probtree)
Probalign
MAFFT
Muscle
Di-align
T-Coffee
Prank (PNAS 2005, Science 2008)
Opal (ISMB and Bioinf. 2007)
FSA (PLoS Comp. Bio. 2009)
Infernal (Bioinf. 2009)
Etc.

Bayesian MCMC

Maximum
parsimony

Maximum likelihood
Neighbor joining
FastME

UPGMA

Quartet puzzling
Etc.



Phylogenetic reconstruction methods

1. Hill-climbing heuristics for hard optimization criteria
(Maximum Parsimony and Maximum Likelihood)

Local optimum

Cost /

Phylogenetic trees

Global optimum

2. Polynomial time distance-based methods: Neighbor
Joining, FastME, etc.

3. Bayesian methods



Solving maximum likelihood (and other hard
optimization problems) is... unlikely

# of | # of Unrooted

Taxa Trees
4 3
5 15
6 105
7 945
8 10395
9 135135
10 2027025
20 2.2 x 1020
100 4.5 x 10190
1000 2.7 x 102300




Simulation Studies

S1
S2
S3
S4

= —-AGGCTATCACCTGACCTCCA
= TAG-CTATCAC--GACCGC-H
= TAG-CT-—-—-———- GACCGC-H

—-—-—-TCAC--GACCGACAH

S2

ha

S4

S3

True tree and
alignment

S1 = AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC

S3 = TAGCTGACCGC

S4 = TCACGACCGACA
Unaligned
Sequences

€ >

Compare

S1 = -AGGCTATCACCTGACCTCCH
S2 = TAG-CTATCAC--GACCGC-
S3 = TAG-C--T-----GACCGC-
S4 = T---C-A-CGACCGA----CH
s, S4
52 s3

Estimated tree and
alignment



Quantifying Error

A
/N
f/‘ \'.

S, S, s3 s4 "ss

TRUE TREE

FN: false negative
(missing edge)

FP: false positive
(incorrect edge)

50% error rate

\ FN

St ACAATTAGAAC
S, ACCCTTAGAAC
S3 ACCATTCCAAC
Sy ACCAGACCAAC

Ss ACCAGACCGGA

DNA SEQUENCES

/  FP

INFERRED TREE




Neighbor joining has poor performance on large diameter trees [Nakhleh
et al. ISMB 2001]
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Missing Branch Rate (%)

Alignment SP-FN Error (%)

50

1 1 I 1 1 I 1 1 1 I T T T T T
RAXML(ClustalW) +——
RAXML(Muscle) ===x--=
40 F RAXML(MAFFT) s--a.--:
RAXML(Prank+GT) i@
30  RAXML(TrueAln) =
20 |-
10
[ TSR
0 l : : . L 1 ] 1 1 ] ] ] 1 1 ]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
100

| I I 1 I I I I 1 | 1 1 1 I I
ClustalW +=—t+—

Muscle =--x---
MAFFT 2-- .-
Prank+GT zw @

80

60

TRPPEL LA ﬁ
- #‘ ......... » .
LY . ':‘:“i 2 "' ‘a
W -ty - _e o
-~ LY R v ’ -r,~'- v o
40 "/ m \" . :“-‘“‘“;"'¢ a4 :I..lx ..........
‘ 2 30 : Pad 2}
..... St R
R S : W "".\\.o . B
q - 3 0 -t X
RS g "":"\"‘ a"‘&
20 RS X3
o
_________
0 | | | 1 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1000 taxon models, ordered by difficulty (Liu et al., 2009)



Major Challenges

Phylogenetic analyses: standard methods have poor accuracy
on even moderately large datasets, and the most accurate
methods are enormously computationally intensive (weeks or

months, high memory requirements)

Multiple sequence alignment: key step for many biological
questions (protein structure and function, phylogenetic
estimation), but few methods can run on large datasets.
Alignment accuracy is generally poor for large datasets with
high rates of evolution.



Species Tree Estimation requires multiple genes!

From the Tree of the Life Website,
University of Arizona



Two basic approaches for
species tree estimation

« Concatenate (" combine”) sequence
alignments for different genes, and run
phylogeny estimation methods

* Compute trees on individual genes and
combine gene trees



Not all genes present in all species

gene 1
S, | TCTAATGGAA
S, | GCTAAGGGAA
S; | TCTAAGGGAA
S, | TCTAACGGAA
S, | TCTAATGGAC
Sg | TATAACGGAA

gene 2

gene 3

GGTAACCCTC
GCTAAACCTC

GGTGACCATC
GCTAAACCTC

TATTGATACA

TCTTGATACC
TAGTGATGCA

TAGTGATGCA
CATTCATACC



Combined analysis

gene 1 gene 2 gene 3

TCTAACGGAA GGTAACCCTC TAGTGATGCA
2222222222 GCTAAACCTC 272?2222?2227?



Two competing approaches

gene 1

gene 2 ...

gene k

Specigs

>

%A
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Combined
Analysis

Analyze
separately

Supertree
Method



Red gene tree + species tree
(green gene tree okay)
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Deep Coalescence
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Gane Ka-Shu Jim Norm Naim Matasci ) ) )
Wong Leebens-Mack  Wickett aim lViatasci Tandy Warnow, Siavash Mirarab, Nam Nguyen, and Md. S. Bayzid

U Alberta U Georgia Northwestern P 1ant — U Arizona UT-Austin

o Transcriptomes of approx. 1200 species
o More than 13,000 gene families (most not single copy)
o Multi-institutional project (10+ universities)

Challenges:
Estimating very large gene alignments and trees (100,000+ sequences)
Estimating species trees from incongruent gene trees



Avian Phylogenomics Project

E.Jarvis, MTP Gilbert, G. Zhang, S. Mirarab, T. Warnow, and Md. S.Bayzid,
HHMI Copenhagen BGI UT-Austin

* Approx. 50 species, whole genomes

« 8000+ genes, UCEs

» Gene trees and sequence alignments computed using SATé
» Species tree estimated using maximum likelihood (RAxXML)
« Multi-national team (20+ investigators)

Biggest challenges:
Estimating species tree from incongruent gene trees,
Poor phylogenetic signal in most genes



‘Big” phylogenetic datasets

« Large numbers of genes

— “Concatenation” can become computationally
infeasible

— Gene tree incongruence can make accurate species
tree estimation challenging



Major Challenges:
large datasets, fragmentary sequences

« Multiple sequence alignment: Few methods can run on large
datasets, and alignment accuracy is generally poor for large datasets
with high rates of evolution.

* Gene Tree Estimation: standard methods have poor accuracy on
even moderately large datasets, and the most accurate methods are
enormously computationally intensive (weeks or months, high memory
requirements).

« Species Tree Estimation: gene tree incongruence makes accurate
estimation of species tree challenging.

Both phylogenetic estimation and multiple sequence alignment are also
impacted by fragmentary data.



BigData in Phylogenetics

 Many phylogenetic datasets contain
hundreds to thousands of species, some
with thousands of genes.

* Future datasets will be substantially larger

(e.g., iIPlant plans to construct a tree on
500,000 plant species)

Our research group is working on datasets
with more than 100,000 species, and some
datasets with thousands of genes.



Metagenomics:

Venter et al., Exploring the Sargasso Sea:

Scientists Discover One Million New Genes in
Ocean Microbes




Metagenomic data analysis

NGS data produce fragmentary sequence data

Metagenomic analyses include unknown
species

Taxon identification: given short sequences,
identify the species for each fragment

Applications: Human Microbiome
Issues: accuracy and speed



Taxon Identification

Objective: classify short reads in a metagenomic sample

Kingdom.......Animalia]
Phylum........ Chordatal
CIass.......: Mammalial
Order............ Cetacea[
Family....Delphinidae|
Genus.......... Orcinus l

Species...........orca




60bp error-free reads on rpsB marker gene
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Evolution informs about everything in
biology

* Big genome sequencing projects just produce data --
so what?

* Evolutionary history relates all organisms and genes,

and helps us understand and predict

— interactions between genes (genetic networks)

— drug design

— predicting functions of genes

— influenza vaccine development

— origins and spread of disease

— origins and migrations of humans



Possible Indo-European tree
(Ringe, Warnow and Taylor 2000)

Anatol

Ved
Irani Greek Italic
ranian

Celtic Tocharian
Germanic
Armenian
Baltic Slavic

Albanian



“Perfect Phylogenetic Network” for IE
Nakhleh et al., Language 2005

Anatolian

Vedic =T~ —=
Irani Greek Italic
ranian

—\— — — — — |- _= Celtic Tocharian
Germanic
Armenian
Baltic Slavic

Albanian



Research Opportunities

There is lots of “low hanging fruit” in computational
biology.

Many of these problems have very clean formulations, and
you don’t need to know any biology (or linguistics) to work
on them — especially in computational phylogenetics and
multiple sequence alignment.

It is possible that your course project would be publishable.
Seriously!

Our research group can help get you started.

TACC is an amazing resource!



Some Research Problems

Quartet-based species-tree estimation

Multiple sequence alignment of fragmentary
sequences

Inferring language phylogenies using statistical
models

Evaluating impact of multiple sequence
alignment error on biological inference



Evaluating impact of alighment error
on biological inference
MSAs (multiple sequence alignments) are used
to:
* Construct phylogenies
* Detect selection
* Estimate branch lengths
* |nfer protein structure and function
* Estimate dates at internal nodes



Meta-Methods

« Meta-methods “boost” the performance of
base methods (phylogeny reconstruction,
alignment estimation, etc).

Base method M > - » M*




Neighbor joining has poor performance on large diameter trees [Nakhleh
et al. ISMB 2001]
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Disk-Covering Methods (DCMs) (starting in
1998)
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DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001]
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SATé Algorithm

Obtain initial alignment
and estimated ML tree




SATé Algorithm

Obtain initial alignment
and estimated ML tree

Use tree to
compute new
alignment




SATé Algorithm

Obtain initial alignment
and estimated ML tree

Use tree to
compute new
alignment

Estimate ML tree on
new alignment




Re-aligning on a tree

Decompose N ..
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Missing Branch Rate (%)

50

40 |

30

20

10

I I I | | I I I I I

IlzleML((élustaIW)l ——
RAXML(Muscle) ===x--=
RAXML(MAFFT) 3-- -

RAXML(Prank+GT) i@
SATé =i
RAXML(TrueAln) @

1000 taxon models, ordered by difficulty

24 hour SATé analysis, on desktop machines

(Similar improvements for biological datasets)




Missing Branch Rate (%)

Alignment SP-FN Error

50

1 1 I | 1 I I I 1 I I I I I I
RAXML(ClustalW) +—t—i
RAxXML(Muscle) *--x--=
40 ' RAXML(MAFFT) te-a.eo:
RAXML(Prank+GT) @
30 RAXML(Opal) ===
Original SATé r=—=@=—t
"Next" SATE :: -e:: =
20 I RAXML(TrueAln) s—e—s
10
%
0 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
100 I I I I 1 1 I 1 I | I I I I I
ClustalW +—+—
80 Muscle =--x--=
MAFFT - .-
60 PranksGT slis a7 .
Original SATE ti=—t i ‘ ________ X
Opal *-0:- ! (R o
40
"Next" SATé i- -@-- =
20
0 ------

1000 taxon models ranked by difficulty




Algorithmic Strategies

Divide-and-conquer
“Bin-and-conquer”
lteration

Hidden Markov Models
Graph-theory



Course stuff

How the course will be run
Homeworks

Grading Scheme

Final Project

Final Exam
My office hours and location



Grading Scheme

e HW: 40%

e Class participation (including
presentation of a research paper): 10%

e Project: 30% (research paper or
survey article)

e Final: 20%



Course Structure

Basics: Hidden Markov models, statistical
inference, and computational complexity: 1 week

Phylogeny estimation methods and models: 3
weeks

Multiple sequence alignhment methods and
models: 2 weeks

Phylogenomics: 2 weeks
Genome Assembly: 1 week
Metagenomics: 1 week
Historical Linguistics: 1.5 weeks



Homework

Homework assignments will be of three types:

e pen and paper (doing calculations, proving
theorems, etc.),

* programming (developing, implementing,
and/or testing methods for computational
biology or computational historical linguistics
problems), and

* discussing published papers.



Final Project

* You are strongly encouraged to do a research
project, but you can also do a survey paper on
some topic relevant to the course material.

* In both cases, your project should be a paper
(of about 15 pages) in a format and style
appropriate for submission to a journal.

* Research projects can involve two students,
but survey papers must be done by yourself.



Final Project Schedule

e Oct 2: One page proposal for final project due
e Oct 14: 2-3 page detailed proposal due

e Nov 13: First draft of final project (results and
discussion)

* Nov 25: Final version (complete) due

| will consider one week extensions to the due
date for the final version of the final project only
for research projects — not for survey papers.



Final Exam

 Comprehensive, open book

* Could be take home, if the entire class agrees
to this



Other Stuff

* My office is in Gates 4.510

* My office hours are Mondays, 12:30-1:30 PM
(except for rare occasions)

* My email address is tandy@cs.utexas.edu



