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An Example Comparative Genomic Analysis
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Applications of
Comparative Genomics

Detecting

regulatory elements

D UACAT AT TG AT U T AR ST D T T T DO T TT BRI T AT A TTCT CARE T AT GARASLAS AW T

TR AT ATAMA WA S 8 T T TR Y
TR T T IO TR T TR T A A T TRCT CAMET A GARANAS IS T3 C0CT TOOMICTOC T

., -
La ) -——— -— e —
be

(Nature Reviews Genetics

5, 2004)

Detecting cancer

mutations
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And many, many more
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Gene finding
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Almost all comparative genomic approaches
assume that genomes have evolved down a tree.
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e However, It has been shown that;

- different genomic regions might evolve down

different trees, and

- the set of species might not have evolved In a

strictly diverging manner.

(MBE 29, 2013)
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Comparative (Genomics:

Going Beyond Trees



A Machine Learning View of
Comparative Genomics

Species network
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Overarching Goal

* For every site In the genome, learn:

- the local gene tree along which the site evolved,
and

- the evolutionary trajectory that the local gene tree
took within the species network.

e We also want a confidence measure for the
inference.



My Approach

 Modeling: Combine species networks and hidden
Markov models into one unified framework,
PhyloNet-HMM.

* Inference: Using genomic sequence data, the task
s to learn the model.
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Gene Trees with Different Trajectories in a
Species Network
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Disentangling
Gene Tree
Trajectories
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‘Horizontal” and "Vertical”
lncongruence

Horizontal
incongruence
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"Horizontal™ and “Vertical”
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INnsignt #1

 "Horizontal™ and “vertical” incongruence between
neighboring gene trees represent two different
types of dependence.

 Model the two dependence types using two
classes of transitions in a graphical model.
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Insignt #2

* DNA sequences are observed, not gene trees.

e Under traditional models of DNA sequence
evolution, the probability A(s|g) of observing DNA
sequences s given a gene tree g can be efticiently
calculated using dynamic programming.
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Insight #1 + Insight #2 =
Use a Hiaden Markov
Model (HMM)



PhyloNet-HMM: 4 & & 4 8 &
Problem Definition | ]
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For each site 1 <1 < £k, let m; be a random variable that takes
a value from the set (g,,%y) : 9. € G(n), ¢, € V.

Input: A set S of n aligned genomes, each of length £k, and
a set W of parental trees corresponding to a species network.

Output: For each site 1 <1 < k, the probability

P(ﬂ-i — (933‘7 %)’S)

for every g, € G(n) and ¢, € V.
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PhyloNet-HMM: Hidden States
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PhyloNet-HMM: Hidden States
and [ransitions Involving g1
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PhyloNet-HMM

* Each hidden state s;is associated with a gene tree g(s))
contained within a “parental” tree 1(s))

* [he set of HMM parameters A consists of
- The initial state distribution 77
- Transition probabilities

0 — P(g(si)|f(s:)) - if s; and s; in different rows
iJ P(g(Sz‘)\f(Si)) (1 — fy) if s; and S;j In same row

where vy is the “horizontal” parental tree switching frequency.
- The emission probabilities b; = P(O4g(s)))
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Three Problems Addressed Using
PhyloNet-HMM

. What is the likelihood of the model given the observed DNA sequences?
- Forward algorithm calculates prefix probability a;(7) = P(O1,Oa, ..., O, q = S;|A\)

- Backward algorithm calculates sufﬂx probability 8;(¢) = P(O¢1.1,0¢12,...,0k|qs = S;, A)
- Model likelihood is P(O|\) = Zak

. Which sequence of hidden states best explains the observed DNA
sequences?

- Posterior decoding probability y(/) is the probability that HMM is in state s; at time t,
calculated as: . :
(1) B (1)

. How do we choose parameter values that maximize the model likelihood?

- Apply hill-climbing to optimize arg max P(O|\)
A

24



Related Methods

1. Methods that work for at most three genomes, including:
« D-statistic (Durand et al. 2012)

e CoalHMM (Mailund et al. 2012)

2. Methods that consider vertical incongruence or
horizontal incongruence but not both, including:

e CoalHMM (Hobolth et al. 2007, Schierup et al. 2009)

« RecHMM (Westesson and Holmes 2009)
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Evaluating PhyloNet-HMM

o Simulation study using:
- Species tree model
- Species network model
 Empirical study of different sets of mouse genomes:

- Controls: lab mice, wild mice from populations that
lacked gene flow

- Additional wild mice from populations where gene tlow
was suspected

20



Simulation Model

Outgroup



Percentage of sites

Simulation Study Results
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Liu et al., to appear in
o8 PLoS Computational Biology:.
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Simulation Study Results
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Posterior decoding
probability of y> state

_L

Empirical Study:
Non-control Mice (Chromosome 7)
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The Vkorc1 Gene and
Personalized Wartarin Therapy

Lot * bt b mae b -

I l' l re * Mutant Vkorc1 gene

contributes to warfarin

- e cete= o= corrw

Warfarin resistance
target protein « Warfarin resistant

Linking yitamin K disorders

ulation iIndividuals require
larger-than-normal dose
to prevent clotting
complications (like
stroke)

Rost et al. Nature 427, 537-541 2004.
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Warfarin is Really
Glorified Rodent
Poison

Reproduced from UTMB.




The Spread of Wartarin
Resistance in Wild Mice

 Humans inadvertently started a gigantic drug trial by giving
wartarin to mice in the wild

* Mice shared genes (including one that confers warfarin
resistance) to survive (Song et al. 2011)

- Gene sharing occurred between two different species
(introgression)

* Jo find out results from the drug trial, we just need to
analyze the genomes of introgressed mice and locate the
iIntrogressed genes

33



Summary and
Future Directions



summary

PhyloNet-HMM generalizes the basic coalescent model,
one of the most widely used models in population
genetics, by using a DAG in place of a tree

Simulated and empirical data sets with tree-like and non-
tree-like evolution were used to validate PhyloNet-HMM

PhyloNet-HMM found non-tree-like evolution in multiple
mouse Chromosomes

Introgressed mouse genes confer warfarin resistance,
many with related human genes

- New candidate genes to target for improved
personalization of wartfarin therapy

Study of non-tree-like evolution is a fundamentally
important research topic in biology

35



Future Directions

* Future directions include:
Incorporating network search,
- Detecting adaptive gene tlow, and

- Expanding the model and method to account for other
evolutionary events (e.g., sequence insertion/deletion).

* Additional biological systems of interest include:

- Bacterial species, where horizontal gene transter plays an
important role in the spread of antibiotic resistance,

- Hybrid plant species, and
- Other introgressed animal species.
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Questions?

My website:
http://www.cs.rice.edu/~kl23

* Nakhleh lab welbsite:
http://bioinfo.cs.rice.edu

 Warnow lab website:
hitp://www.cs.utexas.edu/~phylo
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Evolution: Unifying Theme #1

* “Nothing In Biology Makes Sense Except in the
Light of Evolution™ — 1973 essay by T. Dobzhansky,
a famous biologist

My primary goal: use evolutionary principles to

- Create computational methods to analyze
heterogeneous large-scale biological data,

T
i

nen apply them to obtain new biological and

omedical discoveries

42



I'he Pre-genomic Era
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QOutline for Today’s Talk
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Part I: Fast and Accurate
Alignment and Tree Estimation
on Large-Scale Datasets



SATé: Simultaneous Alignment and Tree
estimation (Liu et al. Science 2009)

Standard methods for alignment and tree estimation have
unacceptably high error and/or cannot analyze large
datasets

SATE has equal or typically better accuracy than all
existing methods on datasets with up to thousands of
seqguences

24 hour analyses using standard desktop computer

SATé-ll (Liu et al. Systematic Biology 2012) is more
accurate and faster than SATé on datasets with up to tens
of thousands of taxa
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Deletion Substitution Insertion

N %/

.ACGGTGCAGTTACCA..

| NN
..ACCAGTCACCCATAGA...
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Deletion Substitution Insertion

N %/

.ACGGTGCAGTTACCA..

| NN
..ACCAGTCACCCATAGA...

The true alignment is:

ACGGTGCAGTTACC——-—-—- A..
.AC----CAGTCACCCATAGA..
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DNA Sequence Evolution (Example)

o Insertions
Substitutions .
AGACTT Deletions _, . yrs |
-2 mil yrs
AAGGCTT AAGACTT 1
-1 mil yrs
ATCGGGCAT TAGCCCT AGCA ——

ATCGGGCAT TAGCCCA TAGACTT AGCA AGCG today
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DNA Sequence Evolution (Example)

-3 mil yrs

-2 mil yrs |

-1 mil yrs |

ATCGGGCAT TAGCCCA  TAGACTT  AGCA AGCG today
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Tree and Alignment Estimation
Problem (Example)

U \"/

ATCTGGGCAT TAGCCCA TAGACTT

W
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X y
AGCA AGCG
u = ATCTGGCAT
v = T--AGCCCA
w = T--AGACTT
x = AGCA-----

y = AGCG——-—-—--



Many Trees and Many Alignments

- Number of trees |T| grows exponentially in n, the
number of leaves:

T| = (2n — 5)!

- The number of alignments |A| also grows

exponentially in n and the length of the longest
unaligned sequence.

- All of the common and useful optimization
oroblems are NP-hard.
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SATé Algorithm

Obtain initial alignment

and tree s
Insight:
Estimate tree on new Use tree to perform
alignment divide-and-conquer
alignment
Alignment

Insight: iterate - use a moderately accurate tree to obtain a more
accurate tree

It new alignment/tree pair has worse likelihood, realign using a
different decomposition

Repeat until convergence under the maximum likelihood optimization

criterion 5



SATE iteration
(Actual decomposition size is configurable)

A, b
< ¥
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SATE iteration
(Actual decomposition size is configurable)

A, JoDesompose based )
N <]
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SATE iteration
(Actual decomposition size is configurable)

Decompose based
k J ~oninputiree IE.
3 |; Align
Nbproblems

[A](B]
[<](o]
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A, b
< ¥

SATE iteration
(Actual decomposition size is configurable)

Decompose based
on|nputvee

Lal[e]
" [cl[]

Align
Nbproblems

[A]8]

][]

subproblems

59



SATE iteration
(Actual decomposition size is configurable)

Decompose based
k J ~oninputiree IE.
3 |; Align
Nbproblems

o< o/
[c][o]
—stimate tree ONMA Merge

merged alignment subproblems



SATE iteration
(Actual decomposition size is configurable)

A, JoPesompose bzsed
< G
Align
\ Nbproblems
Vo gl
c][o]
—stimate tree ONMA Merge

merged alignment subproblems



Results on a Dataset with 27,000 Sequences
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Summary of Part |

Created novel tree-based divide-and-conquer
techniques for simultaneous alignment and tree
estimation, enabling:

- Scalability to thousands of sequences or more
- High accuracy

Family of algorithms included:

- SATé (Liu et al. Science 2009)

- SATé-Il (Liu et al. Systematic Biology 2012)

- and others
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A Phylogeny, or Evolutionary Iree

Orangutan Gorilla Chimpanzee Human
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Images from the Tree of the Life Website,
University of Arizona, and Wikimedia



Evolutionary History

- - Phylogenetics is the
é E g f, o

A

e

udy of evolutionary
o

ory

DS US:

5 M0 : . °
‘f @ EI - Predict gene function

- Develop drugs and
vaccines

* - Understand disease

epidemics
- Study the Tree of Life

Source: www.tolweb.org

- Etc.


http://www.tolweb.org

This Talk

- SATe (Simultaneous Alignment and Tree
estimation), Liu et al. Science 2009

- Sta
glfe

N error and/or cannot analyze

- SA]
dat

& |S more accurate than all exi

ndard phylogenetic methods have unacceptably

arge datasets
sting methods on

asets with up to thousands of taxa
- 24 hour analyses using standard desktop computer

- SATe-ll, Liu et al. Systematic Biology, in
press, 2011

- More accurate and faster than SATé on datasets with
up to tens of thousands of taxa using a standard
desktop computer




Many Trees and Many Alignments

+ Number of trees | T] grows exponentially in n, the

number of leaves:
T| = (2n — 5)!!

+ The number of alignments |A| also grows exponentially
in nand ™axk; where k;is the sequence length of the

Jth sequence (Slowmsk| MPE 1998):

Al = Z Z ()H( kQ)

N=max k; 1=0 —

- NP-hard optimization problems
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Counting Alignments

f(k1,k2)
f(1,1) = f(1,0)

st =3 () ()

f(k1 —1,k2) 4+ f(k1 — 1, ke — 1) + f(k1,k2 — 1)
0
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Two-phase Methods

AGGCTATCACCTGACCTCCA

TAGCTATCACGACCGC

TAGCTGACCGC

TCACGACCGACA Phase 1:
Align

>

<A

-AGGCTATCACCTGACCTCCA
TAG-CTATCAC--GACCGC--
TAG-CT-----—-- GACCGC--

——————— TCAC--GACCGACA

Phase 2:
Estimate Tree



Many Methods

Alignment method

* Clustalw

« MAFFT

 Muscle

* Prank

* Opal

* Probcons (and Probtree)
» Di-align

« T-Coffee

« EtC.



Many Methods

Alignment method Phylogeny method

» ClustalWw  Maximum likelihood (ML)
 MAFFT - RAXML

: I\Pllrl;snckle + Bayesian MCMC

» Opal * Maximum parsimony

» Probcons (and Probtree) * Neighbor joining

 Di-align « UPGMA

« T-Coffee * Quartet puzzling

* Ete. + Etc.



Simulation using

- Model trees with
- Biologically rea

- \Va
- \Va
- \Va

Simulation Study
(Liu et al. Science 2009)
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Tree Error

W X
§ X u W
FN
V y Vv y
True Tree Estimated Tree

- False Negative (FN): an edge in the true tree
that is missing from the estimated tree

- Missing branch rate: the percentage of edges

present in the true tree but missing from the
estimated tree



Allgnment Error

FN
AACAT AACAT-
A-CCG A=-CC-G
True Alignment -stimated Alignment

- False Negative (FN): pair of nucleotides present
in true alignment but missing from estimated

alignment

- Alignment SP-FN error: percentage of paired
nucleotides present in true alignment but missing

from estimated alignment
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Problem with Two-phase Approach

- Problem: two-phase methods fail to return
reasonable alignments and accurate trees on
large and divergent datasets

- manual alignment

- unreliable alignments excluded from phylogenetic
analysis



" E QL

Simultaneous Estimation of
a Iree and Alignment

CTATCACCTGACCTCCA
CTATCACGACCGC
CTGACCGC
CGACCGACA

N g Q6

U

X

\'

—

W

and

CTATCACCTGACCTCCA
CTATCAC--GACCGC--
CT----—-—- GACCGC--
-—--TCAC--GACCGACA



Existing Methods for Alignment and

Tree Inference

* [wo-phase methods

nfer an alignment, then use the alignment to infer a
tree

naccurate on data sets with thousands of

seguences
e Methods based on statistical models
- Limited -

- Un
e Parsi

0 datasets with a few hundred taxa

KNOW

N accuracy on larger datasets

mony-based methods

- Slower than two-phase methods
- No more accurate than two-phase methods
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Problem with Two-phase Approach

- Problem: two-phase methods fail to return
reasonable alignments and accurate trees on
large and divergent datasets

- Insight: divide-and-conquer to constrain dataset
divergence and size



SATEé Algorithm

Obtain initial alignment and
estimated ML tree

Tree




SATEé Algorithm

Obtain initial alignment and
estimated ML tree

Tree

Alignment

Insight:

Use tree to perform
divide-and-conquer
alignment



SATEé Algorithm

Obtain initial alignment and
estimated ML tree

Estimate ML tree on
new alignment

Tree

Alignment

Insight:

Use tree to perform
divide-and-conquer
alignment
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Missing Branch Rate (%)

Alignment SP-FN Error (%)
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Improving Upon SATe

- Problem: sometimes, subproblems have too
many taxa or too divergent



Improving Upon SATe

- Problem: sometimes, subproblems have too
many taxa or too divergent

- Insight: recurse



Improving upon SATé (Example)

!




Improving upon SATe (Example
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Improving upon SATé (Example)




Insight: recurse

é{k : );Dec:n":ﬁ;za?::ed%g
\ wbé}'é%ﬁ‘ems
>R o

Estimate ML treeth%erge

merged alignment subproblems
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QOutline for Today’s Talk

Graduate work:

|

|

|
o SATE, .
S 1000+ SATé-II, |
S DACTAL, |
-
O |
D |
@ |
s |
O | #
O /
& Lessthan
> 1000

Single gene Entire genome
or a few genes

Sequence length



HPC Challenges

 Email from UTCS IT staff. | had the most
computations by several orders of magnitude of

any user at UTCS.

* |t you let me, I'll come and take over your clusters
{o0.

* |n all seriousness, my research has some fantastic
ow-hanging fruit for HPC contributions, particularly
regarding parallel algorithms. <point to HPC
researchers in the room>
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Hybridization

Different mouse

species
House mouse carrying
lacking warfarin warfarin
resistance gene resistance
- gene

Hybrid mouse

carrying %
warfarin resistance Song et al. 2011.
gene Images adapted from

Dejager et al. 2009
and the Jackson
Laboratory.




INntrogression

Species A Species B
] ]
First generation hybrid
I H BN

Approximately half of genome
from A and half of genome from B
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INntrogression

Species A Species B
] ]
Species A First generation hybrid

] I BH BN
Introgressed hybrid

More than halt of genome from A
and less than half of genome from B
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INntrogression

Species A Species B
] ]
Species A First generation hybrid
] I = e
Species A Introgressed hybrid
]
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Naive Sliding Windows

1. Break the genome into segments using a sliding-
window (or other approaches)

2. Estimate a local tree in between every pair of
breakpoints
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Sliding Windows (Example)




Sliding Windows (Example)




Sliding Windows (Example)




Sliding Windows (Example)




Sliding Windows (Example)




Sliding Windows (Example)

A\

00 A




Sliding Windows (Example)

®
A

Gene trees

(all identical) /<\

00 A

00 A
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A Gene Tree in a Species Tree (Example)

Species tree —»
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A Gene Tree in a Species Tree (Example)

Species tree —»

Gene tree
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Sliding Windows (Example)




Sliding Windows (Example)




Sliding Windows (Example)




Sliding Windows (Example)




Sliding Windows (Example)

Gene tree
ncongruence!

AOO® A0O

AOO



“Horizontal” Gene Tree Incongruence
(Example)

Species

—
network
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“Horizontal” Gene Tree Incongruence
(Example)

Species

—
network

Gene trees A
‘D/ ‘. ‘il
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Sliding Windows: Results

Vkorcl gene
2 ves ([ W[ [0 THIMIE T FETRRTED FE TR RTET T WA OO 1
T
5 No I IR A
sl
0 20 40 60 80 100 120 140 160
Position along chromosome 7 (megabases)
Sc
&5
© o
TR
YO
o=

14 4 6 7 19 3 15 12 13 5 17 10 1 9 2 16 18 8 11
Chromosome

6 Liu et al. In prep.



Sliding Windows Approach
s Too SImplistic

e (3ene tree incongruence can occur for reasons
other than introgression

* [he organisms in our study included
“vertical” gene tree incongruence due to:

- Incomplete lineage sorting

- Recombination
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Approach #2: Reconciliation

 For a gene tree g and a species network N,
Yu et al. 2012 proposed an algorithm to calculate
P[g|N], accounting for introgression and
incomplete lineage sorting

* Motivates the following optimization problem:

1. Estimate a set of gene trees G using Sliding
Windows Approach

2. Under the model of Yu et al. 2012, choose:

arg max H Plg|N]
N
geG
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Approach #2: Reconcile Gene
Trees with Species Network

 Relevant prior theoretical work:
- Degnan and Salter 2005

 Probability P[g|T] of observing a gene tree g given a
species tree T

e Accounts for incomplete lineage sorting only

- Yu et al. 2012

« Probability P[g|N] of observing a gene tree g given
a species network N

e Accounts for introgression and incomplete lineage
sorting
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|lssues with
Reconciliation-based Approaches

 Assumes that gene trees are correct

- Estimated gene trees typically contain some error

Assumes that each genome position is identically
and independently distributed

- Biologically unrealistic since adjacent
nucleotides tend to be inherited together

 Doesn't capture recombination
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Species Genome ID Introgressed?

A X Unknown
A a No
Problem: Input A a No
Computational B b No
Introgression
B o No

Detection



Species Genome ID Introgressed?

A X Unknown
A a No
Problem:  NPUt A ; 0
Computational B b No
Introgression :
| B b No
Detection
Probability 1 | — .
that x

OUtpUtZ contains

introgressed ﬂ
material from
0 & =

species B Start "

Genome



“Vertical” Gene Tree Incongruence
(Example)

Species |
hetwork
Gene trees A\
‘l - e
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“Horizontal” Gene Tree Incongruence
(Example)

Species

—
network

Gene trees A
‘D/ ‘. ‘il
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The Probability of A Coalescence Event:
Discrete Generations

n

O @ @ O O
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The Probability of A Coalescence Event:
Discrete Generations

O N0 N0 RO NO N0 RO RO RO N
O N0 N0 RO NO N0 RO RO RO N
O NONO RO RO NO RO RO RON
O NONO RO RO NO RO RO RON
O N0 N0 NONO N0 RO RO RO N

<
I~
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The Probability of A Coalescence Event:
Discrete Generations

~
OO0 00000000
OO 000000
OO0 0000000 |

OO0 00000000
OO0 00000000

o C

Pr(two lineages coalesce in 1 generation) = —
n



The Probability of A Coalescence Event:
Discrete Generations

OO 00000

OO0 000000
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The Probability of A Coalescence Event:
Discrete Generations

OO 00000

OO0 000000

Q



The Probability of a Gene Tree in a Species Tree:
Discrete Generations

n
e T
75 > S
1
Pr(two lineages don’t coalesce in T generations) = (1 — —)1 !
n
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The Probability of a Gene Tree in a Species Tree:
Discrete Generations

91 P 9s
f
1
Pr(two lineages don’t coalesce in T generations) = (1 — =)% 1
n
I
Pr(ga|f1,T) = Pr(gs|f1, T) = (1 - E)T 1
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The Probability of a Gene Tree in a Species Tree:
Discrete Generations

Pr(g2\f1, T) — Pr(g?)’fla T) —

Pr(two lineages coalesce in T generations) =

132



The Probability of a Gene Tree in a Species Tree

‘ ’ . 94 9, 93
f
TOG_T

Pr(two lineages don’t coalesce in time T') = 0
— e_T.

L 7

Pr(ge|f1,T) = Pr(gs| f1,T) = ge
Pr(two lineages coalesce in time T) =1 —e~ 1

2
Pr(gi|f1,T) =1 - ge_T
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The Probability of a Gene Tree in a Species Tree

* [he probability of ulineages coalescing into v
ineages in time T (Rosenberg 2002 and others):
(2k — H(=DF

itk — WI(v + k — 1)

g S+ ) - y)
y=0 (u +y) .

Pl = 3 etk
k=v

e The probability of a gene tree topology g given a
containing species tree (¥, A) (Degan and Salter
2005):

n—2

(h) (h)
Pq;,)\(G = g) = he;(g) Z(—h) b:l_[1 %pub(h)vb(h)()\b)-



PhyloNet-HMM

* Each hidden state s;is associated with a gene tree g(s))
contained within a “parental” tree 1(s))

* [he set of HMM parameters A consists of
- The initial state distribution 77
- Transition probabilities

o — P(g(si)|f(si)) -~ if s; and s; in different rows
w P(g(si)|f(si))- (1 —~) ifs; and s; in same row

where vy is the “horizontal” parental tree switching frequency.
- The emission probabilities b; = P(O]g(s)))
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vioNet-HMM N

A O O
Introgressed

 Each hidden state s;is associated with a gene tree g(s;) contained within a
“parental” tree f(s;).

* Let g; be PhyloNet-HMM'’s hidden state at time t, where 1<t<k and k is the
length of the input observation sequence O.

* The set of HMM parameters A consists of:

- Transition probabilities A={a;}, where
v Prig(s:)|f(si)] if s; and s; are in different rows
| (@ =) Prg(ss)| f(s:)] if s; and s; are in same row

and v is the “vertical” parental tree switching frequency and Pr[g(s

aij

- The emission probabilities b; = Pr[O]g(s;)] under a model of nucleotide
substitution (e.qg., Jukes-Cantor (1969))

- The initial state distribution 7. = P[g; = s]
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First HMM-related Problem

e Let g;be PhyloNet-HMM'’s hidden state at time f, where
1<t<k and k is the length of the input observation
sequence O.

 What is the likelihood of the model given the observed
DNA sequences O7?

- Forward algorithm calculates “prefix” probability a:(7)
- Backward algorithm calculates “suffix” probability B:(7)

- Model likelihood is P[O])] = Zak
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First HMM-related Problem

* Let g;be PhyloNet-HMM's hidden state at time ¢, where
1<t<k and Kk is the length of the input olbservation

sequence O.

* What is the likelihood of the model given the observed
DNA sequences:(@?= P|O1,02, ..., 0, q: = Si|Al.

- Forward algorithm calculates the “prefix” probability

5t(@) :P[Ot+170t+2,...,0qut_: SZ-,)\]. N
- Backward algorithm calculates the “suffix” probability

- Model likelihood is P[O]A] = Zak
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Second HMM-related Problem

 Which sequence of states best explains the
observation sequence?

- Posterior decoding probability yi(i) is the
probability that the HMM is In state s; at time 1,
which can be computed as:

N ot (1) 54 (4)
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Third HMM-related Problem

* How do we choose parameter values that maximize
the model likelihood?

- Perform local search to optimize the criterion

>

arg max P|O
A
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Related HMM-based
Approachnes

o CoalHMM (Mailund et al. 2012)

- Models introgression + incomplete lineage
sorting + recombination (with a simplifying
assumption)

- Currently supports two seguences only
- Assumes that time Is discretized

* Other approaches that don’t account for
introgression (e.g., Hobolth et al. 2007)

141



Simulation Study Results

t =0.015 t»=0.15 bt
t ,=0.015t ,=0.3 1

14
12 |
10

Percentage of sites with
inferred horizontal gene flow

0 0.4 0.8
Horizontal gene flow rate M

o N A~ O O
I
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Simulation Study Results

0.3 I 0.3 |
0.25 ¥— ¢ ¥ 0.25 ¥— e i |
> >
% 0.2 | = % 0.2 | .
c% 0.15 = c% 0.15 .
i 0.1 | = i 0.1 | -
0.05 = 0.05 .
0 ' 0 l
0) 0.4 0.8 0 0.4 0.8
Migration rate Migration rate
(a) tmo = 0.015,¢,,1 = 0.15 (b) tma = 0.015,¢,,,1 = 0.3
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Simulation Study Results
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introgressed

(%)
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origin
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PhyloNet-HMM Scan of
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Future Direction #4

 Measures of selection under complex evolutionary
scenarios.
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DNA Seguence Evolution

 Walk through calculation on a single edge.

e Then for a three taxon tree.
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Future Direction #1




Future Direction #1
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Future Direction #2

* [he most widely used multiple sequence alignment
methods assume that evolution is tree-like.

Insertions

Substitutions !
AAGACTT Deletions

AAGGCTT AAGACTT

ATCGGGCAT TAGCCCT

ATCGGGCAT TAGCCCA TAGACTT AGCA AGCG
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Future Direction #2

 The most widely used multiple sequence alignment
methods assume that evolution Is tree-like.

* | propose to extend alignment approaches to the

case where evolution Is

Substitutions

AAGGCTT

ATCGGGCAT

ATCGGGCAT

AAGTAGCCC

AAGTAGACT

154

AAGTAGCCCT

AAGACTT

AAGACTT

AGCA

Not tree-like.

Insertions
Deletions

AGCG



Warfarin-associated Genes with Introgressed Origin

* Each pink node
IS 2 gene.

* Each blue link is
an interaction
between a pair
of genes.

Visualized using
Cytoscape (www.cytoscape.org). .



Warfarin-associated Genes with Introgressed Origin

Visualized using
Cytoscape (www.cytoscape.org). e



Warfarin-associated Genes with Introgressed Origin =
New Potential Targets for Personalized Warfarin Therapy

Cytochrome P450 |',
genes \
(highly studied,
responsible for drug
metabolism)

Visualized using
Cytoscape (www.cytoscape.org). -



Warfarin-associated Genes with Introgressed Origin =
New Potential Targets for Personalized Warfarin Therapy

¢

Cytochrome P450 |I

genes \
(highly studied,

e
responsible for drug \ Q\ /\\
metabolism) ' i
Poorly \/ TR
understood /
“orphan”
cytochrome
PA450 gene \

Visualized using \

Cytoscape (www.cytoscape.org).
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http://www.cytoscape.org
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Introgression
of Functional
Gene
Modules

Liu et al. in prep. 160



Introgression
of a
Functional
Cluster of
Olfactory
Receptor-
Related
Genes

161



Other

« Computational approaches constitute basic research of interest
to NSF (I1S, ABI)

* Wide range of applications of interest to different funding
agencies, including:

- The role of introgression in the spread of pesticide resistance
in wild mice, with applications to personalized wartfarin
therapy (NIH)

- The role of horizontal gene transfer in the spread of antibiotic
resistance in bacteria (NIH)

- Bacterial genomics (DOE)

- Hybridization in plants (USDA)
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Future Direction #1

* Previous analyses (at most five genomes and a
single network edge) required more than a CPU-
month on a large cluster

e Problem is combinatorial in both the number of
genomes and the number of network edges

* Challenge: efficient and accurate network-based
inference from hundreds of genomes or more
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Future Direction #1

Graduate work: /
SATE, Future work:

DACTAL, | On species networks,

elc:

Postgraduate work:
PhyloNet-HMM,
etc.

Number of sequences

|
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Single gene Entire genome
or a few genes

Sequence length
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Future Direction #2
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Future Direction #2
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Future Direction #2
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