Abstract

One of the criteria for inferring a species tree from a collection of gene trees, when gene tree incongruence is assumed to be due to incomplete lineage sorting (ILS), is minimize deep coalescence, or MDC. Exact algorithms for inferring the species tree from rooted, binary trees under MDC were recently introduced. Nevertheless, in phylogenetic analyses of biological data sets, estimated gene trees may differ from true gene trees, be incompletely resolved, and not necessarily rooted. In this paper, we propose new MDC formulations for the cases where the gene trees are unrooted/binary, rooted/non-binary, and unrooted/non-binary. Further, we prove structural theorems that allow us to extend the algorithms for the rooted/binary gene tree case to these cases in a straightforward manner. In addition, we devise MDC-based algorithms for cases when multiple alleles per species may be sampled. We study the performance of these methods in coalescent-based computer simulations.

1 Introduction

Biologists have long acknowledged that the evolutionary history of a set of species—the species tree—and that of a genomic region from those species—the gene tree—need not be congruent; e.g., [17]. While many processes can cause gene/species tree incongruence, such as horizontal gene transfer and gene duplication/loss, we focus in this paper on incomplete lineage sorting, or ILS, which is best understood under the coalescent model [20, 31, 32], as we illustrate in Fig. 1.

![Figure 1: Gene/species tree incongruence due to ILS. Given species tree ST, with constant population size throughout and time t in coalescent units (number of generations divided by the population size) between the two divergence events, each of the three gene tree topologies gt_1, gt_2, and gt_3 may be observed, with probabilities $1 - (2/3)e^{-t}$, $(1/3)e^{-t}$, and $(1/3)e^{-t}$, respectively.](image-url)
Use of DNA sequence data for inferring phylogenetic relationships among species is central in biology; however, the evolution of DNA is complex, and this complexity is almost never fully taken into account in phylogenetic inference from DNA sequence data. Of particular importance in phylogenomic analyses, the evolution of the DNA regions used for phylogenetic inference (often genes, but not always) need not be congruent with the evolution of the species. This is the classic gene tree/species tree problem [17, 7]. Errors in estimating gene trees (due, for example, to inadequate sequence length, improper phylogeny estimation methods, or insufficient computational resources) can produce estimated gene trees that differ from the true gene trees, and so from the species tree even when the true gene tree and species tree are identical. In addition, however, many biological factors can cause true gene trees to be different from the true species trees. For example, horizontal gene transfer, gene duplication/loss, and incomplete lineage sorting (ILS), can result in gene/species tree incongruence. In this paper we focus on ILS as the sole biological cause of such incongruence; see Figure 1.

ILS is best understood under the coalescent model [4, 6, 11, 20, 21, 27, 31, 32]. The coalescent model views gene lineages moving backward in time, eventually coalescing down to one lineage. In each time interval between species divergences (e.g., \(t \) in Fig. 1), lineages entering the interval from a more recent time period may or may not coalesce—an event whose probability is determined largely by the population size and branch lengths.

Thus, a gene tree is viewed as a random variable conditional on a species tree. For the species tree \(((AB)C)\), with time \(t \) between species divergences, the three possible outcomes for the gene tree topology random variable, along with their probabilities are shown in Fig. 1.

The population genetics community has long recognized the existence of gene tree discordance [11, 20, 31]. It has also been known that this phenomenon can sometimes cause severe errors to be made by phylogenetic inference procedures [22, 32, 37]. However, for most species, it has until recently been difficult to gather data on more than a single part of the genome [8]. With the advent of technologies that make it possible to obtain large amounts of sequence data from multiple species, multi-locus data are becoming widely available, highlighting the issue of gene tree discordance [5, 15, 23, 26, 30, 36].

Several methods have been introduced for inferring a species tree from a collection of gene trees under ILS-based incongruence. Summary statistics, such as the majority-rule consensus (e.g., [3, 15]) and democratic vote (e.g., [2, 4, 37, 38]), are fast to compute and provide a good estimate of the species tree in many cases. However, the accuracy of these methods suffer under certain conditions. Further, these methods do not provide explicit reconciliation scenarios; rather, they provide summaries of the gene trees. Recently, methods that explicitly model ILS were introduced, such as Bayesian inference [9, 16], maximum likelihood [14], and the maximum parsimony criterion Minimize Deep Coalescence, or MDC [17, 18, 36]. We introduced the first exact algorithms for inferring species trees under the MDC criterion from a collection of rooted, binary gene trees [33, 34]. Nevertheless, in phylogenetic analyses of biological data sets, estimated gene trees may differ from the true gene trees, may be incompletely resolved, and may not be rooted. Requiring gene trees to be fully resolved may result in gene trees with wrong branching patterns (e.g., those branches with low bootstrap support) that masquerade as true gene/species tree incongruence, thus resulting in over-, and possibly under-, estimation of deep coalescences.

Here we propose an approach to estimating species trees from estimated gene trees which avoids these problems. Instead of assuming that all gene trees are correct (and hence fully resolved, rooted trees), we consider the case where all gene trees are modified so that they are reasonably likely to be unrooted, edge-contracted versions of the true gene trees. For example, the reliable edges in the gene trees can be identified using statistical techniques, such as bootstrapping, and all low-support edges can be contracted. In this way, the MDC problem becomes one in which the input is a set of gene trees that may not be rooted and may
not be fully resolved, and the objective is a rooted, binary species tree and binary rooted refinements of the input gene trees that optimizes the MDC criterion. We provide exact algorithms and heuristics for inferring species trees for these cases. Further, Than and Nakhleh had extended the MDC criterion and devised an algorithm for cases where multiple alleles (or no alleles) per species may be sampled. Here, we establish that the algorithm is exact, in that it finds a species tree that minimizes the amount of deep coalescences when multiple alleles may be involved in the analysis.

We have implemented several of these algorithms and heuristics in our PhyloNet software package [35], which is publicly available at http://bioinfo.cs.rice.edu/phylonet, and we evaluate the performance of these algorithms and heuristics on synthetic data.

2 Preliminary Material

Clades and clusters. Throughout this section, unless specified otherwise, all trees are presumed to be rooted binary trees, bijectively leaf-labelled by the elements of \(\mathcal{X} \) (that is, each \(x \in \mathcal{X} \) labels one leaf in each tree). We denote by \(\mathcal{T}_\mathcal{X} \) the set of all binary rooted trees on leaf-set \(\mathcal{X} \). We denote by \(V(T) \), \(E(T) \), and \(L(T) \) the node-set, edge-set, and leaf-set, respectively, of \(T \). For \(v \) a node in \(T \), we define parent\((v)\) to be the parent of \(v \) in \(T \), and Children\((v)\) to be the children of \(v \). A clade in a tree \(T \) is a rooted subtree of \(T \), which can be identified by the node in \(T \) rooting the clade. For a given tree \(T \), we denote the subtree of \(T \) rooted at \(v \) by Clade\(_{T}(v)\), and when the tree \(T \) is understood, by Clade\((v)\). The clade for node \(v \) is Clade\((v)\), and since nodes can have children, the children of a clade Clade\((v)\) are the clades rooted at the children of \(v \). The set of all clades of a tree \(T \) is denoted by Clades\((T)\). The set of leaves in Clade\(_{T}(v)\) is called a cluster and denoted by Cluster\(_{T}(v)\) (or more simply by Cluster\((v)\) if the tree \(T \) is understood). The clusters that contain either all the taxa or just single leaves are called trivial, and the other clusters are called non-trivial. The cluster of node \(v \) is Cluster\((v)\). As with clades, clusters can also have children. If \(Y \) is a cluster in a tree \(T \), then the clade for \(Y \) within \(T \), denoted by Clade\(_{T}(Y)\), is the clade of \(T \) induced by \(Y \). The set of all clades of a tree \(T \) is denoted by Clades\((T)\). We say that edge \(e \) in \(T \) is outside cluster \(Y \) if it satisfies \(e \notin E(\text{Clade}_{gt}(Y)) \), and otherwise that it is inside \(Y \). Given a set \(A \subseteq L(T) \), we define MRCA\(_{T}(A)\) to be the most recent (or least) common ancestor of the taxa in \(A \). Finally, given trees \(t \) and \(T \), both on \(\mathcal{X} \), we define \(H : V(t) \rightarrow V(T) \) by \(H_{T}(v) = \text{MRCA}_{T} \circ \text{Cluster}_{t}(v) \).

We extend the definitions of Clades\((T)\) and Clusters\((T)\) to the case where \(T \) is unrooted by defining Clades\((T)\) to be the set of all clades of all possible rootings of \(T \), and Clusters\((T)\) to be the set of all clusters of all possible rootings of \(T \). Thus, the sets Clades\((T)\) and Clusters\((T)\) depend upon whether \(T \) is rooted or not.

Given a cluster \(Y \subseteq \mathcal{X} \) of \(T \), the parent edge of \(Y \) within \(T \) is the edge incident with the root of the clade for \(Y \), but which does not lie within the clade. When \(T \) is understood by context, we will refer to this as the parent edge of \(Y \).

A set \(\mathcal{C} \) of clusters is said to be compatible if there is a rooted tree \(T \) on leaf-set \(S \) such that Clusters\((T) = \mathcal{C} \). By [28], the set \(\mathcal{C} \) is compatible if and only if every pair \(A \) and \(B \) of clusters in \(\mathcal{C} \) are either disjoint or one contains the other.

Valid coalescent histories and extra lineages. Given gene tree \(gt \) and species tree \(ST \), a valid coalescent history is a function \(f : V(gt) \rightarrow V(ST) \) such that the following conditions hold:

- if \(w \) is a leaf in \(gt \), then \(f(w) \) is the leaf in \(ST \) with the same label; and,
- if \(w \) is a vertex in Clade\(_{gt}(v)\), then \(f(w) \) is a vertex in Clade\(_{ST}(f(v))\).
Note that these two conditions together imply that \(f(v) \) is a node on the path between the root of \(ST \) and the MRCA in \(ST \) of \(\text{Cluster}_{gt}(v) \). Given a gene tree \(gt \) and a species tree \(ST \), and given a function \(f \) defining a valid coalescent history of \(gt \) within \(ST \), the number of lineages on each edge in \(ST \) can be computed by inspection.

Notice that in a rooted tree, each edge \((u,v)\) is uniquely associated with, or identified by, its head node, \(v \). Further, when multiple coalescence events occur within a branch in the species tree, the order in which these events occur does not matter under the MDC criterion. Based on these two observations, we always map coalescence events to nodes. Let \(e = (u,v) \) be an edge in the species tree, and \(x \) and \(y \) be the two children of \(v \). If \(l_x \) lineages enter edge \(e \) from the edge \((v,x)\) and \(l_y \) lineages enter edge \(e \) from the edge \((v,y)\), and \(q \) coalescence events are mapped to node \(v \) under a given valid coalescent history, then the number of lineages in edge \(e \) is \(l_x + l_y - q \); see the illustration in Fig. 2.

![Illustration of lineage entering and coalescence events](image)

Figure 2: Under the coalescent, time flows backward from the leaves towards the root. In a valid coalescent history, the number of lineages in edge \(e = (u,v) \) equals the sum of the numbers of lineages entering \(e \), when going backward in time, from edges \((v,x)\) and \((v,y)\), minus the number of coalescence events that occur at node \(v \).

An optimal valid coalescent history is one that results in the minimum number of lineages over all valid coalescent histories. We denote the number of extra lineages on an edge \(e \in E(ST) \) (one less than the number of lineages on \(e \)) in an optimal valid coalescent history of \(gt \) within \(ST \) by \(XL(e,gt) \), and we denote by \(XL(ST,gt) \) the total number of extra lineages within an optimal valid coalescent history of \(gt \) within \(ST \), i.e., \(XL(ST,gt) = \sum_{e \in E(ST)} XL(e,gt) \); see Fig. 3. Finally, we denote by \(XL(ST,\mathcal{G}) \) the total number of extra lineages, or MDC score, over all gene trees in \(\mathcal{G} \), so \(XL(ST,\mathcal{G}) = \sum_{gt \in \mathcal{G}} XL(ST,gt) \). Given gene tree \(gt \) and species tree \(ST \), finding the valid coalescent history that yields the smallest number of extra lineages is achievable in polynomial time, as we now show. Given cluster \(A \) in \(gt \) and cluster \(B \) in \(ST \), we say that \(A \) is \(B \)-maximal if (1) \(A \subseteq B \) and (2) for all \(A' \in \text{Clusters}(gt) \), if \(A \subset A' \) then \(A' \not\subseteq B \). We set \(k_B(gt) \) to be the number of \(B \)-maximal clusters within \(gt \). Finally, we say that cluster \(A \) is \(ST \)-maximal if there is a cluster \(B \in \text{Clusters}(ST) \) such that \(B \neq \emptyset \) and \(A \) is \(B \)-maximal.

Theorem 1 (From [33]) Let \(gt \) be a gene tree, \(ST \) be a species tree, both binary rooted trees on leaf-set \(X \). Let \(B \) be a cluster in \(ST \) and let \(e \) be the parent edge of \(B \) in \(ST \). Then \(k_B(gt) \) is equal to the number of lineages on \(e \) in an optimal valid coalescent history. Therefore, \(XL(e,gt) = k_B(gt) - 1 \), and \(XL(ST,gt) = \sum_B [k_B(gt) - 1] \), where \(B \) ranges over the clusters of \(ST \). Furthermore, a valid coalescent history \(f \) that achieves this total number of extra lineages can be produced by setting \(f(v) = H_{ST}(v) \) (i.e., \(f(v) = \text{MRCA}_{ST}(\text{Cluster}_{gt}(v)) \)) for all \(v \).
In other words, we can score a candidate species tree \(ST \) with respect to a set \(\mathcal{G} \) of rooted binary trees with \(XL(ST, \mathcal{G}) = \sum_{gt \in \mathcal{G}} \sum_{B \in Clusters(ST)} [k_B(gt) - 1] \). Finally,

Corollary 1 Given collection \(\mathcal{G} \) of \(k \) gene trees and species tree \(ST \), each tree labelled by the species in \(\mathcal{X} \), we can compute the optimal coalescent histories relating each gene tree to \(ST \) so as to minimize the total number of extra lineages in \(O(nk) \) time, and the MDC score of these optimal coalescent histories in \(O(nk) \) time, where \(|\mathcal{X}| = n \).

The analysis of the running time follows from the following two lemmas.

Lemma 1 Given a rooted gene tree \(gt \) and a rooted binary species tree \(ST \), we can compute all \(H_{ST}(v) \) (letting \(v \) range over \(V(gt) \)) in \(O(n) \) time.

Proof: We begin by preprocessing both \(gt \) and \(ST \) in \(O(n) \) time so that each subsequent MRCA query takes constant time \([10, 1]\). Then, for each node \(v \in V(gt) \), we can compute \(H_{ST}(v) \) in \(O(1) \) time. Thus, we can compute the optimal coalescent history relating \(gt \) to \(ST \) in \(O(n) \) time. \(\square \)

Lemma 2 Given a rooted gene tree \(gt \) and a rooted binary species tree \(ST \), and assuming that \(H_{ST}(v) \), for each \(v \in V(gt) \) has been computed, we can compute \(XL(ST, gt) \) in \(O(n) \) time.

Proof: We define the function \(lins : V(ST) \to \mathbb{N} \) as follows. For a vertex \(v \in V(ST) \), \(lins(v) \) is the number of lineages in the parent edge of node \(v \) given an optimal valid coalescent history (i.e., under the \(H_{ST} \) mapping).

Denote by \(coal_v \) the number of gene tree nodes mapped to node \(v \) under the \(H_{ST} \) mapping. That is, \(coal_v = |\{u \in V(gt) : H_{ST}(u) = v\}| \). The function \(lins \) can be computed recursively as

\[
lins(v) = \begin{cases}
1 & \text{if } v \text{ is a leaf} \\
lins(x) + lins(y) - coal_v & \text{if } \{(v, x), (v, y)\} \subseteq E(ST)
\end{cases}
\]

We now prove that (1) for every node \(v \in V(ST) \), \(lins_v = k_B(gt) \) where \(B = Cluster(v) \) in \(ST \), and (2) \(lins \) is computable in \(O(n) \) time.

The proof of (1) uses strong induction on the height of node \(v \), where the height of \(v \) is the length of the longest path from \(v \) to any leaf in \(Cluster(v) \). For the base case, let \(v \) be a node of height 1, and its two children (which are leaves) \(x \) and \(y \) be labeled \(l_x \) and \(l_y \), respectively. For this base case, \(lins(x) = lins(y) = coal_x = coal_y = 1 \). If \(\{l_x, l_y\} \) is a cluster in \(gt \), then \(k_B(gt) = 1 \), in which case the
algorithm sets $lins(v)$ to $lins(x) + lins(y) - coal_v = 1 + 1 - 1 = 1$, since $coal_v = 1$. If $\{l_x, l_y\}$ is not a cluster in gt, then $k_B(gt) = 2$, and the algorithm sets $lins(v)$ to $lins(x) + lins(y) - coal_v = 1 + 1 - 0 = 2$, since no coalescence event occurs at node v. Therefore, $k_B(gt) = lins(v)$ for nodes v of height 1 in ST.

Now assume that $k_B(gt) = lins(v)$ for every node v of height at most p, and let w be a node in ST of height $p + 1$, with $B = cluster(w)$. Let x and y be w’s two children, with $B_x = Cluster(x)$ and $B_y = Cluster(y)$. Clearly, the height of x and y is smaller than p. By the induction hypothesis, $k_{B_x}(gt) = lins(x)$ and $k_{B_y}(gt) = lins(y)$. By Theorem 1, $k_B(gt)$ is equal to the number of lineages on the parent edge of B in ST, which is the sum of the numbers of lineages on the parent edges of B_x and B_y, minus the number of coalescence events that occur at node w, i.e., $k_B(gt) = k_{B_x}(gt) + k_{B_y}(gt) -coal_w$. By the strong induction hypothesis, this is identical to $lins(x) + lins(y) - coal_w$. By Equation (1), we have $lins(x) + lins(y) - coal_w = lins(w)$. This completes the proof that $k_B(gt) = lins(w)$.

For the second part, notice that computing the values of $lins$ for all nodes in ST can be achieved by a bottom-up algorithm that traverses each node $v \in V(ST)$ exactly once. For each node v, the values of $lins(x)$ and $lins(y)$ of its children x and y are already computed, and the value of $coal_v$ is already computed via the H_{ST} mapping. Thus, the algorithm takes $O(n)$ time.

2.1 MDC on rooted binary gene trees: The single-allele case

The MDC problem is the “minimize deep coalescence” problem; as formulated by Wayne Maddison in [17], this is equivalent to finding a species tree that minimizes the total number of extra lineages over all gene trees in \mathcal{G}. Thus, the MDC problem can be stated as follows: given a set \mathcal{G} of rooted, binary gene trees, we seek a species tree ST such that $XL(ST, \mathcal{G}) = \sum_{gt \in \mathcal{G}} XL(ST, gt)$ is minimized.

MDC is conjectured to be NP-hard, and no polynomial-time exact algorithm is known for this problem. However, it can be solved exactly using several techniques, as we now show.

Algorithms for MDC.

The material in this section is from [33]. The simplest technique to compute the optimal species tree with respect to a set \mathcal{G} of gene trees is to compute a minimum-weight clique of size $n - 2$ (where $|\mathcal{X}| = n$) in a graph which we now describe. Let \mathcal{G} be the set of gene trees in the input to MDC, and let $MDC(\mathcal{G})$ be the graph with one vertex for each non-trivial subset of \mathcal{X} (so $MDC(\mathcal{G})$ does not contain trivial clusters), edges between A and B if the two clusters are compatible (and so $A \cap B = \emptyset$, $A \subset B$, or $B \subset A$). A clique inside this graph therefore defines a set of pairwise compatible clusters, and hence a rooted tree on \mathcal{X}. We set the weight of each node A to be $w(A) = \sum_{gt \in \mathcal{G}} [k_A(gt) - 1]$. We seek a clique of size $n - 2$, and among all such cliques we seek one of minimum weight. By construction, the clique will define a rooted, binary tree ST such that $XL(ST, \mathcal{G})$ is minimized.

The graph $MDC(\mathcal{G})$ contains $2^n - n - 1$ vertices, where $n = |\mathcal{X}|$, and is therefore large even for relatively small n. We can constrain this graph size by restricting the allowable clusters to a smaller set, \mathcal{C}, of subsets of \mathcal{X}. For example, we can set $\mathcal{C} = \bigcup_{gt \in \mathcal{G}} $Clusters$(gt)$ (minus the trivial clusters), and we can define $MDC(\mathcal{C})$ to be the subgraph of $MDC(\mathcal{G})$ defined on the vertices corresponding to \mathcal{C}. However, the cliques of size $n - 2$ in the graph $MDC(\mathcal{C})$ may not have minimum possible weights; therefore, instead of seeking a minimum weight clique of size $n - 2$ within $MDC(\mathcal{C})$, we will set the weight of node A to be $w'(A) = Q - w(A)$, for some very large Q, and seek a maximum weight clique within the graph.

Finally, we can also solve the problem exactly using dynamic programming. For $\mathcal{A} \subseteq \mathcal{X}$ and binary
rooted tree T on leaf-set A, we define
\[
l_T(A, \mathcal{G}) = \sum_{gt \in \mathcal{G}} \sum_{B} [k_B(gt) - 1],
\]
where B ranges over all clusters of T. We then set
\[
l^*(A, \mathcal{G}) = \min \{l_T(A, \mathcal{G}) : T \in \mathcal{T}_A\}.
\]
By Theorem 1, $l^*(\mathcal{X}, \mathcal{G})$ is the minimum number of extra lineages achievable in any species tree on \mathcal{X}, and so any tree T such that $l_T(\mathcal{X}, \mathcal{G}) = l^*(\mathcal{X}, \mathcal{G})$ is a solution to the MDC problem on input \mathcal{G}. We now show how to compute $l^*(A, \mathcal{G})$ for all $A \subseteq \mathcal{X}$ using dynamic programming. By backtracking, we can then compute the optimal species tree on \mathcal{X} with respect to the set \mathcal{G} of gene trees.

Consider a binary rooted tree T on leaf-set A that gives an optimal score for $l^*(A, \mathcal{G})$, and let the two subtrees off the root of T be T_1 and T_2 with leaf sets A_1 and $A_2 = A - A_1$, respectively. Then, letting B range over the clusters of T, we obtain
\[
l_T(A, \mathcal{G}) = \sum_{gt \in \mathcal{G}} \sum_{B} [k_B(gt) - 1] = \\
\sum_{gt \in \mathcal{G}} \sum_{B \subseteq A_1} [k_B(gt) - 1] + \sum_{gt \in \mathcal{G}} \sum_{B \subseteq A_2} [k_B(gt) - 1] + \sum_{gt \in \mathcal{G}} [k_A(gt) - 1].
\]
If for $i = 1$ or 2, $l_{T_i}(A_i, \mathcal{G}) \neq l^*(A_i, \mathcal{G})$, then we can replace T_i by a different tree on A_i and obtain a tree T' on A such that $l_{T'}(A, \mathcal{G}) < l_T(A, \mathcal{G})$, contradicting the optimality of T. Thus, $l_{T_i}(A_i, \mathcal{G}) = l^*(A_i, \mathcal{G})$ for $i = 1, 2$, and so $l^*(A, \mathcal{G})$ is obtained by taking the minimum over all sets $A_1 \subset A$ of $l^*(A_1, \mathcal{G}) + l^*(A - A_1, \mathcal{G}) + \sum_{gt \in \mathcal{G}} [k_A(gt) - 1]$. In other words, we have proven the following:

Lemma 3 $l^*(A, \mathcal{G}) = \min_{A_1 \subset A} \{l^*(A_1, \mathcal{G}) + l^*(A - A_1, \mathcal{G}) + \sum_{gt \in \mathcal{G}} [k_A - 1]\}$.

This lemma suggests the dynamic programming algorithm:

- Order the subsets of \mathcal{X} by cardinality, breaking ties arbitrarily.
- Compute $k_A(gt)$ for all $A \subseteq \mathcal{X}$ and $gt \in \mathcal{G}$.
- For all singleton sets A, set $l^*(A, \mathcal{G}) = 0$.
- For each subset with at least two elements, from smallest to largest, compute $l^*(A, \mathcal{G}) = \min_{A_1 \subset A} \{l^*(A_1, \mathcal{G}) + l^*(A - A_1, \mathcal{G}) + \sum_{gt \in \mathcal{G}} [k_A(gt) - 1]\}$.
- Return $l^*(\mathcal{X}, \mathcal{G})$.

There are $2^n - 1$ subproblems to compute (one for each set A) and each takes $O(2^n n)$ time (there are at most 2^n subsets A_1 of A, and each pair A, A_1 involves computing k_A for each $gt \in \mathcal{G}$, which costs $O(n)$ time). Hence, the running time is $O(n 2^n)$ time. A tighter bound of $O(2^n + 3^n)$ can also be achieved. This follows from the fact that for each value of i, for $1 \leq i \leq n$, we have $\binom{n}{i}$ sets of size i, and for each of these sets, we need to consider all its subsets (there are 2^i of them) and score the number of extra lineages.

However, Than and Nakhleh showed that using only the clusters of the gene trees would produce almost equally good estimates of the species tree [33, 34].
3 MDC on Estimated Gene Trees: The Single-allele Case

Estimating gene trees with high accuracy is a challenging task, particularly in cases where branch lengths are very short (which are also cases under which ILS is very likely to occur). As a result, gene tree estimates are often unrooted, unresolved, or both. To deal with these practical cases, we formulate the problems as estimating species trees and completely resolved, rooted versions of the input trees to optimize the MDC criterion. We show that the clique-based and DP algorithms can still be applied.

3.1 Unrooted, binary gene trees

When reconciling an unrooted, binary gene tree with a rooted, binary species tree under parsimony, it is natural to seek the rooting of the gene tree that results in the minimum number of extra lineages over all possible rootings; see the illustration in Fig. 4. In this case, the MDC problem can be formulated as follows:

![Diagram of gene tree reconciliations](image)

Figure 4: Illustration of optimal and non-optimal reconciliations of an unrooted, binary gene tree gt with a rooted, binary species tree ST, which yield 1 and 3 extra lineages, respectively.

Given a set $G = \{gt_1, gt_2, \ldots, gt_k\}$ of gene trees, each of which is unrooted, binary, with leaf-set \mathcal{X}, we seek a species tree ST and set $G^\prime = \{gt'_1, gt'_2, \ldots, gt'_k\}$, where gt'_i is a rooted version of gt_i, so that $XL(ST,G^\prime)$ is minimum over all such sets G^\prime.

Given a species tree and a set of unrooted gene trees, it is easy to compute the optimal rootings of each gene tree with respect to the given species tree, since there are only $O(n)$ possible locations for the root in an n leaf tree, and for each possible rooting we can compute the score of that solution in $O(n^2)$ time. Thus, it is possible to compute the optimal rooting and its score in $O(n^3)$ time. Here we show how to solve this problem more efficiently – finding the optimal rooting in $O(n)$ time, and the score for the optimal rooting in $O(n^2)$ time, thus saving a factor of n. We accomplish this using a small modification to the techniques used in the case of rooted gene trees.

We begin by extending the definition of B-maximal clusters to the case of unrooted gene trees, for B a cluster in a species tree ST, in the obvious way. Recall that the set $Clusters(gt)$ depends on whether gt is rooted or not, and that $k_B(gt)$ is the number of B-maximal clusters in gt. We continue with the following:

Lemma 4 Let gt be an unrooted binary gene tree on \mathcal{X} and let ST be a rooted binary species tree on \mathcal{X}. Let \mathcal{C}^\ast be the set of ST-maximal clusters in gt. Let e be any edge of gt such that $\forall Y \in \mathcal{C}^\ast, e \notin E(Clade_{gt}(Y))$ (i.e., e is not inside any subtree of gt induced by one of the clusters in \mathcal{C}^\ast). Then the tree gt' produced by rooting gt on edge e satisfies (1) $\mathcal{C}^\ast \subseteq Clusters(gt')$, and (2) $XL(ST, gt') = \sum_{B \in Clusters(ST)}[k_B(gt) - 1]$, which is the best possible. Furthermore, there is at least one such edge e in gt.

Proof: We begin by showing that there is at least one edge e that is outside Y for all $Y \in \mathcal{C}^\ast$. Pick a cluster $A_1 \in \mathcal{C}^\ast$ that is maximal (i.e., it is not a subset of any other cluster in \mathcal{C}^\ast); we will show that the parent
edge of A_1 is outside all clusters in C^*. Suppose e is inside cluster $A_2 \in C^*$. Since A_1 is maximal, it follows that $A_2 \not\subseteq A_1$. However, if the parent edge of A_2 is not inside A_1, then either A_2 is disjoint from A_1 or A_2 contains A_1, neither of which is consistent with the assumptions that A_1 is maximal and the parent edge of A_1 is inside A_2. Therefore, the parent edge of A_2 must be inside A_1. In this case, $A_1 \cap A_2 \neq \emptyset$ and $A_1 \cup A_2 = X$. Let B_1 be the cluster in ST such that $A_1 = B_i$-maximal, $i = 1, 2$. Then $B_1 \cap B_2 \neq \emptyset$, and so without loss of generality $B_1 \subseteq B_2$. But then $A_1 \cup A_2 \subseteq B_1 \cup B_2 = B_2$ and so $B_2 = X$. But X is the only X-maximal cluster, contradicting our hypotheses. Hence the parent edge of any maximal cluster in C^* is not inside any cluster in C^*.

We now show that rooting gt on any edge e that is not inside any cluster in C^* satisfies $C^* \subseteq Clusters(gt')$. Let e be any such edge, and let gt' be the result of rooting gt on e. Under this rooting, the two children of the root of gt' define subtrees T_1, with cluster A_1, and T_2, with cluster A_2. Now, suppose $\exists A' \in C^*-Clusters(gt')$. Since $C^* \subseteq Clusters(gt)$, it follows that A' is the complement of a cluster $B \in Clusters(gt')$. If B is a proper subset of either A_1 or A_2, then the subtree of gt induced by A' contains edge e (since $A' = X - B$), contradicting how we selected e. Hence, it must be that $B = A_1$ or $B = A_2$. However, in this case, A' is also equal to either A_1 or A_2, and hence $A' \in Clusters(gt')$, contradicting our hypothesis about A'.

We finish the proof by showing that $XL(ST, gt')$ is optimal for all such rooted trees gt', and that all other locations for rooting gt produce a larger number of extra lineages. By Theorem 1, $XL(ST, gt') = \sum_B [k_B(gt') - 1]$, as B ranges over the clusters of ST. By construction, this is exactly $\sum_B [k_B(gt) - 1]$, as B ranges over the clusters of ST. Also note that for any rooted version gt^* of gt, $k_B(gt^*) \geq k_B(gt)$, so that this is optimal. Now consider a rooted version gt^* in which the root is on an edge that is inside some subtree of gt induced by $A \in C^*$. Let gt^* have subtrees T_1 and T_2 with clusters A_1 and A_2, respectively. Without loss of generality, assume that $A_1 \subset A$, and that $A_2 \cap A \neq \emptyset$. Since $A \in C^*$, there is a cluster $B \in Clusters(ST)$ such that A is B-maximal. But then A_1 is B-maximal. However, since $A - A_1 \neq \emptyset$, there is also at least one B-maximal cluster $Y \subset A$ within T_2. Hence, $k_B(gt^*) > k_B(gt)$. On the other hand, for all other clusters B' of ST, $k_{B'}(gt^*) \geq k_{B'}(gt') = k_B(gt)$. Therefore, $XL(ST, gt^*) > XL(ST, gt')$. In other words, any rooting of gt on an edge that is not within a subtree induced by a cluster in \mathcal{A}^* is optimal, while any rooting of gt on any other edge produces a strictly larger number of extra lineages.

This theorem allows us to compute the optimal rooting of an unrooted binary gene tree with respect to a rooted binary species tree, and hence gives us a way of computing the score of any candidate species tree with respect to a set of unrooted gene trees:

Corollary 2 Let ST be a species tree and $\mathcal{G} = \{gt_1, gt_2, \ldots, gt_k\}$ be a set of unrooted binary gene trees. Let $\mathcal{G}' = \{gt'_1, gt'_2, \ldots, gt'_k\}$ be a set of binary gene trees such that gt'_i is a rooted version of gt_i, for each $i = 1, 2, \ldots, k$, and which minimizes $XL(ST, \mathcal{G}')$. Then $XL(ST, \mathcal{G}') = \sum_i \sum_{B \in Clusters(ST)} [k_B(gt_i) - 1]$. Furthermore, the optimal \mathcal{G}' can be computed in $O(nk)$ time, and the score of \mathcal{G}' computed in $O(n^2k)$ time.

Solving MDC given unrooted, binary gene trees. Let $\mathcal{G} = \{gt_1, gt_2, \ldots, gt_k\}$, as above. We define the MDC-score of a candidate (rooted, binary) species tree ST by $\sum_i \sum_{B \in Clusters(ST)} [k_B(gt_i) - 1]$; by Corollary 2, the tree ST^* that has the minimum score will be an optimal species tree for the MDC problem on input \mathcal{G}. As a result, we can use all the techniques used for solving MDC given binary rooted gene trees, since the score function is unchanged.
3.2 Rooted, non-binary gene trees

When reconciling a rooted, non-binary gene tree with a rooted, binary species tree under parsimony, it is natural to seek the refinement of the gene tree that results in the minimum number of extra lineages over all possible refinements; see the illustration in Fig. 5. In this case, the MDC problem can be formulated as follows: given a set $\mathcal{G} = \{gt_1, gt_2, \ldots, gt_k\}$ in which each gt_i may only be partially resolved, we seek a species tree ST and binary refinements gt_i^* of gt_i so that $XL(ST, \mathcal{G}^*)$ is minimized, where $\mathcal{G}^* = \{gt_1^*, gt_2^*, \ldots, gt_k^*\}$. This problem is at least as hard as the MDC problem, which is conjectured to be NP-hard.

A Quadratic Algorithm for Optimal Refinement of Gene Trees Under MDC. We begin with the problem of finding an optimal refinement of a given gene tree gt with respect to a given species tree ST, with both trees rooted.

Definition 1 (Optimal tree refinement w.r.t. MDC (OTR_{MDC}))

Input: Species tree ST and gene tree gt, both rooted and leaf-labelled by set \mathcal{X} of taxa.

Output: Binary rooted tree gt^* refining gt that minimizes $XL(ST, t)$ over all refinements t of gt. We denote gt^* by $OTR_{MDC}(ST, gt)$.

We show that $OTR_{MDC}(ST, gt)$ can be solved in $O(n^2)$ time, where n is the number of leaves in either tree. For $B \in Clusters(ST)$ and gene tree gt, we define $F_B(gt)$ to be the number of nodes in gt that have at least one child whose cluster is B-maximal. We will show that for a given rooted gene tree gt and rooted binary species tree ST, the optimal refinement t^* of gt will satisfy $XL(ST, t^*) = \sum_{B \in Clusters(ST)} [F_B(gt) - 1]$. Therefore, to compute the score of the optimal refinement of one gene tree gt, it suffices to compute $F_B(gt)$ for every $B \in Clusters(ST)$.

The algorithm to compute the score of the optimal refinement of gt first computes the set of B-maximal clusters, which takes $O(n)$ time by Lemma 1. It then computes $F_B(gt)$, for each B; this requires an additional $O(n)$ time per B, for a total cost of $O(n^2)$ time.

Algorithm for $OTR_{MDC}(ST, gt)$: To compute the optimal refinement, we have a slightly more complicated algorithm.

Step 1: Preprocessing. We begin by computing $H_{ST}(v)$ for every node $v \in V(gt)$, as described above; this takes $O(n)$ time overall.
Step 2: Refine at every high degree node. We then visit each internal node \(v \) of \(gt \) that has more than two children, and we modify the tree \(gt \) locally at \(v \) by replacing the rooted star tree at \(v \) by a tree defined by the topology induced in \(ST \) by the images under the mapping \(H_{ST} \) of \(v \) and \(v \)'s children. The order in which we visit the nodes is irrelevant.

We now make precise how this modification of \(gt \) at node \(v \) is performed. We denote by \(Tree(ST, gt, v) \) the tree formed as follows. First, we compute the subtree of \(ST \) induced by the images of \(v \) and its children under the \(H_{ST} \) mapping. If a child \(y \) of \(v \) is mapped to an internal node of the induced subtree, we add a leaf \(l_y \) and make it a child of \(H_{ST}(y) \); in this way, the tree we obtain has all the nodes in \(Children(v) \) identified with distinct leaves in \(Tree(ST, gt, v) \). (Although \(ST \) is assumed to be binary, \(Tree(ST, gt, v) \) may not be binary.) After we compute \(Tree(ST, gt, v) \), we modify \(gt \) by replacing the subtree of \(gt \) induced by \(v \) and its children with \(Tree(ST, gt, v) \). The subtree within the refinement that is isomorphic to \(Tree(ST, gt, v) \) is referred to as the local subtree at \(v \).

Step 3: Completely refine if necessary. Finally, after the refinement at every node is complete, if the tree is not binary, we complete the refinement with an arbitrary refinement at \(v \).

Theorem 2 Algorithm \(OTR_{MDC}(ST, gt) \) takes \(O(n^2) \) time, where \(ST \) and \(gt \) each have \(n \) leaves.

Proof: The first step (preprocessing the tree for constant time MRCA-queries, and computing \(H_{ST}(v) \) for every node \(v \in V(gt) \)) takes \(O(n) \) time. For a given node \(v \in V(gt) \) with \(m \) children, computing \(Tree(ST, gt, v) \) costs at most \(O(m^2) \) time; this follows from [13] that shows that computing trees with \(m \) leaves using MRCA-queries requires only \(O(m^2) \) MRCA queries and other operations. Therefore, modifying \(gt \) by refining around a given node \(v \) takes \(O(m^2) \) time, where \(v \) has \(m \) children. Since the total number of edges in \(gt \) is bounded by \(n \), the total cost of computing \(t^* \) is no more than \(O(n^2) \) time. \(\square \)

It is clear that the algorithm is well-defined, so that the order in which we visit the nodes in \(V(gt) \) does not impact the output.

Observation 1 Let \(gt \) be an arbitrary rooted gene tree, \(gt' \) a refinement of \(gt \), and \(ST \) an arbitrary rooted binary species tree. Then \(k_B(gt') \geq F_B(gt) \) for all clusters \(B \) of \(ST \).

Proof: For a given cluster \(B \) of \(ST \), we define an equivalence relation on the set of \(B \)-maximal clusters in the tree \(gt \), by \(A_1 \sim A_2 \) if \(A_1 \) and \(A_2 \) are siblings (i.e., the roots of the clades for these two clusters are siblings). It is then easy to see that the number of equivalence classes is \(F_B(gt) \), and that \(k_B(gt) = \sum_i |X_i| \), where \(X_i \) is the \(i^{th} \) equivalence class. For \(gt' \) a refinement of \(gt \), the number of \(B \)-maximal clusters can be reduced only when a new node is added to the tree and made the parent of a set of \(B \)-maximal clusters (and not parent to any clusters that are not \(B \)-maximal). Such an action reduces the number of \(B \)-maximal clusters, and also therefore the constitution of the equivalence classes. However, the number of equivalence classes cannot reduce, since the action only affects sibling sets of \(B \)-maximal clusters. (Note that it is possible for the number of equivalence classes to increase!) Therefore, \(k_B(gt') \geq F_B(gt') \geq F_B(gt) \), since each equivalence class contributes at least one \(B \)-maximal cluster. \(\square \)

Theorem 3 Let \(gt \) be an arbitrary rooted gene tree, \(ST \) an arbitrary rooted binary species tree, \(t \) the result of the first two steps of \(OTR_{MDC}(ST, gt) \), and \(t^* \) an arbitrary refinement of \(t \) (thus \(t^* = OTR_{MDC}(ST, gt) \)). Then for all \(B \in Clusters(ST) \), \(F_B(gt) = F_B(t^*) \) and no node in \(t \) or \(t^* \) has more than one \(B \)-maximal child.
Furthermore, the optimal resolution of each gene tree and its score can be computed in \(O(\log n)\) time. Let \(G\) be an arbitrary cluster, and which minimizes \(\text{MDC}(G)\) contains a node \(y\) that is an ancestor of all the \(B\)-maximal children of \(v\) within \(G\). Hence, the tree \(G\) produced by refining \(G_{i-1}\) at \(v\) (using \(\text{Tree}(ST, G_t, v_i)\)) contains a node \(y\) that is the parent of at least one \(B\)-maximal cluster, and exactly one node that is the parent of at least one \(B\)-maximal cluster. As a result, \(F_B(g_i) = F_B(g_{i+1})\).

This argument also shows that any node in the local subtree at \(v_i\) that is the parent of at least one \(B\)-maximal cluster is the parent of exactly one \(B\)-maximal cluster. On the other hand, if \(v_i\) does not have any \(B\)-maximal child in \(G_{i-1}\), then there is no node in \(v_i\)'s local subtree that has any \(B\)-maximal children. In other words, after refining at node \(v_i\), any node within the local subtree at \(v_i\) that has one or more \(B\)-maximal children has exactly one such child. As a result, at the end of Step 2 of \(\text{OTR}_{MDC}(ST, G_t)\), every node has at most one \(B\)-maximal child, for all \(B \in \text{Clusters}(ST)\).

The last step of the \(\text{OTR}_{MDC}\) algorithm produces an arbitrary refinement of \(t = G_{k}\), if it is not fully resolved. But since no node in \(G_{k}\) can have more than one \(B\)-maximal child, if \(t^*\) is a refinement of \(t = G_{k}\) then \(F_B(t) = F_B(t^*)\).

\textbf{Proof:} Step 2 of \(\text{OTR}_{MDC}(ST, G_t)\) can be seen as a sequence of refinements that begins with \(G_t\) and ends with \(t\), in which each refinement is obtained by refining around a particular node in \(G_t\). The tree \(t^* = \text{OTR}_{MDC}(ST, G_t)\) is then obtained by refining \(t\) arbitrarily into a binary tree, if \(t\) is not fully resolved. Let the internal nodes of \(G_t\) with at least three children be \(v_1, v_2, \ldots, v_k\). Thus, \(G_t = G_t_0 \rightarrow G_t_1 \rightarrow G_t_2 \rightarrow \ldots \rightarrow G_t_k = t \rightarrow t^*\), where \(G_t_i \rightarrow G_t_{i+1}\) is the act of refining at node \(v_{i+1}\), and \(t \rightarrow t^*\) is an arbitrary refinement.

We begin by showing that \(F_B(g_i) = F_B(g_{i+1})\), for \(i = 0, 1, 2, \ldots, k - 1\). When we refine at node \(v_i\), we modify the tree \(G_{i-1}\) by replacing the subtree immediately below node \(v_i\) by \(\text{Tree}(ST, G_t, v_i)\), producing the local subtree below \(v_i\). Fix a cluster \(B \in \text{Clusters}(ST)\). If the cluster for \(v_i\) in \(G_{i-1}\) does not have any \(B\)-maximal children, then refining at \(v_i\) will not change \(F_B\), and hence \(F_B(g_{i-1}) = F_B(g_i)\). Otherwise, \(v_i\) has at least one \(B\)-maximal child in \(G_{i-1}\). Since \(v_i\) is not \(B\)-maximal within \(G_{i-1}\), \(v_i\) also has at least one child in \(G_{i-1}\) that is not \(B\)-maximal. Hence, the tree \(G_t_i\) produced by refining \(G_{i-1}\) at \(v_i\) (using \(\text{Tree}(ST, G_t, v_i)\)) contains a node \(y\) that is an ancestor of all the \(B\)-maximal children of \(v_i\) within \(G_{i-1}\) and not the ancestor of any other children of \(v_i\) in \(G_{i-1}\). Therefore, the cluster for \(y\) is \(B\)-maximal within \(G_{i-1}\), and no other node that is introduced during this refinement is \(B\)-maximal within \(G_{i-1}\). Therefore within the local subtree at \(v_i\) in \(G_t\) there is exactly one node that defines a \(B\)-maximal cluster, and exactly one node that is the parent of at least one \(B\)-maximal cluster. As a result, \(F_B(g_{i-1}) = F_B(g_i)\).

This argument also shows that any node in the local subtree at \(v_i\) that is the parent of at least one \(B\)-maximal cluster is the parent of exactly one \(B\)-maximal cluster. On the other hand, if \(v_i\) does not have any \(B\)-maximal child in \(G_{i-1}\), then there is no node in \(v_i\)'s local subtree that has any \(B\)-maximal children. In other words, after refining at node \(v_i\), any node within the local subtree at \(v_i\) that has one or more \(B\)-maximal children has exactly one such child. As a result, at the end of Step 2 of \(\text{OTR}_{MDC}(ST, G_t)\), every node has at most one \(B\)-maximal child, for all \(B \in \text{Clusters}(ST)\).

Theorem 4 Let \(G_t\) be a rooted gene tree, \(ST\) a rooted binary species tree, both on set \(\mathcal{X}\), \(t\) the result of the first two steps of \(\text{OTR}_{MDC}(ST, G_t)\), and \(t^*\) any refinement of \(t\). Then \(\text{XL}(ST, t^*) = \sum_{B \in \text{Clusters}(ST)} [F_B(G_t) - 1] \), and \(t^*\) is a binary refinement of \(G_t\) that minimizes \(\text{XL}(ST, t^*)\) over all binary refinements \(t'\) of \(G_t\).

\textbf{Proof:} Let \(B\) be an arbitrary cluster in \(ST\). By Theorem 3, \(F_B(t^*) = F_B(G_t)\). Also by Theorem 3, no node in \(t\) has more than one \(B\)-maximal child, and so \(k_B(t) = F_B(t)\). Since \(t^*\) is an arbitrary refinement of \(t\), it follows that \(k_B(t^*) = F_B(t^*)\), and so \(k_B(t^*) = F_B(g_t)\). By Observation 1, for all refinements \(t'\) of \(G_t\), \(k_B(t') \geq F_B(g_t)\). Hence \(k_B(t') \geq k_B(t^*)\) for all refinements \(t'\) of \(G_t\). Since this statement holds for an arbitrary cluster \(B\) in \(ST\), it follows that \(\text{XL}(ST, t') \geq \text{XL}(ST, t^*)\) for all refinements \(t'\) of \(G_t\), establishing the optimality of \(t^*\).

Corollary 3 Let \(ST\) be a species tree and \(\mathcal{G} = \{G_{t_1}, G_{t_2}, \ldots, G_{t_k}\}\) be a set of gene trees that may not be resolved. Let \(\mathcal{G}^* = \{G_{t_1}^*, G_{t_2}^*, \ldots, G_{t_k}^*\}\) be a set of binary gene trees such that \(G_{t_i}^*\) refines \(G_{t_i}\) for each \(i = 1, 2, \ldots, k\), and which minimizes \(\text{XL}(ST, G_t^*)\). Then \(\text{XL}(ST, G_t^*) = \sum_i \sum_{B \in \text{Clusters}(ST)} [F_B(G_{t_i}) - 1] \). Furthermore, the optimal resolution of each gene tree and its score can be computed in \(O(n^2 k)\) time.
Solving MDC given rooted, non-binary gene trees. Corollary 3 allows us to compute the score of any species tree with respect to a set of rooted but unresolved gene trees. We can use this to find optimal species trees from rooted, non-binary gene trees, as we now show. We begin by formulating the MDC criterion for rooted, non-binary (RNB) gene trees, as follows.

Definition 2 (The MDC-RNB Problem)

Input: Set \mathcal{G} of rooted gene trees that are not necessarily binary.

Output: Rooted, binary species tree ST^* and set $\mathcal{G}^* = \{gt_1^*, gt_2^*, \ldots, gt_k^*\}$ with gt_i^* a binary tree refining gt_i, such that $XL(ST^*, \mathcal{G}^*)$ is minimum over all possible rooted binary species trees and sets \mathcal{G}^*.

By Corollary 3, we can formulate the problem as a minimum-weight clique problem. The graph has one vertex for every subset of X, and we set the weight of the vertex corresponding to subset B to be $w(B) = \sum_{gt \in \mathcal{G}} [F_B(gt) - 1]$. We have edges between vertices if the two vertices are compatible (can both be contained in a tree). The solution is therefore a minimum weight clique with $n - 2$ vertices. And, as before, we can describe this as a maximum weight clique problem by having the weight be $w'(B) = Q - w(B)$, for some large enough Q.

However, we can also address this problem using dynamic programming, as before. Let $A \subseteq \mathcal{X}$ and $T \in \mathcal{T}_A$. Let $l_T(A, \mathcal{G}) = \sum_{gt \in \mathcal{G}} \sum_B [F_B(gt) - 1]$, as B ranges over the clusters of T. Let $l^*(A, \mathcal{G}) = \min_{T \in \mathcal{T}_A} \{l_T(A, \mathcal{G})\}$. Then $l^*(\mathcal{X}, \mathcal{G})$ is the solution to the problem of inferring a species tree from rooted, non-binary gene trees.

We set base cases $l^*(\{x\}, \mathcal{G}) = 0$ for all $x \in \mathcal{X}$. We order the subproblems by the size of A, and compute $l^*(A, \mathcal{G})$ only after every $l^*(A', \mathcal{G})$ is computed for $A' \subset A$. The DP formulation is

$$l^*(A, \mathcal{G}) = \min_{A_1 \subset A} \{l^*(A_1, \mathcal{G}) + l^*(A - A_1, \mathcal{G}) + \sum_{gt \in \mathcal{G}} [F_A(gt) - 1]\}.$$

3.3 Unrooted, non-binary gene trees

When reconciling an unrooted and incompletely resolved gene tree with a rooted, binary species tree under parsimony, it is natural to seek the rooting and refinement of the gene tree that results in the minimum number of extra lineages over all possible rootings and refinements; see the illustration in Fig. 6. In this case, the MDC problem can be formulated as follows: given a set $\mathcal{G} = \{gt_1, gt_2, \ldots, gt_k\}$, with each gt_i a tree on \mathcal{X}, but not necessarily rooted nor fully resolved, we seek a rooted, binary species tree ST and

![Figure 6](image.png)

Figure 6: Illustration of optimal and non-optimal reconciliations of an unrooted, non-binary gene tree gt with a rooted, binary species tree ST, which yield 0 and 3 extra lineages, respectively.
set $\mathcal{G}' = \{gt_1', gt_2', \ldots, gt_k'\}$ such that each gt_i' is a binary rooted tree that can be obtained by rooting and refining gt_i, so as to minimize $XL(ST, \mathcal{G}')$ over all such \mathcal{G}'. As before, the computational complexity of this problem is unknown, but conjectured to be NP-hard.

Observation 2 For any gene tree gt and species tree ST, and t^* the optimal refined rooted version of gt that minimizes $XL(ST, t^*)$ can be obtained by first rooting gt at some node, and then refining the resultant rooted tree. Thus, to find t^*, it suffices to find a node $v \in V(gt)$ at which to root the tree t, thus producing a tree t', so as to minimize $\sum_{B \in \text{Clusters}(ST)} [F_B(gt') - 1]$.

We now show how we will find an optimal root x.

Notation Let x be a node in gt, and let $gt(x)$ denote the tree obtained by rooting gt at x. Let gt be a given gene tree, ST a given species tree, and X a cluster of gt. Let $r'(X)$ be the far endpoint of the parent edge of X within gt (i.e., the parent edge of X is (r, r'), where r is the root of X in gt). For a given cluster B of ST, we will say that two clusters A and A' of gt are B-siblings if A and A' are B-maximal clusters and their roots share a common neighbor. For a fixed cluster $B \in \text{Clusters}(ST)$, we will refer to a maximal set of B-maximal clusters in gt that are pairwise siblings as a family of B-maximal clusters in gt. A family of B-maximal clusters will also be referred to as a family of ST-maximal clusters. We denote by $gt(A)$ the subtree of gt induced by cluster A.

Lemma 5 Let A be a largest ST-maximal cluster in gt, and $a = r'(A)$. Then a is not internal to any ST-maximal clade in gt, nor is a the root of any ST-maximal clade that is in a family of size at least two.

Proof: Let A be a largest ST-maximal cluster in gt, and suppose A is X-maximal for $X \in \text{Clusters}(ST)$ with $a = r'(A)$. Suppose a is inside a B-maximal cluster Y, with Y produced by edge $e \in E(gt)$. If e is inside A, then $Y \cap A \neq \emptyset$, $A - Y \neq \emptyset$, and $A \cup Y = \mathcal{X}$. Since $A \subseteq X$ and $Y \subseteq B$, it follows that $X \cup B = \mathcal{X}$, and also that $X \cap B \neq \emptyset$. Since X and B are both clusters in ST they must be compatible, and so one must contain the other. But then one must be the entire set \mathcal{X}, which is a contradiction.

Suppose instead that a is the root of a B-maximal cluster Z of gt, with Z defined by edge e, and that Z has a sibling Z'. Thus, Z' is also B-maximal, and the roots of Z and Z' share a common neighbor. We consider first the case where the edge e defining cluster Z is the parent edge of A. In this case, the edge e in gt splits the tree into clusters A and Z. Since Z is B-maximal and A is X-maximal, and B and X are both clusters in ST, it follows that $B \cup X = \mathcal{X}$. Thus, the two subtrees off the root of ST are on leafset B and on leafset X. But then $Z = B$ and $A = X$. Since Z and Z' are disjoint, it follows that $Z' \subseteq A$, contradicting that $Z' \subseteq B$.

We now consider the case where the edge e defining Z is some other edge incident with a. But then since a is the root of Z, it follows that A is a proper subset of Z, contradicting that A is the largest ST-maximal cluster in gt.

Hence, for a the far endpoint of the parent edge of a largest ST-maximal cluster in gt, a is not the root of any ST-maximal cluster that is in a family of size two or more, nor is a internal to any ST-maximal cluster.

Theorem 5 Let A be a largest ST-maximal cluster in gt, and $a = r'(A)$. Then $F_B(gt(a)) \leq F_B(gt(r))$ for all clusters $B \in \text{Clusters}(ST)$ and for all nodes $r \in V(gt)$.

Proof: By Lemma 5, a is not internal to any ST-maximal cluster of gt, and a is not the root of any cluster that is in a family of size at least two. Let B be a cluster in ST. Since a is not internal to any B-maximal cluster and not the parent of any B-maximal cluster that has a sibling, it follows that the set of B-maximal clusters of gt(a) is identical to the set of B-maximal clusters of gt. Hence, the number of families of B-maximal clusters of gt(a) is identical to the number of families of B-maximal clusters of gt, and so equal to \(F_B(gt(a)) \). Furthermore, it is easy to see that \(F_B(gt(r)) \) is at least the number of families of B-maximal clusters of gt, no matter what r is. Hence, \(F_B(gt(r)) \geq F_B(gt(a)) \) for all vertices r.

□

The following two corollaries follow directly from Theorem 5:

Corollary 4 Let gt be an unrooted, not necessarily binary gene tree on \(\mathcal{X} \), and let ST be a rooted species tree on \(\mathcal{X} \). Let \(A \in Clusters(gt) \) be a largest ST-maximal cluster, and \(a = r'(A) \) the far endpoint of the parent edge for A. If we root gt at a, then the resultant tree \(gt(a) \) minimizes \(\sum_{B \in Clusters(ST)}|F_B(gt') - 1| \) over all rooted versions gt' of gt.

Corollary 5 Let \(\mathcal{T} \) be a set of gene trees that are unrooted and not necessarily binary. For \(t \in \mathcal{T} \) and \(B \subset \mathcal{X} \), define \(t^B \) to be the rooted version of t formed by rooting t at \(r'(B) \). Then, the species tree ST that minimizes \(\sum_{t \in \mathcal{T}} \sum_{B \in Clusters(ST)}|F_B(t^B) - 1| \) is an optimal species tree for \(\mathcal{T} \).

As a result, we can solve the problem using the clique and DP formulations as in the other versions of the MDC problem.

4 MDC: Multiple-allele Cases

Thus far, we have assumed that exactly a single allele is sampled per species in the analysis. However, sequences of multiple individuals per species are becoming increasingly available. Therefore, it is necessary to develop methods that infer species trees from data sets that contain zero or more alleles per species for the different loci. In [34], Than and Nakhleh described how to extend the algorithms from [33] to the case of multiple alleles in a straightforward manner. To illustrate this case, consider the scenario in Fig. 7. Here, the numbers of alleles sampled from the species A, B, C, D, and E, for the given locus are 3, 1, 2, 0, and 2, respectively. Under the MDC criterion, a cluster of alleles in the gene tree coalesce at their MRCA in the species tree, where the MRCA is taken over the set of species to which the alleles belong. For example, the cluster \{A1, A2\} coalescence on the parent edge of species A, whereas the cluster \{A1, A2, B1\} coalesces at the parent edge of cluster \{A, B\}. We now formalize the MDC criterion for this case.

Let \(ST \) be a rooted, binary species tree on set \(\mathcal{X} \) of taxa. Let gt be a gene tree injectively leaf-labeled by the elements of \(\mathcal{A} = \bigcup_{x \in \mathcal{X}} a(x) \), where \(a(x) \) is a set of alleles for species x. In other words, every leaf in gt is labeled uniquely by an element in \(\mathcal{A} \), but there may be labels in \(\mathcal{A} \) to which no leaf in gt is mapped. In Fig. 7, we have \(a(A) = \{A1, A2, A3\} \), \(a(B) = \{B1\} \), \(a(C) = \{C1, C2\} \), \(a(D) = \emptyset \), and \(a(E) = \{E1, E2\} \).

For every set of alleles W of a given locus, we denote by \(\alpha(W) \) the set of all species that have alleles in W. In Fig. 7, for the set \(W = \{A1, A2, B1, C1, C2, A3\} \), we have \(\alpha(W) = \{A, B, C\} \). Using the \(\alpha \) mapping, we can now define the MRCA mapping for the multiple-allele case.

Let v be a node in gt and, as before, denote by Cluster(v) its cluster. Then, the MRCA mapping \(H : V(gt) \rightarrow V(ST) \) is defined by \(H_{ST}(v) = MRCA_{ST}(\alpha(Cluster_{gt}(v))) \). Notice that under this mapping, if Cluster(v) contains only alleles of a single species (e.g., \(Cluster(v) \subseteq a(x) \) for some \(x \in \mathcal{X} \)), then \(H_{ST}(v) = x \). Given a cluster A in gt and a cluster B in ST, we say that A is B-maximal if (1)
\[\alpha(A) \subseteq B, \text{ and (2) for all } A' \in \text{Clusters}(gt), \text{ if } A \subseteq A', \text{ then } \alpha(A') \not\subseteq B. \] We set \(k_B(gt) \) as before to be the number of \(B \)-maximal clusters within \(gt \). Further, we say that cluster \(A \) in \(gt \) is \(ST \)-maximal if there is a cluster \(B \in \text{Clusters}(ST) \) such that \(B \neq \mathcal{A} \) and \(A \) is \(B \)-maximal.

Now that we have established the definitions, Theorem 1 applies directly.

Theorem 6 Let \(ST \) be a rooted, binary species tree on set \(\mathcal{A} \) of taxa, and \(gt \) be a rooted, binary gene tree leaf-labeled by set \(\mathcal{A} \) of alleles of \(\mathcal{A} \). Let \(B \) be a cluster in \(ST \) and let \(e \) be the parent edge of \(B \) in \(ST \). Then \(k_B(gt) \) is equal to the number of lineages on \(e \) in an optimal valid coalescent history. Therefore, \(XL(e, gt) = k_B(gt) - 1 \), and \(XL(ST, gt) = \sum_B[k_B(gt) - 1] \), where \(B \) ranges over the clusters of \(ST \).

Furthermore, a valid coalescent history \(f \) that achieves this total number of extra lineages can be produced by setting \(f(v) = H_{ST}(v) \) (i.e., \(f(v) = \text{MRCAS}(\alpha(\text{Cluster}_{gt}(v))) \) for all \(v \).

Proof: Let \(B = \text{Cluster}_{ST}(v) \) and \(e \) be the parent edge of node \(v \). We prove that \(k_B(gt) \) is equal to the number of lineages on \(e \) in an optimal valid coalescent history by induction on the height of node \(v \) (as before, the height of a node is the longest distance from the node to a leaf under it). In particular, as above, we show that \(k_B(gt) = k_C(gt) + k_D(gt) - \text{numcoal}(B) \), where \(C \) and \(D \) are the children clusters of \(B \) in the species tree, and \(\text{numcoal}(B) \) is the number of coalescence events that occur on the parent edge of \(B \) in an optimal valid coalescent history.

For the base case consider node \(v \) of height 0, that is, \(v \) is a leaf. Further, assume \(v \) is labeled by taxon \(B \in \mathcal{A} \) (here, the cluster \(B \) has a single element, therefore, we used \(B \) as the element of the cluster itself). In this case, \(B \) has no children clusters, and the \(B \)-maximal clusters in \(g \) are exactly all maximal subtrees \(t_1, t_2, \ldots, t_k \) of \(gt \), where \(L(t_i) \subseteq a(B) \) for \(1 \leq i \leq k \). An optimal valid coalescent history will have all leaves of \(t_i \), for each \(i \), coalesce within the parent edge of \(B \). In other words, the number of lineages in the parent edge of \(B \) under such a valid coalescent history is \(k \), which is equal to the number of \(B \)-maximal clusters within \(gt \). Thus, the result holds for all nodes of height 0.

For the induction hypothesis, we assume the result holds for all nodes \(v \in V(ST) \) of height \(p \), and prove the result for nodes of height \(p + 1 \). Let \(u \in V(ST) \) be a node such that \(v, w \) are its children, and their height is \(p \). Further, let \(B = \text{Cluster}_{ST}(u) \) whose parent edge is \(e \), \(C = \text{Cluster}_{ST}(v) \) and \(D = \text{Cluster}_{ST}(w) \). By the induction hypothesis, we have that \(k_C(gt) \) and \(k_D(gt) \) equal the number of extra lineages in an optimal valid coalescent history on the parent edges of clusters \(C \) and \(D \), respectively. The number of lineages that “enter” edge \(e \) from below (i.e., from its endpoint that is closer to the leaves) in an optimal valid coalescent history is \(k_C(gt) + k_D(gt) \). If \(\text{numcoal}(B) \) is the number of coalescence events that take place on edge \(e \) in an optimal valid coalescent history, and given that each coalescence event decreases the number
of lineages by 1, then the number of edges that “exit” e from above (i.e., from its endpoint that is closer to the root) is \(k_C(gt) + k_D(gt) - numcoal(B) \), which is, by definition, \(k_B(gt) \). This completes the proof. □

5 Experimental Evaluation

5.1 Methods

Simulated data. We generated species trees using the “Uniform Speciation” (Yule) module in the program Mesquite [19]. Two sets of species trees were generated: one for 8 taxa plus an outgroup, and one for 16 taxa plus an outgroup. Each data set had 500 species trees. All of them have a total branch length of 800,000 generations excluding the outgroup. Within the branch of each species tree, 1, 2, 4, 8, 16, or 32 gene trees were simulated using the “Coalescence Contained Within Current Tree” module in Mesquite with the effective population size \(N_e \) equal 100,000. For each gene tree, 1, 2, or 4 alleles were sampled per species. We used the program Seq-gen [24] to simulate the evolution of DNA sequences of length 2000 under the Jukes-Cantor model [12] down each of the gene trees (these settings are similar to those used in [18]).

Estimated gene trees. We estimated gene trees from these sequence alignments using default PAUP* heuristic maximum parsimony (MP) methods, returning the strict consensus of all optimal MP trees. We also tried the programs GARLI [39] and RAxML [29] for maximum likelihood reconstruction of the gene trees, but ML trees produced very similar results, yet took more time than MP. We rooted each estimated tree at the outgroup in order to produce rooted estimated trees.

Estimated species trees. The “heuristic” version of our method uses only the clusters of the input gene trees, and the “exact” version uses all possible clusters on the taxon set. For some analyses using the heuristic MDC algorithms, the estimated species tree is not fully resolved. In this case, we followed this initial analysis with a search through the set of binary resolutions of the initial estimated species tree for a fully resolved tree that optimized the number of extra lineages. This additional step was limited to 5 minutes of analysis. The only cases where this additional search was not applied were when the polytomy (unresolved node) in the species tree was present in all gene trees; in these cases, any resolution is arbitrary and is as good (under the MDC) criterion as any other resolution.

For the 8-taxon data sets, we used both the exact and heuristic versions of all four algorithms. For the 16-taxon data sets, we used only the heuristic versions.

Measurements We report the degree of resolution of each estimated gene tree, which is the number of internal branches in \(t \) divided by \(n - 3 \), where \(t \) has \(n \) leaves. We also report the Robinson-Foulds (RF) error [25] of estimated trees to the true trees, where the RF error is the total number of edges in the two trees that define bipartitions that are not shared by the other tree, divided by \(2n - 6 \). A value 0 of the RF distance indicates the two trees are identical, and a value of 1 indicates the two trees are completely different (they disagree on every branch).

5.2 Results

The degree of resolution of the estimated gene trees varied between 0.6 for single-allele trees to 0.4 for 4-allele trees in the case of 8-taxon data sets, and between 0.5 for single-allele trees to 0.3 for 4-allele trees.
in the case of 16-taxon data sets; results are shown in Fig. 8.

![Figure 8: Degree of resolution of estimated gene trees. Left: 8-taxon data sets; right: 16-taxon data sets.](image)

With respect to topological accuracy of the estimated gene trees, we found that for 8 taxa, the RF distance is around 0.21. However, 98% of the estimated gene trees have no false positives; thus, all but 2% of the estimated gene trees can be resolved to match the true gene tree. Similarly, the RF distance for the 16-taxon data sets between true gene trees and reconstructed gene trees is around 0.27, but 96% have 0 false positive values.

We now discuss topological accuracy of the species trees estimated using our algorithms for solving the MDC problem. In Figure 9, we show results on running the exact and heuristic versions of the algorithms on 8-taxon data sets. We can see that the heuristic version of our algorithm is almost as accurate as the exact version for both single-allele gene trees and multiple-allele gene trees especially when the number of gene trees sampled are more than four. We also see that increasing the number of gene trees improves the accuracy of the estimated species tree, and that very good accuracy is obtainable from a small number of gene trees. And increasing the number of alleles sampled per species in the gene trees does not help improve the accuracy of the estimated species tree much. In the bottom row of Figure 9, we show results on running algorithms on 8-taxon estimated gene trees. We can see that knowing the true root instead of estimating the root is helpful when the number of gene trees is very small, but that otherwise our algorithm is able to produce comparable results even on unrooted gene trees. The results for 16-taxon data sets are shown in Figure 10, from which we also observe the same trends.

Acknowledgement

This work was supported in part by NSF grant CCF-0622037, grant R01LM009494 from the National Library of Medicine, an Alfred P. Sloan Research Fellowship to LN, a Guggenheim Fellowship to TW, and by Microsoft Research New England support to TW. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the NSF, National Library of Medicine, the National Institutes of Health, the Alfred P. Sloan Foundation, the Guggenheim Foundation, or Microsoft Research New England. The authors would also like to thank Carlo Baldassi for pointing out an error in an earlier draft.
Figure 9: Performance of MDC on the 8-taxon data sets. Top row: True gene trees: exact vs. heuristic. Bottom row: Estimated gene trees: rooted vs. unrooted & exact vs. heuristic. Columns from left to right correspond to gene trees having 1, 2, and 4 alleles sampled per species respectively.

References

Figure 10: Performance of MDC on the 16-taxon data sets. Top row: True gene trees: exact vs. heuristic. Bottom row: Estimated gene trees: rooted vs. unrooted. Columns from left to right correspond to gene trees having 1, 2, and 4 alleles sampled per species respectively.

