Assembling the Tree of Life: Simultaneous Sequence Alignment and Tree Reconstruction

Collaborative grant:
Texas, Nebraska, Georgia, Kansas
Penn State University, Huston-Tillotson, NJIT, and the Smithsonian Institution
Nobody Knows … How Many Species There Are

- Probably around 10 million

- Evolutionary biology and molecular biology have both strongly supported the idea that all of life has arisen from a single common ancestor, ~3.6 billion years ago
The Three-Domain Tree of Life

Bacteria

Archaea

Eukarya

Fungi
Animalia
Plantae
But how can we figure out the speciation pattern of life?

• The process of speciation has played out over billions of years
• We weren’t around to witness most species
• Instead we have a detective story
 – Life has left us clues about its evolution
 – We have to figure out how to best collect and use those clues!
• Our project is working to develop methods that do a better job of using the data and allowing researchers to work with much larger datasets.
Project Components

- Algorithms and Software
- Simulations
- Outreach to ATOL and the scientific community
- Undergraduate training and research
 – (This is where you come in.)
Personnel

- Tandy Warnow (UT-Austin)
- Mark Holder (Kansas)
- Jim Leebens-Mack (UGA)
- Randy Linder (UT-Austin)
- Etsuko Moriyama (UNL)
- Michael Braun (Smithsonian)
- Webb Miller (PSU)
- Usman Roshan (NJIT)
- Postdocs: Derrick Zwickl (NESCENT), Cory Strope (UNL)
- UT PhD Students: Serita Nelesen, Kevin Liu, Sindhu Raghavan, Shel Swenson
- UGA PhD Student: Michael McKain
- Undergraduates: from Huston-Tillotson and the University of Georgia
Species phylogeny

From the Tree of the Life Website, University of Arizona
DNA Sequence Evolution

-3 mil yrs
-2 mil yrs
-1 mil yrs
today

AAGGCCT
AGGGCAT
TAGCCCA
TAGACTT
AGCACAA
AGCGCTT
Phylogeny Problem

AGGGGCAT TAGCCCCA TAGACTT TGCACAA TGCCTTT
But solving this problem exactly is … unlikely

<table>
<thead>
<tr>
<th># of Taxa</th>
<th># of Unrooted Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>105</td>
</tr>
<tr>
<td>7</td>
<td>945</td>
</tr>
<tr>
<td>8</td>
<td>10395</td>
</tr>
<tr>
<td>9</td>
<td>135135</td>
</tr>
<tr>
<td>10</td>
<td>2027025</td>
</tr>
<tr>
<td>20</td>
<td>2.2×10^{20}</td>
</tr>
<tr>
<td>100</td>
<td>4.5×10^{190}</td>
</tr>
<tr>
<td>1000</td>
<td>2.7×10^{2900}</td>
</tr>
</tbody>
</table>
But \textit{indels} (insertions and deletions) also occur!

\textit{But} indels (insertions and deletions) also occur!
The true pairwise alignment is:

...ACGGTGCA
tGTTACCA...

...AC----CAGTCACCA...
Multiple Sequence Alignment

AGGCTATCACCTGACCTCCA
TAGCTATCAGACCGC
TAGCTGACC

- AGGCTATACACCTGACCTCCA
TAG-CTATCAC--GACCGC--
TAG-CT--------GACCGC--

Notes:
1. We insert gaps (dashes) to each sequence to make them “line up”.
2. Nucleotides in the same column are presumed to have a common ancestor (i.e., they are “homologous”).
Step 1: Gather data

S1 = AGGCTATCAGCTGACCTCCA
S2 = TAGCTATCAGCGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA
Step 2: Multiple Sequence Alignment

\[
\begin{align*}
S1 &= \text{AGGCTATCACCTGACCTCCCA} & S1 &= \text{---AGGCTATCACCTGACCTCCCA} \\
S2 &= \text{TAGCTATCACGACCGC} & S2 &= \text{TAG-CTATCAC---GACCGC--} \\
S3 &= \text{TAGCTGACCGC} & S3 &= \text{TAG-CT-------GACCGC--} \\
S4 &= \text{TCACGACCGACA} & S4 &= \text{-------TCAC--GACCGACA}
\end{align*}
\]
Step 3: Construct tree

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCAGCGCCGCGC
S3 = TAGCTGACC CGC
S4 = TCACGACC GACA

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CATCAC--GACCGC--
S3 = TAG-CT--------GACCGC--
S4 = --------TCAC--GACCGACA
So many methods!!!

Alignment method
- Clustal
- POY (and POY*)
- Probcons (and Probtree)
- MAFFT
- Prank
- Muscle
- Di-align
- T-Coffee
- Satchmo
- Etc.

Phylogeny method
- Bayesian MCMC
- Maximum parsimony
- Maximum likelihood
- Neighbor joining
- UPGMA
- Quartet puzzling
- Etc.
So many methods!!!

Alignment method
- Clustal
- POY (and POY*)
- Probcons (and Probtree)
- MAFFT
- Prank
- Muscle
- Di-align
- T-Coffee
- Satchmo
- Etc.

Phylogeny method
- Bayesian MCMC
- Maximum parsimony
- Maximum likelihood
- Neighbor joining
- UPGMA
- Quartet puzzling
- Etc.
So many methods!!!

Alignment method
• Clustal
• POY (and POY*)
• Probcons (and Probtree)
• MAFFT
• Prank
• Muscle
• Di-align
• T-Coffee
• Satchmo
• Etc.

Phylogeny method
• Bayesian MCMC
• Maximum parsimony
• Maximum likelihood
• Neighbor joining
• UPGMA
• Quartet puzzling
• Etc.

Blue = used by systematists
Purple = recommended by Edgar and Batzoglou for protein alignments
Basic Questions

- Using simulations: Does improving the alignment lead to an improved phylogeny?
- Using Tree of Life (real) datasets:
 - How much does changing the alignment method change the resultant alignments?
 - How much does changing the alignment method change the estimated tree?
 - What gap patterns do we see on hand-curated alignments, and what biological processes created them?
Basic Questions

- Using simulations: Does improving the alignment lead to an improved phylogeny?

- Using Tree of Life (real) datasets:
 - How much does changing the alignment method change the resultant alignments?
 - How much does changing the alignment method change the estimated tree?
 - What gap patterns do we see on hand-curated alignments, and what biological processes created them?
Our progress (so far)

• Experimental evaluation of existing alignment methods - submitted

• “Barking up the wrong treelength” (Better ways to run POY): Transactions on Computational Biology and Bioinformatics 2009

• SATé: new technique for Simultaneous Alignment and Tree Estimation: submitted
Simulation study

• Simulate sequence evolution down a tree
• Estimate alignments on each set of sequences
• Compare estimated alignments to the true alignment
• Estimate trees on each alignment
• Compare estimated trees to the true tree
DNA Sequence Evolution

![DNA Sequence Evolution Diagram]
FN: false negative (missing edge)
FP: false positive (incorrect edge)

50% error rate
Non-coding DNA evolution

Models 1-4 have “long gaps”, and models 5-8 have “short gaps”
Observations

• Phylogenetic tree accuracy is positively correlated with alignment accuracy, but the degree of improvement in tree accuracy is much smaller (data not shown).

• The best two-phase methods are generally (but not always!) obtained by using either ProbCons or MAFFT, followed by Maximum Likelihood.

• However, even the best two-phase methods don’t do well enough.
What we’d like (ideally)

• An automated means of practically inferring alignments and very large phylogenetic trees using sequence (DNA, protein) data
 – Very large means at least thousands, but as many as tens of thousands of taxa
 – Preferably able to run on a desktop computer

• Doing this with a minimum of human (subjective) input on the alignment in particular
SATe:
(Simultaneous Alignment and Tree Estimation)

- Developers: Liu, Nelesen, Raghavan, Linder, and Warnow.

- Technique: search through tree/alignment space (re-align sequences on each tree using a novel divide-and-conquer strategy, and then compute ML trees on the resultant multiple alignments).

- **SATe** returns the alignment/tree pair that optimizes maximum likelihood under GTR+Gamma+I.
1000 taxon simulation study

- Missing edge rates
- Empirical statistics
Undergraduate Training

• Two institutions involved: UT-Austin partnership with Huston-Tillotson, and the University of Georgia

• Training via:
 – Research projects
 – Summer training with the project members
 – Participation in the project meeting
 – Participation at a conference
 – Lectures by project participants at the collaborating institutions

• Focus group leader(s): Jim Leebens-Mack and Randy Linder
Undergraduate Research Programs at the University of Georgia
Louis Stokes Alliance for STEM Research

PEACH STATE LOUIS STOKES ALLIANCE FOR MINORITY PARTICIPATION

In its first year of Phase I, The Peach State Louis Stokes Alliance for Minority Participation (PFLSAMP) is a collaborative effort sustained by a coalition of six colleges and universities in Georgia to significantly increase the number of underrepresented minority students statewide who complete undergraduate degrees in science, technology, engineering, and mathematics (STEM) fields. This goal will be accomplished through the implementation of a comprehensive and integrated series of recruitment and retention initiatives that address key transition points from undergraduate recruitment through preparation for graduate school.

Learn more about Louis Stokes!
University of Texas
Collaboration with Huston-Tillotson University
Research projects for undergrads

• Studying the AToL (Assembling the Tree of Life) project datasets:
 – Produce alignments on each dataset, (using existing alignment methods and our new SATe method), and compute trees on each alignment
 – Study differences between alignments and between trees
• Evaluating the simulation software
• Creating a webpage about alignment research
• Others?