Introduction to Phylogenomics and
Metagenomics

Tandy Warnow
The Department of Computer Science
The University of Texas at Austin



The “Tree of Life”
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Applications of phylogenies to:
protein structure and function
population genetics
human migrations

Estimating phylogenies is a complex
analytical task

Large datasets are very hard to
analyze with high accuracy



Phylogenetic Estimation: Big Data Challenges
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NP-hard problems

Large datasets:
100,000+ sequences
10,000+ genes

“BigData” complexity



Avian Phylogenomics Project

Erich Jarvis, MTP Gilbert, G Zhang, T. Warnow  S. Mirarab Md. S. Bayzid
Copenhagen BGI UT-Austin ~ UT-Austin UT-Austin

_ Plus many many other people...
* Approx. 50 species, whole genomes

» 8000+ genes, UCEs
» Gene sequence alignments and trees computed using SATé

Challenges:
Maximum likelihood tree estimation on multi-million-site
sequence alignments
Massive gene tree incongruence




1kp: Thousand Transcriptome Project

G. Ka-Shu Wong  J. Leebens-Mack N. Wickett N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
U Alberta U Georgia Northwestern iPlant UT-Austin UT-Austin UT-Austin UT-Austin

Plus many many other people...

o Plant Tree of Life based on transcriptomes of ~1200 species
o More than 13,000 gene families (most not single copy)

Challenge:
Alignment of datasets with > 100,000 sequences
Gene tree incongruence




Metagenomic Taxon ldentification

Objective: classify short reads in a metagenomic sample

Kingdom.......Animalia|
Phylum........ Chordata[
Class........ Mammalial
Order............ Cetacea[
Family....Delphinidae
Genus..........OrcinusI

Species...........orca




Basic Questions

1. What is this fragment? (Classify each fragment
as well as possible.)

2. What is the taxonomic distribution in the
dataset? (Note: helpful to use marker genes.)

3. What are the organisms in this metagenomic
sample doing together?



Phylogenomic pipeline

Select taxon set and markers
Gather and screen sequence data, possibly identify orthologs

Compute multiple sequence alignments for each marker
(possibly “mask” alignments)

Compute species tree or network:

— Compute gene trees on the alignments and combine the
estimated gene trees, OR

— Perform “concatenation analysis” (aka “combined
analysis”)

Get statistical support on each branch (e.g., bootstrapping)

Use species tree with branch support to understand biology
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This talk

Phylogeny estimation methods
Multiple sequence alignment (MSA)

Species tree estimation methods from multiple
gene trees

Phylogenetic Networks
Metagenomics

What we’ll cover this week



Phylogeny Estimation methods



DNA Sequence Evolution
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Phylogeny Problem
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Markov Model of Site Evolution

Simplest (Jukes-Cantor):

« The model tree T is binary and has substitution probabilities p(e) on
each edge e.

 The state at the root is randomly drawn from {A,C,T,G} (nucleotides)

* If asite (position) changes on an edge, it changes with equal probability
to each of the remaining states.

* The evolutionary process is Markovian.

More complex models (such as the General Markov model) are also
considered, often with little change to the theory.



Statistical Consistency

error

Data

Data are sites in an alignment



Tree Estimation Methods

Maximum Likelihood (e.g., RAXML, FastTree,
PhyML)

Bayesian MCMC (e.g., MrBayes)
Maximum Parsimony (e.g., TNT, PAUP¥*)
Distance-based methods (e.g., neighbor
joining)

Quartet-based methods (e.g., Quartet
Puzzling)



General Observations

 Maximum Likelihood and Bayesian methods —
probably most accurate, have statistical guarantees
under many statistical models (e.g., GTR). However,
these are often computationally intensive on large
datasets.

* No statistical guarantees for maximum parsimony (can
even produce the incorrect tree with high support) —
and MP heuristics are computationally intensive on
large datasets.

e Distance-based methods can have statistical
guarantees, but may not be so accurate.



General Observations

 Maximum Parsimony and Maximum Likelihood
are NP-hard optimization problems, so methods
for these are generally heuristic — and may not
find globally optimal solutions.

e However, effective heuristics exist that are
reasonably good (and considered reliable) for
most datasets.

— MP: TNT (best?) and PAUP* (very good)

— ML: RAXML (best?), FastTree (even faster but not as
thorough), PhyML (not quite as fast but has more
models), and others



Estimating The Tree of Life: a Grand Challenge
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Most well studied problem:

Given DNA sequences, find the Maximum Likelihood Tree

NP-hard, lots of heuristics (RAXML, FastTree-2, PhyML, GARLI, etc.)




More observations

* Bayesian methods: Basic idea — find a distribution
of trees with good scores, and so don’t return
just the single best tree.

* These are even slower than maximum likelihood
and maximum parsimony. They require that they
are run for a long time so that they “converge”.

May be best to limit the use of Bayesian methods
to small datasets.

 Example: MrBayes.



Distance-based methods



Distance-based estimation
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Neighbor Joining on large diameter trees

Simulation study based

T upon fixed edge
0.8 | —— NJ . lengths, K2P model of
evolution, sequence
lengths fixed to 1000
50-6 : nucleotides.
= | Error rates reflect
= 0.4 proportion of incorrect
o edges in inferred trees.
02 | | [Nakhleh et al. ISMB 2001]
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Statistical consistency, exponential convergence, and
absolute fast convergence (afc)
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DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001]
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Large-scale Phylogeny
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. A grand challenge!

Estimating phylogenies is a complex
analytical task

Large datasets are very hard to
analyze with high accuracy
-- many sites not the same
challenge as many taxa!

High Performance Computing is
necessary but not sufficient



Summary

* Effective heuristics for Maximum likelihood (e.g., RAXML
and FastTree) and Bayesian methods (e.g., MrBayes) have
statistical guarantees and give good results, but they are
slow.

 The best distance-based methods also have statistical
guarantees and can give good results, but are not
necessarily as accurate as maximum likelihood or Bayesian
methods.

 Maximum parsimony has no guarantees, but can give good
results. Some effective heuristics exist (TNT, PAUP*).



Summary

Effective heuristics for Maximum likelihood (e.g., RAXML
and FastTree) and Bayesian methods (e.g., MrBayes) have
statistical guarantees and give good results, but they are
slow.

The best distance-based methods also have statistical
guarantees and can give good results, but are not
necessarily as accurate as maximum likelihood or Bayesian
methods.

Maximum parsimony has no guarantees, but can give good
results. Some effective heuristics exist (TNT, PAUP*).

However, all these results assume the sequences evolve
only with substitutions.



The “real” problem

U \4 \u4 X Y

@ @ @ @ @
AGGGCATGA  AGAT TAGACTT TGCACAA TGCGCTT

: .v/‘x
/\\.Y



Indels (insertions and deletions)

Deletion Mutation
..ACGGTGCAGTTACCA...

\ /
\N !/
Ny

LACCAGTCACCAL.



Multiple Sequence Alignment



D?Hlon Subititution

..ACGGTGCAGTTACCA...

/ '”29”‘0” ..ACGGTGCAGTTACC-A..
..ACCAGTCACCTA.. ..AC----CAGTCACCTA..

The true multiple alighment

— Reflects historical substitution, insertion, and deletion
events

— Defined using transitive closure of pairwise alignments
computed on edges of the true tree



S1
S2
S3
S4

Input: unaligned sequences

= AGGCTATCACCTGACCTCCA

TAGCTATCACGACCGC
TAGCTGACCGC

= TCACGACCGACA



Phase 1: Alignment

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC S3 = TAG-CT-——-——-———-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA



Phase 2: Construct tree

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--

S3 = TAGCTGACCGC S3 = TAG-CT-——-——-———-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA
S1 S2

N

S4 S3




Simulation Studies

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA
Unaligned
Sequences
S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC-H
S3 = TAG-CT-----—-- GACCGC—-
S4 = ————--- TCAC--GACCGACAH
s1, 52 < >

>{ Compare

S4 S3

True tree and
alignment

S1 = -AGGCTATCACCTGACCTCCH
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-C--T-----GACCGC--
S4 = T---C-A-CGACCGA----CH
sy, S4
s52 53

Estimated tree and
alignment



P
/ \

.'/"v \

/

'/‘

A
/N
/N

\

\"
\
\
\
/ 1
A FN
.'"' ."I
{ ! "\
/ FA
/o
/ / \'v.
/ \

TRUE TREE

FN: false negative
(missing edge)

FP: false positive
(incorrect edge)

50% error rate

Quantifying Error

St ACAATTAGAAC
S» ACCCTTAGAAC
S3 ACCATTCCAAC
Sy ACCAGACCAAC

S5 ACCAGACCGGA

DNA SEQUENCES

INFERRED TREE




Two-phase estimation

Alignment methods Phylogeny methods

e Clustal ]

. POY (and POY*)  Bayesian MCMC

* Probcons (and Probtree) e Maximum parsimony
* Probalign . . .

. MAFFT  Maximum likelihood
* Muscle * Neighbor joining

e Di-align

. T-Coffee * FastME

* Prank (PNAS 2005, Science 2008) e UPGMA

e Opal (ISMB and Bioinf. 2007) ]

«  FSA (PLoS Comp. Bio. 2009) * Quartet puzzling

* Infernal (Bioinf. 2009) e Etc.

 Etc.

RAXML: heuristic for large-scale ML optimization
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Multiple Sequence Alignment (MSA):
another grand challenge’

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC S3 = TAG-CT------- GACCGC--
Sn = TCACGACCGACA Sn = —-—-—-—-—-—-- TCAC--GACCGACA

Novel techniques needed for scalability and accuracy

NP-hard problems and large datasets
Current methods do not provide good accuracy
Few methods can analyze even moderately large datasets

Many important applications besides phylogenetic estimation

" Frontiers in Massive Data Analysis, National Academies Press, 2013



SATé

SATé (Simultaneous Alignment and Tree
Estimation)

* Liu et al., Science 2009
* Liu et al., Systematic Biology 2012

* Public distribution (open source software) and
user-friendly GUI
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Re-aligning on a tree

Decompose | ..
dataset ..

Align
Yproblems
WX
[c][o]

Estimate M\ A
tree on merged ABCD .erge
sub-alignments

alignment




SATé Algorithm

Obtain initial alignment and
estimated ML tree

Use tree to compute

Estimate ML tree on new new alignment

alignment

If new alignment/tree pair has worse ML score, realign using a different decomposition

Repeat until termination condition (typically, 24 hours)



Missing Branch Rate (%)
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Missing Branch Rate (%)

Alignment SP-FN Error
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SATé and PASTA

e SATé-1 (Science 2009) can analyze 10,000
seguences

 SATé-2 (Systematic Biology 2012) can analyze
50,000 sequences, is faster and more accurate
than SATeé-1

 PASTA (RECOMB 2014) can analyze 200,000
sequences, and is faster and more accurate
than both SATé versions.



Tree Error — Simulated data
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Alignment Accuracy — Correct columns
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PASTA — tutorial tomorrow

PASTA: Practical Alignments using SATé and
TrAnsitivity (Published in RECOMB 2014)

Developers: Siavash Mirarab, Nam Nguyen, and Tandy
Warnow

GOOGLE user group

Paper online at
http://www.cs.utexas.edu/~tandy/pasta-download.pdf

Software at
http://www.cs.utexas.edu/users/phylo/software/

pasta/




Co-estimation

 PASTA and SATé co-estimate the multiple sequence
alignment and its ML tree, but this co-estimation is not
performed under a statistical model of evolution that
considers indels.

* |nstead, indels are treated as “missing data”. This is the
default for ML phylogeny estimation. (Other options
exist but do not necessarily improve topological
accuracy.)

* Other methods (such as SATCHMO, for proteins) also
perform co-estimation, but similarly are not based on
statistical models that consider indels.



Other co-estimation methods

Statistical methods:

* BAIi-Phy (Redelings and Suchard): Bayesian software to co-
estimate alignments and trees under a statistical model of
evolution that includes indels. Can scale to about 100
sequences, but takes a very long time.

— http://www.bali-phy.org/
» StatAlign: http://statalign.github.io/

Extensions of Parsimony

* POY (most well known software)

— http://www.amnh.org/our-research/computational-sciences/
research/projects/systematic-biology/poy

 BeeTLe (Liu and Warnow, PLoS One 2012)



1kp: Thousand Transcriptome Project

G. Ka-Shu Wong  J. Leebens-Mack N. Wickett N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
U Alberta U Georgia Northwestern iPlant UT-Austin UT-Austin UT-Austin UT-Austin

Plus many many other people...

o Plant Tree of Life based on transcriptomes of ~1200 species
o More than 13,000 gene families (most not single copy)

Challenge:
Alignment of datasets with > 100,000 sequences
with many fragmentary sequences




Counts
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1KP dataset:

More than 100,000 sequences
Lots of fragmentary sequences



Mixed Datasets

Some sequences are very short — much shorter than the full-length
sequences —and some are full-length (so mixture of lengths)

Estimating a multiple sequence alignhment on datasets with some
fragments is very difficult (research area)

Trees based on MSAs computed on datasets with fragments have
high error

Occurs in transcriptome datasets, or in metagenomic analyses



Phylogenies from “mixed” datasets

Challenge: Given set of sequences, some full
length and some fragmentary, how do we
estimate a tree?

e Step 1: Extract the full-length sequences, and
get MSA and tree

e Step 2: Add the remaining sequences (short
ones) into the tree.



Phylogenetic Placement

Full-length sequences for same gene,

Fragmentary sequences _
and an alignment and a tree

from some gene

ACCG

CGAG

CGG

GGCT >
TAGA

GGGGG

TCGAG

GGCG

GGG

A:CCT AGG...GCAT TAGC...CCA TAGA...CTT AGC...ACA ACT..TAGA..A



Phylogenetic Placement

* |Input: Tree and MSA on full-length sequences
(called the “backbone tree and backbone MSA”)

and a set of “query sequences” (that can be very
short)

* QOutput: placement of each query sequence into
the “backbone” tree

Several methods for Phylogenetic Placement
developed in the last few years



Phylogenetic Placement

Step 1: Align each query sequence to
backbone alignment

Step 2: Place each query sequence
into backbone tree, using extended
alignment



Phylogenetic Placement

« Align each query sequence to backbone alignment
— HMMALIGN (Eddy, Bioinformatics 1998)

— PaPaRa (Berger and Stamatakis, Bioinformatics 2011)

* Place each query sequence into backbone tree
— Pplacer (Matsen et al., BMC Bioinformatics, 2011)
— EPA (Berger and Stamatakis, Systematic Biology 2011)

Note: pplacer and EPA use maximum likelihood, and are
reported to have the same accuracy.



HMMER vs. PaPaRa placement error
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SEPP(10%), based on ~10 HMMs
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SEPP

SEPP = SATé-enabled Phylogenetic Placement

Developers: Nam Nguyen, Siavash Mirarab, and
Tandy Warnow

Software available at
nttps://github.com/smirarab/sepp

Paper available at
nttp://psb.stanford.edu/psb-online/proceedings/
psb12/mirarab.pdf

Tutorial on Thursday




Summary so far

Great progress in multiple sequence alignment, even
for very large datasets with high rates of evolution —
provided all sequences are full-length.

Trees based on good MSA methods (e.g., MAFFT for
small enough datasets, PASTA for large datasets) can
be highly accurate — but sequence length limitations
reduces tree accuracy.

Handling fragmentary sequences is challenging, but
phylogenetic placement is helpful.

However, all of this is just for a single gene (more
generally, a single location in the genome) — no
rearrangements, duplications, etc.
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Phylogenomics
Phylogenetic estimation from whole genomes
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Species Tree Estimation



Not all genes present in all species

gene 1
S, | TCTAATGGAA
S, | GCTAAGGGAA
S; | TCTAAGGGAA
S, | TCTAACGGAA
S, | TCTAATGGAC
Sg | TATAACGGAA

gene 2

gene 3

GGTAACCCTC
GCTAAACCTC

GGTGACCATC
GCTAAACCTC

TATTGATACA

TCTTGATACC
TAGTGATGCA

TAGTGATGCA
CATTCATACC



Two basic approaches for
species tree estimation

 Concatenate (" combine”) sequence
alignments for different genes, and run
phylogeny estimation methods

* Compute trees on individual genes and
combine gene trees



Combined analysis

gene 1 gene 2 gene 3

TCTAACGGAA GGTAACCCTC TAGTGATGCA
22222722227 GCTAAACCTC 2?222222?2227?



Two competing approaches
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Many Supertree Methods

L Matrix Representation with Parsimony
(Most commonly used and most accurate)

* weighted MRP
* MRF
* MRD

* Robinson-Foulds
Supertrees

* Min-Cut
* Modified Min-Cut
* Semi-strict Supertree

QMC

Q-imputation

SDM

PhySIC

Majority-Rule Supertrees

Maximum Likelihood
Supertrees

and many more ...



Quantifying topological error

a ¢ d e a a C

b True Tree f b  Estimated Tree f

* False negative (FN):b € B(T,,,.)-B(T...)

true

* False positive (FP): b € B(T,,)-B(T,,..)
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SuperFine

SuperFine: Fast and Accurate Supertree
Estimation

Systematic Biology 2012

Authors: Shel Swenson, Rahul Suri, Randy
Linder, and Tandy Warnow

Software available at
http://www.cs.utexas.edu/~phylo/software/
superfine/




SuperFine-boosting: improves MRP
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(Swenson et al., Syst. Biol. 2012)



Summary

e Supertree methods approach the accuracy of
concatenation (“combined analysis”)

e Supertree methods can be much faster than
concatenation, especially for whole genome
analyses (thousands of genes with millions of
sites).

e But...



But...

* Gene trees may not be identical to species
trees:

— Incomplete Lineage Sorting (deep coalescence)
— Gene duplication and loss
— Horizontal gene transfer

* This makes combined analysis and standard
supertree analyses inappropriate



Red gene tree # species tree
(green gene tree okay)
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The Coalescent

Courtesy James Degnan
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Courtesy James Degnan
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Deep coalescence

* Population-level process

* Gene trees can differ from species trees
due to short times between speciation
events



Incomplete Lineage Sorting (ILS)

e 2000+ papersin 2013 alone
* Confounds phylogenetic analysis for many groups:
— Hominids
— Birds
— Yeast
— Animals
— Toads
— Fish
— Fungi
 There is substantial debate about how to analyze
phylogenomic datasets in the presence of ILS.



Two competing approaches
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How to compute a species tree?



MDC: count # extra lineages

* Wayne Maddison proposed the MDC
(minimize deep coalescence) problem: given
set of true gene trees, find the species tree
that implies the fewest deep coalescence
events

* (Really amounts to counting the number of
extra lineages)
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How to compute a species tree?

Techniques:
MDC?
Most frequent gene tree?
Consensus of gene trees?
Other?



Statistically consistent under ILS?

MP-EST (Liu et al. 2010): maximum likelihood
estimation of rooted species tree — YES

BUCKy-pop (Ané and Larget 2010): quartet-based
Bayesian species tree estimation —YES

MDC - NO
Greedy — NO
Concatenation under maximum likelihood — open

MRP (supertree method) — open



The Debate:
Concatenation vs. Coalescent Estimation

. In favor of coalescent-based estimation

— Statistical consistency guarantees
— Addresses gene tree incongruence resulting from ILS
— Some evidence that concatenation can be positively misleading

° In favor of concatenation

— Reasonable results on data

— High bootstrap support

— Summary methods (that combine gene trees) can have poor
support or miss well-established clades entirely

— Some methods (such as *BEAST) are computationally too
intensive to use



Results on 11-taxon datasets with strongILS
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*BEAST more accurate than summary methods (MP-EST, BUCKYy, etc)
CA-ML: (concatenated analysis) also very accurate

Datasets from Chung and Ané, 2011
Bayzid & Warnow, Bioinformatics 2013



|Is Concatenation Evil?

* Joseph Heled: * John Gatesy
— YES — No

* Data needed to held understand existing
methods and their limitations

e Better methods are needed



Species tree estimation: difficult,
even for small datasets

Corbisicam

From the Tree of the Life Website,
University of Arizona



Horizontal Gene Transfer — Phylogenetic Networks

Bacteria Eukarya Archaea
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Species tree/network estimation

Methods have been developed to estimate species

phylogenies (trees or networks!) from gene trees, when
gene trees can conflict from each other (e.g., due to ILS,
gene duplication and loss, and horizontal gene transfer).

Phylonet (software suite), has effective methods for many
optimization problems — including MDC and maximum
likelihood.

Tutorial on Wednesday.

Software available at
http://bioinfo.cs.rice.edu/phylonet?destination=node/3




Metagenomic Taxon ldentification

Objective: classify short reads in a metagenomic sample

Kingdom.......Animalia|
Phylum........ Chordata[
Class........ Mammalial
Order............ Cetacea[
Family....Delphinidae
Genus..........OrcinusI

Species...........orca




Two Basic Questions

1. What is this fragment? (Classify each fragment
as well as possible.)

2. What is the taxonomic distribution in the
dataset? (Note: helpful to use marker genes.)



SEPP

« SEPP: SATé-enabled Phylogenetic
Placement, by Mirarab, Nguyen, and Warnow

« Pacific Symposium on Biocomputing, 2012
(special session on the Human Microbiome)

 Tutorial on Thursday.



Other problems

* Genomic MSA estimation:
— Multiple sequence alignment of very long sequences

— Multiple sequence alignment of sequences that
evolve with rearrangement events

* Phylogeny estimation under more complex
models
— Heterotachy
— Violation of the rates-across-sites assumption
— Rearrangements

e Estimating branch support on very large datasets
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