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Evolution informs about
everything in biology

• Big genome sequencing projects just produce data -- so
what?

• Evolutionary history relates all organisms and genes,
and helps us understand and predict
– interactions between genes (genetic networks)
– drug design
– predicting functions of genes
– influenza vaccine development
– origins and spread of disease
– origins and migrations of humans



CIPRES Project

• Cyber Infrastructure for Phylogenetic Research
• Funded by $11.6M ITR (Information Technology) Grant

from NSF
• 5 lead institutions: UNM, UT-Austin, Florida State

University, UC Berkeley, and UC San Diego, plus 8 other
institutions

• Purpose: to create a national infrastructure of hardware,
algorithms, database technology, etc., necessary to infer
the Tree of Life

• 33 biologists, computer scientists, and mathematicians
collaborating on the project



Projects

– Meta-methods for Maximum Parsimony and
Maximum Likelihood:  Bernard Moret, Usman Roshan,
and Tiffani Williams

– Reticulate evolution: Randy Linder, Bernard Moret,
Luay Nakhleh

– Gene Order Phylogeny: Bernard Moret, Jijun Tang,
Li-San Wang, Bob Jansen, and Linda Raubeson

– Fast Converging Methods: Bernard Moret, Usman
Roshan, Luay Nakhleh, and Katherine St. John

– Visualizing large trees: Nina Amenta, Katherine St
John, Randy Linder, Bob Jansen, and David Hillis



This talk

• IDCM3: a meta-method for speeding up
base methods for maximum parsimony or
maximum likelihood

• SpNet: a new approach for inferring
reticulate evolutionary histories

• GRAPPA: software for gene order
phylogeny reconstruction
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Molecular Systematics
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Maximum Parsimony

ACT

GTT ACA

GTA ACA ACT

GTAGTT

ACT

ACA

GTT

GTA



Maximum Parsimony
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Maximum Parsimony:
computational complexity
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Finding the optimal MP tree is NP-hard

Optimal labeling can be
computed in linear time O(nk)



Solving MP (maximum parsimony)
and ML (maximum likelihood)

Phylogenetic trees

MP score

Global optimum

Local optimum

• Why are MP and ML hard? The search space is huge -- there are  (2n-5)!! trees,
it is easy to get stuck in local optima, and there can be many optimal trees.

• Why try to solve MP or ML? Our experimental studies show that polynomial time
algorithms don’t do as well as MP or ML when trees are big and have high rates
of evolution.

• Why solve MP and ML well? Because trees can change in biologically significant
ways with small changes in objective criterion. (Open problem!)



Current software for solving MP

• PAUP*4.0: Popular phylogeny software
package which implements local search

• TNT: More recent software package which
implements very fast tree searching
routines

• And many more…



MP/ML heuristics
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Speeding up MP/ML heuristics
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Using divide-and-conquer for
MP and ML

• Conjecture: better (more accurate)
solutions will be found in less time, if we
analyze a small number of smaller subsets
and then combine solutions

• Need:
– 1. techniques for decomposing datasets,
– 2. base methods for subproblems, and
– 3. techniques for combining subtrees



The DCM3 technique for
speeding up MP/ML searches



DCM3 Decompositions
Input: Set S of sequences, and guide-tree T

1. Compute “short subtree” graph G(S,T), based upon T 

2. Find clique separator in the graph G(S,T), and form subproblems



IDCM3 boosting of current techniques

Datasets
• 429 Eukaryotes rDNA (Lipscomb et. al.)
• 576 Metazoa DNA (Goloboff)
• 500 rbcL DNA (Rice et. al.)
• 567 rbcL, atpb, and 18s DNA (Soltis et. al.)
• 854 rbcL DNA (Goloboff)
• 921 Avian Cytochrome DNA (Johnson)
• 2000 Eukaryotes sRNA (Gutell et. al.)
• 2594 rbcL DNA (Kallersjo et. al.)
• 7180 RNA (Gutell et. al.)
• 8506 RNA (Gutell et. al.)



Dataset of 8,506 RNA
sequences (first hour)



Dataset of 8,506 RNA
sequences (first 24 hours)



Summary of IDM3-boosting

• For MP: IDCM3 (so far) has improved upon all
base methods for almost all datasets.  The
harder the problem, or the harder the dataset,
the bigger the improvement.   (Improving a slow
method is easiest -- improving TNT searches
turns out to be harder.)

• For ML: our limited study (based upon PAUP*
searches) show dramatic improvements

• Much still needs to be done!



Reticulate evolution: hybridizing
speciation

A B C D E



Why Networks?

• Lateral gene transfer (LGT)
– Ochman estimated that 755 of 4,288 ORF’s in

E.coli were from at least 234 LGT events

• Hybridization
– Estimates that as many as 30% of all plant

lineages are the products of hybridization

– Fish

– Some frogs



Reconstructing Phylogenetic
Networks

Main question: to combine, or not to
combine?

Separate analysis:
• Analyze individual genes separately
• Reconcile the resulting phylogenies
Combined analysis:
• Combine (via concatenation) the datasets,

and attempt to infer the evolutionary
history



Wayne Maddison’s Observation

Syst. Biol., 46(3):523-536, 1997

To paraphrase Wayne Maddison:

Genes evolve down trees contained within
the network describing the evolutionary
history, and so reconstructing phylogenetic
networks can be done by combining
individual gene trees.



Species Networks
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Gene Tree I in Species Networks
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Gene Tree II in Species Networks
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SPR Distances Among Gene Trees
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Maddison’s Method

Given two gene datasets

• Construct two gene trees T1 and T2

• If SPR(T1,T2)=0
– Return a tree

• If SPR(T1,T2)=1
– Return a network with one reticulation event

Open problem: extend to reconstructing a
network with m reticulation events



Challenges

(1) Computational

– Computing SPR distances is of unknown
computational complexity (probably hard)



Solving the Computational
Challenge

• Galled-tree (GT) networks: reticulation
events are independent

• Given two gene trees T1 and T2 on n
leaves from a GT-network M with m
reticulations, we can find the network N in
O(mn) time (and it is unique)



Challenges

(2) Systematic

– Obtaining the correct gene trees in practice is
very hard (due to missing data, inaccuracy of
tree reconstruction methods, wrong
assumptions, etc.)



OUR METHOD

SpNetSpNet
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SpNet: Running Time

• We have a linear-time algorithm for the
single hybrid case (implementation and
experimental results are available as well)

• We are working on the general case of
arbitrary number of reticulation events



Experimental Study

• Generated random networks on 10 and 20
taxa, with 0, 1, and 2 hybrids

• Evolved sequences under the
GTR+Gamma model of evolution with
invariant sites

• We studies the topological accuracy based
on the splits defined by the model and
inferred network



Evaluation Criteria

What is the topological accuracy of the
inferred phylogeny?

– False positives (splits returned that aren’t in
the model phylogeny)

– False negatives (splits in the model phylogeny
that are missing in the inferred phylogeny)



Methods

• SpNet: Do ML analysis of each dataset, and compute
the strict consensus of the best two trees.  Compare
these consensus trees.

• Maddison: Do ML analysis, and compare best two trees.

• NNet: The method of Bryant and Moulton (combines
agglomerative clustering technique from NJ with splits-
graph representations of Bandelt and Dress).



Observations

• Initial experiments established that
Maddison’s approach is usually inaccurate
-- because individual gene trees cannot
have any error

• Using ML instead of MP in SpNet seems
to result in better estimates of gene trees

• Neighbor Net (NNet) produces many extra
edges -- needs a postprocessing step!



Reconstruction Quality
Model Phylogeny: 20-taxon tree



Reconstruction Quality
Model Phylogeny: 20-taxon 1-hybrid network



Conclusions

• Considering a set of “good” trees rather
than a single optimal tree is advantageous
in network reconstruction

• Separate analysis approaches outperform
combined analysis approaches



Ongoing research

• Using other techniques for obtaining
unresolved trees (e.g., Bayesian analyses,
bootstrapping, etc.)

• Detection vs. reconstruction – visualization
and clustering techniques may also be
useful (collaboration with St John)

• Extensions to multiple reticulations!



 Whole-Genome Phylogenetics
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Genomes As Signed Permutations

1 –5  3  4  -2  -6
or

6  2  -4 –3  5 –1
etc.



Genomes Evolve by Rearrangements

• Inverted Transposition

1  2  3  9 -8 –7 –6 –5 –4  10

1  2  3  4  5  6  7  8  9  10

• Inversion (Reversal)

1  2  3 –8 –7 –6 –5 -4  9  10

• Transposition

1  2  3  9  4  5  6  7  8  10



Genome Rearrangement Has
A Huge State Space

• DNA sequences :   4 states per site
• Signed circular genomes with n genes:

                                 states, 1 site

• Circular genomes (1 site)

– with 37 genes:                                     states

– with 120 genes:                                   states

)!1(2 1 -- nn

521056.2 ¥
2321070.3 ¥



Why use gene orders?

• “Rare genomic changes”: huge state
space and relative infrequency of events
(compared to site substitutions) could
make the inference of deep evolution
easier, or more accurate.

• Our research shows this is true, but
accurate analysis of gene order data is
computationally very intensive!



Maximum Parsimony on
Rearranged Genomes (MPRG)

• The leaves are rearranged genomes.
• Find the tree that minimizes the total number of rearrangement events

A

B

C

D

3 6

2

3

4

A

B

C

D

E F

Total length
=  18



Optimization problems for gene
order phylogeny

• Breakpoint phylogeny: find the phylogeny
which minimizes the total number of
breakpoints (NP-hard, even to find the
median of three genomes)

• Inversion phylogeny: find the phylogeny
which minimizes the sum of inversion
distances on the edges (NP-hard, even to
find the median of three genomes)



 Inversion and Breakpoint
phylogenies

Phylogenetic trees

MP score

Global optimum

Local optimum

• When the data are close to saturated, even Weighbor(EDE)
analyses are insufficiently accurate.  In these cases, our initial
investigations suggest that the inversion and breakpoint
phylogeny approaches may be superior.

• Problem: finding the best trees is enormously hard, since even
the “point estimation” problem is hard (worse than estimating
branch lengths in ML).



GRAPPA (Genome Rearrangement
Analysis under Parsimony and other

Phylogenetic Algorithms)
http://www.cs.unm.edu/~moret/GRAPPA/
• Heuristics for NP-hard optimization problems
• Fast polynomial time distance-based methods
• Contributors: U. New Mexico,U. Texas at Austin,

Universitá di Bologna, Italy
• Freely available in source code at this site.
• Project leader: Bernard Moret (UNM)

(moret@cs.unm.edu)



Benchmark gene order dataset:
Campanulaceae

• 12 genomes + 1 outgroup (Tobacco), 105 gene segments
• NP-hard optimization problems: breakpoint and inversion

phylogenies (techniques score every tree)

1997: BPAnalysis (Blanchette and Sankoff):  200 years (est.)
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Benchmark gene order dataset:
Campanulaceae

• 12 genomes + 1 outgroup (Tobacco), 105 gene segments
• NP-hard optimization problems: breakpoint and inversion

phylogenies (techniques score every tree)

1997: BPAnalysis (Blanchette and Sankoff):  200 years (est.)
2000: Using GRAPPA v1.1 on the 512-processor Los Lobos

Supercluster machine: 2 minutes (200,000-fold speedup per
processor)

2003: Using latest version of GRAPPA: 2 minutes on a single
processor (1-billion-fold speedup per processor)



Limitations and ongoing
research

• Current methods limited to single
chromosomes with equal gene content (or
very small amounts of deletions and
duplications) -- we are working on
developing reliable techniques for
genomes with unequal gene content
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Phylolab, U. Texas

Please visit us at
http://www.cs.utexas.edu/users/phylo/


