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Abstract. We develop and study two distance metrics for area cladogy(beaf-
labeled trees where many leaves can share the same laleedddb contract-
and-refinemetric and theMAACdistance metric. We demonstrate that in contrast
to phylogenies, the contract-and-refine distance betweseratea cladograms is
not identical to the character encoding distance, and ttex ia not a metric. We
present a polynomial time algorithm to compute the MAAC aliete, based on a
polynomial-time algorithm for computing the largest commpruned subtree of
two area cladograms. We also describe a linear time algorithdecide if two
area cladograms are identical.

1 Introduction

Biogeography is the study of the spatial and temporal distions of organisms ([BL98,

CKPO03]). Biogeographers seek not only to understand e@abgrocesses that influ-
ence the distribution of living organism over short periofisime (e.g., climatic sta-

bility, effect of area) but also to uncover events occurimthe distant past (e.g., con-
tinental drift, glaciation, evolution) which have resulti the geographic distribution
observed today.

Biogeography and PhylogenyOne of the ways of understanding the geographic dis-
tribution of species is by studying tleolutionary history of the speciésee [CLW95,
EOO05, Jac04b] for instances of this approach). The evalatiprelationships are typi-
cally represented as branching tree structures calgtbgenetic treeor simply phy-
logenies. The branching structure of the phylogeny of a $¢txa can be used to
differentiate between competing hypotheses concerniagbiserved geographic dis-
tribution of the set of taxa. Moreovea,consistent patternbserved in the phylogenies
of species from different genera in the same geographicvaiteinply a stronger ev-
idence for the particular hypotheses suggested by therpais an example of this
approach, consider a group of islands, each containingpteuttcological zones (for
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example, each island can contain coastal and mountaingicalaones). Suppose our
goal is to understand the observed geographic distributfspecies on the islands.
One hypothesis about the distribution could be that spetimgmersed from each eco-
logical zone in each island to similar zones in other islaarttbthen differentiated. This
process is callethter-island colonizationAnother hypothesis could be that dispersal
betweerislands happened first followed by dispersal to the diffeemmwmlogical zones
and differentiation into many species. This process issdaaptive radiation(see
[JEOHO0O] for a discussion). The crucial idea is that we mightble to infer which of
the above two hypotheses is responsible for the observeibdison: inter-island colo-
nization is suggested by taxa on different islands but theesacological zone forming
a monophyletic group (rooted subtree), and adaptive liadig suggested if species on
the same island in different ecological zones form a montgticygroup (that is, form
a rooted subtree in the phylogeny).
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Fig. 1. Two hypothetical phylogenies on eight taxa on four islarsd$( c,d) with two ecological
zones each (1 and 2). T suggests dispersal, and T’ suggegtsvadadiation.

Area Cladograms. Before looking for common patterns in the phylogenies ofedif

ent sets of species in the same geographic area, the phylégesach set of species

is converted to amrea cladogramArea cladograms are rooted or unrooted trees (as
are phylogenies) whose leaves are labeled gébgraphic areagnstead of taxa (see
[Ros78, NP81]). To obtain the area cladogram for a set ofiepdacal to a set of areas,
we start with the phylogeny for the set of species and, foh deaf, replace the taxon
label with the label of the area in which the taxon is foundsTrocess is illustrated in
Figure 2. More formally, we define:

Definition 1. Area Cladogram
An area cladograns an unrooted or rooted leaf-labeled tree T. The leaves are
labeled with areas, and many leaves may share the same label.

In general, it might happen that a single taxon resides irertfoain one area (such
taxa are callesvidespread taxg and this would result in area cladograms with multiply-
labeled leaves. We will develop our metrics and algoritharsafea cladograms as in
Definition 1, but we will show how to apply our results to morengral cladograms
where leaves can have multiple labels.

It should be noted that several methods have been propasaiotéining area clado-
grams from phylogenetic trees (see [NP81, Pag88, Bro8194fagrhe methods “re-
solve” the issues ofvidespread taxgsingle leaf being labeled by many areasgun-
dant taxa(many leaves being labeled by the same area) naisding areago obtain a
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resolved area cladogramvhere the mapping between leaves and areas is one-one. Un-
resolved area cladograms are sometimes ctdbeah area cladogramisi the literature.
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Fig. 2. A phylogeny S and its associated area cladogram T, assuamng t. appears in area c; 2
appears in area a; 3 appears in area d; 4 appears in area ced&apparea a; and 6 appears in
area b.

Much of the prior work on area cladograms has focussed oaldaitransforma-
tion that will result in resolved area cladograms, for whidhorithms and metrics for
phylogenetic trees apply.

In this paper, we address the problem of directly compaswv@drea cladograms.
We develop distance metrics between area cladograms, auditzie algorithms for
computing a largest common pruned subtree of two area cfadtgand for deciding
if two given area cladograms are identical.

Prior Work. Inferring biogeographical history with species and areasist one in-
stance of the problem of inferring histories of two ass@datntities: the associated
entities may be hosts and parasites, or genes and orgaray34, PC98] (areas are
analogous to hosts and organisms, and taxa in biogeograplayalogous to parasites
and genes). Hence, comparing area cladograms has a longyhasid a wide variety
of applications (see [Jac04a, JacO4b, CLW95, GvVB02, Pag8&xample). Earlier
work on comparing area cladograms has included pruningléiimgrams until the two
cladograms agree on the remaining leaves (see [Ros78, Pag&8 using similarity
metrics such as thigipartition metric (also called theomponenmetric or thecharac-
ter encodingmetric in the literature) and thieplets metric (see [Pag88]) between area
cladograms (the triplets metric only applies when the aladograms are rooted.)

All such methods apply only to resolved area cladograms.iiéthods of resolu-
tion differ in their interpretation of widespread taxa, wedant taxa and missing areas,
and have been calleassumption®), 1 and?2 in the literature (see [Pag88, vWZK99]).
We will take a different approach to comparing area cladmgrave will compare them
without first resolving them so that the mapping betweendheds and labels is one-
one This avoids the contentious issues ([Pag90]) surrourtti@grocess of resolution.

Our Contributions. Our contributions are two-fold: we develop both metrics ahd
gorithms for comparing area cladograms. More specifically,

— We show that the equivalence between the edge contracteding-metric (“RF-
distance”) and the bipartition metric (“character-encgdimetric) that holds for
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phylogeniedoes not holdor area cladograms. More specifically, we show that
the bipartition metric, when extended to area cladograsnspt a metric. For the
edge contract-and-refine edit distance between two ardagilams we present a
simple, but worst-case exponential-time algorithm. Tldii distance can compare
only area cladograms that are on the same number of leawsyteen each area
labels the same number of leaves in both area cladogranisq(i$8%.

— We define another metric, thHdAAC distance metric, for comparing twooted
area cladograms, which is based on the size of the largesnoonpruned sub-
tree between the two area cladograms. The MAAC distanceiaregtn compare
two arbitrary trees that are not necessarily on the same auafbbeaves, which is
particularly useful when comparing area cladograms (8e@).

— We present a polynomial time algorithm for computing the Ma#istance be-
tween two rooted area cladograms. This algorithm is baseanoalgorithm we
present for computing the largest common pruned subtreangdximum agree-
ment area cladogram (MAACD)f two area cladograms. We also describe a faster,
linear-time algorithm to decide if two area cladograms demtical (Section 4).

2 Phylogenies: Distance Metrics and Agreement Subsets

Character Encoding of PhylogeniesTests for equality between phylogenies are based
on the notion of theharacter encodin@f phylogenies. Another notion crucial to the
study of phylogenies is that of lsipartition: removing an edge from a leaf-labeled
treeT induces a bipartitiomi, on its set of leaves.

Definition 2. Character Encoding of a Phylogeny
Thecharacter encodingf a phylogeny T is the sef{T) = {1e: e€ E(T)}, which
represents the set of bipartitions induced by the edges of T.

Theorem 1. Character-Encoding Metric [Bun71]
Let T and T be two phylogenies on the same set of taxa. TBER)AC(T')| =
[(C(T) —C(T')) U (C(T') — C(T))| defines a distance metric.

By Theorem 1, two phylogeni€k and T’ are isomorphic (with the isomorphism
preserving the leaf labels) if and only|&(T)AC(T')| = 0.

A contractionoperation applied on an edge in a tree collapses that edgelemd
tifies its two end points; aefinemenbperation applied at an unresolved node (i.e., an
internal node with degree greater than three) expands tirasalved node into two
nodes connected by an edge.

Definition 3. Robinson-Foulds (RF) Distance

TheRobinson-Foulds distandetween two phylogenieg and T is defined as the
number of contractions and refinements necessary to tremsie into T, (or vice-
versa), and is denoted RiF, To).

The RF distance naturally defines a metric since it is an éslihidce.

Theorem 2. [RF81] Let T; and T be two phylogenies on the same set of taxa. Then
RF(T1, T2) = |C(T1) AC(Ty)|.



Pattern Identification in Biogeography 5

Finally, we define the maximum agreement subtree problemtiglogenies. The
analogue of this problem for area cladograms is crucial wresbing the problems
outlined in Section 1.

Definition 4. Maximum Agreement Subset (MAST)

Let{T:, Ty,..., Tk} be a set of phylogenetic trees, on a set L of leaveratimum
agreement subséMAST) of trees Tthrough T is a set of leaves’LC L of maximum
cardinality such that the restrictions of the treeg .T., T to the set Lare all isomor-
phic, with the isomorphism preserving leaf labels.

The maximum agreement subset problem was introduced ingF@Ad has been
studied thoroughly since then. The rooted and unrootedores®f MAST are polyno-
mially related since the unrooted MAST problem can be sobyesblving a polynomial
number of rooted MAST problems. Computing a MAST is NP-handtfiree or more
trees [AK97]. AO(n?+°(D) time algorithm for the case of two trees nieaves is given
in [FCT94]. For two rooted binary trees, the best known &tpar takesO(nlog®n)
time ([FCPT95b, FCPT95a]); for two rooted trees which may mbinary, the best
known algorithm take©®(n-°cv'°9") time wherec is a constant ([FCT94]). For com-
puting a MAST ofk rooted trees, a®(kn® +nd) algorithm (withd the maximum degree
of a node in any tree) was presented in [FCPT95a].

3 Distance Measures Between Area Cladograms

In this section, we will develop distance metrics for theafetrea cladograms. We will
first show that the character encoding distance between ifievaht area cladograms
can be zero, and hence the character-encoding “distannet & metric on area clado-
grams, and in particular cannot be used as a test of isonsmnphie then propose a
metric for comparing area cladograms that is based on cangpilie size of the largest
common pruned subtree of the two area cladograms. We cath&MAACmetric, and
show how to compute it in Section 4.

While the character-encoding metric for phylogenies dad®rtend to area clado-
grams, the contract-and-refine edit distance still defineeaic (because it is an edit
distance). We present an algorithm to compute the edgeamirand-refine edit dis-
tance between area cladograms. This algorithm is effici¢hére are few occurrences
of widespread taxa, but it is exponential-time in generat. phylogenies this edit dis-
tance which is called thRobinson-Fouldslistance, can be computed efficiently since
it equals the character-encoding distance.

3.1 The Character Encoding Cannot Distinguish Between Are&ladograms
We first define thextended character encodinfan area cladogram.

Definition 5. Let T be an area cladogram. The multi-§et. : e€ E(T)} is called the
extended character encodin§ T, and will be denoted by(T). Here 1 denotes the
bipartition of the multi-set of leaf labels induced by thgee.

Contrary to our experience with phylogenetic trees wheeerttapping between
leaves and labels is 1-1, with two area cladogrdinandT,, C(T;) = C(T2) does not
imply thatT; andT, are isomorphic. We exhibit a pair of such of trees in Figure 3.
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Fig. 3. Two different binary area cladograms that induce the sam#-gat of partitions

3.2 The MAAC Distance Metric Between Area Cladograms

In this section we define the problem of computing the largestmon pruned subtree
of two rooted area cladograms and describe a distance nhetsied on the size of a
largest common pruned subtree. We call a largest commoregrsubtree &Maximum
Agreement Area Cladogram (MAAQ@hus the MAAC is analogous to the maximum
agreement subtree of two phylogenies).

Let T be an area cladogram on a set of leake3herestriction of T to a set of
leaved' is the cladogram obtained by deleting leaves in thé_set’ from T and then
suppressing internal nodes of degree two (except the fdbgrie is one).

We now definea maximum agreement area cladogram (MAA®)a set of rooted
area cladograms, and a distance measure between two roetedladograms that is
based on the size of a MAAC of the two area cladograms.

Definition 6. Maximum Agreement Area Cladogram (MAAC) and MAAC distance
Let{Ti, To,..., Tk} be a set of rooted area cladograms, wittthe leaf set of tree;T
fori=1,2,...,k. LetA; C L1 throughAg C L be sets of leaves of maximum cardinality
such that the respective restrictions of the tregs T, T¢ to the sets\1...Ak are all
isomorphic, with the isomorphisms preserving leaf labalsestriction of any tree T
to such a subset of leavsis amaximum agreement area cladogréMAAC) for the
cladograms T through . The size of the MAAC is defined to be the number of leaves
in the maximum agreement area cladogram, and is denotedby.gi(T1, T2, . . ., Tk).
The MAAC distancebetween two trees;Tand T is dv(T1, T2) = maxng, np) —
Siz@naad T, T'), where n and np are the number of leaves in &nd T, respectively.

Note that in the above definitiome do not require that all the given set of trees con-
tain the same number of leaves, or that they be labeled wittséme set of areas, or
even that they be consistefihe MAAC distance can be viewed as a generalization of
the maximum agreement subtree metric for phylogenies [GH{K8hich for two phy-
logenies on the same setmfabeled leaves was defined &s- Sizgnast Wheresizenast
is the size of a maximum agreement subset of the two phylegeni
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Handling Widespread Taxa. For comparing cladograms using maximum agreement
area cladograms, leaves labeled by more than one area casabedtthus: each leaf
labeled by a group of areas can be split into many separateddall having the same
parent), each of which is labeled by a single unique area frengroup of areas.

a d a b
a pdda b a d
T2
T1
a d d a b
MAAC(T1, T2)

Fig. 4. Two area cladograms T1 and T2, and their MAAC

Due to space constraints, we state the following theoreimowitproof:
Theorem 3. The MAAC distanceyis a metric on the set of all area cladograms.

Note that twice the MAAC distance between two cladogramsisigper bound
on the number of insertions and deletions of leaves negessaransform one of the
cladograms to the other.

In Section 4, we present a polynomial-time algorithm for pating a maximum
agreement area cladogram for two area cladograms.

3.3 Contract-and-Refine Distance Metric for Area Cladograns

Though the character-encoding distance fails to extendem @adograms, the RF dis-
tance, being an edit distance, can be extended to unro@adakadograms to provide a
distance metric.

Definition 7. Robinson-Foulds Distance Between Unrooted Area Cladogram

TheRobinson-Foulds distandetween two unrooted area cladogramsahd T is
defined to be the number of contractions and refinements seget® transform Tto
T, (or equivalently, 7to Ty).

Note that if the number of leaves labeleid differentinT; andT, for some label,
thenRF(Ty, T2) is undefined (i.e., there is no sequence of contractionsefimements
that can transforri; into T2). In such cases we defifF (T, T,) to beco.
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Handling Widespread Taxa. Taxa endemic (resident) to more than one area would
result in cladograms with leaves labeled by many areas. €finition of the Robinson-
Foulds distance applies to such cladograms as well: if addalfeled with a set of areas,
we can consider that set of areas to be the unique label foletifa

As shown in Section 3.1, for area cladograms, the RF distailt@ot be equal
to the extended character-encoding distance. Howeveraweatate the RF distance
between two area cladograms to the RF distance between sooiated phylogenies,
as we will show. We begin with some definitions.

Definition 8. Full Differentiation of an Area Cladogram

Let T = (t,M) be an unrooted area cladogram, where t is an unlabeled trekMn
is the mapping assigning labels to the leaves of t. Thdull differentiationof T is a
leaf-labeled tree T = (t,M*) such that M is one-one. In other words, Thas the same
topology as T, but has its leaves labeled uniquely.

Definition 9. Consistent Full Differentiations

Let T, = (t1,M1) and & = (t2, M2) be two unrooted area cladograms with the same
set L of leaf labels, and let;T= (t1,M]) and T = (t2,M3) be full differentiations of
T, and T respectively. T and T are consistent full differentiations, for each label
| € L, the set of labels in assigned to leaves jntiiat were labelled | in Tis identical
to the set of labels assigned to leaves jntfiat were labelled | in 3. Mathematically,
thisis:Vl € L,{Mj(X) : M1(x) =1} = {M3(x) : Ma(x) = 1}.

Due to space constraints, we state the following theoreimowitproof:

Theorem 4. Let T; and | be two unrooted area cladograms. Then(RE T») is equal
to max{RF(T,T;) : T and T are mutually consistent full differentiations of and
T, respectively.

Note that the RF distance between two cladogrdmand T, is at most the RF
distance betweeany consistent full differentiations of; andT,. Hence this provides
a linear-time method for getting an upper bound on the RRadés between two area
cladogramdl; andT,: we first compute two mutually consistent full differentiats,
and then compute their RF distance.

Theorem 4 suggests the following trivial (but expensivegpathm for computing
the RF distance between two area cladogrdimand T,: we simply compute the RF
distance between all the possible consistent full diffeations of T; and T, (in ©(n)
time per pair, see [Day85]) and choose the minimum. Thus, ax lthe following
theorem:

Theorem 5. Let T and | be two unrooted area cladograms on n leaves on the same set
of areas. For each area;appearing at the leaves of &nd T, let n be the number of
leaves labeled with areg arhen, the RF distance betweenahd T can be calculated

in ©(nNMX_, (n)!) time.
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4 An Algorithm for the Maximum Agreement Area Cladogram
Problem

In this section we describe an algorithm for computing maximagreement area clado-
gram (MAAC) of two given rooted area cladograms. The alfponiis based on a dy-
namic programming algorithm for the phylogenetic rootecimaim agreement subtree
algorithm from [SW93]. We will first present the maximum agmeent subtree algo-
rithm. We will then observe that the basic recursion undegyhe dynamic-programming
algorithm will hold for the maximum agreement area cladagrgorithm as well
though the mapping between leaves and their labels may ramid@ne in area clado-
grams.

The MAST Algorithm from [SW93]. We now give a brief summary of the algorithm
in [SW93] for computing the MAST of two rooted binary trees.dur description, the
expressiorMAST(T, T') denotes a maximum agreement subset of two given (rooted
binary) phylogenie3 andT’.

Let T andT’ be two given binary phylogenies anleaves. Letv be a node inT,
and denote byfy the subtree ol rooted atv. Similarly denote byT, the subtree of
T' rooted at a node in T'. The dynamic programming algorithm for MAST operates
by computingMAST(T,, T,,) for all pairs of nodegv,w) inV(T) x V(T') “bottom-up”.
We now show how to reduce computiMAST(Ty, T,,) to computing a small number
of smaller MAST computation®IAST(S, S) whereSandS are subtrees dF, andT,,
respectively, with at least one of them being a proper sabtre

To begin with, theMAST(T,, T,,) is easy to compute when eitheor w are leaves.
So in the following discussion assume neitli@orw is a leaf.

LetL* be a MAST ofTy andT,, and letT* be the corresponding MAST tree. Then
there exist homeomorphisms mappihg to a rooted subtree df, and to a rooted
subtree ofT;,. Let p be the (not necessarily proper) descendantsafch that the root of
T* is mapped tgp. Similarly letq be the descendant fin T’ such that that the root
of T* is mapped tav. Then,MAST(T, T,) is in fact equal ttMAST(Tp, Tg).

The vertexp may be actually or it might be a vertex below. Similarly g may bew
or some vertex belowr. Based on the location gf andg, we have the following cases.

— Vertex p is a proper descendent ofliv.this caseT, is a proper subtree df, and
MAST(Ty, T,,) equalsMAST(T,, T,)-

— Vertex g is a proper descendent ofwthis caseMAST(Ty, Ty;) equalsMAST(Ty, Tg).

— Vertex p equals v and vertex g equals w.

In the first two cases, we have reduced the computatidAST(Ty, T,) to a MAST
computation on a subproblem. In the last caseyleindv, be the children of, and let
wz andw, be the children oWv. Let T andT; be the subtrees of the root of the MAST
treeT*. Then,T;" is homeomorphic to a subtree Bf (or to a subtree ofy,; there is no
loss of generality in assuming that it is homeomorphic tolarse ofTy,). Similarly,
T, is homeomorphic to a subtree ©f . It cannot be homeomorphic to a subtredgf
since therm* would be homeomorphic to a subtre€lgf, contradicting the assumption
that there is no proper descendgnof v such that root off * is mappedp. Arguing
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similarly, we can conclude tha{" andT; are homeomorphic to subtreesTjf andT;,
respectively. Now, sincé* is a MAST tree, we can conclude thgt is a MAST tree of
Ty, andT,,, and thafl;" is a MAST tree ofly, andTy,,. So in this case we have reduced
computingMAST(Ty, Ty;) to computingMAST(Ty,, T, ) andMAST(Ty,, Ty;,) and then
taking their union.

The above discussion suggests a straightforward dynamgramming algorithm
which involves computingd(n?) subproblems each of which can be solveddfi)
time (for binary trees).

The running time of the above algorithm@n?) for trees of bounded degree. For
general rooted phylogenetic trees the running tin@(is*®logn).

4.1 The Maximum Agreement Area Cladogram Algorithm.

The difference between the maximum agreement area clatgiognal the maximum
agreement subset problems is that the former problem takepat leaf-labeled trees
where the mapping between leaves and labels is not one-enallfhat in the descrip-
tion of the maximum agreement subtree dynamic programn@ogrsion abovep is
the uniquedescendant of such that the homeomorphism mappihigto a subtree of
Ty maps the root o * to p, andq is theuniquedescendant ofv such that the home-
omorphism mapping * to a subtree ofl, maps the root off * to g. However, when
the map between leaves and labels is not one-one, nodad g may not be unique.
However, we can remedy this situation by modifying our digsicm thus: in tre€ly,
let p be a vertex farthest from such that the root of * is mapped top, and inT,,
and letq be a vertex farthest fromv such that the root of * is mapped ta (note that
this modification will not affect the actual algorithm at,alhly the proof that the algo-
rithm is correct). The rest of dynamic programming recursises only the properties
of homeomorphisms, and these properties hold true for harogghisms between area
cladograms as well. Hence, the maximum agreement subgedtam from [SW93]
works without change as a maximum agreement area cladodganitiam.

The Running Time of the MAAC Algorithm. The algorithm is same as the maximum
agreement subtree algorithm, and hence the running timeeaffaximum agreement
area cladogram algorithm (n?) for trees of bounded degree a@dn?°logn) for
trees of unbounded degree.

4.2 Testing Isomorphism Between Two Rooted Area Cladograms

The MAAC distance metric between area cladograms gives wudyag@mial-time al-
gorithm for testing isomorphism: we apply the maximum agreet area cladogram
algorithm from the previous section to compute the MAAC aliste between the two
area cladograms, and we conclude that the two cladograniscanerphic if and only
if the distance is zero. The algorithm is adapted from therdtigm for testing rooted
tree isomorphism from [AHU74].

The input to the algorithm consists of two rooted area clagmgT; andT, onn
leaves (if the number of leaves is different, then clearlythre not isomorphic). We
assume that the leaves are labeled with integers from 1dghnaunot all distinct. The
algorithm is based on assigning to each nade the tree, an integer, which we call
indexu). For leaves, the index is just their labels. The algorithasigollows:
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=

. Compute thdeight the maximum distance between the root and a leaf, of the two
trees. If the heights are not the same, then the trees arsarbiphic, otherwise,
let the height bén.

2. Based on the height, assign level numbers to the nodes trieibs. The level num-
ber of a node at a distance @from the root is set to bb— d.

3. For each leafi at level 0, seindeXu] to be the leaf-label.

4. Assuming that index has been set for each node atilev] calculate the indices
at leveli thus: for each node at leveli, form atuple (an ordered list) consisting
of the indices of its children sorted in ascending ordev.id a leaf, then its tuple
consists of just its label. Ldt; be the list of tuples of nodes at levieh Ty. LetL]
be the corresponding list fakh. Now lexicographically sort; andL| to obtaing
and§ respectively.

5. If § and§ are not identical, then declaffe andT, to be non-isomorphic and quit.
Else, assigindeXv] for each noder at leveli in T; thus:indeXV] is therank of v's
tuple in the sorted lis§. The ranks start from 1, and all identical tuples receive the
same rank. Indices for verticesa are assigned similarly. The leveindices can
now be used to calculate the indices for levell.

6. If the roots ofT; andT, are assigned the same index, then the trees are isomorphic,

otherwise not.

Proof of Correctness and Running TimeVe omit the proof due to space constraints.
The running time of the above algorithm for testing isomdasphis O(n), wheren is
the number of leaves in the input trees (see [AHU74]).
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