
Big-oh stuff

Definition You should know this definition by heart and be able to give it, if
asked.

A function f(n) is O(g(n)) (pronounced “big-oh”) of a function g(n)
if there exists positive constants C1 and C2 such that f(n) ≤ C1g(n)
whenever n > C2.

This is the definition of what it means to say f(n) is O(g(n)). So, a real proof
that f(n) is O(g(n)) requires providing the constants C1 and C2 and proving
the result above.

Most of the time you won’t be asked to provide the constants, but rather
to be able to guess intelligently (and back up your guess if asked) whether a
function is big-oh of another function.

But now that you know the definition of what big-oh means, you can see
the following statements will be true. Here we will assume f(n) is O(g(n)), and
that C1 and C2 are defined so that f(n) ≤ C1g(n) whenever n > C2.

1.

limn→∞
f(n)
g(n)

≤ C1

2. For n > C2, log f(n) < log(C1) + log g(n). Therefore,

limn→∞ log f(n)− log g(n) ≤ log(C1).

(Note that this analysis does not depend upon the base for the log; this
means that you can use ln (the natural log, which is loge), or log base 2
(written log2), or any base you like.)

These two results may help you find the constant C1. However, what they
suggest is that you should be able to compute limits, something you may not
right now be comfortable with. Furthermore, just knowing that the limit exists
(which it may not) doesn’t make it straightforward to pick the constant.

We start with the “easy” case, where the limit exists. Suppose you have the
first case, where you are computing limn→∞

f(n)
g(n) , and you find it is at most C

(for some constant C. Should you pick C to be C1? NO, you should not. And
why?

Consider for example the following pair of functions

• f(n) = n2 + 5

• g(n) = n2.

If you compute limn→∞
f(n)
g(n) , you will get 1. But setting C1 = 1 won’t work.

The reason is that that ratio approaches its limit from above. So you need to
pick some constant greater than the limit, not equal to the limit. (Conversely,

1



if the ratio approaches its limit from below, you can pick the constant C1 to be
that limit, but setting it to be bigger is always safe.)

Here’s another example.

• f(n) = 3
√

n

• g(n) = 2n

Trying to figure out whether f(n) is O(g(n)) using limn→∞
f(n)
g(n) gives you

something harder to compute. You’ll need to use L’Hopital’s rule, but that
may be something you are not comfortable with in this context. Here, let me
suggest you use the second approach – taking logs. (Even this you may not be
comfortable with!)

Let’s take logs using base 2. Then we get

• log2(3
√

n) =
√

n log2(3). Note that log2(3) < 2, so this is less than 2
√

n.

• log2(2n) = n

We continue:
log2(f(n))− log2(g(n)) =
√

n log2(3)− n <

2
√

n− n

Note that when n > 4,
√

n > 2, and so 2
√

n < n. Hence,

2
√

n− n < 0 when n > 4.

How do we use this? The analysis given above shows that if f(n) is O(g(n)),
then log f(n)− log g(n) < log C1 for large enough n. So we just have to pick C1

so that log C1 ≥ 0. What values of C1 satisfy this? Answer: all C1 ≥ 1. Setting
C1 = 1 then makes sense. What value would you give for C2? The analysis here
shows that C2 = 4 works.

Skills you will need The skills you need are mostly from pre-calculus and
calculus, and you are probably rusty. Please practice!

• You will need to be able to compute logarithms using any base.

• You will need to use L’Hopitals Rule.

• You need to be able to compute limits.

2



Preparing for the quiz Try to answer each of the following questions, any
of which could appear on the quiz. You could expect questions like these, even
if they are not identical.

1. Provide the definition of the set of functions f(n) that are O(n2).

2. Provide the constants proving that 3n is O(3n − 2n).

3. Solve for H(n): 3n2−1 = 4H(n)

4. Compute limn→∞
ln n
n

5. Compute log2(3f(n)n)

6. Compute log3(5n24n)

7. Determine (no proof requested), for each pair of functions below, whether
(a) f(n) is O(g(n)) but not vice-versa, (b) g(n) is O(f(n)) but not vice-
versa, (c) both are big-oh of each other, or (d) neither is big-oh of each
other You should only concern yourself with values n ≥ 1.

• f(n) = n2 and g(n) = log(nn)

• f(n) = (log n)n and g(n) =
√

n

• f(n) = log n500 and g(n) = 100

• f(n) = 100 + 3/n and g(n) = 5

8. Sally says f(n) is O(g(n)), but Bob notes that f(n) > g(n) for all n, and
so says f(n) cannot be O(g(n)). What do you think of this argument?
Assuming that f(n) > g(n) is true, can Sally be right? Or is Bob right?

3


