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Appli
ations� Big genome sequen
ing proje
ts are produ
ing a lot of data,but the data need to be analyzed - and a phylogeny helps withthe analysis.� Evolutionary history relates all organisms and genes, and helpsus understand and predi
t:{ intera
tions between genes (geneti
 networks){ drug design{ predi
ting fun
tions of genes{ in
uenza va

ine development{ origins and spread of disease{ origins and and migrations of humans
4



Phylogeny re
onstru
tion as a statisti
al estimation problem

Initially phylogeny re
onstru
tion was based upon maximumparsimony analyses of morphology, or simple distan
e-basedanalyses of mole
ular sequen
es.However, phylogeny re
onstru
tion 
hanged dramati
ally beginningin the 1960's with the introdu
tion of sto
hasti
 models ofevolution (Jukes-Cantor, Kimura 2-parameter, HKY, et
.).
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Markov models of DNA sequen
e evolutionA Jukes-Cantor model tree is a pair (T; �) modelling how a singlesite evolves:� T is a rooted binary tree,� � is a fun
tion mapping edges to real numbers, so that �(e) isthe expe
ted number of mutations of the site on edge eAssumptions:1. The state at the root of T is drawn from the uniformdistribution.2. The number of times the site 
hanges on ea
h edge obeys aPoisson distribution3. If the state at the site 
hanges, it 
hanges with equalprobability to the other states.6



Modelling site variation

Almost all proposed models, and all models in use, make the strongassumption of i.i.d. site evolution.(The \rates-a
ross-sites" assumption usually has the rates drawnfrom a distribution, and so it is still i.i.d..)
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Performan
e issues� For a biologist: how a

urate are the estimations ofevolutionary history? (Mostly studied in simulation)� For a statisti
ian:{ Is the model identi�able?{ Is a given phylogeny re
onstru
tion method statisti
ally
onsistent under the model?{ How mu
h data does a given method need to re
onstru
t agiven model tree 
orre
tly with high probability?The �rst two questions were fairly well understood, but the lastquestion remained largely unanswered until the late 1990's.
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This talk� Mathemati
al te
hniques for bounding the sequen
e lengthrequirements of phylogeny re
onstru
tion methods.� The �rst methods guaranteed to re
onstru
t the tree with highprobability from \polynomial" sequen
e lengths.� More re
ent methods with the same theory but betterperforman
e in simulation (lower topologi
al error).
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Warm-upQuestions:1. Given a 
oin and � > 0 , 
ompute Pr[head℄ exa
tly, withprobability at least 1� � of being 
orre
t.2. Given a 
oin with Pr[head℄ 6= 12 and � > 0, determine whetherPr[head℄ � 12 , with probability at least 1� � of being 
orre
t.Solution: both have simple solutions, but Question 1 needs anin�nite number of 
oin tosses, while Question 2 
an be done with a�nite number of 
oin tosses (the number of 
oin tosses will dependupon both � and Pr[head℄).
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Tree EstimationQuestions:1. Given sequen
es generated by an unknown but �xed JC modeltree (T; �) and � > 0, determine (unrooted) T and � exa
tly,with probability at least 1� � of being 
orre
t.2. Given sequen
es generated by an unknown but �xed JC modeltree (T; �) and � > 0, determine (unrooted) T exa
tly, withprobability at least 1� � of being 
orre
t.Solution: both have solutions, but Question 1 needs in�nitesequen
e length, while Question 2 
an be done with �nite sequen
elength.We explore the performan
e of algorithms for Question 2 withrespe
t to running time and the amount of data they need.
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A brief history of mathemati
al phylogeneti
s� 1960's and on: sto
hasti
 models of evolution, with i.i.d.evolution between sites� 1978: Maximum Parsimony and Maximum Compatibility arenot statisti
ally 
onsistent (Felsenstein)� Mid-1990's and on:{ Proofs of statisti
al 
onsisten
y for basi
 methods (neighborjoining and maximum likelihood){ First mathemati
al analyses bounding the sequen
e lengthrequirements of di�erent methods{ The Short Quartet Methods (the �rst \fast 
onverging"methods){ The Disk-Covering Methods: turning exponentially
onverging methods into fast 
onverging methods12



Outline� Distan
e-based phylogeny re
onstru
tion� Sket
hed proof of statisti
al 
onsisten
y and exponential
onvergen
e rate for a simple method� The Dyadi
 Closure (Short Quartet) method, and a sket
h ofthe proof of its polynomial 
onvergen
e� The Disk-Covering method, and its properties
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Additive matri
es de�ne treesGiven any additive matrix [Dij ℄ we 
an 
onstru
t the unrootedversion of T in polynomial time, along with the edge weights w(e)realizing [Dij ℄. Furthermore, (T;w) is unique up to nodes of degreetwo.
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Four Point Condition: [Dij℄ is an additive matrix if and only iffor all i; j; k; l, the median and maximum of the three pairwise sumsare identi
al:

Dij +DklDik +DjlDil +Djk
D

i

j

k

ll

k

j

ii

j

k

l
jkiljlik D+DklD+ijD D +

16



The Four Point Method (FPM)The Four Point Method 
an be used to infer trees on quartets ofleaves from a dissimilarity matrix, [Dij ℄ (a matrix satisfyingDii = 0 and Dij = Dji, but not ne
essarily satisfying the triangleinequality).Given the dissimilarity matrix [Dij ℄ and four indi
es i; j; k; l, theFPM return the tree ijjkl su
h thatDij +Dkl = minfDij +Dkl; Dik +Djl; Dil +Djkg:
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Naive Quartet Method (NQM)Let [Dij ℄ be a dissimilarity matrix.� For ea
h quartet i; j; k; l, 
ompute the subtree on i; j; k; l usingthe Four Point Method.� If all the quartet trees are 
ompatible, merge them into a singletree. Else return Fail.
18



Error Toleran
e of NQMTheorem: Let [Aij ℄ be an n� n additive matrix for a tree (T;w)and let f = minfw(e)g.Let [Dij ℄ be an n� n dissimilarity matrix su
h thatL1(D;A) < f=2.Then NQM(D) = T .Proof: The smallest pairwise sum stays the smallest, and so theFour Point Method makes no mistakes on any quartet tree.
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Statisti
al 
onsisten
yA phylogeny re
onstru
tion method � is said to be statisti
ally
onsistent under the JC model if for all JC model trees (T; �),Pr[�(S) = T ℄! 1 as the sequen
e length k !1.

Is NQM statisti
ally 
onsistent under the JC model?
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Statisti
al 
onsisten
y of distan
e-based methodsThere are statisti
ally 
onsistent te
hniques for estimatingJukes-Cantor model distan
es, as well as for estimating distan
esunder other models.
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Sequen
e length requirementsQuestion: Let � be a phylogeny re
onstru
tion method, (T; �) bea Jukes-Cantor model tree, and � > 0. For what sequen
e length kwill Pr[�(S) = T ℄ > 1� �, for S a set of sequen
es of length kgenerated on (T; �)?Fa
tors a�e
ting this:� �,� f = min�(e),� g = max�(e),� n, the number of leaves in the tree, and� �.
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JCf;g 
ontains those JC model trees (T; �) s.t. f � �(e) � g holdsfor all edges e 2 E(T ).� is absolute fast-
onverging (af
) for the JC model if, for allpositive f; g; ", there is a polynomial p su
h that, for all (T; �) inthe JCf;g model, on set S of n sequen
es of length at least p(n)generated on T , we havePr[�(S) = T ℄ > 1� ":
23
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Question: Is NQM af
? Are there any af
 methods?
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Theorem 1: Let (T; �) 2 JCf;g and � > 0 be given. Then there isa 
onstant C > 0 (that depends on � and f), su
h that if thesequen
e length is at leastC log neO(max�ij)then, Pr[NQM(d) = T ℄ � 1� �, where d is the JC distan
e matrix
omputed on the sequen
es.Proof (sket
h): The 
ondition that is needed isPr[L1(d; �) < f=2℄ � 1� �.Comments:� Sin
e max�ij = O(g � diam(T )), and diam(T ) � n� 1, we saythat NQM is exponentially 
onverging.� The same 
ondition holds for neighbor joining (NJ).
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Are there af
 methods?� To date, none of the standard methods has been shown to beaf
 for any model.� NJ's performan
e in simulation is greatly superior to NQM(and almost all other distan
e methods), but it is not af
 { amat
hing lower bound for a spe
ial 
ase of JC model trees wasproven a few years ago.� The only known upper bound on the sequen
e lengthrequirement of Maximum Likelihood is larger (Szekely andSteel).
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Problem with NQMThe problem with NQM (and other methods) is that every entryDij must be suÆ
iently well estimated (i.e. all Dij must satisfyjDij � �ij j < f=2).What if we 
ould identify the entries in the input matrix [Dij ℄whi
h have suÆ
iently small error? Could we 
onstru
t the treefrom that subset of the matrix?Example: The \
aterpillar tree" on leaves labelled 1; 2; : : : ; 7 
anbe 
onstru
ted from 12j34, 23j45, 34j56, 45j67.Conje
tures: Perhaps (1) all trees 
an be 
onstru
ted from aproper subset of their quartet trees, and (2) that proper subsetmight be more likely to be a

urately 
onstru
ted from shortsequen
es, and (3) that proper subset might be relatively easy toidentify?
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Theorem 2 (Warnow, Moret, and St John 1999): Let(T; �) 2 JCf;g. De�ne
L(q)1 (D;�) = maxfjDi;j � �i;j j : minf�i;j ; Di;jg � qg:

For every �; Æ > 0, there exists a 
onstant C su
h thatif k � C log neO(q)then Pr[L(q)1 (D;�) < Æ℄ > 1� �:where [Dij ℄ is the JC distan
e matrix obtained for a set ofsequen
es of length k generated on (T; �).This suggest that estimates of small distan
es are more a

uratethan estimates of large distan
es.
29



Some af
 methods:� The Short-Quartet methods [Erd�os, Steel, Szekely, andWarnow, ICALP 1997℄� An unnamed method [Cryan, Goldberg and Goldberg, FOCS1998℄� Harmoni
 Greedy Triplets plus the Four Point Method [Csuros,2002℄� DCMNJ + SQS, and other su
h \DCM-boosted" methods[Warnow, St. John, and Moret, SODA 2001℄

Comment: The Short Quartet Methods have the simplest theoryand best 
onvergen
e rate, but DCM + SQS has the best empiri
alperforman
e.
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Simple idea for 
onstru
ting a tree in JCf;g given [Dij ℄� Guess q so that if Dij � q then jDij � �ij j < f=2� For all quartets i; j; k; l su
h that all pairwise D-distan
es are atmost q, 
onstru
t a quartet tree using the Four Point Method.� Compute a tree (if it exists) whi
h is 
onsistent with all thequartet trees.Issues:� If q is too large, then some entries might have too mu
h error.� If q is too small, then there may be insuÆ
ient 
overage tore
onstru
t the tree.� The subtree 
ompatibility problem is NP-Complete.Question: How small 
an q be, and still identify the tree?31



Short QuartetsLet [�ij ℄ be the additive matrix for the binary tree (T; �). Let e bean edge in T with subtrees U; V;W; and X o� e.� The short quartets around e are obtained by pi
king anearest leaf in ea
h of the four subtrees U; V;W and X. (There
an be more than one around an edge.)� Qshort(T; �) = fshort quartet trees around any edge of Tg.

Theorem: (Erdos et al, 1997) Let (T; �) and (T 0; w) be twotrees on the same leaf set. Suppose Qshort(T; �) � Q(T 0), whereQ(T 0) denotes the set of indu
ed quartet trees of T 0. Then T = T 0.
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How \big" are the short quartets?

Let (T; �) 2 JCf;g.De�ne �-width(T ) to be maxf�ij : i and j in a short quartet of Tg.

Theorem (Erdos et al., 1999):For all trees (T; �) 2 JCf;g; �-width(T) = O(g log n), where T hasn leaves.
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Dyadi
 Closure

Dyadi
 Closure rules:� Rule 1: ijjkl and jkjlm imply ijjkm, ijjlm and ikjlm.� Rule 2: ijjkl and ijjlm imply ijjkm.

Given set X of trees on four-leaves, repeatedly apply Dyadi
Closure rules until no additional trees are obtained. The result is
l(X), the dyadi
 
losure of X.
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Computing a tree from its short quartet trees

Theorem 3 (Erdos et al, 1997): Let T be a �xed edge-weightedtree, and let Qshort(T ) denote the set of trees indu
ed by the shortquartets of T . Let Q(T ) denote the set of four-leaf trees in T .If Qshort(T ) � X � Q(T ) then 
l(X) = Q(T )Corollary 1: T 
an be re
onstru
ted from Qshort(T ) inpolynomial time.
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The Dyadi
 Closure MethodLet Qw denote all the trees 
omputed (using the Four PointMethod) on quartets with maximum D-distan
e w. Constru
t treeson all quartets using the Four Point Method.Binary sear
h on w 2 fDijg (hoping to �nd a w su
h thatQshort(T ) � Qw � Q(T ), so that 
l(Qw) = Q(T )) as follows:� Compute 
l(Qw).{ If 
l(Qw) 
ontains two trees on some quartet, mark w as toobig, and de
rease w{ If 
l(Qw) doesn't 
ontain a tree on some quartet, mark w astoo small, and in
rease w{ If 
l(Qw) is neither too big nor too small, then
l(Qw) = Q(T 0) for some tree T 0, and we 
an 
onstru
t T 0in polynomial time. 36



Theorem 4 (Erdos et al.): Let (T; �) 2 JCf;g, and let d be adissimilarity matrix given as input to the Dyadi
 Closure Method.Then the Dyadi
 Closure Method returns T if

L(d�width(T ))1 (d; �) < f2where the d-width is the maximum d-distan
e in a short quartet.
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Theorem 4 (Erdos et al, 1997): The Dyadi
 Closure Method isO(n5 log n) time and fast-
onverging for JC tree re
onstru
tion.Furthermore, polylogarithmi
 length sequen
es suÆ
e for a

ura
ywith high probability for random JC trees.

Sket
h of proof: The running time is easy. We show that�-width(T ) = O(g � log n) for all trees, so that by Theorem 2, theDyadi
 Closure Method is fast 
onverging. Also, random trees have�-width(T ) = O(g � log log n), so that by Theorem 2, the Dyadi
Closure Method 
onverges from polylogarithmi
 length sequen
es onrandom trees.
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The performan
e of the Dyadi
 Closure Method

� The Dyadi
 Closure Method has ex
ellent theory (with respe
tto its sequen
e length requirement) but does not perform wellin pra
ti
e: it only su

eeds in returning a tree if all the shortquartets 
an be a

urately re
onstru
ted.� By 
omparison, NJ is better in simulation on model trees thatlook biologi
al (unless they are extremely large trees, and wesimulated evolution of short sequen
es).� Even so, NJ is not af
.These observations led us to develop a di�erent kind of af
 method,with the obje
tive of obtaining an empiri
al improvement whilemaintaining theory.
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af
 method: DCMNJ+SQS (Warnow et al, SODA 2001)
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Theorem (Warnow et al.) If � is exponentially 
onvergingunder JC, then DCM�+SQS is absolute fast 
onverging under JC.Outline of proof:We need to show that for all f; g; and � > 0, there is a polynomialp(n) su
h that for all model trees (T; �) 2 JCf;g on n leaves, if weare given a dataset of sequen
es of sequen
e length k � p(n) then� Pr[T 2 fTw : w 2 fDijgg℄ > 1� �� If T 2 fTw : w 2 fDijgg, then Pr[SQS sele
ts T ℄ > 1� �.
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Comments:� The same result holds under the General Markov model.� The empiri
al performan
e is dramati
� SQS 
an be repla
ed by other methods for sele
ting a \besttree" given a set of trees, with evidently better performan
e {though without proof of theoreti
al performan
e. For example- maximum likelihood 
an be used. Surprisingly, maximumparsimony has 
omparable performan
e to ML.
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Open problems:� New te
hniques need to be developed to establish 
onvergen
erates, as 
learly the mathemati
al bounds are loose for somemethods (at least on \random" trees). In parti
ular, what isthe sequen
e length requirement for Maximum Likelihood?� Why do Maximum Parsimony heuristi
s do so well?Related work:� Disk-Covering methods have also been developed to speed-upheuristi
s for hard optimization problems in phylogeneti
s(maximum likelihood and maximum parsimony, as well asproblems in gene order phylogeny), obtaining speed-ups of upto several orders of magnitude.
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