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Metagenomics 

•  Examining genomic content of organisms 
in community/environment to better 
understand 
¡  Diversity of organisms 
¡  Their roles and interactions in the ecosystem 

•  Cultivation independent approach to study 
microbial communities 
¡  DNA directly isolated from environmental 

sample and sequenced 
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Microbial communities 

•  Collection of organisms (taxonomically distinct) 
•  Varying abundances 
•  (Possibly) different %GC content and codon usage 

biases 
•  Strain variants, genome rearrangements, etc. 

•  Community complexity is a function of carbon and 
energy sources, and environmental variables like 
temperature, pH, salinity, etc. 



Metagenomic assembly 

•  Inference of complete (or near complete) genomes of 
constituent microbial species from the sequenced DNA 
sample 

•  Metagenomic assembly of even medium complexity 
microbial communities is a challenge (Rusch et al 2007, 
Qin et al 2010) 

¡  Fragmented assemblies with short contigs 
¡  Large proportion of the input nucleotide reads remain 

unassembled 



Metagenomic assembly 

•  Assemblies serve as substrate for annotation of genome 
features and downstream functional analysis 

•  Consequence of poor assemblies 
¡  Fragmentary gene sequences 
¡  Annotation of fragmentary sequences can suffer from lack 

of accuracy and specificity 
¡  Annotation and analysis restricted to assembled data leads 

to an incomplete picture of the microbial community 



Read-based analysis 

•  Next Generation Sequencing (NGS) technologies 
produce vast amounts of sequence data 

¡  For instance, one run of Illumina HiSeq 2500 can generate 6 
billion paired-end reads (100 bp) 

•  Annotation of all reads computationally prohibitive 
¡  Also suffers from lack of accuracy due to short read lengths 



Functional analysis revisited 

Our goal: (Yang and Yooseph, NAR 2013) 
Reconstruction of (near) full-length protein sequences from 
their constituent peptide fragments identified on short read 
data 
 
 
Inference of complete protein sequences from metagenomic 
data sets should provide a more accurate picture of the 
functional and metabolic potential of the microbial community 
 



Why this approach could work 

1.  High coding density (~90%) in prokaryotic and viral 
genomes 

¡  Majority of nucleotide reads will contain portion of a gene 



Why this approach could work 

2.  There are de novo  gene finders for metagenomic data that 
can predict genes on short reads with high accuracy and are 
computationally efficient; for instance MetaGeneAnnotator 
(MGA) (Noguchi et al 2008) and FragGeneScan (FGS) (Rho 
et al 2010) 

¡  Can predict fragmentary protein sequences (short peptides) from 
nucleotide reads rapidly 



Why this approach could work 

3.  Amino acid conservation extends over a larger taxonomic 
range compared with nucleotide conservation 

¡  Thus, nucleotide polymorphisms, a striking feature of natural microbial 
populations and a major confounding factor in nucleotide assembly of 
related strains, will not be an obstacle when the assembly is carried out at 
the amino acid level, as there is a high degree of protein sequence 
conservation across strains from the same species 



Peptide Assembly Framework 
(Yang and Yooseph 2013) 

1.  Gene Finding (GF) 
¡  Use a gene finder to identify (partial) protein-coding genes (short 

peptides) from reads 

2.  Assembly (SPA) 
¡  Construct a de Bruijn graph G on the set of peptides obtained in GF 

stage 
¡  Traverse G in an informed fashion (using k-mer coverage and read 

overlap) to identify probable paths that correspond to proteins 

3.  Post processing (PP) 
¡  Refine sequence set identified in SPA using corresponding gene finder, 

to generate final set of assembled sequences 



de Bruijn graphs or k-mer graphs 

Constructed on sequences 
 
ACTGAATGCT 

K=2 

AC CT TG GA 

GC 

AT 

AA 

A de Bruijn graph G is a directed graph: 
 
The vertices in G denote the distinct k-mers (that 
is, substrings of length k) present in the 
sequences 
 
The (directed) edges in G represent the distinct 
(k+1)-mers present in the sequences 
 
An edge exists from vertex vi to vertex vj if S has 
a (k+1)-mer whose length k prefix corresponds 
to vi and whose length k suffix corresponds to vj.  



de Bruijn graph 

•  Allows for compact representation of read overlap 
information 

•  Used in many nucleotide assemblers (Idury and 
Waterman, 1995; Pevzner et al 2001) 

•  Provides alternative framework compared to overlap-
layout-consensus approach 

¡  Primary approach for most NGS data 

•  For our peptide assembly framework, we construct de 
Bruijn graphs using the amino acid alphabet 



Graph traversal:  
Identification of Initial Path Set (IPS) 

i i+1 

S: set of all reads (short peptide sequences) 
Gi: set of reads that can thus-far be fully placed on P 
Bi: set of reads that only partially overlap with P 

P 

 
Node i+1 is one with thickest extension 
Gi+1 and Bi+1 derived from Gi and Bi 

L-back 
overlap 

Path extension termination: 
Node i is terminal node, L-back overlap below threshold 
Repeat handling fails  



Subsequent steps 

•  Merge highly similar paths 
•  Recruitment of unassigned sequences 
•  Extension and merging of paths 

•  Post-processing step to handle over-prediction 
by gene-finders 



Implementation 

•  SPA output:  
¡  Sequences 
¡  MSA of its constituent peptide fragments  
¡  Various statistics on the path, including path length, 

depth of coverage at each alignment column, and the 
entropy of each column, are also output  

•  Implementation:  
¡  C++ 

•  Availability: 
¡  http://sourceforge.net/projects/spa-assembler 



Evaluation 

•  Performance compared against alternate strategy of 
assembling nucleotide reads and identifying genes on the 
resulting contigs 

•  Six different nucleotide assemblers were used in the 
evaluation 

¡  Velvet (Zerbino and Birney, 2008) 
¡  CLC (www.clcbio.com) 
¡  SOAPdenovo (Li et al 2010) 
¡  MetaVelvet (Namiki et al, 2011) 
¡  Meta-IDBA (Peng et al 2011) 
¡  IDBA-UD (Peng et al 2012) 



Evaluation 

•  Specificity, Sensitivity, Chimera rate, and Read Assembly rate 

•  Let P denote the set of amino acid sequences output by a method and let R 
denote the set of reference protein sequences 

•  A sequence in P is defined to be c% length matched to a sequence in the 
reference set R if the two sequences have an alignment with ≥90% 
sequence identity and the alignment covers ≥c% of the length of the 
reference sequence.  

and let !!denote the set of reference protein sequences. A sequence in ! is defined to be c% length 

matched to a sequence in the reference set ! if the two sequences have an alignment with !90% 

sequence identity and the alignment covers ! !% of the length of the reference sequence. We use 

this concept to define specificity and sensitivity in the context of varying alignment length coverage of 

reference sequence. Thus, 

Specificity (at c%) = !"#$%&!!"!!"#$"%&"!!!"!!!!!!"!!"#!!!!!"#$%!!!"#$!!"!"!#$!!"#$%&!!"!!"#$"%&"!!!"!!  

Sensitivity (at c%) = !"#$%&!!"!!"#$"%&"!!!"!!!!!!"!!"#!!!!!"#$%!!!"#$!!"!!"#$!!"#$%&!!"!!"#$"%&"!!!"!!  

A sequence in ! is defined to be a chimera if distinct regions on this sequence have !90% identity 

alignments to two different sequences in !. Chimera rate is the percentage of sequences in ! that 

are labeled as chimeras. 

For specificity and sensitivity calculations of each method, we excluded a sequence in ! if it did not 

have a c% length match to a sequence in the reference protein set ! but did have a high quality 

TBLASTN match (!90% identity match over !90% of its length) to one of the reference genomes 

used to construct the dataset. We took this approach since it was not always possible to distinguish 

between overcalling on the gene-finder’s part and true genes that were missed by genome annotation.  

We used these evaluation criteria to assess the performance of the methods on the datasets DS1, 

DS2, DS3, DS4, DS5, and DS6 that are of varying complexity. 

The evaluation of SPA on DS1 was intended to test its ability to reconstruct protein sequences in a 

very simplistic scenario, namely, when only a single prokaryotic genome is present and all of its 

constituent peptide fragments are available. The average specificity (at 90%), sensitivity (at 90%), 

chimera rate, and read assembly rate of SPA on DS1 (1,165 genomes) were 98.00%, 98.23%, 0.07%, 

and 99.86%, respectively; for the length match definition in this evaluation, we required a sequence 

identity of !98% (instead of only !90%) since we were considering each of the genomes separately. 

SPA’s performance shows that, for this scenario, it can recover nearly the full lengths of all the 

proteins from their constituent peptide fragments. Furthermore, in the reconstruction process, SPA 

incorporates nearly all of the constituent input peptide fragments while producing very few false 

positives and a negligible number of chimeras. 

DS2 was intended to evaluate the performance of SPA on a collection of closely related genomes in a 

scenario where all of the constituent peptide fragments from these genomes are available and the 

genomes are in equal abundance. The specificity (at 90%), sensitivity (at 90%), chimera rate, and 

read assembly rate on DS2 were 89.23%, 93.4%, 0.26%, and 99.24%, respectively. While its 

performance drops slightly compared to the simpler single genomes scenario, nevertheless, SPA is 

able to reconstruct nearly complete sequences of the proteins in these genomes with a very low 

chimera rate. 



Datasets 

•  Amino acid sequence sets 
To evaluate SPA algorithm only 
DS1. Individual genomes 
DS2. Protein fragments from a collection of genomes 
 

•  Nucleotide sequence sets 
To evaluate SPA framework 
DS3. (Simulated oral microbiome) 
DS4. (Simulated marine metagenome) 
DS5. (HMP Saliva sample)  
DS6. (HMP Stool sample) 



DS3. Simulated oral microbiome 

•  Initial set of 25 genomes 
•  Generated a community of 500 

genomes using the population sampler 
in MetaSim (Richter et al 2008) 

¡  Jukes-Cantor model of DNA evolution 
•  These 500 genome sequences were 

then sampled (at 10X depth of 
coverage) using wgsim 

¡  Generate 100 bp paired-end reads 
from inserts of size 300 bp 

•  Total 115,991,500 reads 
•  The reference protein set  

¡  40,724 non-redundant sequences 
¡  clustering the combined set of proteins 

from the initial 25 genomes using cd-hit 
at 95% 

Streptococcus agalactiae 2603V R
Treponema denticola ATCC 35405

Lactobacillus salivarius UCC118
Streptococcus pneumoniae 670 6B

Streptococcus pyogenes M1 GAS
Streptococcus pyogenes Manfredo

Streptococcus pyogenes MGAS10750
Streptococcus sanguinis SK36

Streptococcus gordonii Challis substr  CH1
Propionibacterium acnes KPA171202

Propionibacterium acnes SK137
Veillonella parvula DSM 2008

Lactobacillus acidophilus NCFM
Lactobacillus brevis ATCC 367
Lactobacillus casei ATCC 334

Lactobacillus casei BL23
Lactobacillus casei Zhang

Lactobacillus fermentum IFO 3956
Lactobacillus gasseri ATCC 33323

Lactobacillus rhamnosus GG
Lactobacillus rhamnosus Lc 705

Streptococcus mitis B6
Prevotella melaninogenica ATCC 25845

Streptococcus mutans UA159
Fusobacterium nucleatum ATCC 25586

Percentage
0 2 4 6 8



Simulated oral microbiome 

0% sequence error 
FGS gene-finder 



DS4. Simulated marine metagenome 

•  A total of 103,915,150 reads were generated in a manner 
similar to the method used for DS3 

•  The reference protein set 
¡  64,913 non-redundant sequences 

Alteromonas macleodii  Deep ecotype
Roseobacter denitrificans OCh 114

Shewanella baltica OS155
Shewanella denitrificans OS217

Erythrobacter litoralis HTCC2594
Photobacterium profundum SS9

Vibrio fischeri MJ11
Vibrio harveyi ATCC BAA 1116

cyanobacterium UCYN A
Nitrosococcus oceani ATCC 19707

Synechococcus CC9311
Synechococcus CC9605

Synechococcus elongatus PCC 6301
Synechococcus RCC307

Synechococcus WH 8102
Flavobacteriales bacterium HTCC2170

Prochlorococcus marinus AS9601
Prochlorococcus marinus MIT 9301
Prochlorococcus marinus MIT 9312
Prochlorococcus marinus MIT 9313
Prochlorococcus marinus MIT 9515

Candidatus Pelagibacter ubique HTCC1062
Candidatus Pelagibacter sp HTCC7211

Candidatus Pelagibacter IMCC9063
Candidatus Pelagibacter HTCC1002

Percentage

0 2 4 6 8



Simulated marine metagenome 
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0% sequence error 
FGS gene-finder 



Read assembly rate and Chimera rate 



Saliva  Stool 

HMP data sets 

•  Human Microbiome Project (HMP) 
•  GenBank SRA accession SRS013942 
•  Already quality trimmed and filtered  

to remove human sequences 
•  Illumina paired-end 100 bp reads 
•  14,637,415 reads 
 

•  Human Microbiome Project (HMP) 
•  GenBank SRA accession SRS014459 
•  Already quality trimmed and filtered  

to remove human sequences 
•  Illumina paired-end 100 bp reads 
•  86,362,260 reads 

FGS gene-finder 



Evaluation summary 

•  For protein reconstruction, SPA framework performs 
much better than alternate nucleotide assembly based 
approach 

•   Low chimera rates (for all methods) 

•  SPA has amongst highest read assembly rate 

•  SPA performance using FGS slightly better than that 
using MGA 

 



Graph traversal:  
Identification of Initial Path Set (IPS) 

i i+1 

S: set of all reads (short peptide sequences) 
Gi: set of reads that can thus-far be fully placed on P 
Bi: set of reads that only partially overlap with P 

P 

 
Node i+1 is one with thickest extension 
Gi+1 and Bi+1 derived from Gi and Bi 

L-back 
overlap 



Speed-up using Suffix Array 
(Yang, Zhong, and Yooseph, in prep) 

 



Search problem 

Input: 
•  Query (or reference) protein sequence Q 
•  Database db of protein sequences 

Goal: 
Identify sequences in db that are homologous to Q 



Popular solution: BLAST 

•  What happens when db contains short peptide 
sequences? 
¡  Collection of gene predictions (mostly fragmentary) 

from a metagenomic dataset 

•  Performance of BLAST would be dependent on 
¡  Length of sequences in db 
¡  Degree of conservation of protein family 



Example: RNA polymerase beta subunit  
(PF04563) 
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Example: LigT like Phosphoesterase  
(PF02834) 
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Can we do better? 

What if there are sequences in db that are from the same 
(or related) protein family as Q ? 

¡  As is the case for metagenomic data 

 
Thus, what if, while searching db, we also assemble 
overlapping db sequences related to Q? 
 
With assembled sequences, improved ability to detect 
HSPs, and therefore improved sensitivity of identification of 
homologs of Q 
 
 



GRASP 
 

Guided Reference based Assembly of Short 
Peptides 

(Zhong, Yang, and Yooseph, in prep) 
 



Conceptual idea using k-mer graph 

Construct a k-mer graph G of sequences in db  

Query Q 

Need to check that the path has support of peptides in db 



GRASP strategy 
(Zhong, Yang, and Yooseph, in prep) 

Database db 
(Σ) 

 db in reduced alphabet 
space (Σ*) 

Query Q 
(Σ) 

 Q in reduced alphabet 
space (Σ*) 

Exact k-mer matches 

Extension of seeds and assembly of short 
peptides (in Σ) 

Identification of high scoring 
assembled short peptides 



GRASP – extension step 

Q 

Region aligned 

Right extension 
String x 

Suffix Array of db 

Strings with 
prefix x 

Left extension (similar fashion using reverse 
suffix array of db) 

Banded alignment 

Q 

db 

Check for support and placement of short peptides 



GRASP output 

•  Master-slave multiple sequence alignment of 
short peptides (slave) to query Q (master) 

•  Certificate 
¡  To convey evidence that a given short peptide, while 

individually may not meet the score (or E-value) 
threshold, does so when assembled with other short 
peptides 

¡  Composed of the assembly graph 
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Example: RNA polymerase beta 
subunit  (PF04563) 



Example: LigT like Phosphoesterase  
(PF02834) 
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Glycosyl hydrolase superfamily members 
(PF00128, PF00933, PF01120, PF12888, PF14701) 
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Conclusions 

•  SPA and GRASP are promising approaches for 
analyzing proteins in metagenomic datasets 

•  Resulting peptide assemblies could be used as a starting 
point for studying protein family evolution and function, 
and for inferring metabolic potential of constituent 
microbes 
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