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Abstract

Inferring evolutionary trees is an interesting and important problem in biology, but one that is
computationally di�cult as most associated optimization problems are NP-hard. Although many
methods are provably statistically consistent (i.e. the probability of recovering the correct tree
converges to 1 as the sequence length increases), the actual rate of convergence for di�erent
methods has not been well understood. In a recent paper we introduced a new method for
reconstructing evolutionary trees called the dyadic closure method (DCM), and we showed that
DCM has a very fast convergence rate. DCM runs in O(n5 log n) time, where n is the number
of sequences, and so, although polynomial, the computational requirements are potentially too
large to be of use in practice. In this paper we present another tree reconstruction method, the
witness–antiwitness method (WAM). WAM is faster than DCM, especially on random trees, and
converges to the true tree topology at the same rate as DCM. We also compare WAM to other
methods used to reconstruct trees, including Neighbor Joining (possibly the most popular method
among molecular biologists), and new methods introduced in the computer science literature.
c© 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Rooted leaf-labelled trees are a convenient way to represent historical relationships
between extant objects, particularly in evolutionary biology (where such trees are called
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“phylogenies”). Molecular techniques have recently provided large amounts of sequence
(DNA, RNA, or amino-acid) data that are being used to reconstruct such trees. Statis-
tically based methods construct trees from sequence data, by exploiting the variation in
the sequences due to random mutations that have occurred. A typical assumption made
by these tree construction methods is that the evolutionary process operates through
“point mutations”, where the positions, or “sites”, within the sequences mutate down
the tree. Thus, by modelling how the di�erent sites evolve down the tree, the entire
mutational process on the sequences can be described. A further assumption that is
typically made is that the evolutionary processes governing each site are identical, and
independent (i.i.d.). For such models of evolution, some tree construction methods are
guaranteed to recover the underlying unrooted tree from adequately long sequences
generated by the tree, with arbitrarily high probability.
There are two basic types of tree reconstruction methods: sequence-based methods

and distance-based methods. Distance-based methods for tree reconstruction have two
steps. In the �rst step, the input sequences are represented by an n× n matrix d of pair-
wise dissimilarities (these may or may not observe the triangle inequality, and hence
may not be truly “distances”). In the second step, the method M computes an additive
matrix M (d) (that is, an n× n distance matrix which exactly �ts an edge-weighted tree)
from the pairwise dissimilarity matrix, d. Distance methods are typically polynomial
time. Sequence-based methods, on the other hand, do not represent the relationship
between the sequences as a distance matrix; instead, these methods typically attempt to
solve NP-hard optimization problems based upon the original sequence data, and are
computationally intensive. See [26] for further information on phylogenetic methods in
general.
A tree reconstruction method, whether sequence-based or distance-based, is con-

sidered to be accurate with respect to the topology prediction if the tree associated
(uniquely) with the computed additive matrix has the same unrooted topology as
the tree used to generate the observed sequences. A method is said to be statisti-
cally consistent for a model tree T if the probability of recovering the topology of
T from sequences generated randomly on T converges to 1 as the sequence length
increases to in�nity. It has long been understood that most distance-based methods
are statistically consistent methods for inferring trees under models of evolution in
which the sites evolve i.i.d., but that some sequence-based methods (notably, the op-
timization problem maximum parsimony [25]) are not statistically consistent on all
trees under these models. For this reason, some biologists prefer to use distance-
based methods. However, not much is known, even experimentally, about the se-
quence length a given distance-based method needs for exact topological accuracy
with high probability. How long the sequences have to be to guarantee high proba-
bility of recovering the tree depends on the reconstruction method, the details of the
model, and the number n of species. Determining bounds on that length and its growth
with n has become more pressing since biologists have begun to reconstruct trees
on increasingly larger numbers of species (often up to several hundred) from such
sequences.



P.L. Erdős et al. / Theoretical Computer Science 221 (1999) 77–118 79

In a previous paper [20], we addressed this question for trees under the Neyman
2-state model of site evolution, and obtained the following results:
1. We established a lower bound of log n on the sequence length that every method,
randomized or deterministic, requires in order to reconstruct any given n-leaf tree
in any 2-state model of sequence evolution,

2. We showed that the maximum compatibility method of phylogenetic tree construc-
tion requires sequences of length at least n log n to obtain the tree with high prob-
ability, and

3. We presented a new polynomial time method (the dyadic closure method (DCM))
for reconstructing trees in the Neyman 2-state model, and showed that polylogarith-
mic length sequences su�ce for accurate tree reconstruction with probability near
one on almost all trees, and polynomial length sequence length always su�ces for
any tree under reasonable assumptions on mutation probabilities.
Thus, the DCM [20] has a very fast convergence rate, which on almost all trees is

within a polynomial of our established lower bound of log n for any method. However,
although DCM uses only polynomial time, it has large computational requirements (it
has 
(n2k + n5 log n) running time, and uses O(n4) space), where k is the sequence
length. This may make it infeasible for reconstructing large trees.
In this paper, we present the witness–antiwitness method (WAM), a new and faster

quartet-based method for tree reconstruction, which has the same asymptotic conver-
gence rate as the DCM. The running time of WAM has a worst-case bound O(n2k +
n4 log n log k) where k is the sequence length, and is even faster under some reason-
able restrictions on the model (see Theorem 12 for details). Thus, WAM is a faster
algorithm than DCM, and has essentially the same convergence rate to the true tree
topology as DCM. The provable bounds on the running time of WAM depend heavily
on the depth of the model tree. We introduced the “depth” in [20] and showed that
depth(T ) is bounded from above by log n for all binary trees T , and that random trees
have depths bounded by O(log log n).
In addition to presenting the new method, we present a framework for a comparative

analysis of the convergence rates of di�erent distance based methods. We apply this
technique to several di�erent methods, neighbor joining [43], the Agarwala et al. [1]
“single-pivot” algorithm and its variant [21], the “double-pivot” algorithm, and the
naive quartet method (a method we describe in this paper). We obtain upper bounds
on the sequence lengths that su�ce for accuracy for these distance-based methods, and
show that these upper bounds grow exponentially in the weighted diameter of the tree,
which is the maximum number of expected mutations for a random site on any leaf-
to-leaf path in the tree. We analyze the weighted diameter of random trees under two
distributions. We show that the diameter of random trees is 
(

√
n) under the uniform

distribution, and 
(log n) under the Yule–Harding distribution. Consequently, these
upper bounds on the sequence lengths that su�ce for accuracy for these other distance-
based methods are signi�cantly larger than the upper bounds obtained for DCM and
WAM. We note that our upper bounds for the algorithms in [1, 21] match those given
by Sampath Kannan (personal communication). Finally, we generalize our methods and
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results to more general Markov models, and �nd the same relative performance (these
results should be compared to those of Ambainis et al. in [4]). (While this framework
provides a comparison between the convergence rates of these methods, it is limited by
the fact that these are upper bounds on the sequence lengths that su�ce for accuracy
for these distance methods. These upper bounds may be loose, but no better upper
bounds on these methods are yet known, to our knowledge. Obtaining better bounds
on the convergence rates of these and other methods is an important open question.)
The structure of the paper is as follows. In Section 2 we provide de�nitions and

discuss tree reconstruction methods in general. In Section 3, we describe the analytical
framework for deriving upper bounds on the sequence lengths needed by di�erent meth-
ods for exact accuracy in tree reconstruction, and we use this framework to provide an
initial comparison between various distance-based methods. In Section 4, we describe
the witness–antiwitness tree construction algorithm (WATC), and in Section 5, we de-
scribe the witness–antiwitness method (WAM) in full. In Section 6, we analyze the per-
formance of WAM for reconstructing trees under the Neyman model of site evolution,
and compare its performance to other promising distance-based methods. We extend the
analysis of WAM to reconstructing trees under the general r-state Markov model in Sec-
tion 7. Finally, in Section 8, we disucss the applicability of our results to biological data.

2. De�nitions

Notation. P[A] denotes the probability of event A; E[X ] denotes the expectation of
random variable X . We denote the natural logarithm by log. The set [n] denotes

{1; 2; : : : ; n} and for any set S;
(
S
k

)
denotes the collection of subsets of S of size

k. R denotes the real numbers.

De�nition. (I) Trees. We will represent a phylogenetic tree T by a semi-labelled tree
whose leaves (vertices of degree one) are labelled by extant species, numbered by
1; 2; : : : ; n, and whose remaining internal vertices (representing ancestral species) are
unlabelled. We will adopt the biological convention that phylogenetic trees are binary,
meaning that all internal nodes have degree three, and we will also assume that T is
unrooted (this is due to scienti�c and technical reasons which indicate that the location
of the root can be either di�cult or impossible to determine from data). We let B(n)
denote the set of all (2n− 5)!!= (2n− 5)(2n− 7) · · · 3 · 1 semi-labelled binary trees on
the leaf set [n].
The path between vertices u and v in the tree is called the uv path, and is denoted

P(u; v). The topological distance L(u; v) between vertices u and v in a tree T is the
number of edges in P(u; v). The edge set of the tree is denoted by E(T ). Any edge
adjacent to a leaf is called a leaf edge, any other edge is called an internal edge. For
a phylogenetic tree T and S ⊆[n], there is a unique minimal subtree of T , containing
all elements of S. We call this tree the subtree of T induced by S, and denote it by



P.L. Erdős et al. / Theoretical Computer Science 221 (1999) 77–118 81

T|S . We obtain the contracted subtree induced by S, denoted by T∗|S , if we substitute
edges for all maximal paths of T|S in which every internal vertex has degree two. We
denote by ij|kl the tree on four leaves i; j; k; l in which the pair i; j is separated from
the pair k; l by an internal edge. When the contracted subtree of T induced by leaves
i; j; k; l is the tree ij|kl, we call ij|kl a valid quartet split of T on the quartet of leaves
{i; j; k; l}. Since all trees are assumed to be binary, all contracted subtrees (including,
in particular, the quartet subtrees) are also binary. Consequently, the set Q(T ) of valid
quartet splits for a binary tree T has cardinality

( n
4

)
:

(II) Sites. Consider a set C of character states (such as C = {A; C; G; T} for DNA
sequences; C = {the 20 amino acids} for protein sequences; C = {R; Y} or {0; 1} for
purine–pyrimidine sequences). A sequence of length k is an ordered k-tuple from C
– that is, an element of Ck . A collection of n such sequences – one for each species
labelled from [n] – is called a collection of aligned sequences.
Aligned sequences have a convenient alternative description as follows. Place the

aligned sequences as rows of an n× k matrix, and call site i the ith column of this
matrix. A pattern is one of the |C|n possible columns.
(III) Site substitution models. Many models have been proposed to describe the evo-

lution of sites as a stochastic process. Such models depend on the underlying phyloge-
netic tree T and some randomness. Most models assume that the sites are independently
and identically distributed (i.i.d.).
The models on which we test our algorithm also assume the Markov property that

the random assignment of a character state to a vertex v is determined by the character
state of its immediate ancestor, and a random substitution on the connecting edge.
In the most general stochastic model that we study, the sequence sites evolve i.i.d.
according to the general Markov model from the root [47]. We now brie
y discuss this
general Markov model. Since the i.i.d. condition is assumed, it is enough to consider
the evolution of a single site in the sequences. Substitutions (point mutations) at a site
are generally modelled by a probability distribution � on a set of r¿1 character states
at the root � of the tree (an arbitrary vertex or a subdividing point on an edge), and
each edge e oriented out from the root has an associated r× r stochastic transition
matrix M (e). The random character state at the root “evolves” down the tree – thereby
assigning characters randomly to the vertices, from the root down to the leaves. For
each edge e=(u; v), with u between v and the root, (M (e))�� is the probability that v
has character state � given that u has character state �.
(IV) The Neyman model. The simplest stochastic model is a symmetric model

for binary characters due to Neyman [40], and was also developed independently by
Cavender [12] and Farris [24]. Let {0; 1} denote the two states. The root is a �xed leaf,
the distribution � at the root is uniform. For each edge e of T we have an associated
mutation probability, which lies strictly between 0 and 0:5. Let p :E(T )→ (0; 0:5)
denote the associated map. We have an instance of the general Markov model with
M (e)01 =M (e)10 =p(e). We will call this the Neyman 2-state model, but note that it
has also been called the Cavender–Farris model, and is equivalent to the Jukes–Cantor
model when restricted to two states.
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The Neyman 2-state model is hereditary on subsets of the leaves – that is, if we
select a subset S of [n], and form the subtree T|S , then eliminate vertices of degree
two, we can de�ne mutation probabilities on the edges of T∗|S so that the probability
distribution on the patterns on S is the same as the marginal of the distribution on
patterns provided by the original tree T . Furthermore, the mutation probabilities that
we assign to an edge of T∗|S is just the probability p that the endpoints of the associated
path in the original tree T are in di�erent states.

Lemma 1. The probability p that the endpoints of a path P of topological length k
are in di�erent states is related to the mutation probabilities p1; p2; : : : ; pk of edges
of P as follows:

p=
1
2

(
1−

k∏
i=1
(1− 2pi)

)
:

Lemma 1 is folklore and is easy to prove by induction.
(V) Distances. Any symmetric matrix, which is zero-diagonal and positive o�-

diagonal, will be called a distance matrix. (These “distances”, however, may not satisfy
the triangle inequality, because the distance corrections used in phylogenetics, and de-
scribed below, do not always satisfy the triangle inequality. Since it is nevertheless the
practice in systematics to refer to these quantities as “distances”, we will do so here as
well.) An n× n distance matrix Dij is called additive, if there exists an n-leaf tree (not
necessarily binary) with positive edge lengths on the internal edges and non-negative
edge lengths on the leaf edges, so that Dij equals the sum of edge lengths in the
tree along the P(i; j) path connecting leaves i and j. In [10], Buneman showed that
the following four-point condition characterizes additive matrices (see also [45, 64]):

Theorem 1 (Four-point condition). A matrix D is additive if and only if for all i; j; k; l
(not necessarily distinct); the maximum of Dij+Dkl; Dik+Djl; Dil+Djk is not unique.
The tree with positive lengths on internal edges and non-negative lengths on leaf edges
representing the additive distance matrix is unique among the trees without vertices
of degree two.

Given a pair of parameters (T; p) for the Neyman 2-state model, and sequences of
length k generated by the model, let H (i; j) denote the Hamming distance of sequences
i and j and hij =H (i; j)=k denote the dissimilarity score of sequences i and j. The
empirical corrected distance between i and j is denoted by

dij = − 1
2 log(1− 2hij): (1)

The probability of a change in the state of any �xed character between the sequences
i and j is denoted by Eij = E(hij), and we let

Dij = − 1
2 log(1− 2Eij) (2)
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denote the corrected model distance between i and j. We assign to any edge e a
positive length

l(e)= − 1
2 log(1− 2p(e)): (3)

By Lemma 1, Dij is the sum of the lengths (see previous equation) along the path
P(i; j) between i and j, and hence Dij is an additive distance matrix. Furthermore,
dij converges in probability to Dij as the sequence length tends to in�nity. These
mathematical facts also have signi�cance in biology, since under certain continuous
time Markov models [48], which may be used to justify our models, l(e) and Dij are the
expected number of back-and-forth state changes along edges and paths, respectively.
A similar phenomenon and hence a similar distance correction exists for the general
stochastic model [47], and is discussed in detail in Section 7.
(VI) Tree reconstruction. A phylogenetic tree reconstruction method is a function

� that associates either a tree or the statement Fail to every collection of aligned
sequences, the latter indicating that the method is unable to make such a selection for
the data given.
According to the practice in systematic biology (see, for example, [31, 32, 52]), a

method is considered to be accurate if it recovers the unrooted binary tree T , even if
it does not provide any estimate of the mutation probabilities. A necessary condition
for accuracy, under the models discussed above, is that two distinct trees, T; T ′, do
not produce the same distribution of patterns no matter how the trees are rooted, and
no matter what their underlying Markov parameters are. This “identi�ability” condition
is violated under an extension of the i.i.d. Markov model when there is an unknown
distribution of rates across sites as described by Steel et al. [49]. However, it is shown
in [47] (see also [13]) that the identi�ability condition holds for the i.i.d model under
the weak conditions that the components of � are not zero and, for each edge e, the
determinant det(M (e)) 6=0; 1;−1, and in fact we can recover the underlying tree from
the expected frequencies of patterns on just pairs of species.
Theorem 1 and the discussion that follows it suggest that appropriate methods ap-

plied to corrected distances will recover the correct tree topology from su�ciently
long sequences. Consequently, one approach (which is guaranteed to yield a statisti-
cally consistent estimate) to reconstructing trees from distances is to seek an additive
distance matrix of minimum distance (with respect to some metric on distance ma-
trices) from the input distance matrix. Many metrics have been considered, but all
resultant optimization problems have been shown or are assumed to be NP-hard (see
[1, 17, 23] for results on such problems).
(VII) Speci�c tree construction algorithms. In this paper, we will be particularly

interested in certain distance methods, the four-point method (FPM), the naive method,
neighbor joining, and the Agarwala et al. algorithm. We now describe these methods.

Four-Point Method (FPM). Given a 4× 4 distance matrix d, return the split ij|kl
which satis�es dij+dkl¡min{dik +djl; dil+djk}: If there is no such split, return
Fail.
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FPM is a not truly a tree reconstruction method, because it can only be applied to
datsets of size four. We include it here, because it is a subroutine in the Naive Method,
which we now describe.
The Naive Method uses the four-point method to infer a split for every quartet

i; j; k; l. Thus, if the matrix is additive, the four-point method can be used to detect
the valid quartet split on every quartet of vertices, and then standard algorithms [6, 14]
can be used to reconstruct the tree from the set of splits. Note that the naive method
is guaranteed to be accurate when the input distance matrix is additive, but it will
also be accurate even for non-additive distance matrices under conditions which we
will describe later (see Section 3). Most quartet-based methods (see, for example,
[7, 50, 51]) begin in the same way, constructing a split for every quartet, and then
accommodate possible inconsistencies using some technique speci�c to the method;
the naive method, by contrast, only returns a tree if all inferred splits are consistent
with that tree. The obvious optimization problem (�nd a maximum number of quartets
which are simultaneously realizable) is of unknown computational complexity.
The Agarwala et al. algorithm [1] is a 3-approximation algorithm for the nearest

tree with respect to the L∞-metric, where L∞(A; B)= maxij |Aij − Bij|. Given input d,
the result of applying the Agarwala et al. algorithm to d is an additive distance matrix
D such that L∞(d;D)63L∞(d;Dopt), where Dopt is an optimal solution.
The use of the Agarwala et al. algorithm for inferring trees has been studied in two

papers (see [22] for a study of its use for inferring trees under the Neyman model,
and [4] for a study of its use for inferring trees under the general Markov model).
However, both [22, 4] consider the performance of the Agarwala et al. algorithm with
respect to the variational distance metric. Optimizing with respect to this metric is
related to – but distinct from – estimating the tree T , since it is concerned as well
with the mutational parameters p.
The neighbor joining method [43] is a method for reconstructing trees from distance

matrices, which is based upon agglomerative clustering. It is possibly the most popular
method among molecular biologists for reconstructing trees, and does surprisingly well
in some experimental studies; see, for example, [34, 35].
All these methods are known to be statistically consistent for inferring trees both

under the Neyman 2-state model and under the general r-state Markov model of site
evolution.

3. A framework for the comparison of distance-based methods

Although it is understood that all reasonable distance-based methods will converge
on the true tree given sequences of adequate length, understanding the rate of con-
vergence (as a function of sequence length) to the true topology is more complicated.
However, it is possible sometimes to compare di�erent distance-based methods, without
reference to the underlying model. The purpose of this section is to provide a frame-
work for an explicit comparison among di�erent distance-based methods. We will use
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this technique to compare the 3-approximation algorithm of Agarwala et al. to the
Naive method. Our analysis of these two algorithms shows that on any distance matrix
for which the �rst algorithm is guaranteed to reconstruct the true tree, so is the naive
method. Since our new method, WAM, is guaranteed to reconstruct the true tree on
any dataset for which the naive method is also guaranteed to reconstruct the true tree,
this analysis also establishes a comparison between the Agarwala et al. algorithm and
WAM.
By the four-point condition (Theorem 1) every additive distance matrix corresponds

to a unique tree without vertices of degree 2, and with positive internal edge lengths,
and non-negative lengths on edges incident with leaves.
Suppose we have a binary model tree T with positively weighted internal edges.

Let x be the minimum edge-weight among internal edges, and let D be the associated
additive distance matrix. Let d be an observed distance matrix, and let �=L∞(d;D).
For every distance-based reconstruction method �, we seek a constant c(�) such

that

c(�)= sup{c: �¡cx ⇒ �(d) yields T}:

Lemma 2. (i) Two additive distance matrices D and D′ de�ne the same topology if
and only if for all quartets the relative orders of the pairwise sums of distances for
that quartet are identical in the two matrices.
(ii) For every edge-weighted binary tree T with minimum internal edge weight x;

and any #¿0; there is a di�erent binary tree T ′ such that L∞(D;D′)= x=2+#; where
D′ is the additive distance matrix for T ′.
(iii) Given any n× n distance matrix d; four indices i; j; k; l in [n]; let pijkl denote

the di�erence between the maximum and the median of the three pairwise sums;
dij + dkl; dik + djl; dil + djk . Let P be the maximum of the pijkl over all quartets
i; j; k; l. Then there is no additive distance matrix D such that L∞(d;D)¡P=4.

Proof. Claim (i) is a direct consequence of the four-point condition (Theorem 1).
To prove (ii), for a given T , contract an internal edge e having minimum edge

weight x, obtaining a non-binary tree T ′. T ′ has exactly one vertex adjacent to four
edges. Add x=4 to the weight of each of the four edges. Insert a new edge of weight #
to resolve the vertex of degree four, so that we obtain a binary tree T ′′, di�erent from
T . Let D be the additive distance matrix for T and let D′′ be the additive distance
matrix for T ′′. It is easy to see that then L∞(D;D′)= x=2 + #.
For the proof of (iii), let D be an additive distance matrix with L∞(d;D)= �¡t=4.

For all quartets i; j; k; l, the median and the maximum of the three pairwise sums
induced by i; j; k; l are identical in D. Now consider the quartet i; j; k; l for which
pijkl= t. The maximum and the median of the three pairwise sums in d di�er by pijkl.
In order for the maximum and median of the three pairwise sums to be equal in D,
at least one pairwise distance must change by at least pijkl=4. However �¡pijkl=4,
contradicting the assumption.
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Theorem 2. Let D be an additive n× n distance matrix de�ning a binary tree T; d be
a �xed distance matrix; and let �=L∞(d;D). Assume that x is the minimum weight
of internal edges of T in the edge weighting corresponding to D.
(i) A hypothetical exact algorithm for the L∞-nearest tree is guaranteed to return

the topology of T from d if �¡x=4.
(ii) (a) The 3-approximation algorithm for the L∞-nearest tree is guaranteed to

return the topology of T from d if �¡x=8. (b) For all n there exists at least one d
with �= x=6 for which the method can err. (c) If �¿x=4; the algorithm can err for
every such d.
(iii) The naive method is guaranteed to return the topology of T from d if �¡x=2;

and there exists a d for any �¿x=2 for which the method can err.

Proof. To prove (i), assume that D∗ is an additive distance matrix with L∞(d;D∗)6�,
and let T∗ denote the tree topology corresponding to D∗. According to Lemma 2,
Part (i), D∗ and D de�ne the same tree i� the relative order of pairwise sums of
distances agree for all quartets in the two matrices. We will prove that D∗ and D
de�ne the same tree topology by contradiction.
So suppose D∗ and D do not de�ne the same tree topology. Then there is a quartet,

i; j; k; l, of leaves, where (without loss of generality) the topology induced by matrix
D is ij|kl and the topology induced by matrix D∗ is ik|jl. Thus, there exist positive
constants P and � so that 2P + Dij + Dkl=Dik + Djl and D∗ij + D∗kl=D∗ik + D∗jl + 2�.
Now P¿x, since P is an internal path length in T . By the triangle inequality we have

L∞(D;D∗)62�: (4)

We have

2P + 2�=Dik + Djl − Dij − Dkl + D∗ij + D∗kl − D∗ik − D∗jl (5)

and hence by the triangle inequality

2x¡2P + 2�68�: (6)

Since �¡x=4, this implies that such a quartet i; j; k; l does not exist, and so D and D∗
de�ne the same tree topology.
To prove (ii)(a), let D∗ denote the output of the 3-approximation algorithm and

T∗ denote the corresponding tree. Following similar arguments, L∞(d;D∗)63�, so
that corresponding to formula (4) we have L∞(D;D∗)64�, and corresponding to
formula (6) we have 2x¡16�. To prove (ii)(b), we now give an example where the
3-approximation algorithm can fail in which L∞(D; d)= x=6. Let d be distance matrix
de�ned by duv=dwx =7=3; duw =dvx =3 and dux =dvw =10=3. By item (iii) of Lemma
2, it follows that there is no additive distance matrix D with L∞(d;D)¡1=6. Now let
D be the additive distance matrix induced by the binary tree T on leaves u; v; w; x
with topology uv|wx and with edge length as follows: the central edge in T has
weight 1 and all other edges have weight 13=12. Then, L∞(D; d)= 1=6 so that D
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is a closest additive distance matrix to d. Furthermore, L∞(d;D)= x=6; since x=1
is the lowest edge weight in T . However there is another additive distance ma-
trix induced by a di�erent tree which lies within 3 times this minimal distance.
Namely, let D′′ be the additive distance matrix induced by the binary tree with topol-
ogy uw|vx with interior edge weighted 1=3 and other edges weighted 5=4. Then,
L∞(D′′; d)= 1=2=3L∞(D; d)= 3minD{L∞(D; d)}, as claimed. It is easy to see that
this example can be embedded in any size distance matrix so that for all n such exam-
ples exist. For (ii)(c), suppose d is a distance matrix, D is its closest additive distance
matrix, and x is the smallest weight of any edge in D. Then contract the edge e of
weight x in T , the edge-weighted realization of D, and add x=4 to every edge originally
incident to e. Let D′ be the distance matrix of the new edge-weighted tree, T ′. It follows
that L∞(D;D′)= x=2 and so that L∞(d;D′)6L∞(d;D)+L∞(D;D′). If L∞(d;D)= x=4,
then L∞(d;D′)63x=4, by the triangle inequality. Hence the 3-approximation algorithm
could return the topology of T or of T ′, and since they are di�erent there is a possibility
of making the wrong choice.
To prove (iii), arguments similar to the ones above obtain

2P + 2�=Dik + Djl − Dij − Dkl + dij + dkl − dik − djl
and 2x¡2P + 2�64�. The required example is in Lemma 2, Part (ii).

In other words, given any matrix d of corrected distances, if an exact algorithm for
the L∞-nearest tree can be guaranteed – by this analysis – to correctly reconstruct the
topology of the model tree, then so can the Naive method. This may suggest that there
is an inherent limitation of the L∞-nearest tree approach to reconstructing phylogenetic
tree topologies. However, note that the analytical results are pessimistic; that is, they
guarantee a high probability of an accurate performance once sequence lengths exceed
some threshold, but do not guarantee a low probability of accurate performance for
sequences below those lengths. Even so, these techniques are essentially the same ones
that have been used in other studies to obtain analytical results regarding convergence
to the true tree (see also [4, 22]).

4. The witness–antiwitness tree construction (WATC)

4.1. Introduction

In this section we describe the witness–antiwitness tree construction algorithm
(WATC). This procedure, which is the heart of our witness–antiwitness method
(WAM), solves certain restricted instances of the NP-complete quartet consistency prob-
lem [46], and solves them faster than the dyadic closure tree construction algorithm
(DCTC) that we used as a procedure previously in our dyadic closure method (DCM)
[20]. We therefore achieve an improvement with respect to computational requirements
over DCM, and pay for it by requiring somewhat longer sequences.
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Let e be an edge in T . Deleting e but not its endpoints creates two rooted sub-
trees, T1 and T2; these are called edi-subtrees, where “edi” stands for “edge-deletion-
induced”. Each edi-subtree having at least two leaves can be seen as being composed
of two smaller edi-subtrees. The algorithm we will describe, the witness–antiwitness
tree construction algorithm, or WATC, constructs the tree “from the outside in”, by
inferring larger and larger edi-subtrees, until the entire tree is de�ned. Thus, the algo-
rithm has to decide at each iteration at least one pair of edi-subtrees to “join” into a
new edi-subtree. In the tree, such pairs can be recognized by the constraints (a) that
they are disjoint, and (b) that their roots are at distance two from each other. These
pairs of edi-subtrees are then said to be “siblings”. The algorithm determines whether
a pair of edi-subtrees are siblings by using the quartet splits. We will show that if the
set Q satis�es certain conditions then WATC is guaranteed to reconstruct the tree T
from Q.
The conditions that Q must satisfy in order for WATC to be guaranteed to reconstruct

the tree T are slightly more restrictive than those we required in the DCTC method,
but do not require signi�cantly longer sequences. Sets Q which satisfy these conditions
are said to be T -forcing. The �rst stage of WATC assumes that Q is T -forcing, and
on that basis attempts to reconstruct the tree T . If during the course of the algorithm it
can be determined that Q is not T -forcing, then the algorithm returns Fail. Otherwise,
a tree T ′ is constructed. At this point, the second stage of WATC begins, in which we
determine whether T is the unique tree that is consistent with Q. If Q fails this test,
then the algorithm returns Fail, and otherwise it returns T .
Just as in the dyadic closure method (DCM) we will need a search technique to �nd

an appropriate set Q. Whereas binary search was a feasible technique for the DCM,
it is no longer feasible in this case. Search techniques for an appropriate set Q are
discussed in Section 5.

4.2. De�nitions and preliminary material

Within each edi-subtree t, select that unique leaf which is the lowest valued leaf
among those closest topologically to the root (recall that leaves are identi�ed with
positive integers). This is called the representative of t, and is denoted rep(t). If the
edi-subtree consists of a single leaf, then the representative leaf is identical with this
single leaf, which also happens to be the root of the edi-subtree at the same time.
The diameter of the tree T; diam(T ), is the maximum topological distance in

the tree between any pair of leaves. We de�ne the depth of an edi-subtree t to
be L(root(t); rep(t)), and denote this quantity by depth(T ). The depth of T is then
maxt{depth(t)}, as t ranges over all edi-subtrees yielded by internal edges of T . We
say that a path P in the tree T is short if its topological length is at most depth(T )+1,
and say that a quartet i; j; k; l is a short quartet if it induces a subtree which contains
a single edge connected to four disjoint short paths. The set of all short quartets of the
tree T is denoted by Qshort(T ): We will denote the set of valid quartet splits for the
short quartets by Q∗short(T ).
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For each of the n−3 internal edges of the n-leaf binary tree T we assign a represen-
tative quartet {i; j; k; l} as follows. The deletion of the internal edge and its endpoints
de�nes four rooted subtrees. Pick the representative from each of these subtrees to
obtain i; j; k; l; by de�nition, the quartet i; j; k; l is a short quartet in the tree. We call
the split of this quartet a representative quartet split of T , and we denote the set of
representative quartet splits of T by RT . Note that by de�nition

RT ⊆Q∗short(T )⊆Q(T ): (7)

We will say that a set Q of quartet splits is consistent with a tree T if Q⊆Q(T ).
We will say that Q is consistent if there exists a tree T with which Q is consistent,
and otherwise Q is said to be inconsistent. In [20], we proved:

Theorem 3. Let T be a binary tree on [n]. If RT is consistent with a binary tree T ′ on
[n]; then T =T ′. Therefore; if RT ⊆Q; then either Q is inconsistent; or Q is consistent
with T . Furthermore; Q cannot be consistent with two distinct trees if RT ⊆Q.

Let S be a set of n sequences generated under the Neyman model of evolution, and
let d be the matrix of corrected empirical distances. Given any four sequences i; j; k; l
from S, we de�ne the width of the quartet on i; j; k; l to be max(dij; dik ; dil; djk ; djl; dkl).
For any w∈R+, let Qw denote the set of quartet splits of width at most w, inferred
using the four-point method.

4.3. The dyadic closure method

The dyadic closure method is based on the dyadic closure tree construction (DCTC)
algorithm, which uses dyadic closure (see [20, 18]) to reconstruct a tree T consistent
with an input set Q of quartet splits. Recall that Q(T ) denotes the set of all valid
quartet splits in a tree T , and that given Q(T ), the tree T is uniquely de�ned. The
dyadic closure of a set Q is denoted by cl(Q), and consists of all splits that can
be inferred by combining two splits at a time from Q, and from previously inferred
quartet splits. In [20], we showed that the dyadic closure cl(Q) could be computed
in O(n5) time, and that if Q contained all the representative quartet splits of a tree,
and contained only valid quartet splits, (i.e. if RT ⊆Q⊆Q(T )), then cl(Q)=Q(T ).
Consequently, the DCTC algorithm reconstructs the tree T if RT ⊆Q⊆Q(T ). It is also
easy to see that no set Q can simultaneously satisfy this condition for two distinct
binary trees T; T ′, by Theorem 3, and furthermore, if Q satis�es this condition for T ,
it can be quickly veri�ed that T is the unique solution to the reconstruction problem.
Thus, when Q is such that for some binary tree T , RT ⊆Q⊆Q(T ), then the DCTC
algorithm properly reconstructs T . The problem cases are when Q does not satisfy this
condition for any T .
We handle the problem cases by specifying the output DCTC(Q) to be as follows:

• binary tree T such that cl(Q)=Q(T ) (this type of output is guaranteed when
RT ⊆Q⊆Q(T )),
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• inconsistent when cl(Q) contains two contradictory splits for the same quartet, or
• insu�cient otherwise.
Note that this speci�cation does not prohibit the algorithm from reconstructing a

binary tree T , even if Q does not contain all of RT . In such a case, the tree T
will nevertheless satisfy cl(Q)=Q(T ); therefore, no other binary tree T ′ will sat-
isfy Q⊆Q(T ′)). Note that if DCTC(Q)= Inconsistent, then Q 6⊆Q(T ) for any binary
tree T , so that if Q⊆Q′ then DCTC(Q′)= Inconsistent as well. On the other hand,
if DCTC(Q)= Insu�cient and Q′ ⊆Q, then DCTC(Q′)= Insu�cient also. Thus, if
DCTC(Q) is Inconsistent, then there is no tree T consistent with Q, but if DCTC(Q)
is Insu�cient, then it is still possible that some tree exists consistent with Q, but the
set Q is insu�cient with respect to the requirements of the DCTC method.
Now consider what happens if we let Q be Qw the set of quartet splits based

upon quartets of width at most w. The output of the DCTC algorithm will indicate
whether w is too big (i.e. when DCTC(Qw)= Inconsistent), or too small (i.e. when
DCTC(Qw)= Insu�cient). Consequently, DCTC can be used as part of a tree con-
struction method, where splits of quartets (of some speci�ed width w) are estimated
using some speci�ed method, and we search through the possible widths w using binary
search.
In [20], we studied a speci�c variant of this approach, called the Dyadic Closure

Method (DCM), in which quartet trees are estimated using the four-point method (see
De�nition VII in Section 2). We analyzed the sequence length that su�ces for accu-
rate tree construction by DCM and showed that it grows very slowly; for almost all
trees under two distributions on binary trees the sequence length that su�ces for tree
reconstruction under DCM is only polylogarithmic in n, once 0¡f6g¡:5 are �xed
and p(e)∈ [f; g] is assumed. Thus, DCM has a very fast convergence rate. DCM
uses O(n2k + n5 log n) time and O(n4) space; therefore it is a statistically consistent
polynomial time method for inferring trees under the Neyman model of evolution. For
practical purposes, however, the computational requirements of the DCM method are
excessive for inferring large trees, where n can be on the order of hundreds.

4.4. Witnesses, antiwitnesses, and T -forcing sets

Recall that the witness–antiwitness tree construction algorithm constructs T from the
outside in, by determining in each iteration which pairs of edi-subtrees are siblings.
This is accomplished by using the quartet splits to guide the inference of edi-subtrees.
We now describe precisely how this is accomplished.

De�nition 1. Recall that an edi-subtree is a subtree of T induced by the deletion
of an edge in the tree. Two edi-subtrees are siblings if they are disjoint, the path
between their roots contains exactly two edges, and there are at least two leaves not
in either of these two edi-subtrees. (The last condition – that there are at least two
leaves not in either of the two edi-subtrees – is nonstandard, but is assumed because it
simpli�es our discussion.) Let t1 and t2 be two vertex disjoint edi-subtrees. A witness
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to the siblinghood of t1 and t2 is a quartet split uv|wx such that u∈ t1; v∈ t2, and
{w; x}∩(t1∪t2)= ∅. We call such quartets witnesses. An anti-witness to the siblinghood
of t1 and t2 is a quartet split pq|rs, such that p∈ t1, r ∈ t2, and {q; s} ∩ (t1 ∪ t2)= ∅.
We will call these anti-witnesses.

De�nition 2. Let T be a binary tree and Q a set of quartet splits de�ned on the leaves
of T .
• Q has the witness property for T : Whenever t1 and t2 are sibling edi-subtrees of T
and T − t1 − t2 has at least two leaves, then there is a quartet split of Q which is a
witness to the siblinghood of t1 and t2.

• Q has the antiwitness property for T : Whenever there is a witness in Q to the
siblinghood of two edi-subtrees t1 and t2 which are not siblings in T , then there is
a quartet split in Q which is an antiwitness to the siblinghood of t1 and t2.

Theorem 4. If RT ⊆Q; then Q has the witness property for T . Furthermore; if RT ⊆
Q⊆Q(T ); and t1 and t2 are sibling edi-subtrees; then Q contains at least one witness;
but no antiwitness; to the siblinghood of t1 and t2.

The proof is straightforward, and is omitted.
Suppose T is a �xed binary tree, and Q is a set of quartet splits de�ned on the

leaves of T . The problem of reconstructing T from Q is in general NP-hard [46], but
in [20] we showed that if RT ⊆Q⊆Q(T ) we can reconstruct T in O(n5) time, and
validate that T is the unique tree consistent with Q. Now we de�ne a stronger property
for Q which, when it holds, will allow us to reconstruct T from Q (and validate that
T is the unique tree consistent with Q) in O(n2 + |Q| log |Q|) time. Thus, this is a
faster algorithm than the DCTC algorithm that we presented in [20].

De�nition 3 (T -forcing sets of quartet splits). A set Q of quartet splits is said to be
T -forcing if there exists a binary tree T such that
1. RT ⊆Q⊆Q(T ), and
2. Q has the antiwitness property for T .
Two points should be made about this de�nition. Since RT ⊆Q, Q has the witness

property for T , and it is impossible for Q to be both T -forcing and T ′-forcing for
distinct T and T ′, since by Theorem 3, RT is consistent with a unique tree. Finally,
note that the �rst condition RT ⊆Q⊆Q(T ) was the requirement we made for the dyadic
closure tree construction (DCTC) algorithm in [20], and so T -forcing sets of quartet
splits have to satisfy the assumptions of the DCTC algorithm, plus one additional
assumption: having the antiwitness property.

4.5. WATC

The algorithm we will now describe operates by constructing the tree from the
outside in, via a sequence of iterations. Each iteration involves determining a new set of
edi-subtrees, where each edi-subtree is either an edi-subtree in the previous iteration or
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is the result of making two edi-subtrees from the previous iteration siblings. Thus, each
iteration involves determining which pairs of edi-subtrees from the previous iteration
are siblings, and hence should be joined into one edi-subtree in this iteration.
We make the determination of siblinghood of edi-subtrees by applying the witness

and antiwitness properties, but we note that only certain splits are considered to be
relevant to this determination. In other words, we will require that any split used either
as a witness or an anti-witness have leaves in four distinct edi-subtrees that exist at
the time of the determination of siblinghood for this particular pair. Such splits are
considered to be active, and other splits are considered to be inactive. All splits begin
as active, but become inactive during the course of the algorithm (and once inactive,
they remain inactive). We will use the terms “active witness” and “active antiwitness”
to refer to active splits which are used as witnesses and antiwitesses. We will infer
that two edi-subtrees are siblings if and only if there is an active witness to their
siblinghood and no active anti-witness. (Note that this inference will be accurate if Q
has the witness and antiwitness properties, but otherwise the algorithm may make a
false inference, or fail to make any inference.)
We represent our determination of siblinghood as a graph on the edi-subtrees we

have currently found. Thus, suppose at the beginning of the current iteration there are
p edi-subtrees, t1; t2; : : : ; tp. The graph for this iteration has p nodes, one for each edi-
subtree, and we put an edge between every pair of edi-subtrees which have at least one
witness and no anti-witness in the set of quartet topologies. The algorithm proceeds
by then merging pairs of sibling edi-subtrees (recognized by edges in the graph) into
a single (new) edi-subtree. The next iteration of the algorithm then requires that the
graph is reconstructed, since witnesses and antiwitnesses must consist of four leaves,
each drawn from distinct edi-subtrees (these are the active witnesses and antiwitnesses
– thus, quartet splits begin as active, but can become inactive as edi-subtrees are
merged).
The last iteration of the algorithm occurs when the number of edi-subtrees left is

four, or there are no pairs of edi-subtrees which satisfy the conditions for siblinghood.
If no pair of edi-subtrees satisfy the criteria for being siblings, then the algorithm
returns Fail. On the other hand, if there are exactly four edi-subtrees, and if there are
two disjoint pairs of sibling edi-subtrees, then we return the tree formed by merging
each of the two pairs of sibling edi-subtrees into a single edi-subtree, and then joining
the roots of these two (new) edi-subtrees by an edge.
If a tree T ′ is reconstructed by the algorithm, we will not return T ′ until we verify
that

RT ′ ⊆Q⊆Q(T ′):

If the tree T ′ passes this test, then we return T ′, and in all other cases we return Fail.
We summarize this discussion in the following:

The WATC algorithm
Stage I:
• Start with every leaf of T de�ning an edi-subtree.
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• While there are at least four edi-subtrees do:
◦ Form the graph G on vertex set given by the edi-subtrees, and with edge set de-
�ned by siblinghood; i.e., (x; y)∈E(G) if and only if there is at least one witness
and no antiwitness to the siblinghood of edi-subtrees x and y. All witnesses and
antiwitnesses must be splits on four leaves in which each leaf lies in a distinct
edi-subtree; these are the active witnesses and antiwitnesses.
– Case: there are exactly four edi-subtrees: Let the four subtrees be x; y; z; w. If
the edge set of the graph G is {(x; y); (z; w)}, then construct the tree T formed
by making the edi-subtrees x and y siblings, the edi-subtrees z and w siblings,
and adding an edge between the roots of the two new edi-subtrees; else, return
Fail.

– Case: there are more than four edi-subtrees: If the graph has at least one
edge, then select one, say (x; y), and make the roots of the edi-subtrees x
and y children of a common root r, and replace the pair x and y by one
edi-subtree. If no component edge exists, then Return Fail.

Stage II
• Verify that T satis�es the constraints RT ⊆Q⊆Q(T ). If so, return T , and else return
Fail.
The runtime of this algorithm depends upon how the two edi-subtrees are found that

can be siblings.

4.6. Implementation of WATC

We describe here a fast implementation of the WATC algorithm.
We begin by constructing a multigraph on n nodes, bijectively labelled by the species.

Edges in this multigraph will be colored either green or red, with one green edge be-
tween i and j for each witness to the siblinghood of i and j, and one red edge between
i and j for each antiwitness. Thus, each quartet split ij|kl de�nes six edges in the multi-
graph, with two green edges ((ij) and (kl)) and four red edges ((ik); (il); (jk); (jl)).
Each green edge is annotated with the quartet that de�ned it and the topology on that
quartet, so that the other edges associated to that quartet can be identi�ed. Constructing
this multi-graph takes O(|Q|) time. Note that edi-subtrees x and y are determined to
be siblings if there exists a green edge (x; y) but no red edge (x; y).
We will maintain several data structures:

• Red(i; j), the number of red edges between nodes i and j, so that accesses, incre-
ments, and decrements to Red(i; j) take O(1) time,

• Green(i; j), the set of green edges between nodes i and j, maintained in such a way
that we can enumerate the elements in |Green(i; j)| time, and so that we can union
two such sets in O(1) time,

• Ti, the ith edi-subtree (i.e. the edi-subtree corresponding to node i), maintained as a
directed graph with edges directed away from the root,

• Tree, an array such that Tree[i] = j indicates that leaf i is in tree Tj. This is initialized
by Tree[i] = i for all i, and
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• Candidates, the set of pairs of edi-subtrees which have at least one green edge and
no red edges between them (and hence are candidates for siblinghood). We maintain
this set using doubly-linked lists, and we also have pointers into the list from other
datastructures (Green (i; j)) so that we can access, add, and delete elements from the
set in O(1) time.
Finding a sibling pair: A pair of edi-subtrees are inferred to be siblings if and only

if they have at least one green edges and no red edges between them. We maintain
a list of possible sibling pairs of edi-subtrees in the set Candidates, and the members
of Candidates are pairs of the form i; j where both i and j are edi-subtrees. (Testing
whether i is a current edi-subtree is easy; just check that Tree[i] = i.) We take an
element (i; j) from the set Candidates and verify that the pair is valid. This requires
verifying that both i and j are current names for edi-subtrees, which can be accom-
plished by checking that Tree[i] = i and Tree[ j] = j. If (i; j) fails this test, we delete
(i; j) from the set of Candidates, and examine instead a di�erent pair. However, if
(i; j) passes this test, we then verify that the pair i; j have at least one green edge and
no red edges between them. For technical reasons (which we describe below), it is
possible that Green(i; j) will contain a ghost green edge. We now de�ne what ghost
green edges are, and how we can recognize them in O(1) time.

De�nition 4. A ghost green edge is a green edge (a; b) which was de�ned by a quartet
split ab|cd, but which was not deleted after the edi-subtrees containing c and d were
merged into a single edi-subtree.

Detecting whether a green edge is a ghost is done as follows. Recall that every
green edge (a; b) is annotated with the quartet (a; b; c; d) that gave rise to it. Therefore,
given a green edge (a; b), we look up the edi-subtrees for the members of the other
green edge (c; d) (using the Tree array), and see if c and d still belong to distinct
edi-subtrees. If Tree[c] =Tree[d] then (a; b) is a ghost green edge (since c and d were
already placed in the same edi-subtree) and otherwise it is a true green edge.
Every ghost we �nd in Green(i; j) we simply delete, and if Green(i; j) contains only

ghost edges, we remove (i; j) from the set Candidates (the edi-subtrees i and j are
not actually siblings). If we �nd any non-ghost green edge in Green(i; j), then (i; j)
are inferred to be sibling edi-subtrees, and we enter the next phase.
Processing a sibling pair: Having found a pair i and j of edi-subtrees which are

siblings, we need to update all the data-structures appropriately. We now describe how
we do this.
First, we process every green edge e in Green(i; j) by deleting the four red edges

associated to e (this is accomplished by decrementing appropriate entries in the matrix
Red). Note that we do not explicitly (or implicitly) delete the other green edge asso-
ciated with edge e, and rather leave that green edge to be handled later; this is how
ghost green edges arise.
After we �nish processing every green edge, we merge the two edi-subtrees into one

edi-subtree. We will use one index, say i, to indicate the number of the new edi-subtree
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created. We update Ti so that it has a new root, and the children of the new root are
the roots of the previous edi-subtrees Ti and Tj, and we update the Tree array so that
all entries which previously held a j now hold i.
We also have to reset Red(i; k) and Green(i; k) for every other edi-subtree k,

since the edi-subtree labelled i has changed. We set Red(i; k)=Red(i; k) +Red(j; k),
and Green(i; k)=Green(i; k)∪Green(j; k) for all k. We then set Red(j; k)= 0 and
Green(j; k)= ∅, if we wish (this is for safety, but is not really needed).
We also have to update the Candidates set. This involves deletions of some pairs,

and insertions of others. The only pairs which need to be deleted are those i; k for
which there is now a red edge between edi-subtrees i and k, but for which previously
there was none. This can be observed during the course of updating the Red(i; k)
entries, since every pair (i; k) which should be deleted has Red(i; k)= 0 before the
update, and Red(i; k) ¿ 0 after the update. Pairs (i; k) which must be inserted in the
Candidates set are those (i; k) which previously had Green(i; k)= ∅ and which now
have Green(i; k) 6= ∅. Accessing, inserting, and deleting the elements of Candidates
takes O(1) time each, so this takes O(1) additional time.
We now discuss the runtime analysis of the �rst stage of WATC:

Theorem 5. The �rst stage of WATC uses O(n2 + |Q|) time.

Proof. Creating the multi-graph clearly costs only O(|Q|) time. Initializing all the
datastructures takes O(n2) time. There are at most O(|Q|) green edges in the multigraph
we create, and each green edge is processed at most once, after which it is deleted.
Processing a green edge costs O(1) time, since Tree can be accessed in O(1) time.
There are at most n − 1 siblinghood detections, and updating the datastructures after
detecting siblinghood only costs O(n) time (beyond the cost of processing green edges).
Implementing the datastructures Green(i; j) and Candidates so that updates are e�cient
is easy through the use of pointers and records. Hence, the total cost of the �rst stage
is O(n2 + |Q|).

So suppose the result of the �rst phase constructs a tree T from the set Q of splits.
The second stage of the WATC algorithm needs to verify that RT ⊆Q⊆Q(T ); we now
describe how this is accomplished e�ciently.
Given T , we can compute RT in O(n2) time in a straightforward way: for each of

the O(n) edi-subtrees t, we compute the representative rep(t) in O(n) time. We then
use the representatives to compute RT , which has size O(n), in O(n) additional time.
Verifying that RT ⊆Q then takes at most O(n log n+ |Q| log |Q|) time. First we make
sorted list of quartet splits by the lexicographic order of the 4 vertices involved. Sorting
is in O(|Q| log |Q|) time. Then we use a binary search to determine membership, which
costs O(log n) time for each element of RT , since |Q|=O(n4). Verifying that Q⊆Q(T )
then can be done by verifying that q∈Q(T ) for each q∈Q. This is easily done in
O(1) time per q using O(1) lca queries (to determine the valid split for each quartet
which has a split in Q). Preprocessing T so that we can do lca queries in O(1) time
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per query can be done in O(n) time, using the algorithm of Harel and Tarjan [53].
Consequently, we have proven:

Theorem 6. The second stage of WATC takes O(n2 + |Q| log |Q|) time. Therefore;
WATC takes O(n2 + |Q| log |Q|) time.

4.7. Proof of correctness of WATC

We begin by proving that the WATC algorithm correctly reconstructs the tree T
provided that Q is T -forcing.

Theorem 7. If Q is T -forcing; then WATC(Q)=T .

Proof. We �rst prove that all decisions made by the algorithm are correct, and then
prove that the algorithm never fails to make a correct decision.
We use induction on the number of iterations to prove that no incorrect decisions

are made by the algorithm. At the �rst iteration, every edi-subtree is a leaf, and these
are correct. Now assume that so far the WATC algorithm applied to Q has constructed
only correct edi-subtrees, and the next step merges two edi-subtrees, t1 and t2, into
one, but that these are not actually siblings.
Since Q has the antiwitness property, there is a valid quartet split ab|cd∈Q with

a∈ t1; c∈ t2 and {b; d}∩ (t1 ∪ t2)= ∅. We need only show that this antiwitness is still
active at the time that we merged t1 and t2 into one edi-subtree.
Suppose that the split ab|cd is not active at the time we merged t1 and t2. In

this case, then the four leaves a; b; c; d are in fewer than four distinct edi-subtrees.
The assumption {b; d}∩ (t1 ∪ t2)= ∅ then implies that we have already created an edi-
subtree t containing both b and d. This edi-subtree is true, since we have assumed all
edi-subtrees constructed so far are accurate. Now, consider the edge e′ whose deletion
creates the subtree t. This edge cannot exist if ab|cd is a valid quartet split and neither
b nor d are in t1 ∪ t2. Consequently, the antiwitness ab|cd is still active at the time
we merged t1 and t2, contradicting that we made that merger, and hence all inferred
edi-subtrees are correct.
We now show that the algorithm never fails to be able to make a correct decision.

If Q is T -forcing, then RT ⊆Q. Now if t and t′ are sibling edi-subtrees, then let e
be the edge in T whose deletion disconnects t ∪ t′ from the rest of the tree T . Let
q be the representative quartet split associated to e. This quartet split is a witness to
the siblinghood of t and t′, which will remain active throughout the iterations of the
algorithm until the entire tree is constructed (otherwise there are only three edi-subtrees
present at some point, and this is contradicted by the structure of the algorithm).
Furthermore, since Q⊆Q(T ), there is no invalid quartet split, and consequently no
antiwitness to the siblinghood of t and t′. Therefore, the algorithm will never fail to
have opportunities to merge pairs of sibling edi-subtrees.
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Theorem 8. If the WATC algorithm returns a tree T given a set Q of quartet splits;
then Q is consistent with T and with no other tree T ′. If WATC does not return a
tree T; then Q is not T -forcing.

Proof. The proof is not di�cult. If T is returned by WATC, then Q satis�es RT ⊆Q⊆
Q(T ). Under this condition Q is consistent with T and with no other tree, by
Theorem 3. Hence the �rst assertion holds. For the second assertion, if Q is T -forcing,
then by the previous theorem WATC returns T after the �rst stage. The conditions for
being T -forcing include that RT ⊆Q⊆Q(T ), so that the veri�cation step is successful,
and Q is returned.

5. The witness–antiwitness method (WAM)

In the previous section we described the WATC algorithm which reconstructs T given
a T -forcing set of quartet splits, Q. In this section we describe a set of search strategies
for �nding such a set Q. These strategies vary in their number of queries on quartet
split sets (ranging from O(log log n) to O(n2)), but also vary in the sequence length
needed in order for the search strategy to be successful with high probability. All have
the same asymptotic sequence length requirement as the dyadic closure method [20],
but di�er in terms of the multiplicative constant.
Before we describe and analyze these search strategies, we begin with some results

on the four-point Method, and on random trees.

5.1. Previous results

Lemma 3 (Azuma–Hoe�ding inequality, see [3]). Suppose X =(X1; X2; : : : ; Xk) are in-
dependent random variables taking values in any set S; and L : Sk →R is any function
that satis�es the condition: |L(u) − L(C)|6t whenever u and C di�er at just one co-
ordinate. Then; for any � ¿ 0; we have

P[L(X)− E[L(X)]¿�]6 exp
(
− �2

2t2k

)
;

P[L(X)− E[L(X ]6− �]6 exp
(
− �2

2t2k

)
:

In [20], we proved:

Theorem 9. Assume that z is a lower bound for the transition probability of any
edge of a tree T in the Neyman 2-state model; y¿max Eij is an upper bound on the
compound changing probability over all ij paths in a quartet q of T . The probability
that FPM fails to return the correct quartet split on q is at most

18 exp(−(1−√
1− 2z)2(1− 2y)2k=8)): (8)
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In [20] we also provided an upper bound on the growth of the depth of random
trees under two distributions:

Theorem 10. (i) For a random semilabelled binary tree T with n leaves under the
uniform model; depth(T )6(2 + o(1)) log2 log2 (2n) with probability 1− o(1).
(ii) For a random semilabelled binary tree T with n leaves under the Yule-Harding

distribution; after suppressing the root; depth(T )= (1+ o(1)) log2 log2 n with proba-
bility 1− o(1).

5.2. Search strategies

Let Qw denote the set of splits inferred using the four-point method on quartets
whose width is at most w; recall that the width of a quartet i; j; k; l is the maximum
of dij; dik ; dil; djk ; djl; dkl. The objective is to �nd a set Qw such that Qw is T -forcing.

De�nition 5.

A= {w∈R+: RT ⊆Qw};
B= {w∈R+: Qw ⊆Q(T )}:

We now state without proof the following observation which is straightforward.

Observation 1. A is either ∅; or is (wA;∞) for some positive real number wA. B is
either ∅; or is (0; wB); for some positive real number wB.

Sequential search for T -forcing Qw: A sequential search through the sets Qw, testing
each Qw for being T -forcing by a simple application of WATC algorithm, is an obvious
solution to the problem of �nding a T -forcing set which will �nd a T -forcing set
from shorter sequences than any other search strategy through the sets Qw. However,
in the worst case, it examines O(n2) sets Qw, since w can be any of the values in
{dij: 16i ¡ j6n}, and hence it has high computational requirements.
Sparse-high search for a T -forcing Qw: We describe here a sparse search that ex-

amines at most O(log k) sets Qw and hence has lower computational requirements, but
may require longer sequences. Even so, we prove that the sequence length require-
ment has the same order of magnitude as the sequential search. This sparse search
examines the high end of the values of w, and so we call it the Sparse-high search
strategy.
Let �¡ 1=4 be given. We de�ne Z� to be the set of quartets i; j; k; l such that

max{hij; hik ; hil; h jk ; h jl; hkl}¡ 1=2− 2�: Note then that the set of splits (inferred using
the four-point method) on quartets in Z� is Qw(�), where w(�)= − 1

2 (log(4�)).
The sparse-high search examines �=1=8; 1=16; : : :, until it �nds a � such that Z�=

Qw(�) is T -forcing, or until w(�) exceeds every dij.
We now de�ne conditions under which each of these search strategies are guaranteed

to �nd a T -forcing set Qw. Recall the sets A= {w: RT ⊆Qw},and B= {w: Qw⊆Q(T )}.
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We now de�ne the following assumptions:

A∩B 6= ∅; (9)

∃w∗ ∈A∩B; s:t: Qw∗ has the antiwitness property; (10)

∃�∗; s:t: ∀�∈ [�∗=2; �∗]; w(�)∈A∩B; and Qw(�) has the antiwitness property:

(11)

It is clear that if assumptions (16) and (17) hold, then the sequential search strategy
will be guaranteed to succeed in reconstructing the tree, and that the Sparse-high search
strategy requires that assumption (11) hold as well.
We now analyze the sequence length needed to get each of these assumptions to

hold with constant probability.

6. How WAM performs under the Neyman 2-state model

In this section we analyze the performance of the witness–antiwitness method
(WAM), with respect to computational and sequence-length requirements. The anal-
ysis of the sequence length requirement follows a similar analysis for DCM in [20],
but turns out to be more complicated, and results in constant times longer sequences.
The analysis of the computational complexity of WAM is both in the worst case, and
under the assumption that the tree topology is drawn from a random distribution. Fi-
nally, we compare the performance of WAM to other methods, with respect to both
these issues.

6.1. Sequence length needed by WAM

Theorem 11. Suppose k sites evolve under the Cavender–Farris model on a binary
tree T; so that for all edges e; pe ∈ [f; g]; where we allow f=f(n) and g= g(n) to
be functions of n. We assume that lim supn g(n)¡ 1=2: Then both the sparse-high
and sequential search based on the WATC algorithm returns the true tree T with
probability 1− o(1); if

k ¿
c · log n

(1−√1− 2f)2(1− 2g)4depth(T ) ; (12)

where c is a �xed constant.

Proof. Note that the sparse-high search requires assumptions (16)–(18), while the
sequential search only requires assumptions (16) and (17). We will show that the given
sequence length su�ces for all three assumptions to hold with probability 1− o(1).
We begin by showing that assumption (9) holds, i.e. that RT ⊆Qw ⊆Q(T ) for

some w.
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For k evolving sites (i.e. sequences of length k), and �xed � ¿ 0, let us de�ne the
following two sets:

S�= {{i; j}: hij ¡ 0:5− �};
and

Z�=
{
q∈

(
[n]
4

)
: for all i; j∈ q; {i; j}∈ S2�

}
;

and the following four events:

A=Qshort(T )⊆Z�; (13)

Bq=FPM correctly returns the split of the quartet q∈
(
[n]
4

)
; (14)

B=
⋂
q∈Z�

Bq; (15)

C = S2� contains all {i; j} with Eij ¡ 0:5− 3� and no {i; j} with Eij¿0:5− �:
(16)

Note that B is the event that Qw(�)⊆Q(T ), so that A∩B is the event that Q∗short ⊆Qw(�)
⊆Q(T ), or w(�)∈A∩B. Thus, P[A∩B 6= ∅]¿P[A∩B]: De�ne

�=(1− 2g)2depth(T )+3: (17)

We claim that

P[C]¿1− (n2 − n)e−�2k=2 (18)

and

P[A|C] = 1 if �6�=6: (19)

To establish (18), �rst note that hij satis�es the hypothesis of the Azuma–Hoe�ding
inequality (Lemma 3 with Xl=1 if the lth bits of the sequences of leaves i and j
di�er, and Xl=0 otherwise, and t=1=k). Suppose Eij¿0:5− �. Then,

P[{i; j}∈ S2�] = P[hij ¡ 0:5− 2�]
6P[hij − Eij60:5− 2�− Eij]6P[hij − E[hij]6− �]6e−�2k=2:

Since there are at most
( n
2

)
pairs {i; j}, the probability that at least one pair {i; j} with

Eij¿0:5 − � lies in S2� is at most
( n
2

)
e−�

2k=2. By a similar argument, the probability

that S2� fails to contain a pair {i; j} with Eij ¡ 0:5 − 3� is also at most ( n2) e−�2k=2.
These two bounds establish (18).
We now establish (19). For q ∈ Qshort(T ) and i; j∈ q, if a path e1e2 · · · et joins leaves

i and j, then t62depth(T ) + 3 by the de�nixtion of Qshort(T ). Using these facts,
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Lemma 1, and the bound pe6g, we obtain Eij =0:5 [1− (1− 2p1) · · · (1− 2pt)]6
0:5(1−�). Consequently, Eij ¡ 0:5−3� (by assumption that �6�=6) and so {i; j}∈ S2�
once we condition on the occurrence of event C. This holds for all i; j∈ q, so by
de�nition of Z� we have q ∈ Z�. This establishes (19).
De�ne a set

X =
{
q∈
(
[n]
4

)
: max{Eij: i; j∈ q}¡ 0:5− �

}

(note that X is not a random variable, while Z�, S� are). Now, for q∈X , the induced
subtree in T has mutation probability at least f(n) on its central edge, and mutation
probability of no more than max{Eij: i; j∈ q}¡0:5− � on any pendant edge. Then, by
Theorem 9 we have

P[Bq]¿1− 18 exp(−(1−
√
1− 2f)2�2k=8) (20)

whenever q∈X . Also, the occurrence of event C implies that

Z�⊆X (21)

since if q∈Z�, and i; j∈ q, then i; j∈ S2�, and then (by event C), Eij¡0:5− �, hence
q∈X . Thus,

P[B∩C] =P
[( ⋂

q∈Z�
Bq

)
∩C
]
¿P

[( ⋂
q∈X

Bq

)
∩C
]
;

where the second inequality follows from (21), as this shows that when C occurs,⋂
q∈Z� Bq⊇

⋂
q∈X Bq. Invoking the Bonferonni inequality, we deduce that

P[B∩C]¿1− ∑
q∈X

P[Bq]− P[C]: (22)

Thus, from above,

P[A∩B]¿P[A∩B∩C] =P[B∩C]

(since P[A|C] = 1), and so, by (20) and (22),

P[A∩B]¿1− 18
(
n
4

)
exp(−(1−

√
1− 2f)2�2k=8)− (n2 − n)e−�2k=2:

Formula (12) follows by an easy calculation for �= c · �, for any 0¡ c61=6.
We proceed to prove that assumption (10) holds. Recall the de�nition of Qw(�) =

{FPM (q): q∈Z�}. Now let D be the event that whenever t and t′ are two edi-subtrees
which are not siblings, but there is a witness in Qw(�) to the siblinghood of T , then
there is also an antiwitness in Qw(�):
Recalling Theorem 4, it is obvious that event A∩B∩D implies Assumptions (9)

and (10). We are going to show that P[A∩B∩D] = 1− o(1) under the conditions of
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Fig. 1. Finding an antiwitness.

the theorem for a certain choice of �, which is just slightly smaller than the � that
su�ced for the assumption (9). Technically, we are going to show

P[D|A∩B∩C] = 1: (23)

proof of (23): D=
⋃
t1 ; t2 Ht1 ; t2 , where t1; t2 denote two disjoint edi-subtrees of T , and

Ht1 ; t2 denotes the event that there is a witness but no antiwitness for the siblinghood
of t1; t2 in Qw(�). Therefore, in order to prove (23), it su�ces to prove

P[Ht1 ; t2 |A∩B∩C] = 0: (24)

Assume that there is a witness for the siblinghood of t1; t2 where t1 and t2 are not
siblings. We will show that Qw(�) contains an antiwitness to the siblinghood of t1 and t2.
Let the witness to the siblinghood of t1 and t2 be ab|cd, where a∈ t1; b∈ t2, and c; d
not in t1 ∪ t2. Let pq be an internal edge of the unique ab path in T containing the
midpoint of the path P(a; b) measured using the lengths de�ned by the corrected model
distances D, and with p closer to a and q closer to b, i.e. the edge (p; q) maximizes
the following quantity:

min
pq internal edge

(1− 2Eap; 1− 2Eqb): (25)

Let p′ and q′ be neighbors of p and q respectively that are not on the path between
nodes a and b. Consider the edi-subtrees t3 and t4 rooted at p′ and q′ respectively,
formed by deleting (p;p′) and (q; q′), respectively. Set u= rep(t3); v= rep(t4) (Fig. 1).
We are going to show that

{a; b; u; v}∈Z�; (26)

and au|bv∈Qw(�). The proof of (26) is the only issue, since by (15) the split of
{a; b; u; v} is correctly reconstructed, and is au|bv by construction. Clearly

P[Ht1 ; t2 |A∩B∩C]6P[{a; b; u; v} =∈ Z�|A∩B∩C]: (27)
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The RHS of (27) can be further estimated by

P[hau¿0:5− 2�|A∩B∩C] +P[hav¿0:5− 2�|A∩B∩C]
P[hbu¿0:5− 2�|A∩B∩C] +P[hbv¿0:5− 2�|A∩B∩C]

+P[huv¿0:5− 2�|A∩B∩C]: (28)

The �fth term P[huv¿0:5 − 2�|A∩B∩C] = 0, since it is easy to �nd a short quartet
which contains u; v; and therefore by (13), huv ¡ 0:5− 2�. Here is how to �nd a short
quartet containing u and v. Let a′ denote the neighbor of p on the ab path towards a,
and let q denote the neighbor of q on the ab path towards b. Consider the edi-subtree t5
de�ned by pa′, which contains the leaf a, and the edi-subtree t6 de�ned by qb′, which
contains the leaf b. It is easy to check that {u; v; rep(t5); rep(t6)} is a short quartet.
In order to �nish the proof of (24), and hence the proof of (23), it su�ces to show

that the other four terms in (28) are zero as well. The third and fourth terms are
symmetric to the �rst and second, and in fact the second has a worse bound than the
�rst. Therefore it su�ces to prove that

P[hav¿0:5− 2�|A∩B∩C] = 0: (29)

We assume that {a; v} =∈ S2�, and show that consequently � is large. Hence, for a
properly small �, Formula (29), and hence (23) holds. From {a; v} =∈ S2�, conditioning
on C,

Eav ¿ 0:5− 3�; (30)

and {a; b}∈ S2�, and hence, conditioning on C,
Eab ¡ 0:5− �: (31)

There is no di�culty to extend the de�nition of Eij to cases when at least one of i; j is
an internal vertex of the tree. Simple algebra yields from formula (30) and Lemma 1,
that

6�¿1− 2Eav=(1− 2Epv)(1− 2Epa): (32)

We have

1− 2Epv¿(1− 2g)depth(T )+2 =
√
�(1− 2g) (33)

by the de�nition of � (see formula (17)) and the choice of v as representative. By
formula (25), it is easy to see that

1− 2Epa¿q(1− 2g)2
√
1− 2Eab: (34)

Combining (31)–(34), we obtain 6�¿
√
�(1− 2g)(1− 2g)2√2�. This formula fails, if

we select

�= c2 · (1− 2g)5� (35)

with a su�ciently small positive constant c2.
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Case 1: p =∈ t1 and q =∈ t2 (as in Fig. 1). Then au|bv∈Qw(�) is an anti-witness, as
desired.
When Case 1 does not hold, the only problem that can arise is if the valid split au|bv

does not satis�es the condition {u; v}∩ (t1 ∪ t2)= ∅, and hence is not an antiwitness.
Case 2: p∈ t1 or q∈ t2. Without loss of generality we may assume p∈ t1. Now we

rede�ne the location of the edge pq on the ab path as follows. Let p denote the �rst
vertex after root(t1) on the ab path and let q denote the second. Clearly q =∈ t2, since t1
and t2 are not siblings. We also rede�ne p′; q′; t3; u; t4; v according to the new p and q.
Rede�ne a to be rep(t1) and call the old a as a∗. Now we are going to show (26) and
that au|bv∈Qw(�) is the sought-for antiwitness (note a; u; v have been rede�ned, but b
has not). Again, we have to see (27) and prove that (28) is termwise zero.
For pairs u; v where {u; v}∈ S2�, we proceed exactly as in Case 1. Observe that

Ebu and Ebv decreased during the rede�nition, so a calculation like (29)–(35) still
goes through. Observe that L(a; u)62depth(T )+ 2, L(a; v)62depth(T )+ 3, and hence
{a; u}∈ S2� and {a; v}∈ S2�, exactly as in the proof of (19). The only thing left to
prove is {a; b}∈ S2�.
In order to prove P[hab¿0:5 − 2�|A∩B∩C] = 0, since under the condition C, it

su�ces to prove 1− 2Eab¿6�. However,

1− 2Eab=(1− 2Ea; root(t1))(1− 2Eroot(t1); b)¿(1− 2g)depth(T )(1− 2g)2
√
1− Ea∗b;

and we still have
√
1− Ea∗b ¿ √

2� according to (31). A calculation like the one
resulting in (35) gives the result wanted, and we are �nished with the proof of (23).
Using these statements, P[A∩B∩D]¿P[A∩B∩D|A∩B∩C]×P[A∩B∩C] =

P[A∩B∩C] =P[B∩C], and we are back to the same estimates that proved assump-
tion (9), but we need a slightly smaller � and consequently slightly larger k.
Note that the proof above applies to all c3 ∈ [c2=2; c2], if it applies to c3 = c2 and

c3 = c2=2, so that assumption (11) holds.
Note that the proof also handled the problem that arises if some of the dissimilarity

scores exceed 1/2, and so we cannot even compute corrected distances. The moral is
that those pairs are not needed according to the proof. Therefore there is no need for
additional conditioning for the shape of the observed data.

6.2. Runtime analysis of the search strategies

Theorem 12. (i) The running time of WAM based on sequential search is O(n2k +
n6 log n)
(ii) The running time of WAM based on sparse-high search is O(n2k+n4 log n log k).

Assume now that our model tree is a random binary tree; under the uniform or
Yule–Harding distribution; and all mutation probabilities are taken from an interval
(p− �n; p+ �n); for a su�ciently small sequence �n. If k is as large as in (12), then
with probability 1− o(1)
(iii) The running time of WAM based on sequential search is O(n2k+n3poly log n).
(iv) The running time of WAM based on sparse-high search is O(n2k+n2poly log n).
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Proof. Computing the matrices h and d takes O(n2k) time. (All distance methods
begin by computing these distance matrices, but this “overhead cost” is usually always
mentioned in the running time analysis of a given method.) Let w0 be de�ned to be
the smallest w∈ hij such that Qw is T -forcing. Let i(w) be the order of w within the
sorted hij values. Then, since each call of the WATC algorithm uses O(n2+ |Q| log |Q|)
time, the running time of the sequential search is O(i(w0)(n2 + |Qw0 | log |Qw0 |)), after
the preprocessing.
For (i), the sequential search application of the WATC algorithm is O(n6 log n),

since we need never do more than examine all sets Qw, and the largest such set has
cardinality O(n4).
Claim (ii) follows form the observations that the sparse-high search calls the WATC

algorithm at most O(log k) times, and each call costs at most O(n4 log n) time.
We now prove (iii). The depth of a random tree (under either the uniform or Yule–

Harding distributions) is with high probability O(log log n) by Theorem 10, and so there
are at most O(poly log n) leaves which are no more than about O(log log n) distance
(measured topologically) from any �xed leaf. This is the only fact that we exploit
from the assumption of randomness of the tree. For two leaves i; j, recall that L(i; j)
denotes the topological distance between i and j. We are going to show that if � is the
value at which the search reconstructs the tree in the proof of Theorem 11, then with
probability 1 − o(1) we have L(i; j)=O(log log n), whenever i; j∈ q∈Q�. This yields
|Qw(�)|= n · poly log(n). In the proof of Theorem 11, according to formula (18), event
C holds with probability 1− o(1). In that proof Qw(�) is denoted by Z�=4. Now

(1− 2g)L(i; j) = 1− 2Eij¿�=2; (36)

where the equality follows from Lemma 1, and the inequality follows from the condi-
tioning on the event C. Plugging in (35) for � immediately yields L(i; j)=O(log log n).
Since the sequential search makes O(npoly log(n)) calls to the WATC algorithm, (iii)
follows.
To obtain (iv), observe that Formulae (35), (17), and depth(T )=O(log log n) imply

that the number of iterations in the sparse-high search is

− log2 �=O(− log(1− 2g) · depth(T ))=O(log log n):

6.3. The performance of other distance methods under the Neyman 2-state model

In this section we describe the convergence rate for the WAM and DCM method, and
compare it brie
y to the rates for two other distance-based methods, the Agarwala et
al. 3-approximation algorithm [1] for the L∞-nearest tree, and neighbor joining [43].
We make the natural assumption that all methods use the same corrected empirical
distances from Neyman 2-state model trees. The comparison we provide in this section
will establish that our method requires exponentially shorter sequences in order to
ensure accuracy of the topology estimation than the algorithm of Agarwala et al., for
almost all trees under uniform or Yule–Harding probability distributions. The trees
for which the two methods need comparable sequence lengths are those in which the
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diameter and the depth are as close as possible – such as complete binary trees. Even in
these cases, WAM and DCM will nevertheless need shorter sequences than Agarwala
et al. to obtain the topology with high probability, as we showed it in Section 3.
(Again, note that this analysis is inherently pessimistic, and it is possible that the
methods may obtain accurate reconstructions from shorter sequences than su�ce by
this analysis.)
The neighbor joining method is perhaps the most popular distance-based method

used in phylogenetic reconstruction, and in many simulation studies (see [34, 35, 44]
for an entry into this literature) it seems to outperform other popular distance based
methods. The Agarwala et al. algorithm [1] is a distance-based method which provides
a 3-approximation to the L∞ nearest tree problem, so that it is one of the few methods
which provide a provable performance guarantee with respect to any relevant optimiza-
tion criterion. Thus, these two methods are two of the most promising distance-based
methods against which to compare our method. All these methods use polynomial time.
In [22], Farach and Kannan analyzed the performance of the Agarwala et al. algo-

rithm with respect to tree reconstruction in the Neyman 2-state model, and proved that
the Agarwala et al. algorithm converged quickly for the variational distance. Personal
communication from S. Kannan gave a counterpart to (12): if T is a Neyman 2-state
model tree with mutation rates in the range [f; g], and if sequences of length k ′ are
generated on this tree, where

k ′ ¿
c′ · log n

f2(1− 2g)2diam(T ) (37)

for an appropriate constant c′, and where diam(T ) denotes the “diameter” of T , then
with probability 1− o(1) the result of applying Agarwala et al. to corrected distances
will return the topology of the model tree. In [5], Atteson proved the same result for
Neighbor Joining though with a di�erent constant. (The constant for neighbor joining
is smaller than the constant for the Agarwala et al. algorithm, suggesting that neigh-
bor joining can be guaranteed to be accurate from shorter sequences than Agarwala
et al., on any tree in the Neyman 2-state model. However, remember that this anal-
ysis is pessimistic, and it may be that correct reconstruction is possible from shorter
sequences than this analysis suggests.)
Comparing this formula to (12), we note that the comparison of depth and diam-

eter is the issue, since (1 −√1− 2f)2 =�(f2) for small f. It is easy to see that
diam(T )¿2depth(T ) for binary trees T , but the diameter of a tree can in fact be quite
large (up to n − 1), while the depth is never more than log n. Thus, for every �xed
range of mutation probabilities, the sequence length that su�ces to guarantee accuracy
for the Neighbor Joining or Agarwala et al. algorithms can be quite large (i.e. it can
grow exponentially in the number of leaves), while the sequence length that su�ces
for the witness-antiwitness method will never grow more than polynomially.
In order to understand the bound on the sequence length needed by these methods,

we now turn to an analysis of the diameter of random trees. The models for random
trees are the uniform model, in which each tree has the same probability, and the
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Yule–Harding model, studied in [2, 8, 29]. This distribution is based upon a simple
model of speciation, and results in “bushier” trees than the uniform model.

Theorem 13. (i) For a random semilabelled binary tree T with n leaves under the
uniform model; diam(T )¿ �

√
n with probability 1− O(�2).

(ii) For a random semilabelled binary tree T with n leaves under the Yule–Harding
distribution; after suppressing the root; diam(T )=�(log n); with probability 1−o(1).

Proof. We begin by establishing (i). The result of Carter et al. [11] immediately
implies that leaves a; b have distance m+1 with probability exactly m!N (n−2; m)=(2n−
5)!! under the uniform model. For small enough �, m6�

√
n, this probability is �(m=n).

Summing up the probabilities from m=1 to m= �
√
n, we see that diam(T )¿�

√
n with

probability at least 1− O(�2).
We now consider (ii). First we describe rooted Yule–Harding trees. These trees

are de�ned by the following constructive procedure. Make a random permutation
�1; �2; : : : ; �n of the n leaves, and join �1 and �2 by edges to a root R of degree 2. Add
each of the remaining leaves sequentially, by randomly (with the uniform probability)
selecting an edge incident to a leaf in the tree already constructed, subdividing the
edge, and make �i adjacent to the newly introduced node. For a rooted Yule–Harding
tree TR, let h(TR) denote the maximum distance of any leaf from the root. Let T be
the unrooted Yule–Harding tree obtained from TR by suppressing the root, and iden-
tifying the two edges incident with the root. Let diam(T ) denote the diameter of T .
Then, we always have

h(TR)6diam(T )62h(TR)− 1:
Now Aldous [2] shows that h(TR)= log n converges in distribution to a (nonzero)
constant c. Then, with probability tending to 1, diam(T )= log n will lie between c
and 2c.

In Table 1, we summarize sequence length that su�ce for accurate reconstruction
with high probability of WAM and DCM, and compare these to the sequence lengths
that su�ce for the Agarwala et al. algorithm, according to the analyses that we have
given above (thus, our summary is based upon (12), (37), and Theorems 10 and 13).
Sequence lengths are given in terms of growth as a function of n, and assume that
mutation probabilities on edges lie within the speci�ed ranges.

7. Extension to general stochastic models

In this section we consider the generalization of the WAM and DCM for inferring
trees in the general stochastic model. Just as in the case of the Neyman 2-state model,
we �nd that WAM and DCM obtains accurate estimations of the tree from sequences
whose length is never more than polynomial in the number of leaves (for every �xed
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Table 1

Range of mutation probabilities on edges

[f; g]
f; g are constants

[
1
log n

;
log log n
log n

]
Binary trees DCM/WAM Polynomial Polylog
Worst-case Agarwala et al. Superpolynomial Superpolynomial
Random binary trees DCM/WAM Polylog Polylog
(uniform model) Agarwala et al. Superpolynomial Superpolynomial
Random binary trees DCM/WAM Polylog Polylog
(Yule–Harding) Agarwala et al. Polynomial Polylog

range for the mutation probabilities), and in general only polylogarithmic in the number
of leaves. This should be contrasted to the study of Ambainis et al. [4].
Suppose the sequence sites evolve i.i.d. according to the “general” Markov model –

that is, there is some distribution of states � at the root of the tree, and each edge e
has an associated stochastic transition matrix M (e), and the (random) state at the root
evolves down the tree under a natural Markov assumption, as in the general stochastic
model of De�nition (III).
Let fij(�; �) denote the probability that leaf i is in state � and leaf j is in state �.

By indexing the states, fij(�; �) forms a square matrix, Fij = [fij(�; �)]. Then

�ij =− log det(Fij) (38)

denotes the corrected model distance between i and j. (There will be a guarantee for
det(Fij)¿0.)
The corrected empirical distance �̂ij of two species is computed as in (38), but uses

the matrix F̂ij composed of the relative frequencies f̂ij(�; �) of i being in state � and
j being in state �, instead of the probability fij(�; �):

�̂ij =− log det(F̂ij): (39)

Then, �ij can be derived from a positive edge weighting of the model tree, provided
that the identi�ability condition described in Section 2 (Tree Reconstruction) holds.
These mild conditions only require that det(M (e)) not take on the values 0; 1;−1, and
that the components of � are nonzero (i.e. every state has a positive probability of
occurrence at the root).
Note that det(M (e)) takes the values 1 or −1 precisely if M (e) is a permutation

matrix. Also, for the Neyman 2-state model det(M (e))= 1− 2p(e), where p(e) is the
mutation probability on edge e; thus, det(M (e))¿0 and det(M (e)) tend to 0 as p
approaches 0.5, and tend to 1 as p approaches 0. In general, (1=2)[1−det(M (e)] plays
the role of p(e) in the general model. Thus, a natural extension of our restriction
f6p(e)6g and from the Neyman 2-state model corresponds to

0¡1− 2x′6 det(M (e))61− 2x¡1; (40)
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for suitable x; x′, and we will henceforth impose this restriction for all edges of the
tree. For technical reasons, we also impose the mildly restrictive condition that every
vertex can be in each state � with at least a certain �xed positive probability:

�(v)�¿�: (41)

This condition (41) certainly holds under the Neyman 2-state model, the Kimura 3-
state model [39], and much more general models (providing each state has positive
probability of occurring at the root). Indeed this last weaker condition might be enough,
but it would seem to complicate the analysis quite a lot.
Now, let �(e) be the weight of edge e in the realization of � on the (unrooted

version) of the true underlying tree T .

Lemma 4. Set �(x)=−0:5 log(1− 2x). Then
�(e)¿− 0:5 log(det(M (e)))¿�(x) (42)

for every edge e of T .

Proof. The second inequality follows from the restriction we imposed above on
det(M (e)). The �rst inequality in (42) follows from similar arguments to those ap-
pearing in [47]; for the sake of completeness we give a proof.
Let T be the unrooted version of T�. Now the edges of T correspond bijectively to

the edges of T�, except perhaps for one troublesome edge of T which arises whenever
the root of T� has degree two – in that case, two edges e1, e2 of T� adjacent to � are
identi�ed to form e. For convenience, we assume in this proof that � is not a leaf.
We now prove that �(e)¿− 0:5 log det(M (e)) for all (non-troublesome) edges e of

T , and if T has a troublesome edge e corresponding to edges e1 and e2 in T�, then
�(e)¿− 0:5 log(det(M (e1)) det(M (e2))):
For any edge e=(v; w) of T� where w is a leaf, let

h(e)=− log det(M (e))− 0:5 log
[∏
�
�(v)�

]

while, for any edge e=(v; w) of T� for which neither of v; w are leaves, let

h(e)=− log det(M (e))− 0:5 log
[∏
�
�(v)�

]
+ 0:5 log

[∏
�
�(w)�

]
:

Thus, h describes a weighting of the edges of T� and thereby a weighting h∗ of the
edges of T by setting h∗ equal to h on the non-troublesome edges, and the convention
that if T has a troublesome edge e arising from the identi�cation of a pair e1, e2 of
edges of T� then h∗(e)= h(e1) + h(e2). Now, h realizes the �ij values on T�. Thus,
h∗ also realizes the �ij values, on T and since (as we show) the edge weighting is
strictly positive, it follows, by classical results [10], that this is the unique such edge
weighting of T . Thus �= h∗.
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Now for an edge e=(v; w) of T� where w is a leaf,

h(e)¿− log det(M (e))¿− 0:5 log det(M (e))
as claimed. Alternatively, for an edge e=(v; w) of T for which neither of v; w are
leaves, we have

h(e)=− log det(M (e))− 0:5 log
[∏
�
�(v)�

]
+ 0:5 log

[∏
�
�(w)�

]
:

In order to derive our desired inequality we establish a further result. Let us suppose
M = [M��] is any r× r matrix with non-negative entries and x is a row vector of length
r with non-negative entries. We claim that∏

�
(xM)�¿|det(M)|∏

�
x�:

To obtain this, note that the left-hand side is just

∏
�

(∑
�
x�M��

)
¿
(∑

�
M�(1)1M�(2)2 : : : M�(r)r

)∏
�
x�;

where the second summation is over all permutations � of (1; 2; : : : ; r), and so this sum
is at least |det(M)|, since the permanent of a nonnegative matrix is never smaller than
the absolute value of its determinant. Now, [�(w)1; : : : ; �(w)r] = [�(v)1; : : : ; �(v)r]M (e),
and so, applying the above inequality to the case M =M (e) and x= [�(v)1; : : : ; �(v)r],
we obtain∏

�
�(w)�¿ det(M (e))

∏
�
�(v)�:

Thus,

0:5 log det(M (e))60:5 log
[∏
�
�(w)�

]
− 0:5 log

[∏
�
�(v)�

]

and so

h(e) = −0:5 log det(M (e))

− 0:5
(
log det(M (e)) + log

[∏
�
�(v)�

]
− log

[∏
�
�(w)�

])

¿−0:5 log det(M (e));
as claimed.
The inequalities for h now extend to h∗= � for all (non-troublesome) edges of T .

If T� has a troublesome edge e then �(e)= h∗(e)= h(e1) + h(e2), and from the above
we have h(ei)¿− 0:5 log det(M (ei)) for i=1; 2.
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Theorem 14. Let x= x(n) and x′= x′(n) be such that for all edges in the tree T;
0¡1− 2x′6 det(M (e))61− 2x¡1. Assume x′ has an upper bound strictly less than
1=2. Mutatis mutandis; algorithms FPM; DCM and WAM; Theorems 9, 11, and 12
generalize to the general stochastic model under (40) and (41). WAM and DCM
returns the binary model tree T with probability 1− o(1) if

k¿
c · log n

x2(1− 2x′)4depth(T ) (43)

with a certain constant c.

Proof. Recall the de�nition of the corrected empirical distance, �̂ij, and �(x)
(=−0:5 log(1− 2x)). We �rst establish the following
Claim: If

|�ij − �̂ij|¿�(x)=2 (44)

then

| det(Fij)− det(F̂ ij)|¿x det(Fij)=4: (45)

Proof of Claim: By inequality (44),

|log(det(Fij))− log(det(F̂ ij))|=
∣∣∣∣∣log

(
det(F̂ ij)
det(Fij)

)∣∣∣∣∣¿− 1
4
log(1− 2x)

and so det(F̂ ij)=det(Fij) is either greater than (1−2x)−1=4, or less than (1−2x)1=4. Thus,
|det(Fij)− det(F̂ ij)|¿min{�−(x); �+(x)} det(Fij) where �+(x) := 1− (1− 2x)1=4; �−=
(1 − 2x)−1=4 − 1. Now, it can be checked that, for x strictly between 0 and 1=2,
�−(x); �+(x)¿x=4 which establishes the Claim.
To apply Lemma 3, we need to know how det(F̂ ij) responds to the replacement at

one site of a pattern by a di�erent pattern. If F̂ ij1 is the resulting F-matrix for this
perturbed data set, then

F̂ ij1 = F̂ ij + (1=k)Dij

where Dij has one entry of +1, one entry of −1, and all other entries 0. Consequently,
|det(F̂ ij1 )− det(F̂ ij)|6c1=k (46)

for some constant c1.
Next, for any real analytic function f de�ned on a vector x having a normalized

multinomial distribution with parameters k and �, we have (by Taylor expansion of
f about � to the second derivative term, followed by application of the expectation
operator):

|E[f(x)]− f(�)|61
2
M
∑
i; j

|cov(xi; xj)|;
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where cov(xi; xj) is the covariance of xi; xj (equal to �i(1 − �i)=k, when i= j, and
−�i�j=k otherwise); and where M is the maximal value of any of the second derivatives
of f over the unit simplex. Thus, since det(Fij) is a polynomial in the entries of Fij,
we have:

|E[det(F̂ ij)]− det(Fij)|6c2=k (47)

for some constant c2. Combining (47) with the triangle inequality gives

|det(Fij)− det(F̂ ij)|6| det(F̂ ij)− E[det(F̂ ij)]|+ c2=k
and so

P[|det(Fij)− det(F̂ ij)|¿t]6P[|det(F̂ ij)− E[det(F̂ ij)]|¿(t − c2=k)] (48)

for any t¿0. Hence by Lemma 3, applied with (46), we have

P[| det(Fij)− det(F̂ ij)|¿x det(Fij)=4]62 exp
(
−d
(
x det(Fij)

4
− c2
k

)2
k

)
(49)

for a constant d. For the validity of the latter argument we need that

x det(Fij)
4

− c2
k
¿0: (50)

Now, how can we set a lower bound for det(Fij)? Note that det(Fij) is just the product
of det(M (e)) over all edges on the path from i to j, times the product of �(vij)� over
all states �, where �(v) is the vector of probabilities of states at vertex v, and vij is
the most recent common ancestor of i and j in the tree. Due to our hypotheses (41),
we have

det Fij¿c3(1− 2x′)d(i; j) (51)

with a positive constant c3. However, the conditions of the Theorem required k¿cx−1

(1− 2x′)−d(i; j), and therefore taking a su�ciently large c guarantees (50).
Putting the pieces (44), (45) and (49) together we see that

P[|�ij − �̂ij|¿�(x)=2]62 exp
(
−d
(
x det(Fij)

4
− c2
k

)2
k

)
: (52)

Combining (51) and (42), we have

P
[
|�ij − �̂ij|¿(1=2)mine {�(e)}

]
62 exp

(
−d
(
c4
x(1− 2x′)d(i; j)

4
− c2
k

)2
k

)
;

where c4 is a positive constant, and d(i; j) is the number of edges in T separating
leaves i and j. Hence, for any �xed quartet q of diameter diam(q),

P[FPM errs on q]6K exp(−D′x2(1− 2x′)2diam(q)k) (53)

for constants D′; K . Thus we have an analogue of Theorem 9.
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Now we show how to generalize the proof of Theorem 11. To avoid needless rep-
etitions, we give details for the proof of assumption (9) only, and leave the proofs of
assumptions (10) and (11) to the Reader. Note that the proof of correctness of DCM
hinges exactly on assumption (9). Having a distance function in the general model,
the width and algorithmic operations based on width generalize in a straightforward
way.
For k evolving sites (i.e. sequences of length k), and �¿0, let us de�ne the follow-

ing two sets, S�= {{i; j}: det(F̂ ij)¿2�} and Z�= {q∈ ( [n]4 ): for all i; j∈ q; {i; j}∈ S2�}
(note the similarity between the de�nition for the set Z�, and that for the set Qw
of quartet splits of quartets of width at most w). We also de�ne the following two
events, A= {Qshort(T )⊆Z�} and B=FPM correctly reconstructs the tree for all q∈Z�.
Thus, P[A∩B 6= ∅]¿P[A∩B]: Let C be the event: “S2� contains all pairs {i; j} with
det(Fij)¿6�, and no pair {i; j} with det(Fij)62�”. De�ne �= �r(1 − 2x′)2depth(T )+3.
We claim that

P[C]¿1− (n2 − n)e−c�2k (54)

for a constant c¿0 and

P[A|C] = 1 if �6�=6: (55)

Suppose det(Fij)62�. To establish (54), using arguments similar to those between
(45) and (49) one easily sees that Lemma 3 applies and

P[{i; j}∈ S2�] = P[det(F̂ ij)¿4�]

6 P[det(F̂ ij)− det(Fij)¿2�]6e−c�2k

for a constant c¿0.
Since there are at most ( n2 ) such pairs {i; j} such that det(Fij)62�, the probability

that at least one such pair lies in S2� is at most (
n
2 )e

−c�2k . By a similar argument,
the probability that S2� fails to contain a pair {i; j} with det(Fij)¿6� is also at most
( n2 )e

−c�2k . These two bounds establish (54).
We now establish (55). For q∈Qshort(T ) and i; j∈ q, if a path e1e2 : : : et joins leaves

i and j, then t62depth(T )+3 by the de�nition of Qshort(T ). Using these facts, and the
bound det(M (e))¿1−2x′, we obtain det(Fij)¿�r(1−2x′)t . Consequently, det(Fij)¿6�
(by assumption that �6�=6 ) and so {i; j}∈ S2� once we condition on the occurrence
of event C. This holds for all i; j∈ q, so by de�nition of Z� we have q∈Z�. This
establishes (55).
Then for any quartet q∈Qshort(T ), if e is the central edge of the contracted subtree

induced by q in T , then det(M (e))61 − 2x. Furthermore, conditional on C, for any
pendant edge e; det(M (e))¿min{det(Fij): i; j∈ q}¿2�. Thus, by (53), which is the
analogue of Theorem 9, and the Bonferroni inequality, we can follow the corresponding
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proof from Theorem 11, to obtain (using (54) and (55))

P[A ∩ B]¿1− K
(n
4

)
exp(−D′x2(1− 2x′)2depth(T )+3k)− (n2 − n)e−d�2k

for constants K;D′¿0 Formula (43) now follows by an easy calculation.
Note that the proof also handled the problem that arises if some logarithms are to

be taken of negative numbers and so we cannot even compute corrected distances. The
morale is that those pairs are not needed according to the proof. Therefore there is no
need for additional conditioning for the shape of the observed data.

8. Considerations for biological data analysis

The focus of this paper has been to establish analytically that every evolutionary tree
is accurately reconstructable from quartets of closely related taxa, and, furthermore, this
requires just very short sequences, given certain assumptions about the model tree. This
is a signi�cant theoretical result, especially since the bounds that we obtain indicate
that the sequence lengths that su�ces for accuracy with high probability using our
new methods are very much shorter than those that su�ce for accuracy using other
very promising distance-based methods. However, are these observations signi�cant for
biological datasets? And if they are, are these methods likely to be practically useful
(or merely indications of what might be achieved in future)?
The answer to the �rst question, concerning the signi�cant for biological datasets, de-

pends upon whether there are biologically realistic evolutionary trees that have smaller
“weighted depth” than “weighted diameter”, a concept that we now de�ne.
Let T be an edge-weighted tree with positive weights on the internal edges and

non-negative weights on the edges incident with leaves. Let e be an internal edge of
the tree. The weighted depth around edge e is the minimum value of q so that there
exists a set of four leaves, i; j; k; l, with one leaf in each of the four subtrees induced
by the removal of e and its endpoints, where q= max{dTij; dTik ; dTil; dTjk ; dTjl; dTkl}. The
weighted depth of the tree T is then the maximum weighted depth of any edge in T .
The weighted diameter of a tree T is simply the maximum dTxy, taken over all pairs
of leaves x; y. We will denote the weighted depth of a tree T by w depth(T ) and its
weighted diameter by w diam(T ).
The analysis given in the previous sections of the sequence length that su�ces for

accuracy for various methods can be restated as follows:

Corollary 1. DCM and WAM will be accurate with probability 1−� if the sequence
length exceeds

c log neO(w depth(T ));

where c is a constant that depends upon only f= mine p(e) and �. The other distance
based methods (Agarwala et al.’s single-pivot algorithm and its variant; the double-
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pivot algorithm; the naive method; and neighbor-joining) are accurate with the same
probability if the sequence length exceeds

c′ log neO(w diam(T ));

where c′ is a constant that also depends only upon f= mine{p(e)} and �.

These are only upper bounds (i.e. these may be loose, and exact accuracy may be
possible from shorter sequences), but these are also currently the best upper bounds
that are known for these methods, to our knowledge.
Thus, to compare the sequence lengths that su�ce for exact topological accuracy, we

need to compare the weighted depth to the weighted diameter. A reasonable comparison
between these two quantities for biologically realistic trees is di�cult, as there are very
few well established evolutionary trees, especially of large divergent datasets. On the
other hand, for some data sets, evolution may proceed in a more-or-less clock-like
fashion (i.e. the number of mutations that occurs along an evolutionary lineage is
roughly proportional to time). For such data sets, it can be seen that the weighted
depth and the weighted diameter are exactly the same. Under these circumstances,
there is no bene�t to using DCM or WAM instead of one of the better other distance
methods, such as neighbor joining, although this analysis also does not suggest that
neighbor joining will outperform DCM or WAM (to be precise, the conditions that
guarantee accuracy for neighbor-joining will also guarantee accuracy for DCM and
WAM, and vice versa). Thus, for clock-like evolutionary conditions, these techniques
do not provide any advantage from a theoretical standpoint.
On the other hand, there are important biological data sets for which evolution pro-

ceeds in a very non-clock like fashion, according to various analyses by biologists and
statisticians (see, for example, [55, 56]). For these data sets, there could be signi�cant
advantage obtained by using techniques such as DCM and WAM, which examine only
closely related taxa in order to reconstruct the tree. The degree to which DCM and
WAM could provide an advantage would theoretically depend upon the magnitude of
the di�erence between the weighted depth and weighted diameter. This magnitude is
likely to be largest for sets of highly divergent taxa, rather than for closely related
taxa.
As a practical tool, DCM and WAM are not entirely satisfactory, in part because

DCM and WAM only return trees when the conditions hold for exact accuracy. Al-
though some biologists would rather get no tree than get an incorrect tree [41], not all
biologists share this view, and so partially correct trees are often desirable. Thus, the
answer to the second question is basically negative.
However, DCM and WAM were not designed to be practical tools, but rather to

indicate theoretical possibilities, and to suggest how better methods might be invented
which could have the theoretical guarantees that DCM and WAM provide, while having
better performance in practice. Furthermore, such methods have recently been devel-
oped. The disk-covering method of Huson et al. [36] the harmonic greedy triples
method of Csuros and Kao [16], and the method of Cryan et al. [15] have each used
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the observations in this paper and obtained methods with convergence rates that are
never worse than polynomial by using only small distances to (re)construct the tree.
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