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Abstract. We develop and study two distance metrics for area cladograms (leaf-
labeled trees where many leaves can share the same label): the edge contract-
and-refinemetric and theMAACdistance metric. We demonstrate that in contrast
to phylogenies, the contract-and-refine distance between two area cladograms is
not identical to the character encoding distance, and the latter is not a metric. We
present a polynomial time algorithm to compute the MAAC distance, based on a
polynomial-time algorithm for computing the largest common pruned subtree of
two area cladograms. We also describe a linear time algorithm to decide if two
area cladograms are identical.

1 Introduction

Biogeography is the study of the spatial and temporal distributions of organisms ([BL98,
CKP03]). Biogeographers seek not only to understand ecological processes that influ-
ence the distribution of living organism over short periodsof time (e.g., climatic sta-
bility, effect of area) but also to uncover events occurringin the distant past (e.g., con-
tinental drift, glaciation, evolution) which have resulted in the geographic distribution
observed today.

Biogeography and Phylogeny.One of the ways of understanding the geographic dis-
tribution of species is by studying theevolutionary history of the species(see [CLW95,
EO05, Jac04b] for instances of this approach). The evolutionary relationships are typi-
cally represented as branching tree structures calledphylogenetic trees, or simply phy-
logenies. The branching structure of the phylogeny of a set of taxa can be used to
differentiate between competing hypotheses concerning the observed geographic dis-
tribution of the set of taxa. Moreover,a consistent patternobserved in the phylogenies
of species from different genera in the same geographic areawill imply a stronger ev-
idence for the particular hypotheses suggested by the pattern. As an example of this
approach, consider a group of islands, each containing multiple ecological zones (for? The research of Ganeshkumar Ganapathy was supported by NSF grants 0331453 and 0121680,
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example, each island can contain coastal and mountain ecological zones). Suppose our
goal is to understand the observed geographic distributionof species on the islands.
One hypothesis about the distribution could be that speciesdispersed from each eco-
logical zone in each island to similar zones in other islandsand then differentiated. This
process is calledinter-island colonization. Another hypothesis could be that dispersal
betweenislands happened first followed by dispersal to the different ecological zones
and differentiation into many species. This process is called adaptive radiation(see
[JEOH00] for a discussion). The crucial idea is that we mightbe able to infer which of
the above two hypotheses is responsible for the observed distribution: inter-island colo-
nization is suggested by taxa on different islands but the same ecological zone forming
a monophyletic group (rooted subtree), and adaptive radiation is suggested if species on
the same island in different ecological zones form a monophyletic group (that is, form
a rooted subtree in the phylogeny).

a1 b1 c1 d1 a2b2 c2 d2 a1 a2

b1 b2 c1 c2

d2d1

T T’

Fig. 1.Two hypothetical phylogenies on eight taxa on four islands (a; b; c;d) with two ecological
zones each (1 and 2). T suggests dispersal, and T’ suggests adaptive radiation.

Area Cladograms.Before looking for common patterns in the phylogenies of differ-
ent sets of species in the same geographic area, the phylogeny for each set of species
is converted to anarea cladogram. Area cladograms are rooted or unrooted trees (as
are phylogenies) whose leaves are labeled withgeographic areasinstead of taxa (see
[Ros78, NP81]). To obtain the area cladogram for a set of species local to a set of areas,
we start with the phylogeny for the set of species and, for each leaf, replace the taxon
label with the label of the area in which the taxon is found. This process is illustrated in
Figure 2. More formally, we define:

Definition 1. Area Cladogram
An area cladogramis an unrooted or rooted leaf-labeled tree T . The leaves are

labeled with areas, and many leaves may share the same label.

In general, it might happen that a single taxon resides in more than one area (such
taxa are calledwidespread taxa), and this would result in area cladograms with multiply-
labeled leaves. We will develop our metrics and algorithms for area cladograms as in
Definition 1, but we will show how to apply our results to more general cladograms
where leaves can have multiple labels.

It should be noted that several methods have been proposed for obtaining area clado-
grams from phylogenetic trees (see [NP81, Pag88, Bro81, Pag94]). The methods “re-
solve” the issues ofwidespread taxa(single leaf being labeled by many areas),redun-
dant taxa(many leaves being labeled by the same area), andmissing areasto obtain a
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resolved area cladogramwhere the mapping between leaves and areas is one-one. Un-
resolved area cladograms are sometimes calledtaxon area cladogramsin the literature.

a d d a b
1 2 3 4 5 6

S T

c

Fig. 2.A phylogeny S and its associated area cladogram T, assuming taxon 1 appears in area c; 2
appears in area a; 3 appears in area d; 4 appears in area d; 5 appears in area a; and 6 appears in
area b.

Much of the prior work on area cladograms has focussed on suitable transforma-
tion that will result in resolved area cladograms, for whichalgorithms and metrics for
phylogenetic trees apply.

In this paper, we address the problem of directly comparing two area cladograms.
We develop distance metrics between area cladograms, and describe algorithms for
computing a largest common pruned subtree of two area cladograms and for deciding
if two given area cladograms are identical.

Prior Work. Inferring biogeographical history with species and areas is just one in-
stance of the problem of inferring histories of two associated entities: the associated
entities may be hosts and parasites, or genes and organisms [Pag94, PC98] (areas are
analogous to hosts and organisms, and taxa in biogeography are analogous to parasites
and genes). Hence, comparing area cladograms has a long history and a wide variety
of applications (see [Jac04a, Jac04b, CLW95, GvVB02, Pag88] for example). Earlier
work on comparing area cladograms has included pruning the cladograms until the two
cladograms agree on the remaining leaves (see [Ros78, Pag88]), and using similarity
metrics such as thebipartition metric (also called thecomponentmetric or thecharac-
ter encodingmetric in the literature) and thetripletsmetric (see [Pag88]) between area
cladograms (the triplets metric only applies when the area cladograms are rooted.)

All such methods apply only to resolved area cladograms. Themethods of resolu-
tion differ in their interpretation of widespread taxa, redundant taxa and missing areas,
and have been calledassumptions0, 1 and2 in the literature (see [Pag88, vVZK99]).
We will take a different approach to comparing area cladograms: we will compare them
without first resolving them so that the mapping between the leaves and labels is one-
one. This avoids the contentious issues ([Pag90]) surroundingthe process of resolution.

Our Contributions. Our contributions are two-fold: we develop both metrics andal-
gorithms for comparing area cladograms. More specifically,

– We show that the equivalence between the edge contract-and-refine metric (“RF-
distance”) and the bipartition metric (“character-encoding” metric) that holds for
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phylogeniesdoes not holdfor area cladograms. More specifically, we show that
the bipartition metric, when extended to area cladograms, is not a metric. For the
edge contract-and-refine edit distance between two area cladograms we present a
simple, but worst-case exponential-time algorithm. This edit distance can compare
only area cladograms that are on the same number of leaves, and when each area
labels the same number of leaves in both area cladograms (Section 3).

– We define another metric, theMAAC distance metric, for comparing tworooted
area cladograms, which is based on the size of the largest common pruned sub-
tree between the two area cladograms. The MAAC distance metric can compare
two arbitrary trees that are not necessarily on the same number of leaves, which is
particularly useful when comparing area cladograms (Section 3).

– We present a polynomial time algorithm for computing the MAAC distance be-
tween two rooted area cladograms. This algorithm is based onan algorithm we
present for computing the largest common pruned subtree, the maximum agree-
ment area cladogram (MAAC), of two area cladograms. We also describe a faster,
linear-time algorithm to decide if two area cladograms are identical (Section 4).

2 Phylogenies: Distance Metrics and Agreement Subsets

Character Encoding of Phylogenies.Tests for equality between phylogenies are based
on the notion of thecharacter encodingof phylogenies. Another notion crucial to the
study of phylogenies is that of abipartition: removing an edgee from a leaf-labeled
treeT induces a bipartitionπe on its set of leaves.

Definition 2. Character Encoding of a Phylogeny
Thecharacter encodingof a phylogeny T is the set C(T) = fπe : e2 E(T)g, which

represents the set of bipartitions induced by the edges of T .

Theorem 1. Character-Encoding Metric [Bun71]
Let T and T0 be two phylogenies on the same set of taxa. ThenjC(T)4C(T 0)j =j(C(T)�C(T 0))[ (C(T 0)�C(T))j defines a distance metric.

By Theorem 1, two phylogeniesT andT 0 are isomorphic (with the isomorphism
preserving the leaf labels) if and only ifjC(T)4C(T 0)j= 0.

A contractionoperation applied on an edge in a tree collapses that edge andiden-
tifies its two end points; arefinementoperation applied at an unresolved node (i.e., an
internal node with degree greater than three) expands that unresolved node into two
nodes connected by an edge.

Definition 3. Robinson-Foulds (RF) Distance
TheRobinson-Foulds distancebetween two phylogenies T1 and T2 is defined as the

number of contractions and refinements necessary to transform T1 into T2 (or vice-
versa), and is denoted RF(T1;T2).

The RF distance naturally defines a metric since it is an edit distance.

Theorem 2. [RF81] Let T1 and T2 be two phylogenies on the same set of taxa. Then
RF(T1;T2) = jC(T1)4C(T2)j.
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Finally, we define the maximum agreement subtree problem forphylogenies. The
analogue of this problem for area cladograms is crucial to addressing the problems
outlined in Section 1.

Definition 4. Maximum Agreement Subset (MAST)
LetfT1; T2; : : : ;Tkg be a set of phylogenetic trees, on a set L of leaves. Amaximum

agreement subset(MAST) of trees T1 through Tk is a set of leaves L0 � L of maximum
cardinality such that the restrictions of the trees T1; : : : ;Tk to the set L0 are all isomor-
phic, with the isomorphism preserving leaf labels.

The maximum agreement subset problem was introduced in [FG85], and has been
studied thoroughly since then. The rooted and unrooted versions of MAST are polyno-
mially related since the unrooted MAST problem can be solvedby solving a polynomial
number of rooted MAST problems. Computing a MAST is NP-hard for three or more
trees [AK97]. AO(n2+o(1)) time algorithm for the case of two trees onn leaves is given
in [FCT94]. For two rooted binary trees, the best known algorithm takesO(nlog3n)
time ([FCPT95b, FCPT95a]); for two rooted trees which may not be binary, the best
known algorithm takesO(n1:5c

p
logn) time wherec is a constant ([FCT94]). For com-

puting a MAST ofk rooted trees, anO(kn3+nd) algorithm (withd the maximum degree
of a node in any tree) was presented in [FCPT95a].

3 Distance Measures Between Area Cladograms

In this section, we will develop distance metrics for the setof area cladograms. We will
first show that the character encoding distance between two different area cladograms
can be zero, and hence the character-encoding “distance” isnot a metric on area clado-
grams, and in particular cannot be used as a test of isomorphism. We then propose a
metric for comparing area cladograms that is based on computing the size of the largest
common pruned subtree of the two area cladograms. We call this theMAACmetric, and
show how to compute it in Section 4.

While the character-encoding metric for phylogenies does not extend to area clado-
grams, the contract-and-refine edit distance still defines ametric (because it is an edit
distance). We present an algorithm to compute the edge contract-and-refine edit dis-
tance between area cladograms. This algorithm is efficient if there are few occurrences
of widespread taxa, but it is exponential-time in general. For phylogenies this edit dis-
tance which is called theRobinson-Fouldsdistance, can be computed efficiently since
it equals the character-encoding distance.

3.1 The Character Encoding Cannot Distinguish Between AreaCladograms

We first define theextended character encodingof an area cladogram.

Definition 5. Let T be an area cladogram. The multi-setfπe : e2 E(T)g is called the
extended character encodingof T, and will be denoted by C(T). Hereπe denotes the
bipartition of the multi-set of leaf labels induced by the edge e.

Contrary to our experience with phylogenetic trees where the mapping between
leaves and labels is 1-1, with two area cladogramsT1 andT2, C(T1) = C(T2) does not
imply thatT1 andT2 are isomorphic. We exhibit a pair of such of trees in Figure 3.
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Fig. 3. Two different binary area cladograms that induce the same multi-set of partitions

3.2 The MAAC Distance Metric Between Area Cladograms

In this section we define the problem of computing the largestcommon pruned subtree
of two rooted area cladograms and describe a distance metricbased on the size of a
largest common pruned subtree. We call a largest common pruned subtree aMaximum
Agreement Area Cladogram (MAAC)(thus the MAAC is analogous to the maximum
agreement subtree of two phylogenies).

Let T be an area cladogram on a set of leavesL. The restriction of T to a set of
leavesL0 is the cladogram obtained by deleting leaves in the setL�L0 from T and then
suppressing internal nodes of degree two (except the root, if there is one).

We now definea maximum agreement area cladogram (MAAC)for a set of rooted
area cladograms, and a distance measure between two rooted area cladograms that is
based on the size of a MAAC of the two area cladograms.

Definition 6. Maximum Agreement Area Cladogram (MAAC) and MAAC distance
LetfT1; T2; : : : ;Tkg be a set of rooted area cladograms, with Li the leaf set of tree Ti ,

for i = 1;2; : : : ;k. Letλ1� L1 throughλk � Lk be sets of leaves of maximum cardinality
such that the respective restrictions of the trees T1; : : : ;Tk to the setsλ1 : : :λk are all
isomorphic, with the isomorphisms preserving leaf labels.A restriction of any tree Ti
to such a subset of leavesλi is a maximum agreement area cladogram(MAAC) for the
cladograms T1 through Tk. The size of the MAAC is defined to be the number of leaves
in the maximum agreement area cladogram, and is denoted by sizemaac(T1;T2; : : : ;Tk).

TheMAAC distancebetween two trees T1 and T2 is dM(T1;T2) = max(n1; n2)�
sizemaac(T;T 0), where n1 and n2 are the number of leaves in T1 and T2 respectively.

Note that in the above definitionwe do not require that all the given set of trees con-
tain the same number of leaves, or that they be labeled with the same set of areas, or
even that they be consistent. The MAAC distance can be viewed as a generalization of
the maximum agreement subtree metric for phylogenies [GKK94], which for two phy-
logenies on the same set ofn labeled leaves was defined asn� sizemast wheresizemast

is the size of a maximum agreement subset of the two phylogenies.
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Handling Widespread Taxa.For comparing cladograms using maximum agreement
area cladograms, leaves labeled by more than one area can be treated thus: each leaf
labeled by a group of areas can be split into many separate leaves (all having the same
parent), each of which is labeled by a single unique area fromthe group of areas.

a b d d ba a a d d a b

  T1
T2

d ba d a

MAAC(T1, T2)

Fig. 4. Two area cladograms T1 and T2, and their MAAC

Due to space constraints, we state the following theorem without proof:

Theorem 3. The MAAC distance dM is a metric on the set of all area cladograms.

Note that twice the MAAC distance between two cladograms is an upper bound
on the number of insertions and deletions of leaves necessary to transform one of the
cladograms to the other.

In Section 4, we present a polynomial-time algorithm for computing a maximum
agreement area cladogram for two area cladograms.

3.3 Contract-and-Refine Distance Metric for Area Cladograms

Though the character-encoding distance fails to extend to area cladograms, the RF dis-
tance, being an edit distance, can be extended to unrooted area cladograms to provide a
distance metric.

Definition 7. Robinson-Foulds Distance Between Unrooted Area Cladograms
TheRobinson-Foulds distancebetween two unrooted area cladograms T1 and T2 is

defined to be the number of contractions and refinements necessary to transform T1 to
T2 (or equivalently, T2 to T1).

Note that if the number of leaves labeledl is different inT1 andT2 for some labell ,
thenRF(T1;T2) is undefined (i.e., there is no sequence of contractions and refinements
that can transformT1 into T2). In such cases we defineRF(T1;T2) to be∞.
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Handling Widespread Taxa. Taxa endemic (resident) to more than one area would
result in cladograms with leaves labeled by many areas. Our definition of the Robinson-
Foulds distance applies to such cladograms as well: if a leafis labeled with a set of areas,
we can consider that set of areas to be the unique label for that leaf.

As shown in Section 3.1, for area cladograms, the RF distancewill not be equal
to the extended character-encoding distance. However, we can relate the RF distance
between two area cladograms to the RF distance between two associated phylogenies,
as we will show. We begin with some definitions.

Definition 8. Full Differentiation of an Area Cladogram
Let T= (t;M) be an unrooted area cladogram, where t is an unlabeled tree and M

is the mapping assigning labels to the leaves of t. Then, afull differentiationof T is a
leaf-labeled tree T� = (t;M�) such that M� is one-one. In other words, T� has the same
topology as T , but has its leaves labeled uniquely.

Definition 9. Consistent Full Differentiations
Let T1 = (t1;M1) and T2 = (t2;M2) be two unrooted area cladograms with the same

set L of leaf labels, and let T�1 = (t1;M�
1) and T�2 = (t2;M�

2) be full differentiations of
T1 and T2 respectively. T�1 and T�2 are consistent full differentiationsif, for each label
l 2 L, the set of labels in assigned to leaves in T�

1 that were labelled l in T1 is identical
to the set of labels assigned to leaves in T�

2 that were labelled l in T2. Mathematically,
this is:8l 2 L;fM�

1(x) : M1(x) = lg= fM�
2(x) : M2(x) = lg.

Due to space constraints, we state the following theorem without proof:

Theorem 4. Let T1 and T2 be two unrooted area cladograms. Then RF(T1;T2) is equal
to maxfRF(T�

1 ;T�
2 ) : T�

1 and T�2 are mutually consistent full differentiations of T1 and
T2, respectivelyg.

Note that the RF distance between two cladogramsT1 and T2 is at most the RF
distance betweenanyconsistent full differentiations ofT1 andT2. Hence this provides
a linear-time method for getting an upper bound on the RF distance between two area
cladogramsT1 andT2: we first compute two mutually consistent full differentiations,
and then compute their RF distance.

Theorem 4 suggests the following trivial (but expensive) algorithm for computing
the RF distance between two area cladogramsT1 andT2: we simply compute the RF
distance between all the possible consistent full differentiations ofT1 andT2 (in Θ(n)
time per pair, see [Day85]) and choose the minimum. Thus, we have the following
theorem:

Theorem 5. Let T1 and T2 be two unrooted area cladograms on n leaves on the same set
of areas. For each area ai appearing at the leaves of T1 and T2, let ni be the number of
leaves labeled with area ai . Then, the RF distance between T1 and T2 can be calculated
in Θ(nΠk

i=1(ni)!) time.
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4 An Algorithm for the Maximum Agreement Area Cladogram
Problem

In this section we describe an algorithm for computing maximum agreement area clado-
gram (MAAC) of two given rooted area cladograms. The algorithm is based on a dy-
namic programming algorithm for the phylogenetic rooted maximum agreement subtree
algorithm from [SW93]. We will first present the maximum agreement subtree algo-
rithm. We will then observe that the basic recursion underlying the dynamic-programming
algorithm will hold for the maximum agreement area cladogram algorithm as well
though the mapping between leaves and their labels may not beone-one in area clado-
grams.

The MAST Algorithm from [SW93]. We now give a brief summary of the algorithm
in [SW93] for computing the MAST of two rooted binary trees. In our description, the
expressionMAST(T;T 0) denotes a maximum agreement subset of two given (rooted
binary) phylogeniesT andT 0.

Let T andT 0 be two given binary phylogenies onn leaves. Letv be a node inT,
and denote byTv the subtree ofT rooted atv. Similarly denote byT 0

w the subtree of
T 0 rooted at a nodew in T 0. The dynamic programming algorithm for MAST operates
by computingMAST(Tv;T 0

w) for all pairs of nodes(v;w) in V(T)�V(T 0) “bottom-up”.
We now show how to reduce computingMAST(Tv;T 0

w) to computing a small number
of smaller MAST computationsMAST(S;S0) whereSandS0 are subtrees ofTv andT 0

w
respectively, with at least one of them being a proper subtree.

To begin with, theMAST(Tv;T 0
w) is easy to compute when eitherv or w are leaves.

So in the following discussion assume neitherv norw is a leaf.
Let L� be a MAST ofTv andT 0

w, and letT� be the corresponding MAST tree. Then
there exist homeomorphisms mappingT� to a rooted subtree ofTv and to a rooted
subtree ofT 0

w. Let p be the (not necessarily proper) descendant ofv such that the root of
T� is mapped top. Similarly let q be the descendant ofw in T 0 such that that the root
of T� is mapped tow. Then,MAST(Tv;T 0

w) is in fact equal toMAST(Tp;T 0
q).

The vertexp may be actuallyv or it might be a vertex belowv. Similarlyq may bew
or some vertex beloww. Based on the location ofp andq, we have the following cases.

– Vertex p is a proper descendent of v.In this case,Tp is a proper subtree ofTv, and
MAST(Tv;T 0

w) equalsMAST(Tp;T 0
w).

– Vertex q is a proper descendent of w.In this case,MAST(Tv;T 0
w) equalsMAST(Tv;T 0

q).
– Vertex p equals v and vertex q equals w.

In the first two cases, we have reduced the computation ofMAST(Tv;T 0
w) to a MAST

computation on a subproblem. In the last case, letv1 andv2 be the children ofv, and let
w1 andw2 be the children ofw. Let T�

1 andT�
2 be the subtrees of the root of the MAST

treeT�. Then,T�
1 is homeomorphic to a subtree ofTv1 (or to a subtree ofTv2; there is no

loss of generality in assuming that it is homeomorphic to a subtree ofTv1). Similarly,
T�

2 is homeomorphic to a subtree ofTv2. It cannot be homeomorphic to a subtree ofTv1,
since thenT� would be homeomorphic to a subtree ofTv1, contradicting the assumption
that there is no proper descendentp of v such that root ofT� is mappedp. Arguing
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similarly, we can conclude thatT�
1 andT�

2 are homeomorphic to subtrees ofT 0
w1

andT 0
w2

respectively. Now, sinceT� is a MAST tree, we can conclude thatT�
1 is a MAST tree of

Tv1 andT 0
w2

, and thatT�
2 is a MAST tree ofTv2 andT 0

w2
. So in this case we have reduced

computingMAST(Tv;T 0
w) to computingMAST(Tv1;T 0

w1
) andMAST(Tv2;T 0

w2
) and then

taking their union.
The above discussion suggests a straightforward dynamic programming algorithm

which involves computingO(n2) subproblems each of which can be solved inO(1)
time (for binary trees).

The running time of the above algorithm isO(n2) for trees of bounded degree. For
general rooted phylogenetic trees the running time isO(n2:5 logn).
4.1 The Maximum Agreement Area Cladogram Algorithm.

The difference between the maximum agreement area cladogram and the maximum
agreement subset problems is that the former problem takes as input leaf-labeled trees
where the mapping between leaves and labels is not one-one. Recall that in the descrip-
tion of the maximum agreement subtree dynamic programming recursion above,p is
theuniquedescendant ofv such that the homeomorphism mappingT� to a subtree of
Tv maps the root ofT� to p, andq is theuniquedescendant ofw such that the home-
omorphism mappingT� to a subtree ofTw maps the root ofT� to q. However, when
the map between leaves and labels is not one-one, nodesp andq may not be unique.
However, we can remedy this situation by modifying our description thus: in treeTv,
let p be a vertex farthest fromv such that the root ofT� is mapped top, and inT 0

w,
and letq be a vertex farthest fromw such that the root ofT� is mapped toq (note that
this modification will not affect the actual algorithm at all, only the proof that the algo-
rithm is correct). The rest of dynamic programming recursion uses only the properties
of homeomorphisms, and these properties hold true for homeomorphisms between area
cladograms as well. Hence, the maximum agreement subtree algorithm from [SW93]
works without change as a maximum agreement area cladogram algorithm.

The Running Time of the MAAC Algorithm. The algorithm is same as the maximum
agreement subtree algorithm, and hence the running time of the maximum agreement
area cladogram algorithm isO(n2) for trees of bounded degree andO(n2:5 logn) for
trees of unbounded degree.

4.2 Testing Isomorphism Between Two Rooted Area Cladograms

The MAAC distance metric between area cladograms gives us a polynomial-time al-
gorithm for testing isomorphism: we apply the maximum agreement area cladogram
algorithm from the previous section to compute the MAAC distance between the two
area cladograms, and we conclude that the two cladograms areisomorphic if and only
if the distance is zero. The algorithm is adapted from the algorithm for testing rooted
tree isomorphism from [AHU74].

The input to the algorithm consists of two rooted area cladogramsT1 andT2 on n
leaves (if the number of leaves is different, then clearly they are not isomorphic). We
assume that the leaves are labeled with integers from 1 through n, not all distinct. The
algorithm is based on assigning to each nodeu in the tree, an integer, which we call
index(u). For leaves, the index is just their labels. The algorithm isas follows:
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1. Compute theheight, the maximum distance between the root and a leaf, of the two
trees. If the heights are not the same, then the trees are not isomorphic, otherwise,
let the height beh.

2. Based on the height, assign level numbers to the nodes of the trees. The level num-
ber of a node at a distance ofd from the root is set to beh�d.

3. For each leafu at level 0, setindex[u℄ to be the leaf-label.
4. Assuming that index has been set for each node at leveli�1, calculate the indices

at level i thus: for each nodev at level i, form a tuple (an ordered list) consisting
of the indices of its children sorted in ascending order. Ifv is a leaf, then its tuple
consists of just its label. LetLi be the list of tuples of nodes at leveli in T1. Let L0i
be the corresponding list forT2. Now lexicographically sortLi andL0i to obtainSi

andS0i respectively.
5. If Si andS0i are not identical, then declareT1 andT2 to be non-isomorphic and quit.

Else, assignindex[v℄ for each nodev at leveli in T1 thus:index[v℄ is therank of v’s
tuple in the sorted listSi . The ranks start from 1, and all identical tuples receive the
same rank. Indices for vertices inT2 are assigned similarly. The level-i indices can
now be used to calculate the indices for leveli +1.

6. If the roots ofT1 andT2 are assigned the same index, then the trees are isomorphic,
otherwise not.

Proof of Correctness and Running Time:We omit the proof due to space constraints.
The running time of the above algorithm for testing isomorphism is O(n), wheren is
the number of leaves in the input trees (see [AHU74]).
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