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Applications

e Big genome sequencing projects are producing a lot of data,
but the data need to be analyzed - and a phylogeny helps with

the analysis.

e Evolutionary history relates all organisms and genes, and helps

us understand and predict:

interactions between genes (genetic networks)

drug design

predicting functions of genes
influenza vaccine development
origins and spread of disease

origins and and migrations of humans




Phylogeny reconstruction as a statistical estimation problem

Initially phylogeny reconstruction was based upon maximum
parsimony analyses of morphology, or simple distance-based

analyses of molecular sequences.

However, phylogeny reconstruction changed dramatically beginning

in the 1960’s with the introduction of stochastic models of

evolution (Jukes-Cantor, Kimura 2-parameter, HKY, etc.).




Markov models of DN A sequence evolution

A Jukes-Cantor model tree is a pair (7', A\) modelling how a single

site evolves:
e 7' is a rooted binary tree,

e ) is a function mapping edges to real numbers, so that A(e) is

the expected number of mutations of the site on edge e
Assumptions:

1. The state at the root of T" is drawn from the uniform

distribution.

. The number of times the site changes on each edge obeys a

Poisson distribution

. If the state at the site changes, it changes with equal
probability to the other states.




Modelling site variation

Almost all proposed models, and all models in use, make the strong

assumption of i.7.d. site evolution.

(The “rates-across-sites” assumption usually has the rates drawn

from a distribution, and so it is still 7.i.d..)




Performance issues

e For a biologist: how accurate are the estimations of

evolutionary history? (Mostly studied in simulation)

e For a statistician:
— Is the model identifiable?

— Is a given phylogeny reconstruction method statistically

consistent under the model?

— How much data does a given method need to reconstruct a

given model tree correctly with high probability?

The first two questions were fairly well understood, but the last

question remained largely unanswered until the late 1990’s.




This talk

e Mathematical techniques for bounding the sequence length

requirements of phylogeny reconstruction methods.

e The first methods guaranteed to reconstruct the tree with high

probability from “polynomial” sequence lengths.

e More recent methods with the same theory but better

performance in simulation (lower topological error).




Warm-up
Questions:

1. Given a coin and € > 0 , compute Pr|head] exactly, with

probability at least 1 — € of being correct.

2. Given a coin with Prlhead] # 3 and € > 0, determine whether

Pr|head] > %, with probability at least 1 — € of being correct.

Solution: both have simple solutions, but Question 1 needs an
infinite number of coin tosses, while Question 2 can be done with a
finite number of coin tosses (the number of coin tosses will depend
upon both € and Pr|head)).




Tree Estimation

Questions:

1. Given sequences generated by an unknown but fixed JC model
tree (T, A) and € > 0, determine (unrooted) 7" and X exactly,
with probability at least 1 — € of being correct.

. Given sequences generated by an unknown but fixed JC model
tree (1, A) and € > 0, determine (unrooted) T exactly, with

probability at least 1 — € of being correct.

Solution: both have solutions, but Question 1 needs infinite
sequence length, while Question 2 can be done with finite sequence

length.

We explore the performance of algorithms for Question 2 with

respect to running time and the amount of data they need.




A brief history of mathematical phylogenetics

e 1960’s and on: stochastic models of evolution, with 7.7.d.

evolution between sites

e 1978: Maximum Parsimony and Maximum Compatibility are

not statistically consistent (Felsenstein)

o Mid-1990’s and on:

— Proofs of statistical consistency for basic methods (neighbor

joining and maximum likelihood)

— First mathematical analyses bounding the sequence length

requirements of different methods

— The Short Quartet Methods (the first “fast converging”
methods)

— The Disk-Covering Methods: turning exponentially

converging methods into fast converging methods




Outline
Distance-based phylogeny reconstruction

Sketched proof of statistical consistency and exponential

convergence rate for a simple method

The Dyadic Closure (Short Quartet) method, and a sketch of

the proof of its polynomial convergence

The Disk-Covering method, and its properties




Distance-based Phylogenetic Methods
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Additive matrices define trees

Given any additive matrix [D;;] we can construct the unrooted
version of 7" in polynomial time, along with the edge weights w(e)

realizing [D;;]. Furthermore, (T, w) is unique up to nodes of degree

two.

POLYTIME
INVERTIBLE




Four Point Condition: |[D;;] is an additive matrix if and only if

for all 7, 7, k, [, the median and maximum of the three pairwise sums

are identical:

D;; + Dy,
Dk + Dj
D;; + Djk




The Four Point Method (FPM)

The Four Point Method can be used to infer trees on quartets of
leaves from a dissimilarity matrix, |D;;| (a matrix satisfying

D;; = 0 and D;; = Dj;, but not necessarily satistying the triangle
inequality).

Given the dissimilarity matrix [D;;]| and four indices i, 7, k, [, the
FPM return the tree 77|kl such that

D;; + Dy = min{D;; + Dy, Dix. + Dj;, Dit + D }.




Naive Quartet Method (NQM)

Let [D;;] be a dissimilarity matrix.

e For each quartet 2, 5, k, [, compute the subtree on 12, 5, k, [ using
the Four Point Method.

e If all the quartet trees are compatible, merge them into a single

tree. Else return Faal.




Error Tolerance of NQM

Theorem: Let [A4;;] be an n x n additive matrix for a tree (T, w)
and let f = min{w(e)}.

Let [D;;] be an n x n dissimilarity matrix such that

Lo (D,A) < f/2.
Then NQM (D) =T.

Proof: The smallest pairwise sum stays the smallest, and so the

Four Point Method makes no mistakes on any quartet tree.




Statistical consistency

A phylogeny reconstruction method @ is said to be statistically

consistent under the JC model if for all JC model trees (T, \),
Pr(®(S) =T] — 1 as the sequence length k — ooc.

Is NQM statistically consistent under the JC model?




Statistical consistency of distance-based methods

There are statistically consistent techniques for estimating

Jukes-Cantor model distances, as well as for estimating distances

under other models.




Sequence length requirements

Question: Let ® be a phylogeny reconstruction method, (7, \) be

a Jukes-Cantor model tree, and ¢ > 0. For what sequence length &
will Pr|®(S) =T] > 1 —¢, for S a set of sequences of length &
generated on (7, \)?

Factors affecting this:
® ¢
f = min A(e),
g = max A(e),
n, the number of leaves in the tree, and

D.




JCy,, contains those JC model trees (T, A) s.t. f < A(e) < g holds
for all edges e € E(T).

® is absolute fast-converging (afc) for the JC model if, for all
positive f, g, ¢, there is a polynomial p such that, for all (7, \) in

the JC¢ , model, on set S of n sequences of length at least p(n)

generated on 7', we have

Pri®(S)=T]>1—e.
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Question: Is NQM afc? Are there any afc methods?




Theorem 1: Let (T, \) € JC¢,, and € > 0 be given. Then there is
a constant C' > 0 (that depends on € and f), such that if the

sequence length is at least

C log nel (maxAi;)

then, PriINQM (d) = T| > 1 — ¢, where d is the JC distance matrix

computed on the sequences.

Proof (sketch): The condition that is needed is
Pr|Loo(d,\) < f/2] > 1 —€.

Comments:

e Since max \;; = O(g - diam(T')), and diam(T) < n — 1, we say

that NQM is exponentially converging.

e The same condition holds for neighbor joining (NJ).




Are there afc methods?

e To date, none of the standard methods has been shown to be

afc for any model.

e NJ’s performance in simulation is greatly superior to NQM

(and almost all other distance methods), but it is not afc — a

matching lower bound for a special case of JC model trees was

proven a few years ago.

e The only known upper bound on the sequence length

requirement of Maximum Likelihood is larger (Szekely and
Steel).




Problem with NQM
The problem with NQM (and other methods) is that every entry

D;; must be sufficiently well estimated (i.e. all D;; must satisfy
1 Dij — Aij| < f/2).

What if we could identify the entries in the input matrix [D;,]

which have sufficiently small error? Could we construct the tree

from that subset of the matrix?

Example: The “caterpillar tree” on leaves labelled 1,2,...,7 can
be constructed from 12|34, 23|45, 34|56, 45|67.

Conjectures: Perhaps (1) all trees can be constructed from a
proper subset of their quartet trees, and (2) that proper subset
might be more likely to be accurately constructed from short
sequences, and (3) that proper subset might be relatively easy to
identify?




Theorem 2 (Warnow, Moret, and St John 1999): Let
(T, X) € JCy,4. Define

Lg])) (D, )\) = maX{\Di,j — Ai,j‘ . min{)\i’j,Di,j} S q}

For every €,0 > 0, there exists a constant C' such that
if k> Clogne®

then Pr[L9(D,)\) < 6] >1—e

where |D;;] is the JC distance matrix obtained for a set of

sequences of length k generated on (7T, \).

This suggest that estimates of small distances are more accurate

than estimates of large distances.




Some afc methods:

The Short-Quartet methods [Erdos, Steel, Szekely, and
Warnow, ICALP 1997]

An unnamed method [Cryan, Goldberg and Goldberg, FOCS
1998]

Harmonic Greedy Triplets plus the Four Point Method [Csuros,
2002]

DCMpyy+ SQS, and other such “DCM-boosted” methods
[Warnow, St. John, and Moret, SODA 2001]

Comment: The Short Quartet Methods have the simplest theory
and best convergence rate, but DCM + SQS has the best empirical

performance.




Simple idea for constructing a tree in JCy , given [D,;]

e Guess q so that if D;; < g then |D;; — \;;| < f/2

e For all quartets 7, 5, k, [ such that all pairwise D-distances are at

most g, construct a quartet tree using the Four Point Method.

e Compute a tree (if it exists) which is consistent with all the

quartet trees.

Issues:
e If ¢ is too large, then some entries might have too much error.

e If ¢ is too small, then there may be insufficient coverage to

reconstruct the tree.
e The subtree compatibility problem is NP-Complete.

Question: How small can ¢ be, and still identify the tree?




Short Quartets

Let [A;;] be the additive matrix for the binary tree (7', A). Let e be
an edge in 1" with subtrees U, V, W, and X off e.

e The short quartets around e are obtained by picking a
nearest leaf in each of the four subtrees U, V, W and X. (There

can be more than one around an edge.)

® Qsnort(T, A\) = {short quartet trees around any edge of T'}.

Theorem: (Erdos et al, 1997) Let (T, ) and (7", w) be two
trees on the same leaf set. Suppose Qsport(T,A) C Q(T"), where
Q(T") denotes the set of induced quartet trees of 7/. Then T' = T".




How “big” are the short quartets?

Let (T, \) € JCf’g.
Define A-width(T') to be max{\;; : i and j in a short quartet of 7'}.

Theorem (Erdos et al., 1999):
For all trees (I, \) € JC¢ 4, A-width(T) = O(glogn), where T has

n leaves.




Dyadic Closure

Dyadic Closure rules:

e Rule 1: ij|kl and jk|lm imply ij|km, ij|lm and ik|lm.

e Rule 2: ij|kl and ij|lm imply ij|km.

Given set X of trees on four-leaves, repeatedly apply Dyadic
Closure rules until no additional trees are obtained. The result is
cl(X), the dyadic closure of X.




Computing a tree from its short quartet trees

Theorem 3 (Erdos et al, 1997): Let T be a fixed edge-weighted
tree, and let Qsnort (1) denote the set of trees induced by the short
quartets of T'. Let Q(T") denote the set of four-leaf trees in 7.

If Qunors(T) € X C Q(T) then cl(X) = Q(T)

Corollary 1: T can be reconstructed from Qsport(7') in

polynomial time.




The Dyadic Closure Method

Let ()., denote all the trees computed (using the Four Point
Method) on quartets with maximum D-distance w. Construct trees

on all quartets using the Four Point Method.

Binary search on w € {D;;} (hoping to find a w such that
Qshort(T) C Qu C Q(T), so that cl(Q,) = Q(T)) as follows:
e Compute cl(Q).

— If cl(Q) contains two trees on some quartet, mark w as too

big, and decrease w

— If ¢l(Q,) doesn’t contain a tree on some quartet, mark w as

too small, and increase w

— If cl(Q) is neither too big nor too small, then

cl(Qw) = Q(T") for some tree T, and we can construct 7T’

in polynomial time.




Theorem 4 (Erdos et al.): Let (T, \) € JCf 4, and let d be a
dissimilarity matrix given as input to the Dyadic Closure Method.
Then the Dyadic Closure Method returns 7' if

f

L(d—’width(T)) d. \ J

where the d-width is the maximum d-distance in a short quartet.




Theorem 4 (Erdos et al, 1997): The Dyadic Closure Method is

O(n®logn) time and fast-converging for JC tree reconstruction.
g ging

Furthermore, polylogarithmic length sequences suffice for accuracy

with high probability for random JC trees.

Sketch of proof: The running time is easy. We show that
A-width(T) = O(g - logn) for all trees, so that by Theorem 2, the
Dyadic Closure Method is fast converging. Also, random trees have
A-width(T) = O(g - loglogn), so that by Theorem 2, the Dyadic
Closure Method converges from polylogarithmic length sequences on

random trees.




The performance of the Dyadic Closure Method

e The Dyadic Closure Method has excellent theory (with respect
to its sequence length requirement) but does not perform well
in practice: it only succeeds in returning a tree if all the short

quartets can be accurately reconstructed.

e By comparison, NJ is better in simulation on model trees that

look biological (unless they are extremely large trees, and we

simulated evolution of short sequences).

e Even so, NJ is not afc.

These observations led us to develop a different kind of afc method,
with the objective of obtaining an empirical improvement while

maintaining theory.




afc method: DCMn;+SQS (Warnow et al, SODA 2001)
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Theorem (Warnow et al.) If ® is exponentially converging
under JC, then DC Mg + SQS is absolute fast converging under JC.

Outline of proof:

We need to show that for all f, g, and € > 0, there is a polynomial

p(n) such that for all model trees (T, \) € JC¢ 4 on n leaves, if we

are given a dataset of sequences of sequence length k£ > p(n) then
° PT[T c {Tw W € {DZJ}}] >1—c¢€
o If T'e{Ty :we{D;;}}, then PriSQS selects T| > 1 —e.




Comments:
e The same result holds under the General Markov model.
e The empirical performance is dramatic

e SQS can be replaced by other methods for selecting a “best

tree” given a set of trees, with evidently better performance —

though without proof of theoretical performance. For example
- maximum likelihood can be used. Surprisingly, maximum

parsimony has comparable performance to ML.
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Open problems:

e New techniques need to be developed to establish convergence

rates, as clearly the mathematical bounds are loose for some

methods (at least on “random” trees). In particular, what is

the sequence length requirement for Maximum Likelihood?
e Why do Maximum Parsimony heuristics do so well?
Related work:

e Disk-Covering methods have also been developed to speed-up
heuristics for hard optimization problems in phylogenetics
(maximum likelihood and maximum parsimony, as well as
problems in gene order phylogeny), obtaining speed-ups of up

to several orders of magnitude.
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