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Abstract

With the advent of next generation sequencing technologies, alignment and phylogeny

estimation of datasets with thousands of sequences is being attempted. To address these

challenges, new algorithmic approaches have been developed that have been able to pro-

vide substantial improvements over standard methods. This paper focuses on new ap-

proaches for ultra-large tree estimation, including methods for co-estimation of alignments

and trees, estimating trees without needing a full sequence alignment, and phylogenetic

placement. While the main focus is on methods with empirical performance advantages,

we also discuss the theoretical guarantees of methods under Markov models of evolution.

Finally, we include a discussion of the future of large-scale phylogenetic analysis.

1 Introduction

Evolution is a unifying principle for biology, as has been noted by Dobzhansky, de Chardin,

and others1. Phylogenies are mathematical models of evolution, and therefore enable

insights into the evolutionary relationships between organisms, genes, and even networks.

Indeed, phylogeny estimation is a major part of much biological research, including the

inference of protein structure and function, of trait evolution, etc. [3].

Phylogeny estimation from molecular sequences generally operates as follows: first

the sequences are aligned through the insertion of spaces between letters (nucleotides or

amino-acids) in the sequences, and then a tree is estimated using the alignment. This

“two-phase” approach to phylogeny estimation can produce highly accurate estimations

1The famous quote by Dobzhansky “Nothing in biology makes sense except in the light of evolution” [1]
reflects the less known quote by the Jesuit priest Pierre Teilhard de Chardin [2], who wrote “Evolution
is a light which illuminates all facts, a curve that all lines must follow.”
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of the tree for small to moderate-sized datasets that are fairly closely related. However,

datasets that contain sequences that are quite different from each other (especially if the

datasets are very large), can be very difficult to align - and even considered “un-alignable”,

and trees based on poor alignments can have high error [4–11].

Although the estimation of both alignments and phylogenies is challenging for large,

highly divergent datasets, there is substantial evidence that phylogenetic analyses of large

datasets may result in more accurate estimations of evolutionary histories, due to im-

proved taxonomic sampling [12–15]. Thus, although not all datasets will be improved

through the addition of taxa, some phylogenetic questions - particularly the inference of

deep evolutionary events - seem likely to require large datasets.

In this chapter, we discuss the challenges involved in estimating large alignments

and phylogenies, and present some of the new approaches for large alignment and tree

estimation. Thus, this chapter does not attempt to survey alignment estimation methods

or tree estimation methods, each of which is an enormous task and discussed in depth

elsewhere; see [16–20] for phylogeny estimation and [11, 21–27] for alignment estimation.

We begin with the basics of alignment and phylogeny estimation in Section 2, including

Markov models of sequence evolution and statistical performance criteria; this section

also discusses the class of “absolute fast converging methods” and presents one of these

methods. Section 3 discusses some methods that co-estimate alignments and trees (rather

than operating in two-phases). Section 4 presents methods that estimate trees without

needing a full multiple sequence alignment. We close with a discussion about the future

of large-scale alignment and phylogenetic tree estimation in Section 5.

2 Two-phase Alignment and Phylogeny Estimation

This section contains the basic material for this book chapter. We begin with a description

of a phylogenomic pipeline (estimating the species history from a set of genes), and discuss

the issues involved in resolving incongruence between different gene trees. We then discuss

general issues for multiple sequence alignment estimation and evaluation, including how

alignments can be used for different purposes, and hence evaluation metrics can differ.

We describe certain algorithmic techniques for multiple sequence alignment that have

been used to enable large-scale analyses, including template-based methods, divide-and-

conquer, and progressive alignment, and we discuss some alignment methods that have
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Alignment Method Data Largest dataset Publications Techniques

MAFFT-PartTree all 93,681 [28] [29] progressive
Clustal-Quicktree all 27,643 [30] [31] progressive

Kalign-2 all 50,175 [28] [32] progressive
Clustal-Omega amino-acid 93,681 [28] [28] progressive

HMMs
Neuwald’s method amino-acid 400,000 (approx.) [33] [33] template

Table 1. Table of methods for large-scale multiple sequence alignment estimation. We
show methods that have published results on datasets with at least 25,000 sequences,
showing the type of data (DNA, RNA, amino-acid, or all), the largest number of
sequences in published dataset analyses, publications for the method, and techniques
used. The methods listed in the table for co-estimation of alignments and trees can also
be considered as alignment estimation methods, but are not listed here. Finally, the
largest dataset size we note here for each method may not be the largest performed, but
is the largest we were able to find and document. It is also possible that there are
publications we are not aware of that present analyses of datasets of this size using
methods not listed here.

been used on very large datasets.

We then turn to tree estimation, beginning with stochastic models of sequence evolu-

tion and statistical performance criteria for phylogeny estimation methods. We provide

a brief background in the theoretical guarantees of different phylogeny estimation meth-

ods (e.g., which methods are statistically consistent under the basic sequence evolution

models and the sequence length requirements of methods), as well as some discussion

about their empirical performance on large datasets. We discuss gap treatment methods

and their performance guarantees, and the empirical impact of these methods on phylo-

genetic analyses. We then discuss the analysis of datasets that contain short sequences

(i.e., fragments of full-length sequences), including phylogenetic placement methods that

insert short sequences into pre-computed trees, and how these methods can be used in

metagenomic analysis.

Although this chapter provides some discussion about many methods - both for align-

ment estimation and phylogeny estimation - the focus is on those methods that can analyze

large datasets. The main effort, therefore, is to describe just a few methods, and to try

to identify the algorithmic techniques that make them able to analyze large datasets.
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Phylogeny Method Data Largest dataset Publications Techniques

FastTree-2 all 1.06 million (approx.) [34] maximum likelihood
RAxML all 55,473 [35] [36] maximum likelihood
TNT all 73,060 [37] [38] maximum parsimony

DACTAL all 27,643 [30] [30] iteration
(almost alignment-free) divide-and-conquer

supertree

Table 2. Table of methods for large-scale phylogeny estimation. We show methods that
have published results on datasets with at least 25,000 sequences, showing the type of
data (DNA, RNA, amino-acid, or all), the largest number of sequences in published
dataset analyses, publications for the method, and techniques used. We do not show
results for distance-based methods, although these tend to be able to run (efficiently) on
very large datasets. With the exception of DACTAL, these methods require an input
alignment. The methods listed in the table for co-estimation of alignments and trees can
also be considered phylogeny estimation methods, but are not listed here. Finally, the
largest dataset size we note here for each method may not be the largest performed, but
is the largest we were able to find and document. It is also possible that there are
publications we are not aware of that present analyses of datasets of this size using
methods not listed here.

Phylogeny Method Data Largest dataset Publications Techniques

SATé all 27,643 [39] [10, 39] iteration, progressive
co-estimates divide-and-conquer

alignments and trees maximum likelihood
Mega-phylogeny all 55,473 [35] [35] divide-and-conquer

co-estimates maximum likelihood
alignments and trees

Table 3. Table of methods for large-scale co-estimation of phylogenies and alignments.
We show methods that have published results on datasets with at least 25,000
sequences, showing the type of data (DNA, RNA, amino-acid, or all), the largest
number of sequences in published dataset analyses, publications for the method, and
techniques used. Finally, the largest dataset size we note here for each method may not
be the largest performed, but is the largest we were able to find and document. It is also
possible that there are publications we are not aware of that present analyses of datasets
of this size using methods not listed here.
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2.1 Standard phylogenomic analysis pipelines

The focus of this paper is on the estimation of alignments and trees for single genes, which

normally follows a two-phase process: first the sequences are aligned, and then a tree is

estimated on the alignment. However, a description of how a species tree is estimated can

help put these methods into a larger context.

Because gene trees can differ from species trees due to biological causes (such as in-

complete lineage sorting, gene duplication and loss, and horizontal gene transfer [40]),

species tree estimations are based on multiple genes rather than any single gene. At the

simplest level, this can involve just a handful of genes, but increasingly “phylogenomic”

analyses (involving genes from throughout the genome) are being performed [41–44], fol-

lowed by biological discoveries based on these phylogenomic analyses [45]. The following

approaches are the dominant methods used to estimate species trees from multiple genes:

1. Markers are selected, and homologous regions within the genomes are identified

across the species; these homologous regions are sometimes limited to the orthol-

ogous parts, so that gene duplication and loss does not need to be considered in

estimating the species history.

2. Multiple sequence alignments are estimated on each marker.

3. At this point, the standard analysis pipeline continues in one of the following ways:

(a) the gene sequence alignments can be concatenated, and a tree estimated on

the “super-matrix”,

(b) gene trees can be estimated, and then combined together into a species tree us-

ing supertree methods [46–54] or methods that explicitly take biological causes

(e.g., incomplete lineage sorting and gene duplication and loss) for gene tree

incongruence into account [40, 42, 55–70], or

(c) the species tree can be estimated directly from the set of sequence alignments,

taking biological causes for gene tree incongruence into account (an example is

*BEAST, which co-estimates the gene trees and species tree directly from the

input set of alignments [71]).

The first approach is distinctly different in flavor from the last two approaches, and is

called the “super-matrix” or “combined analysis” approach. The relative merits of these
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approaches with respect to accuracy are debated, but for statistical reasons, it makes

sense to use methods that consider biological causes for incongruence when estimating

species trees from multiple markers. The development and understanding of methods for

estimating species trees given multiple genes, taking incomplete lineage sorting (ILS) and

gene duplication and loss into account, is an active research area; see, for example, papers

on this subject in the session on Phylogenomics and Population Genomics at the 2013

Pacific Symposium on Biocomputing [72–75].

2.2 Multiple Sequence Alignment

Introduction. Alignment methods vary in type of data (DNA, RNA, or amino-acid)

they can handle, and also, to some extent, the objectives of the alignment method.

Thus, some methods are designed exclusively for proteins [33, 76–81], some exclusively

for RNAs [82–87], but many alignment methods can analyze both protein and nucleotide

datasets. We refer to methods that can analyze all types of molecular sequences as

“generic” methods.

Alignment methods are used to predict function and structure, to determine whether a

sequence belongs to a particular gene family or superfamily, to recognize homology in the

‘twilight zone’ (where sequence similarity is so low that homology is difficult to detect),

to infer selection, etc. [11]. On the other hand, alignment methods are also used in order

to estimate a phylogeny. As we shall see, the design of alignment methods and how they

are evaluated depend on the purpose they are being used for.

MSA Evaluation Criteria. The standard criteria used to evaluate alignments for

accuracy are based on shared homologies between the true and the estimated alignment,

with the SP-score [88,89] (sum-of-pairs score) measuring the fraction of the true pairwise

homologies correctly recovered, and the TC-score (“total column” score) measuring the

number of identical columns. Variants on these criteria include the true metrics suggested

by Blackburne et al. [90] and the consideration of different types of alignment error (i.e.,

both false positive and false negative) rather than one overall measure of “alignment

accuracy” [89]. Other criteria, such as the identification and correct alignment of specific

regions within a protein or rRNA, have also been used [33, 91]. Furthermore, because

sequence alignment has the potential to impact phylogeny estimation, a third way of

evaluating a multiple sequence alignment method is via its impact on phylogeny estimation
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[11].

Thus, there are at least three different ways of assessing alignment accuracy: the first

type uses standard criteria and their variants (e.g., SP, TC, Cline Shift scores, and the

methods suggested in [89,90]) that focus on shared homologies and treat them all identi-

cally; the second type reports accuracy with respect to only those sites with functional or

structural significance; and the third type focuses on phylogenetic accuracy. These crite-

ria are clearly related, but improved performance with respect to one criterion may not

imply improved performance with respect to another! An example of this is given in [10],

where some estimated alignments differed substantially in terms of their SP-scores, and

yet maximum likelihood trees on these alignments had the same accuracy. Similarly, when

the objective is protein structure and function prediction, mistakes in alignments that are

not structurally or functionally important may not impact these predictions, and so two

alignments could yield the same inferences for protein structure and function and yet have

very different scores with respect to standard alignment evaluation criteria. Furthermore,

the algorithmic techniques that lead to improved results for one purpose may not lead

to improved performance for another, and benchmark datasets used to evaluate methods

may also not be identical.

Benchmark datasets. Many studies (see [21, 24, 27, 87, 92, 93] for examples) have

evaluated MSA methods using biological data for which structurally informed alignments

are available. The best known of these benchmark datasets is probably BAliBASE [94],

but others are also used [95–98]. The choice of benchmarks and how they are used

has a large impact on the result of the evaluation, and so has been discussed in several

papers [24, 78, 99–101].

However, the use of structurally-defined benchmarks has also been criticized [11, 100,

102] as being inappropriate for evaluating alignments whose purpose is phylogenetic esti-

mation. The main criticism is the observation that structural or functional “homology”

and “positional homology” (whereby two residues are positionally homologous if and only

if they descend from a residue in their common ancestor by substitutions alone [103])

are different concepts, and that molecules with residues that are functionally or struc-

turally homologous due to convergent evolution without being positionally homologous

have been found [11, 102, 104]. Thus, alignments that are correct with respect to func-

tional or structural homology may be incorrect with respect to positional homology, and
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therefore violate the assumptions used in phylogenetic estimation. However, even re-

puted benchmark alignments have errors, as discussed in [11, 100], making the use of

these benchmarks even for detecting structural motifs questionable in some cases.

The use of benchmarks in general, and specifically structural benchmarks, is discussed

at length by Iantoro et al. [100]. From the perspective of phylogeny estimation, one of the

most important of their observations is that structurally-defined benchmarks often omit

the highly variable parts of the molecule, including introns. Thus, an alignment can be

considered completely correct as a structural alignment if it aligns the conserved regions,

even if it fails to correctly align the variable regions. The problem with this criterion (as

they point out) is that the highly variable portions are often the sites that are of most use

for phylogeny estimation, whereas sites that change slowly have little phylogenetic signal.

An obvious response to the concerns about the potential disagreement between posi-

tional homology and structural homology is that while they two concepts are not identical,

structural features tend to change slowly and so there is a close relationship between the

two concepts [105]. Thus, for many datasets, and perhaps even most, these definitions

may be identical, and so the use of structural benchmarks is acceptable (and advisable)

for most cases. However, the criticism raise by Iantoro et al. regarding the elimination of

the highly variable regions in the benchmark is more difficult to counter, except, perhaps,

by saying that correct structural alignments of the variable regions are much more difficult

to establish.

This is one of the reasons that simulated data are also used to evaluate MSA methods:

the true alignment is known with certainty, including the alignment of the hyper-variable

regions. Another advantage of simulated datasets is that they enable the exploration of

a larger range of conditions, whereas only a few biological datasets are used as alignment

benchmarks. Finally, simulated datasets, when simulated on model trees under an evolu-

tionary process, also provide a true tree to which estimated trees can be compared. Thus,

when the purpose of the alignment is to estimate the phylogeny, simulations of sequence

evolution down model trees present definite advantages over structural benchmarks, and

have become the standard technique for evaluating alignments.

Relative performance of MSA methods. While most studies have evaluated align-

ment methods in terms of standard criteria (notably, SP and TC scores) on biological

benchmarks, some studies have explored alignment estimation for phylogeny estimation



9

purposes. As commented on earlier, many studies have shown that alignment estimation

impacts phylogenetic estimation, and that alignment and tree error increase with the rate

of evolution. Also, on very large datasets, due to computational limitations, only a few

alignment methods can even be run (and typically not the most accurate ones), which

results in increased alignment error [6]. On the other hand, on large trees with rates of

evolution that are sufficiently low, alignment estimation methods can differ substantially

in terms of SP-score without impacting the accuracy of the phylogenetic tree estimated

using the alignment [10]. More generally, standard alignment metrics may be only poorly

correlated with tree accuracy in some conditions.

Not all alignment methods have been tested for their impact on phylogenetic accu-

racy; however, among those that have been tested, MAFFT [106] (when run in its most

accurate settings) is among the best performing methods [4,6,10,39] on both proteins and

nucleotides, especially on datasets with many sequences. For small nucleotide datasets,

especially those with relatively low rates of evolution, other methods (e.g., Probcons [107]

and Prank [108]) can give excellent results [109, 110].

Progressive aligners, and the impact of guide trees. Many alignment methods

use progressive alignment on a guide tree to estimate the alignment; thus the choice of the

guide tree and its impact on alignment and phylogeny estimation is also of interest [109,

111–113]. Nelesen et al. [109] studied the impact of the guide tree on alignment methods,

and showed that improved phylogenetic accuracy can be obtained by first estimating a tree

from the input using a good two-phase method (RAxML [36] on a MAFFT alignment).

They noted particular benefits in using Probcons with this guide tree, and called the

resultant method “Probtree”. Prank has also been observed to be very sensitive to guide

trees [113], and to give improved results by the use of carefully computed guide trees

(maximum likelihood on good alignments) [10, 112]. Another study showed that even

when the alignment score doesn’t change, the alignment itself can change in important

ways when guide trees are changed [111]. Finally, Capela-Gutierrez and Gabaldon [113]

found that the placement of gaps in an alignment results from the choice of the guide tree,

and hence the gaps are not phylogenetically informative. Based on these observations,

Capela-Gutierrez and Gabaldon recommended that alignment estimation methods should

use the true tree (if possible), or else use an iterative co-estimation method that infers

both the tree and the alignment.
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Template-based methods. Some alignment methods use a very different type of

algorithmic structure, which is referred to as being “template-based” [24]. Instead of

using progressive alignment on a guide tree, these methods use models (either profiles,

templates, or Hidden Markov Models) for the gene of interest, and align each sequence to

the model in order to produce the final multiple sequence alignment, as follows. First, a

relatively small set of sequences from the family is assembled, and an alignment estimated

for the set. Then, some kind of model (e.g., a template or a Hidden Markov Model) is

constructed from this “seed” alignment. This model can be relatively simple or quite

complex, typically depending on whether the model provides structural information. Once

the model is estimated, the remaining sequences are added to the growing alignment. The

model is used to align each sequence to the seed alignment (which does not change during

the process), and then inserted into the growing alignment. Since the remaining sequences

are only compared to the seed alignment, homologies between the remaining sequences

can only be inferred through their homologies to the seed alignment. Thus, the choice

of sequences in the seed alignment and how it is estimated can have a big impact on

the resultant alignment accuracy. By design, once the seed alignment and the model

are computed, the running time scales linearly with the number of sequences, and the

algorithm is trivially parallelizable. Thus, these methods, which we will refer to jointly as

“template-based methods”, can scale to very large datasets with hundreds of thousands

of sequences.

There are several examples of methods that use this approach [33,85–87,114–116] (see

pages 526-529 in [11]). Some of these methods use curated seed alignments based on

structure and function of well-characterized proteins or rRNAs; for example, the protein

alignment method by Neuwald [33] and the rRNA sequence alignment method by Gardner

et al. [87] use curated alignments. Constraint-based methods, such as COBALT [117],

3DCoffee [79] and PROMALS [76], similarly use external information like structure and

function, but then use progressive alignment techniques (or other such methods) to pro-

duce the final alignment. Clustal-Omega also has a version, called “External Profile

Alignment”, that uses external information (in the form of alignments) to improve the

alignment step.

Finally, PAGAN [116] is another member of this class of methods; however, it has

some specific methodological differences to the others. First, unlike several of the others,

it does not use external biological information (about structure, function, etc.) to define
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its seed alignment. Second, while the others tend to use either HMMs, profiles, or tem-

plates as a model to define the alignment of the remaining sequences, PAGAN estimates

a tree on its seed alignment, and estimates sequences for the internal nodes. These se-

quences are then used to define the incorporation of the remaining sequences to the seed

alignment. This technique is very similar to the technique used in PaPaRa [118], which

was developed for the phylogenetic placement problem (see Section 2.4). Thus, PAGAN

is one of the “phylogeny-aware” alignment methods, a technique that is atypical of these

template-based methods, but shared by progressive aligners. PAGAN was compared to an

HMM-based method (using HMMER on the reference alignment to build an HMM, and

then using HMMALIGN to align the sequences to the HMM) on several datasets [116].

The comparison showed that PAGAN had very good accuracy, better than HMMALIGN,

under low rates of evolution, and that both methods had reduced accuracy under high

rates of evolution. They also noted that PAGAN failed to align some sequences under

model conditions with high rates of evolution, while HMMER aligned all sequences; how-

ever, the sequences that both HMMER and PAGAN aligned were aligned more accurately

using PAGAN.

Several studies [21, 33, 76, 80, 81, 87, 119] have shown that alignment methods that

use high quality external knowledge can surpass the accuracy of some of the best purely

sequence-based alignment methods. However, none of these template-based and constraint-

based alignment estimation methods (whether or not based upon external biological

knowledge) have been tested for their impact on phylogenetic estimation; instead, they

have only been tested with respect to standard alignment criteria (e.g., SP-score), iden-

tification of functional or structural residues, or membership in a gene family. Thus, we

do not know whether the improvements obtained with respect to traditional alignment

accuracy metrics will translate to improvements in phylogeny estimation.

Methods that use divide-and-conquer on the taxon set. Some alignment meth-

ods use a divide-and-conquer strategy in which the taxon set is divided into subsets

(rather than the sites) in order to estimate the alignment; these include the mega-

phylogeny method developed by Smith et al. [120], SATé [10, 39], SATCHMO-JS [78],

PROMALS [76], and the method by Neuwald [33]. (The SATé and SATCHMO-JS meth-

ods co-estimate alignments and trees, and so are not strictly speaking just alignment

methods.) Neuwald’s method is a bit of an outlier in this set, because the user provides
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the dataset decomposition, but we include it here for comparative purposes.

While the methods differ in some details, they use similar strategies to estimate align-

ments. Most estimate an initial tree, and then use the tree to divide the dataset into

subsets. The method to compute the initial trees differs, with SATCHMO-JS using a

neighbor joining [121] (NJ) tree on a MAFFT alignment, SATé using a maximum likeli-

hood tree on a MAFFT alignment, PROMALS using a UPGMA tree on k-mer distances,

and mega-phylogeny using a reference tree and estimated alignment. (See the description

of mega-phylogeny provided by Roquet et al. [122] for more details.)

The subsequent division into subsets is performed in two ways. In the case of mega-

phylogeny, SATCHMO-JS, and PROMALS, the division into subsets is performed by

breaking the starting tree into clades so as to limit the maximum dissimilarity between

pairs of sequences in each set. In contrast, SATé-2 [39] removes centroid edges from the

unrooted tree, recursively, until each subset is small enough (below 200 sequences). Thus,

the sets produced by the SATé-2 decomposition do not form clades in the tree, unlike the

other decompositions. Furthermore, the sets produced by the SATé-2 decomposition are

guaranteed to be small (at most 200 taxa) but are not constrained to have low pairwise

dissimilarities between sequences.

Alignments are then produced on each subset, with PROMALS, SATé, and mega-

phylogeny estimating alignments on each subset, and SATCHMO-JS using the alignment

induced on the subset by the initial MAFFT alignment.

These alignments are then merged together into an alignment on the full set, but the

methods use different techniques. PROMALS and mega-phylogeny use template-based

methods to merge the alignments together, while SATCHMO-JS and SATé use progressive

alignment techniques. PROMALS also uses external knowledge about protein structure

to guide the template-based merger of the alignments together. PROMALS, SATCHMO-

JS, and mega-phylogeny use sophisticated methods to merge subset-alignments, but SATé

uses a very simple method (Muscle) to merge subset-alignments.

Neuwald’s method [33] shares many features with these four methods, but has some

unique features that are worth pointing out. First, like SATCHMO-JS and PROMALS,

Neuwald’s method can only be used on proteins (mega-phylogeny and SATé can be used on

both nucleotides and protein sequences). Neuwald’s method requires the user to provide

a dataset decomposition and also a manually curated seed alignment reflecting structural

and functional features of the protein family. The algorithm operates by estimating
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alignments on the subsets using simple methods, and then uses the seed alignment to

merge the subset-alignments together.

Note that Neuwald’s method, PROMALS, and mega-phylogeny are essentially template-

based methods, and as such are very scalable once their templates are computed (this first

step, however, can be very labor-intensive, if it depends on expert curation). Mega-

phylogeny has been used to analyze a dataset with more than 50,000 nucleotide se-

quences [35], and Neuwald’s method has been used to analyze a dataset with more than

400,000 protein sequences. By contrast, because SATCHMO-JS and SATé both rely upon

progressive alignment, their running times are longer. Furthermore, SATé uses iteration

to obtain improved results (even though the first iteration gives the most improvement),

and although most runs finish in just a few iterations, this also adds to the running time.

SATé has been used to analyze a dataset with approximately 28,000 nucleotide sequences,

but has not been tested on larger datasets.

In terms of performance evaluations, Neuwald’s method, SATCHMO-JS, and PRO-

MALS, have been assessed using protein alignment benchmarks, and shown to give excel-

lent results over standard methods. Ortuno et al. [21] explored the conditions in which

PROMALS gave improvements over the other methods, and showed that the conditions

in which the improvements were substantial were when the sequences were close to the

‘twilight zone’ (i.e., almost random with respect to each other), which is where sequence

homology is difficult to detect, and information about structure is the most helpful.

The accuracy of SATé has been assessed using nucleotide alignments, and shown to

be very good, both for standard alignment criteria and for phylogenetic accuracy [39]. A

recent study [119] evaluated protein alignment methods (including SATé) on large datasets

with respect to the TC (total column) score. They found substantial differences in running

time between the template-based methods (which had the best speed) and other methods,

including SATé, and so only ran the fastest methods on the largest datasets, which had

50,000 protein sequences. To the best of our knowledge, the mega-phylogeny method has

not been compared to other methods on benchmark datasets with curated alignments or

trees.

Very large-scale alignment. When the datasets are very large, containing many

thousands of sequences, only a few alignment estimation methods are able to run. As

noted, the template-based methods (including PROMALS and mega-phylogeny) scale
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linearly with the number of taxa, and so can be used with very large datasets. SATé

and SATCHMO-JS are not quite as scalable; however, SATé has been able to analyze

nucleotide datasets with about 28,000 sequences. Other methods that have been shown to

run on very large datasets include Clustal-Omega [28], MAFFT-PartTree [29], and Kalign-

2 [32], but many methods fail to run on datasets with tens of thousands of sequences [6].

Of these, Clustal-Omega is only designed for protein sequences, but MAFFT-PartTree

and Kalign-2 can analyze both nucleotide and amino-acid sequences.

SATé is computationally limited by its use of progressive alignment and maximum

likelihood method (RAxML or FastTree-2 [34]) in each iteration; both impact the run-

ning time and - in the case of large numbers of long sequences - memory usage. However,

although limited to datasets with perhaps only 30,000 sequences (or so), on fast-evolving

datasets with 1000 or more sequences, SATé provides improvements in phylogenetic ac-

curacy relative to competing methods [6, 39].

2.3 Tree estimation

Most phylogeny estimation methods are designed to be used with sequence alignments,

and so presume that the alignment step is already completed. These methods are generally

studied with respect to their performance under Markov models of evolution in which

sequences evolve only with substitutions. Therefore, we begin with a discussion about site

substitution models, and about statistical performance guarantees under these models.

2.3.1 Stochastic models of sequence evolution

We begin with a description of the simplest stochastic models of DNA sequence evolu-

tion, and then discuss amino-acid sequence evolution models and codon evolution models.

The simplest models of DNA sequence evolution treat the sites within the sequences in-

dependently. Thus, a model of DNA sequence evolution must describe the probability

distribution of the four states, A, C, T, G, at the root, the evolution of a random site (i.e.,

position within the DNA sequence) and how the evolution differs across the sites. Typi-

cally the probability distribution at the root is uniform (so that all sequences of a fixed

length are equally likely). The evolution of a single site is modeled through the use of

“stochastic substitution matrices,” 4× 4 matrices (one for each tree edge) in which every

row sums to 1. A stochastic model of how a single site evolves can thus have up to 12 free
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parameters. The simplest such model is the Jukes-Cantor model, with one free parameter,

and the most complex is the General Markov model, with all 12 parameters [123]:

Definition 1 The General Markov (GM) model of single-site evolution is defined as fol-

lows.

1. The nucleotide in a random site at the root is drawn from a known distribution, in

which each nucleotide has positive probability.

2. The probability of each site substitution on an edge e of the tree is given by a 4 × 4

stochastic substitution matrix M(e) in which det(M(e)) is not 0, 1, or −1.

This model is generally used in a context where all sites evolve identically and inde-

pendently (the i.i.d. assumption), with rates of evolution drawn typically drawn from a

gamma distribution. (Note that the distribution of the rates-across-sites has an impact

on phylogeny estimation and dating, as discussed by Evans and Warnow [124].) In what

follows, we will address the simplest version of the GM model so that all sites have the

same rate of evolution.

We denote a model tree in the GM model as a pair, (T, {M(e) : e ∈ E(T )}), or more

simply as (T, M). For each edge e ∈ E(T ), we define the length of the edge λ(e) to

be − log |det(M(e))|. This allows us to define the matrix of leaf-to-leaf distances, {λij},

where λij =
∑

e∈Pij
λ(e), and where Pij is the path in T between leaves i and j. A

matrix defined by path distances in a tree with edge weights is called “additive”, and it

is a well-known fact that given any additive matrix, it is easy to recover the underlying

leaf-labelled tree T for that matrix in polynomial time.

This general model of site evolution subsumes the great majority of other models

examined in the phylogenetic literature, including the popular General Time Reversible

(GTR) model [125], which requires only that M(e) = M(e′) for all edges e and e′. Fur-

ther constraints on the matrix M(e) produce the Hasegawa-Kishino-Yang (HKY) model,

the Kimura 2-parameter model (K2P), the Kimura 3-ST model (K3ST), the Jukes-Cantor

model (JC), etc. These models are all special cases of the General Markov model, because

they place restrictions on the form of the stochastic substitution matrices. The standard

model used for nucleotide phylogeny estimation is GTR+gamma, i.e., the General Time

Reversible (GTR) model of site substitution, equipped with a gamma distribution of rates

across sites.
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Protein models. Just as with DNA sequence evolution models, there are Markov

models of evolution for amino-acid sequences, and also for coding DNA sequences. These

models are described in the same way - a substitution matrix that governs the tree,

and then branch lengths. While the GTR model can be extended to amino-acids (to

produce a 20x20 matrix) or to codon-based models (to produce a 64x64 matrix), both

of which must be estimated from the data, in practice these models use fixed matrices,

each of which was estimated from external biological data. The most well known protein

model is the Dayhoff model [126], but improved models have been developed in recent

years [127–133]. Similarly, codon-based models have also been based on fixed 64x64

matrices (e.g., [134–136]). In practice, the selection of a protein model for a given dataset

is often done using a statistical test, such as ProtTest [137], and then fixed. In the

subsequent tree estimation performed under that model, only the tree and its branch

lengths need to be estimated.

More general site evolution models. The models that are typically used in phyloge-

netic estimation tend to be fairly simple, and have come under serious criticism as a result,

especially when used with proteins [138, 139]. For example, these models fail to account

for GC content variation across the tree, rates of evolution that are not drawn from the

gamma distribution (or similarly simple models), or heterotachy (where the substitution

matrix depends on the edge and the site [140–143]). Studies of gene family evolution have

also shown that the neutral model of evolution is unrealistic [144]. More general models of

site evolution have been proposed, including the non-stationary, non-homogeneous model

of Galtier and Guoy [145].

2.3.2 Phylogeny Estimation Methods

There are many different phylogeny estimation methods, too numerous to mention here.

However, the major ones can be classified into the following types:

• distance-based methods, which first compute a pairwise distance matrix (usually

based on a statistical model) and then compute the tree from the matrix [17],

• maximum parsimony and its variants [146], which seek a tree with a total minimum

number of changes (as defined by edit distances between sequences at the endpoints

on the edges of the tree),
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• maximum likelihood [147], which seeks the model tree that optimizes likelihood

under the given Markov model, and

• Bayesian MCMC methods, which return a distribution on trees rather than a single

tree, and also use likelihood to evaluate a model tree.

2.3.3 Statistical Performance Criteria

We discuss three concepts here: identifiability, statistical consistency, and sequence length

requirements.

Identifiability: A statistical model or one of its parameters is said to be “identifiable”

if it is uniquely determined by the probability distribution defined by the model. Thus, in

the context of phylogeny estimation, the unrooted model tree topology is identifiable if it is

determined by the probability distribution (defined by the model tree, which includes the

numeric parameters) on the patterns of nucleotides at the leaves of the tree. In the case of

nucleotide models, the state at each leaf can be A, C, T, or G, and so there are 4n possible

patterns in a tree with n leaves (similarly, there are 20n possible patterns for amino-acid

models). It is well known that the unrooted tree topology is identifiable under the General

Markov model [123], and recent work has extended this to other models [148–150].

Statistical Consistency: We say that a method Φ is “statistically consistent” for

estimating the topology of the model tree (T, θ) if the trees estimated by Φ converges to

the unrooted version of T (denoted by T u) as the number of sites increases. (Note that

under this definition, we are not concerned with estimating the numeric parameters.)

Equivalently, for all ε > 0 there is a sequence length K so that if a set S of sequences of

length k ≥ K are generated by (T, θ), then the probability that Φ(S) = T u is at least 1−ε.

We say that a method is statistically consistent under the GM model if it is statistically

consistent for all model trees in the GM model. Similarly, we say a method is statistically

consistent under the GTR model if it is statistically consistent under all model trees in

the GTR model.

Many phylogenetic methods are statistically consistent under the GM model, and

hence also under its submodels (e.g., the GTR model). For example, maximum likelihood,

neighbor joining (and other distance-based methods) for properly computed pairwise “dis-

tances”, and Bayesian MCMC methods, are all statistically consistent [17, 151–153]. On
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the other hand, maximum parsimony and maximum compatibility are not statistically

consistent under the GM model [154]. In addition, it is well known that maximum likeli-

hood can be inconsistent if the generative model is different from the model assumed by

maximum likelihood, but maximum likelihood can even be inconsistent when its assump-

tions match the generative model, if the generative model is too complex! For example,

Tuffley and Steel showed that maximum likelihood is equivalent to maximum parsimony

under a very general “no-common-mechanism” model [142], and so is inconsistent under

this model. In this case, the model itself is not identifiable, and this is why maximum

likelihood is not consistent [155–157]. However, there are identifiable models for which

ML is not consistent, as observed by Steel [143].

Sequence length requirement: Clearly, statistical consistency under a model is a

desirable property. However, statistical consistency does not address how well a method

will work on finite data. Here, we address the “sequence length requirement” of a phy-

logeny estimation method Φ, which is the number of sites that Φ needs to return the

(unrooted version of the) true tree with probability at least 1 − ǫ given sequences that

evolve down a given model tree (T, θ). Clearly, the number of sites that suffices for accu-

racy with probability at least 1 − ǫ will depend on Φ and ǫ, but it also depends on both

T and θ.

We describe this concept in terms of the Jukes-Cantor model, since this is the simplest

of the DNA sequence evolution models, and the ideas are easiest to understand for this

model. However, the same concepts can be applied to the more general models, and

the theoretical results that have been established regarding sequence length requirements

extend to the GM (General Markov) model, which contains the GTR model and all its

submodels.

In the Jukes-Cantor (JC) model, all substitutions are equally likely, and all nucleotides

have equal probability for the root state. Thus, a Jukes-Cantor model tree is completely

defined by the rooted tree T and the branch lengths λ(e), where λ(e) is the expected

number of changes for a random site on the edge e. It is intuitively obvious that as the

minimum branch length shrinks, the number of sites that are needed to reconstruct the

tree will grow, since a branch on which no changes occur cannot be recovered with high

probability (the branch will appear in an estimated tree with probability at most one-

third, since at best it can result from a random resolution of a node of degree at least 4).
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It is also intuitively obvious that as the maximum branch length increases, the number

of sites that are needed will increase, since the two sides of the long branch will seem

random with respect to each other. Thus, the sequence length requirement for a given

method to be accurate with probability at least 1 − ǫ will be impacted by the shortest

branch length f and the longest branch length g. It is also intuitively obvious that the

sequence length requirement will depend on the number of taxa in the tree.

Expressing the sequence length requirement for the method Φ as a function of these

parameters (f, g, n and ǫ) enables a different - and finer - evaluation of the method’s

performance guarantees under the statistical model. Hence, we consider f, g, and ǫ as

fixed but arbitrary, and we let JCf,g denote all Jukes-Cantor model trees with 0 < f ≤

λ(e) ≤ g < ∞ for all edges e. This lets us bound the sequence length requirement of a

method as a function only of n, the number of leaves in the tree.

The definition of “absolute fast convergence” under the Jukes-Cantor model is formu-

lated as an upper bound on the sequence length requirement, as follows:

Definition 2 A phylogenetic reconstruction method Φ is absolute fast-converging (afc)

for the Jukes-Cantor (JC) model if, for all positive f, g, and ε, there is a polynomial p(n)

such that, for all (T, θ) in JCf,g, on set S of n sequences of length at least p(n) generated

on T , we have Pr[Φ(S) = T u] > 1 − ε.

Note also that this statement only refers to the estimation of the unrooted tree topology

T u and not the numeric parameters θ. Also, note that the method Φ operates without

any knowledge of parameters f or g—or indeed any function of f and g. Thus, although

the polynomial p depends upon both f and g, the method itself will not. Finally, this

is an upper bound on the sequence length requirement, and the actual sequence length

requirement could be much lower.

The function p(n) can be replaced by a function f(n) that is not polynomial to provide

an upper bound on the sequence length requirement for methods that are not proven to

be absolute fast converging.

In a sequence of papers, Erdős et al. [158–160] presented the first absolute fast converg-

ing methods for the GM model, and presented techniques for establishing the sequence

length requirements of distance-based methods. Following this, the sequence length re-

quirement of neighbor joining (NJ) was studied, and lower bounds and upper bounds

that are exponential in n were established [151, 161]. These papers were followed by a
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number of other studies presenting other afc methods (some with even better theoretical

performance than the first afc methods) or evaluating the sequence length requirements

of known methods [162–175].

2.3.4 Empirical Performance

So far, these discussions have focused on theoretical guarantees under a model, and have

addressed whether a method will converge to the true tree given long enough sequences

(i.e., statistical consistency), and if so, then how long the sequences need to be (sequence

length requirements). However, these issues are purely theoretical, and do not address how

accurate the trees estimated by methods are in practice (i.e., on data). In addition, the

computational performance (time and memory usage) of phylogeny estimation methods

is also important, since a method that is highly accurate but will use several years of

compute time will not generally be useful in most analyses.

Phylogenetic tree accuracy can be computed in various ways, and there are substantive

debates on the “right” way to calculate accuracy [176, 177]; however, although disputed,

the Robinson-Foulds [178] (RF) distance, also called the “bipartition distance”, is the

most commonly used metric on phylogenetic trees. We describe this metric here.

Given a phylogenetic tree T on n taxa, each edge can be associated with the bipartition

it induces on the leaf set; hence, the tree itself can be identified with the set of leaf-

bipartitions defined by the edges in the tree. Therefore, two trees on the same set of

taxa can be compared with respect to their bipartition sets. The RF distance between

two trees is the size of the symmetric difference of these two sets, i.e., it is the number

of bipartitions that are in one tree’s dataset but not both. This number can be divided

by 2(n − 3) (where n is the number of taxa) to obtain the “RF rate.” In the context of

evaluating phylogeny estimation methods, the RF distance is sometimes divided into false

negatives and false positives, where the false negatives (also called “missing branches”)

are branches in the true tree that are not present in the estimated tree, and the false

positives are the branches in the estimated tree that are not present in the true tree. This

distinction between false positives and false negatives enables a more detailed comparison

between trees that are not binary.

Many studies have evaluated phylogeny estimation methods on simulated data, varying

the rate of evolution, the branch lengths, the number of sites, etc. These studies have

been enormously informative about the differences between methods, and have helped
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biologists make informed decisions regarding methods for their phylogenetic analyses.

Some of the early simulation studies explored performance on very small trees, including

the fairly exhaustive study by Huelsenbeck and Hillis on 4-leaf trees [179], but studies

since then have explored larger datasets [4,10,180,181] and more complex questions. For

example, studies have explored the impact of taxon sampling on phylogenetic inference

[12, 180, 182, 183], the impact of missing data on phylogenetic inference [184–187], and

the number of sites needed for accuracy with high probability [188]. In fact, simulation

studies have become, perhaps, the main way to explore phylogenetic estimation.

Distance-based methods. Distance-based methods operate by first computing a

matrix of distances (typically using a statistically defined technique, to correct for unseen

changes) between every pair of sequences, and then construct the tree based on this

matrix. Most, but not all, distance-based methods are statistically consistent, and so

will be correct with high probability, given long enough sequences. In general, distance-

based methods are polynomial time, and so have been popular for large-scale phylogeny

estimation. While the best known distance-based method is probably neighbor joining

[121], there are many others, and many are faster and/or more accurate [189–194].

One of the interesting properties about distance-based methods is that although they

are typically guaranteed to be statistically consistent, not all distance-based methods have

good empirical performance! A prime example of this lesson is the Naive Quartet Method,

a method that estimates a tree for every set of four leaves using the Four-Point Method (a

statistically-consistent distance method) and then returns the tree that is consistent with

all the quartets if it exists [17]. It is easy to show that the Naive Quartet Method runs in

polynomial time and is statistically consistent under the General Markov model; however,

because it requires that every quartet be accurately estimated, it has terrible empirical

performance! Thus, while statistical consistency is desirable, in many cases statistically

inconsistent methods can outperform consistent ones [195,196].

Maximum parsimony. Maximum parsimony (MP) is NP-hard [146], and so the

methods for MP use heuristics (most without any performance guarantees). The most

efficient and accurate maximum parsimony software for very large datasets is probably

TNT [38], but PAUP* [197] is also popular and effective on datasets that are not extremely

large. TNT is a particularly effective parsimony heuristic for large trees [54], and has been
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able to analyze a multi-marker sequence dataset with more than 73,000 sequences [37].

Maximum likelihood. Maximum likelihood (ML) is also NP-hard [198], and so

attempts to solve ML are also made using heuristics. While the heuristics for MP used to

be computationally more efficient than the heuristics for ML, the current set of methods

for ML are quite effective at “solving” large datasets. (Here the quotes indicate that there

is no guarantee, but reasonably good results do seem to be obtained using the current

best software.)

The leading methods for large-scale ML estimation under the GTR+Gamma model

include RAxML [36], FastTree-2 [34], PhyML [199], and GARLI [200]. Of these four

methods, RAxML is clearly the most frequently used ML method, in part because of

its excellent parallel implementations. However, a recent study [201] showed that trees

estimated by FastTree-2 were almost as accurate as those estimated by RAxML, and that

FastTree-2 finished in a fraction of the time; for example, FastTree-2 was able to analyze

an alignment with almost 28,000 rRNA sequences in about 5 hours, but RAxML took

much longer. Furthermore, FastTree-2 has been used to analyze larger datasets (ones with

more sequences) than RAxML: the largest dataset published with a RAxML analysis had

55,000 nucleotide sequences [35], but FastTree has analyzed larger datasets. For example,

FastTree-2 has analyzed a dataset with more than 1 million nucleotide sequences [202],

and another with 330,556 sequences [203]. The reported running time for these analyses

are 203 hours for the million-taxon dataset, and 13 hours (with 4 threads) for the 330K-

taxon dataset2. By comparison, the RAxML analysis of 55,000 nucleotide sequences took

between 100,000 and 300,000 CPU hours3. The difference in running time is substantial,

but we should note two things: the RAxML analysis was a multi-marker analysis, and so

the sequences were much longer (which impacts running time), and because RAxML is

highly parallelized, the impact of the increased running time is not as significant (if one

has enough processors). Nevertheless, for maximum likelihood analysis of alignments with

large numbers of sequences, FastTree-2 provides distinct speed advantages over RAxML.

There are a few important limitations for FastTree-2, compared to RAxML. First,

FastTree-2 obtains its speed by somewhat reducing the accuracy of the search; thus,

the trees returned by FastTree-2 may not produce maximum likelihood scores that are

2Morgan Price, personal communication, May 1, 2013.
3Alexis Stamatakis, personal communication, May 1, 2013.
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quite as good as those produced by RAxML. Second, FastTree-2 doesn’t handle very

long alignments with hundreds of thousands of sites very well, while RAxML has a new

implementation that is designed specifically for long alignments. Third, FastTree-2 has

a smaller set of models for amino-acid analyses than RAxML. Therefore, in some cases

(e.g., for wide alignments, and perhaps for amino-acid alignments), RAxML may be the

preferred method.

However, the ML methods discussed above estimate trees under the GTR+Gamma

model, which has simplifying assumptions that are known to be violated in biological data.

The nhPhyml [204] method is a maximum likelihood method for estimating trees under

the non-stationary, non-homogeneous model of Galtier and Guoy [145], and hence provides

an analytical advantage in that it can be robust to some violations of the GTR+Gamma

model assumptions. However, nhPhyml seems to be able to give reliably good analyses

only on relatively small datasets (i.e., with at most a few hundred sequences, or fewer

sequences if they are very long). The explanation is computational - it uses NNI (nearest

neighbor interchanges, see below) to search treespace, but NNI is relatively ineffective [205,

206], which means that it is likely to get stuck in local optima. This is unfortunate, since

large datasets spanning substantial evolutionary distances are most likely to exhibit an

increased incidence in model violations. Therefore, highly accurate phylogeny estimation

of large datasets may require the use of new methods that are based upon more realistic,

and more general, models of sequence evolution.

Bayesian MCMC methods. Bayesian methods are similar to maximum likelihood

methods in that the likelihood of a model tree with respect to the input sequence alignment

is computed during the analysis; the main difference is that maximum likelihood selects

the model tree (both topology and numeric parameters) that optimizes the likelihood,

while a Bayesian method outputs a distribution on trees. However, once the distribution

is computed, it can be used to compute a single point estimate of the true tree using

various techniques (e.g., a consensus tree can be computed, or the model tree topology

with the maximum total probability can be returned).

The standard technique used to estimate this distribution is a random walk through

the model tree space, and the distribution is produced after the walk has converged to

the stationary distribution.

There are many different Bayesian methods (e.g., MrBayes [207], BEAST [208], Phy-
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loBayes [209], p4 [210], and BayesPhylogenies [211]), differing in terms of the techniques

used to perform the random walk, and the model under which the likelihood is computed;

however, MrBayes [212] is the most popular of the methods. Bayesian methods provide

theoretical advantages compared to maximum likelihood methods [213–216]. However,

the proper use of a Bayesian MCMC method requires that it run to convergence, and this

can take a very long time on large datasets [61]. Thus, from a purely empirical stand-

point, Bayesian methods do not yet have the scalability of the best maximum likelihood

methods, and they are generally not used on very large datasets.

Comparisons between methods. Simulation studies have shown some interesting

differences between methods. For example, the comparison between neighbor joining and

maximum parsimony reveals that the relative performance may depend on the number of

taxa and the rate of evolution, with maximum parsimony sometimes performing better

on large trees with high rates of evolution [195], even though the reverse generally holds

for smaller trees [179].

More generally, most simulation studies have shown that maximum likelihood and

Bayesian methods (when they can be run properly) outperform maximum parsimony and

distance-based methods in many biologically realistic conditions (see Wang et al. [4] for

one such study).

Heuristics for exploring treespace. Since both maximum likelihood and maximum

parsimony are NP-hard, methods for “solving” these problems use heuristics to explore

the space of different tree topologies. These heuristics differ by the techniques they use

to score a candidate tree (with the best ones typically using information from previous

trees that have already been scored), and how they move within treespace.

The standard techniques for exploring treespace (i.e., for changing the unrooted topol-

ogy of the current tree) use either NNI (nearest-neighbor-interchanges), SPR (subtree

prune-and-regraft) or TBR (tree-bisection-and-reconnection) moves. All these moves

modify unrooted trees, as follows. In an NNI move, an edge in the tree is identified,

and two subtrees (one on each side of the edge) are swapped. In an SPR move, a rooted

subtree of the tree is deleted from the tree, and then reattached. In a TBR move, an

edge in the tree is deleted, thus creating two separate (unrooted) trees, and then the two

trees are attached through the addition of an edge. Another type of move, called p-ECR



25

(p-edge-contract-and-refine) [217, 218], has also been suggested. In this move, p different

edges are contracted, thus creating one or more high degree nodes; the resultant unresolved

tree is then either randomly refined, or refined optimally with respect to the criterion of

interest (see, for example, [218,219] for results regarding maximum parsimony). By defi-

nition, an NNI move is an SPR move, and an SPR move is a TBR move; thus, the TBR

move is the most general of these three moves. However, p-ECR moves generate different

neighborhoods than these moves, although an NNI move is a 1-ECR move. Software that

only use NNI moves (e.g., nhPhyml [204]) have the advantage of being faster, since they

will reach local optima more quickly; however, they also have a tendency to get stuck in

local optima more frequently. The TNT software for maximum parsimony uses more com-

plicated techniques, including sectorial-search, for exploring treespace [38]. Theoretical

evaluations of these techniques for exploring treespace have been made [205,206,217,218]

that help explain the trade-offs between search strategies.

Because local optima are a problem for heuristic searches for NP-hard problems, ran-

domization is often used to move out of local optima. An example of a technique that

uses randomness effectively is the parsimony ratchet [220], which was also implemented

for maximum likelihood [221]. In the parsimony ratchet, the search alternates between

heuristic searches based on the original alignment, and searches based on stochastically

modified versions of the alignment; thus, the tree found during the search for the stochas-

tically modified alignment is used to initiate a search based on the original alignment,

etc. This technique thus uses randomness to modify the alignment, rather than to move

to a random point in treespace; thus, randomness is a general technique that can be used

to improve heuristic searches.

2.3.5 DCMNJ : a fast converging method with good empirical performance

In Section 2.3.3, we discussed absolute fast converging methods, which are methods that

provably reconstruct the true tree with high probability from sequences of lengths that

grow only polynomially in the number of taxa. As stated, this is a mathematical prop-

erty rather than an empirical property. Here we describe one of the early absolute fast

converging methods, called DCM-neighbor joining (DCMNJ) [222, 223].

The input to DCMNJ is a distance matrix [Dij ] for a set of n species, where the

distance matrix is defined appropriately for the model (e.g., the use of the logdet [123]

distances for the GTR model). DCM-neighbor joining has two phases. In the first phase,
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it computes a set X of O(n2) trees (one for each entry in the distance matrix), and in the

second phase, it selects a tree from the set X based on a “true tree selection criterion”.

To obtain a theoretical guarantee of absolute fast convergence, both phases must have

some statistical guarantees, which we now describe in the context of the Jukes-Cantor

model.

Phase 1 Property: Given JC model tree (T, θ) with branch lengths satisfying 0 <

f ≤ λ(e) ≤ g < ∞ and given ǫ > 0, there is a polynomial p(n) (which can depend on f, g

and ǫ) so that given sequences of length at most p(n), then the set X of trees produced

in Phase 1 will contains the unrooted true tree T u with probability at least 1 − ǫ.

Phase 2 Property: Let C be the criterion used for Phase 2. Then the desired property

for Phase 2 is defined as follows. Given JC model tree (T, θ) with branch lengths satisfying

0 < f ≤ λ(e) ≤ g < ∞ and given ǫ > 0, there is a polynomial p(n) (which can depend on

f, g, and ǫ) so that given sequences of length at most p(n), and given a set X of trees on

taxon set S that contains the T u, then T opt = T u with probability at least 1 − ǫ, where

T opt is the tree in X that optimizes criterion C.

We now describe these two phases.

Phase 1 of DCMNJ : For each entry q in the distance matrix [Dij ], DCMNJ computes

a tree Tq, as follows. First, a “threshold graph” is computed based on [Dij] and the

threshold q, so that there is a vertex for every taxon, and an edge between two vertices vi

and vj if and only if Dij ≤ q. If the distance matrix is additive (meaning that it equals the

path distance in some edge-weighted tree [17]), the threshold graph will be triangulated

(also called “chordal”), which means that either the graph is acyclic, or that every induced

simple cycle in the graph is of size 3. Chordal graphs have special properties, including

that the set of maximal cliques can be enumerated in polynomial time; thus, we can

compute the set of (at most) n maximal cliques in the threshold graph [224]. Otherwise,

we add edges to the threshold graph (minimizing the maximum “weight” of any added

edge) to create a triangulated graph, and then continue. Each maximal clique thus defines

a subset of the input sequence set, in the obvious way.

We use the “base method” (here, neighbor joining) to construct a tree on each of

these subsets, and we combine these subset trees into a tree on the entire dataset using a

particular supertree method called the Strict Consensus Merger [225] (the first phase of

SuperFine [53]). For threshold values q that are very small, the set of neighbor joining trees
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Figure 1. The performance of DCM1NJ with different techniques used in Phase II,
compared to NJ and to another absolute fast converging method, HGT+FP [162], as a
function of the number of taxa. In this experiment we simulated evolution of sequences
with 1000 sites down K2P model trees with topologies drawn from the uniform
distribution and with branch lengths drawn from a fixed range. K2P distances were
used as inputs to each method. (This figure appeared in Nakhleh et al. [223].)
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will be insufficient to define the full tree (because of failure to overlap sufficiently). For very

large threshold values, there will be sufficient overlap, but the neighbor joining trees on

the subsets may have errors. However, for intermediate threshold values, given polynomial

length sequences, the neighbor joining subtrees will be correct with high probability and

sufficient to define the full tree [222]. Under these conditions, the Strict Consensus Merger

will produce the true tree (Lemma 6.2 in [222]). Hence, from polynomial length sequences,

with high probability, the first phase will produce the true tree as one of the trees in the

set of trees it produces (one for each threshold value).

Phase 2: Each tree in the set of trees produced in Phase I is scored using the desired

“True Tree Selection” (TTS) criterion, and the tree with the best score is returned.

Examples of criteria that have been considered are the maximum likelihood (ML) score,

the maximum parsimony (MP) score, and the “short quartet support” (SQS) score. Of

these, the MP and SQS scores can be computed exactly and in polynomial time, but the

ML score can only be estimated heuristically [226]. Of these criteria, the SQS score is

guaranteed to satisfy the required property (described above), but the use of the ML and

MP scores gives somewhat more accurate trees.

To summarize, DCM-NJ uses a two-phase process, in which the first phase produces

a set of trees, and the second phase selects a tree from the set. Furthermore, each tree

computed in the first phase is obtained by using a graph-theoretic technique to decompose

the dataset into small overlapping subsets, neighbor joining is used to construct trees

on each subset, and then these subset trees are combined together using a supertree

method. The result is a method that reconstructs the true tree with high probability from

polynomial length sequences, even though the base method (NJ) has a sequence length

requirement that is exponential [161]. Thus, DCM-NJ is a technique that estimates a tree

on the full set of taxa and that “boosts” the performance of NJ. A similar but simpler

method [164] was designed to boost another distance-based method called the “Buneman

Tree” (named after Peter Buneman) to produce the DCM-Buneman method, also proven

to be afc.

Figure 1 evaluates two variants of DCM-NJ, differing by the “true tree selection” cri-

terion in the second phase, and compares them to neighbor joining (NJ) and to HGT+FP,

another absolute fast converging method [162]. DCMNJ +SQS uses SQS for the true tree

selection criterion, while DCMNJ + MP uses maximum parsimony. By design, SQS has

the desired theoretical property, but MP does not. Instead, MP is used for its empirical
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performance, as the figure shows.

These methods are evaluated on simulated 1000-site datasets generated down K2P

model trees, each with the same branch length distribution, but with varying numbers of

taxa. Thus, as the number of taxa increases, the overall amount of evolution increases,

and the dataset becomes more difficult to analyze (especially since the sequence length

remains fixed at 1000 sites). As shown in Figure 1, the error rate of neighbor joining

(using corrected distances to reflect the model of evolution) begins low but increases, so

that at 1600 taxa, it is above 40%. By contrast, DCMNJ + SQS, DCMNJ + MP and

HGT +FP all have fairly low error rates throughout the range of datasets we tested. Note

also that DCMNJ + MP is slightly more accurate than DCMNJ + SQS, even though it

has no guarantees. Finally, DCMNJ +SQS, DCMNJ +MP and HGT +FP seem to have

error rates that do not increase with the numbers of taxa; this is obviously impossible,

and so for large enough numbers of taxa, the error rates will eventually increase, and this

trend cannot continue indefinitely.

The development of methods with good sequence length requirements is an area of

active research, and newer methods with even better theoretical performance have been

developed. Because afc methods are designed to extract phylogenetic signal from small

numbers of sites, this means that performance on very large datasets (with many taxa)

might be improved using these methods, even without needing to use huge numbers of

sites. These methods are not used in practice (and DCMNJ is not publicly distributed),

and so these methods are mostly of theoretical interest rather than practical.

Clearly there is the potential for these methods to give highly accurate trees for very

large datasets; however, the methods and theorems described here assume that the se-

quences evolve without any indels, and under the General Markov model. While the

results could be extended to other identifiable models (including ones with indels) for

which statistically consistent distant estimation techniques are available, they would still

require that the true alignment be known. Thus, none of this theory applies to more

realistic conditions - sequences that evolve with indels, for which the true alignment is

not known.

2.3.6 Gap treatment in phylogeny estimation methods.

Until now, the entire discussion about phylogeny estimation methods and their guarantees

under Markov models of evolution has ignored the fact that sequence alignments often
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have gaps and that indels are part of sequence evolution. Instead, the Markov models

we have discussed are entirely indel-free, and the methods were described as though the

sequences were also indel-free. Obviously, since phylogeny estimation methods have been

applied to real data, this means that modifications to the data or to the methods have

been made to enable them to be used with sequence alignments that have gaps. The

purpose of this section is to describe these modifications, and present some discussion

about the pros and cons of each modification.

Given a sequence alignment containing gaps, the following approaches are the main

ones used in practice for estimating phylogenies:

1. Remove all sites in which any indel appears;

2. Assign an additional state for each dash (thus, for nucleotides, this would result in

a 5-state model);

3. Code all the gaps (contiguous segments of dashes) in the alignment, and treat the

presence or absence of a gap as a binary character (complementing the original

sequence alignment character data); and

4. Treat the gaps as missing data. In parsimony analyses, this is often treated by

finding the best nucleotide to replace the gap, but in likelihood-based analyses, this

is often treated by summing the likelihood over all possible nucleotides for each gap.

Note that the first three approaches specifically modify the data, and that with the

exception of the first approach, all techniques change the input in such a way that the

method used to estimate a tree on the alignment must also be changed. Thus, for approach

#2, the method must be able to handle 5-state data (for DNA) or 21-state data (for

proteins). For approach #3, the method has to be able to handle binary data. In the case

of parsimony or likelihood, the challenge is whether changes from presence to absence are

treated the same as from absence to presence, and also whether the Markov assumption

still makes sense. There are arguments in favor and against each of these gap treatments,

especially with respect to statistical consistency under a stochastic model that includes

indels as well as substitutions [227].

The first approach of removing all sites with gaps has the advantage of being statisti-

cally consistent for stochastic models with indel events in which the substitution process
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and the mechanism producing insertions and deletions are independent. However, it re-

moves data, and in practice, especially on datasets with many taxa, it could result in

phylogenetically uninformative sequence alignments. (A less extreme version of removing

all sites with gaps is called “masking”, whereby only some of the sites with gaps are re-

moved. The benefits of using masking are debated, but some recent studies suggest that

masking may not be desirable [228].)

The second and third approaches do not reduce the amount of data (which is good)

and there are many different gap-coding techniques [229–231]. Simulation studies evalu-

ating some of these methods have shown improvements in some cases for tree estimation

obtained through gap-coding over treating gaps as missing data [232–234], but others

have found differently [228, 235].

However, the use of gap-coding is controversial [232], in part because of the very sub-

stantive challenges in creating a statistically appropriate treatment (consider the meaning

of positional homology [103]). Instead, the most frequently used option, and the default

for most software, is to treat gaps as missing data. The simulation studies presented later

in this paper are all based on analyses of data, treating gaps as missing data.

2.3.7 Theoretical guarantees for standard phylogeny estimation methods on

alignments with gaps

Are any of the phylogeny estimation methods we have discussed guaranteed to be statis-

tically consistent when treating gaps as missing data? This is one of the interesting open

questions in phylogenetics, for which we give a partial answer.

To address this problem, we defined “monotypic” alignments to be ones in which each

site has only one type of nucleotide (all As, all Cs, all Ts, or all Gs) and we proved the

following [236]:

Theorem: When the true alignment is monotypic and gaps are treated as missing data,

then all trees are optimal for the true alignment under Jukes-Cantor maximum likelihood.

Therefore, if the model tree allows indels but not substitutions, then all trees are optimal

for Jukes-Cantor maximum likelihood, when gaps are treated as missing data.

At first glance, this theorem might seem to be the result of monotypic alignments

not having phylogenetic signal, but this is not the case! In fact, monotypic alignments

have sufficient signal to enable accurate trees [237,238]. Thus, there is phylogenetic signal



32

in an alignment that contains gaps even for the case of monotypic alignments, and this

signal can be used to estimate the true tree, provided that appropriate methods are used.

In other words, the indels within an alignment can be phylogenetically informative, and

indels can even be sufficient to define the tree topology. However, gap treatments can

result in loss of information, or lead to erroneous trees (as in the case of ML, treating

gaps as missing data, when handling monotypic alignments).

Note that this result does not imply that ML, treating gaps as missing data, is in-

consistent under models with positive probabilities of substitutions, and it seems very

likely that for most biologically realistic conditions, treating gaps as missing data will not

lead to meaningless results. Furthermore, the simulations we and others have performed

suggest that ML methods, treating gaps as missing data, do produce reasonably accurate

trees. Even so, the potential for reductions in accuracy due to inappropriate handling of

gaps is clearly present, and it raises the real possibility that the methods that are known

to be statistically consistent under standard substitution-only models, such as GTR, may

not be statistically consistent (even on the true alignment!) when sequences evolve with

both substitutions and indels.

2.4 Handling Fragmentary Data: Phylogenetic Placement

Multiple sequence alignment methods are generally studied in the context of full-length

sequences, and little is known about how well methods work when some of the sequences

are very fragmentary. Furthermore, phylogenetic estimation in the context of fragmentary

sequences is unreliable, even if the alignments of the fragmentary sequences are accurate

[184, 239].

One approach to handling fragmentary sequences is phylogenetic placement: in the

first step, an alignment and tree is estimated for the full length sequences for the same

gene (these are called the “backbone alignment” and “backbone tree” [240]); in the second

step, the fragmentary sequences are added into the backbone alignment to create an “ex-

tended alignment”; and finally in the third step, the fragments are then placed in the tree

using the extended alignment. This is called the “phylogenetic placement problem”. The

first methods for this problem were pplacer [241] and Evolutionary Placement Algorithm

(EPA) [242]; both use HMMALIGN [243,244] to insert the fragments into the alignment

of the full-length sequences and then place the fragments into the tree using maximum
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likelihood for this extended alignment. The initial studies showed that EPA and pplacer

exhibited little difference in accuracy or computational requirements [242]. An alterna-

tive method, PaPaRa [118], uses a very different technique to align the sequences to the

backbone alignment: it infers ancestral state vectors in the phylogeny, and uses these

ancestral state vectors to align the fragmentary sequences to the backbone alignment.

PaPaRa can give improved accuracy over HMMER when the rate of evolution is slow

enough, but otherwise HMMER gives more accurate results [240].

New methods showing improvements over EPA and pplacer have also been devel-

oped [240,245]. Brown and Truskowski [245] use hashing to speed up the method, while

SEPP [240] uses a divide-and-conquer technique to speed up the method and improve the

accuracy.

Phylogenetic placement can be used in metagenomic analyses [246, 247], in order to

estimate the taxonomic identity (what species it is, what genus, etc.) of the short reads

produced in shotgun sequencing of a metagenomic sample. When all the reads are drawn

from the same gene, then phylogenetic placement can be used to identify the species for

the read as described above: first, full-length sequences for the gene are obtained, then

an alignment is estimated for the full-length sequences, and finally the reads are inserted

into a taxonomy for the species, using the estimated alignment and the phylogenetic

placement method. However, since the reads are not drawn from the same gene, then the

metagenomic sample must first be processed so that the reads are assigned to genes (or

else left unassigned), and then each “bin” of reads for a given gene can be analyzed as

described. Thus, phylogenetic placement can be used in a pipeline as a taxon identification

method, but the process is substantially more complicated.

3 Co-estimation Methods

Co-estimation of trees and alignments is an obvious approach for several reasons. First,

an alignment, like a tree, is a hypothesis about the evolutionary history of the given data.

To separate the two hypotheses prevents them from being mutually informative. Thus,

rather than first estimating the alignment, treating it as fixed, and then estimating the

tree, a co-estimation procedure would try to find the tree and alignment at the same time.

The challenge, of course, is how to do this.

In this section, we begin with a discussion of a co-estimation approach that seeks the
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tree with the minimum total edit distance, but where indels also count towards the total

cost. We then continue with a discussion of co-estimation methods that use likelihood

calculations on trees, under stochastic models that include indels as well as substitutions.

Finally, we discuss SATCHMO-JS, SATé, and mega-phylogeny, methods that return an

alignment and a tree from unaligned sequences; these methods were discussed earlier in

the section on sequence alignment methods, and here we discuss them in the context of

phylogeny estimation.

3.1 Treelength, or “Direct Optimization”

Probably the most commonly used approach to estimating the tree at the same time as

estimating the alignment is the “Treelength” approach, also called “Direct Optimization”

[248]. This is a natural extension of maximum parsimony to allow it to handle sequences

that evolve with indels and so have different lengths.

In order to understand the approach, we begin by noting that a pairwise alignment

between two sequences defines one or more edit transformations, each consisting of op-

erations - some substitutions and some indels - that transform the first sequence into

the second. Each indel event may be of a single letter (either a nucleotide or an amino-

acid), or could be of a string of letters. The “cost” of the pairwise alignment is then the

minimum cost of any transformation that is consistent with the alignment. Note that im-

plicit in this definition is the limitation of the operations to just substitutions and indels;

therefore, no more complicated operations (such as tandem repeats, inversions, etc.) are

considered.

Similarly, each edit transformation that is based on indels and substitutions defines a

pairwise alignment. In fact, pairwise alignments are typically computed using dynamic

programming algorithms that explicitly compute the minimum cost edit transformation.

Thus, there is a close relationship between edit transformations based on indels and

substitutions and pairwise alignments.

We now define the treelength problem, where the tree is fixed, and each leaf is labelled

by a sequence. The “length” of the tree would be computed by producing sequences

at the internal nodes, and then calculating the edit distance between sequences on each

edge, using the best possible labelling of the internal nodes (so as to minimize the output

length). Since pairwise distances can be computed in these conditions, the length of a
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tree can be defined and computed, once the sequences at the internal nodes are provided.

The treelength problem is then to find the best sequences for the internal nodes so that

the total length is minimized.

Given this, we formalize the Tree Alignment problem as follows:

Definition 3 Given a rooted tree T on n leaves which is leaf-labelled by a set S =

{s1, s2, . . . , sn} of sequences over Σ (for any fixed alphabet Σ) and an edit cost function

c(., .) for comparing any two sequences over Σ, find sequences to label the internal nodes

of T so as to minimize cost(T ) =
∑

(v,w)∈E(T ) c(lv, lw), where lx is the sequence labelling

node x in T .

Note that given sequences at the internal nodes, then for each edge e there is a pairwise

alignment of the sequences lv and lw labelling the endpoints of e whose cost is identical

to c(lv, lw). By taking the transitive closure of these pairwise alignments we obtain a

multiple sequence alignment of the entire dataset whose total cost is cost(T ). Thus, the

output of the Tree Alignment problem can be either considered to be the sequences at

the internal nodes, or also the MSA that it defines on the sequences at the leaves of the

tree.

The Tree Alignment problem has a rich literature, beginning with [249–251]. The Tree

Alignment problem is NP-hard, even for simple gap penalty functions [252], but solutions

with guaranteed approximation ratios can be obtained [253–255]. This contrasts with the

maximum parsimony problem, which is polynomial time when the tree is fixed (i.e., the

optimal sequences for the internal nodes of a given tree can be found in polynomial time

using dynamic programming). Thus the treelength problem is harder than the maximum

parsimony problem.

A generalization of this problem, named after David Sankoff due to his contributions

[250, 251], is as follows:

Definition 1 The Generalized Sankoff Problem (GSP) [From Liu and Warnow

[256]]: The input is a set S of unaligned sequences and a function c(x, y) for the edit

cost between two sequences x and y. The output is a tree T = (V, E) with leaves la-

belled by S and internal nodes labeled with additional sequences such that the treelength
∑

(v,w)∈E c(lv, lw) is minimized, where lx is the sequence labelling vertex x.

Not surprisingly, GSP is NP-hard, since the case in which the edit distance function
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forbids gaps (by setting the cost for a gap to be infinite) is the NP-hard Maximum

Parsimony (MP) problem [146].

3.1.1 POY

The standard method for “solving” the GSP problem is POY [248, 257]. Note that in

the literature discussing POY, the treelength problem is called “Direct Optimization” (or

“DO” for short). POY handles only certain types of edit distances, and in particular,

it only enables affine gap penalties. Thus, the cost of a gap of length L is given by

cost(L) = c0 + c1L, where c0 is the gap open cost and c1 is the gap extend cost. When

c0 = 0 the gap cost is said to be “simple” (a special case of affine) and when c0 > 0

the gap cost is said to be “affine”. POY also enables different costs for transitions and

transversions. Thus, the input to POY is a set of unaligned sequences, values for c0 and

c1, and the cost of transitions and transversions.

The use of treelength optimization to find good trees (and/or alignments) is a matter

of substantial controversy in phylogenetics [98,102,227,248,258–261]. Most of the studies

that have examined the accuracy of POY trees and alignments explored performance

under simple gap penalties, and found that POY did not produce trees and alignments

of comparable accuracy to maximum parsimony on the ClustalW alignment, denoted

MP(Clustal) [259,262]. A later study examined how the gap penalty affected the accuracy

of trees and/or alignments computed by POY [263], and evaluated POY under affine gap

penalties (where the gap open cost is non-zero). They found a particular affine gap

penalty, which they called “Affine”, for which POY produced very good results, and in

fact was competitive with MP(Clustal). This study seemed to suggest that POY, and

hence the treelength optimization approach to estimating trees and alignments, could

be used to find highly accurate trees provided that the right edit distances were used.

However, it was also observed that POY was not always effective at finding the best

solutions to the treelength problem, and hence the accuracy of POY’s trees might not

indicate any value in optimizing treelength.

3.1.2 BeeTLe: Better TreeLength

A subsequent study [256] revisited this question, by focusing on whether finding good

solutions to treelength criteria would yield improved alignments and trees. In order to
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understand the impact of the treelength criterion, they developed a new technique for

treelength optimization, called “BeeTLe” (Better TreeLength), which is guaranteed to

find solutions that are at least as good as those found by POY. BeeTLe runs a collection

of methods, including POY, to produce a set of trees on a given input set of unaligned

sequences, uses POY to compute the treelength of each tree, and then returns the tree

that had the shortest treelength. Thus, BeeTLe is guaranteed to find trees at least as

short as those found using POY, and thus enables us to evaluate the impact of using

treelength to find trees.

Here we present some results from Liu and Warnow [256], in which BeeTLe was com-

pared to various two-phase methods on simulated 100-taxon datasets, in which sequences

evolve with substitutions and indels. We show results for alignments estimated using Bee-

TLe, MAFFT and ClustalW, and MP and ML trees on the MAFFT, ClustalW, and true

alignments. We present alignment error rates (SP-FN, the fraction of true homologies

missing from the estimated alignment) and tree topology error rates (the missing branch

rate, which is the fraction of edges in the true tree that are not in the estimated tree).

We study BeeTLe under three different treelength criteria, each of which has unit cost

for substitutions: “Simple-1”, which sets the cost of every indel to 1; “Simple-2” (the

treelength criterion studied by Ogden and Rosenberg [259] that they found to produce

more accurate trees than any other treelength criterion they considered), which assigns

cost 2 to indels and transversions and cost 1 to transitions; and “Affine” (the treelength

criterion studied in Liu et al. [263] that produced more accurate trees than Simple-1 or

Simple-2), which sets the cost of a gap of length L to 4 + L.

In Figure 2, we see that BeeTLe-Affine (BeeTLe using this affine gap penalty) produces

the most accurate trees of all BeeTLe variants. We also see that BeeTLe-Affine improves

on MP on ClustalW alignments, and matches MP on MAFFT alignments. It also is fairly

close to MP on true alignments, except for the hardest 100-taxon model conditions. In

Figure 3, we see a comparison of BeeTLe to ML trees computed on ClustalW, MAFFT,

and the true alignment. Note how BeeTLe-Affine often produces more accurate trees than

ML(ClustalW), but (with the exception of the very easiest model conditions, where there

is very little difference between methods), also produces substantially less accurate trees

than ML(MAFFT) and ML(TrueAln).

An evaluation of the alignment error on the same datasets (Figure 4) shows that Bee-

TLe alignments generally have very high alignment SP-FN error, and that BeeTLe-Affine
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Figure 2. Comparing BeeTLe to MP-based analyses. We report missing branch
rates on 100-taxon model conditions for BeeTLe (under three gap penalty treatments)
in comparison to maximum parsimony on the ClustalW, MAFFT, and true alignment
(TrueAln). Averages and standard error bars are shown; n = 20 for each reported value.
(This figure appeared in Liu and Warnow [256].)
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Figure 5. Performance of BeeTLe-Affine. We compare the BeeTLe-Affine trees to
MP and ML trees on ClustalW and MAFFT alignments, and we also compare the
alignments obtained by BeeTLe-Affine, ClustalW, and MAFFT, on 100-taxon model
conditions. Averages and standard error bars are shown; n=20 for each reported value.
(This figure appeared in Liu and Warnow [256].)
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has lower SP-FN error than the other BeeTLe variants. The comparison to ClustalW

shows that BeeTLe-Affine is less accurate on some models and more accurate on others;

however, neither ClustalW nor BeeTLe-Affine comes close to the accuracy of MAFFT,

except on the easiest 100-taxon models.

Figure 5 shows the direct comparison between BeeTLe-Affine and alignments and trees

estimated using ClustalW and MAFFT. Since Figure 4 already gave the comparison with

respect to alignment error, we focus only on tree estimation. Note that BeeTLe-Affine

generally gives more accurate trees than MP(Clustal) and MP(MAFFT), except on the

easiest models where they are all equally accurate. However, when compared to ML-

based trees, the best results are clearly obtained using ML(MAFFT), with BeeTLe-Affine

in second place and ML(Clustal) in last place.

3.1.3 Summary regarding the Treelength problem

Recall that BeeTLe is guaranteed to produce solutions to treelength optimization that are

at least as good as POY, and in fact BeeTLe generally produces shorter trees than POY,

as shown in Liu and Warnow [256]. Therefore, the performance of BeeTLe with respect to

tree and alignment accuracy is a better indication of the consequences of using treelength

for estimating alignments and trees than POY. As shown here, however, although im-

provements can be obtained by using this particular affine gap penalty (compared to the

simple gap penalties that were examined), the alignments and trees are not as accurate as

those produced using the better alignment methods (e.g., MAFFT) followed by maximum

likelihood.

We note that the use of affine gap penalty treatments, although more general (and

hence better) than simple gap penalties, are not necessarily sufficiently general for align-

ment estimation [264–268]; therefore, better trees might be obtained by optimizing tree-

length under other gap penalty treatments. In the meantime, the evidence suggests that

optimizing treelength using the range of gap penalty treatments in common use (simple or

affine penalties) is unlikely to yield the high quality alignments and trees that are needed

for the best phylogenetic analyses.
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3.2 Statistical co-estimation methods

Methods that co-estimate alignments and trees based upon statistical models of evolution

that incorporate indels have also been developed. The simplest of these models are TKF1

[269] and TKF2 [270,271], but more complex models have also been developed [272–278].

Many statistical methods (some which estimate trees from fixed alignments, and some

which co-estimate alignments and trees) have been developed based on these models

[273,275,276,279–286], but only BAli-Phy [276] has been shown to be able to co-estimate

alignments and trees on datasets with 100 sequences; the others are limited to much

smaller datasets [287]. A recent technique [288] may be able to speed up calculations

of likelihood under models that include indels and substitutions, but to date, none of

the co-estimation methods has been able to run on datasets with more than about 200

sequences.

3.3 Other co-estimation methods

In addition to the statistical co-estimation methods described above, several methods are

designed to return trees and alignments given unaligned sequences as input. Here we dis-

cuss three of these methods, SATé, SATCHMO-JS, and mega-phylogeny, each of which

was discussed in the earlier section on alignment estimation. Of these three methods,

SATé and mega-phylogeny are methods that compute an alignment and a maximum like-

lihood tree on the alignment, where mega-phylogeny uses RAxML and SATé uses either

RAxML or FastTree-2 (depending on the user’s preference). Although mega-phylogeny

has been used on empirical datasets, to our knowledge it has not been tested on bench-

mark datasets, and so its performance (in terms of alignment and/or tree accuracy) is

more difficult to assess. Therefore, we focus the rest of the discussion here on SATé and

SATCHMO-JS.

3.3.1 SATé

SATé (“Simultaneous Alignment and Tree Estimation”) [10, 39] is a method that was

designed to estimate alignments and trees on very large datasets. SATé was discussed

earlier in the section on multiple sequence alignment; here we focus on its performance

as a method for estimating trees.



42

Unlike the statistical methods discussed earlier that explicitly consider Markov models

of evolution that include indels and thus can have performance guarantees under such

models, SATé has no such guarantees. Instead, the design of SATé is guided by the

empirical objective of improving the accuracy of alignment and phylogeny estimations on

very large datasets.

The observations that led to SATé come from studies that showed that existing nu-

cleotide alignment methods had poor accuracy on large datasets that evolve down trees

with high rates of substitutions and indels, and that some of the most accurate align-

ment estimation methods (e.g., MAFFT) have computational requirements (sometimes

due to memory usage) that makes them unable to be run in their most accurate setting

on datasets above a relatively small number of sequences. Therefore, while small datasets

can be aligned with the best alignment methods, larger datasets must be aligned with

less accurate methods. These observations together guided the design of SATé, which we

now describe.

SATé uses an iterative process, in which each iteration begins with the tree from the

previous iteration, and uses it (within a divide-and-conquer framework) to re-align the

sequence dataset. Then a maximum likelihood tree is estimated on the new alignment, to

produce a new tree. The first iteration begins with a fast two-phase method (for example,

FastTree-2 on a MAFFT-PartTree alignment). The first few iterations provide the most

improvement, and then the improvements level off. The user can provide a stopping rule

based upon the number of iterations, the total amount of clock time, or stopping when

the maximum likelihood score fails to improve.

Although iteration is an important aspect of SATé’s algorithm design, the divide-

and-conquer strategy used by SATé is equally important, and the strategy has changed

since its initial version. In its first version [10], SATé divided the dataset into subsets by

taking a centroid branch in the tree (which divides the dataset roughly into two equal

parts) and branching out until the desired number of subsets is produced (32 by default,

but this value could change, based on the dataset size). Each subset was then aligned

using MAFFT in a highly accurate setting (-linsi), and the subset alignments were merged

together using Muscle. Then, an ML tree was estimated on the resultant alignment using

RAxML. SATé iterated until 24 hours had elapsed (finishing its final iteration if it began

before the 24 hour deadline). SATé returns the tree/alignment pair with the best ML

score.
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Figure 6. Performance of SATé on 1000-taxon model results. X-axes have the
fifteen 1000-taxon models roughly sorted with respect to the phylogenetic estimation
error, based on missing branch rates. The bottom two panels show true alignment
(TrueAln) setwise statistics and Spearman rank correlation coefficients (ρ). All data
points include standard error bars. For the top two panels, models on the x-axis
followed by an asterisk indicate that SATé’s performance was significantly better than
the nearest two-phase method (paired t-tests, setwise α = 0.05, n = 40 for each test).
(This figure appeared in Liu et al. [10].)
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This approach led to very good results, as shown in Figure 6, where we compare SATé

to two-phase methods on 1000-taxon model trees. We include RAxML on ClustalW,

Muscle, Prank+GT (Prank with a RAxML(MAFFT) guide tree), and the true alignment

(TrueAln). The first two panels show the tree and alignment error for these methods. Note

that on the easiest model conditions all methods produce the same level of accuracy as

RAxML on the true alignment, although the estimated alignments have errors. However,

on the harder models the phylogenetic estimations have different error rates, and SATé

produces much more accurate trees and alignments than the other methods. Furthermore,

SATé comes close to RAxML on the true alignment for all but the hardest models. The

third panel gives the empirical statistics for the different models, and shows that factors

that lead to datasets that are hard to align include the percent of the true alignment

matrix that is gapped (“Percent indels”) and the average p-distance4 between pairs of

sequences (again, based on the true alignment). Thus, alignments can be quite easy to

estimate if the rate of substitutions is low enough (as reflected in the average p-distance),

even if there are many indels, and it is only when the substitution rate is high enough

and there are at least a moderate number of indels that alignments become difficult to

estimate.

Recall that SATé generates a sequence of alignments and trees, and that the tree and

alignment it outputs is the pair that has the best ML score. The fourth panel shows the

results of a correlation analysis we performed to see if the ML score was correlated with

either alignment accuracy or tree accuracy. What we observed is that tree error (measured

using SP-FN) and ML score are very weakly correlated on the easier models, but then

highly correlated on the harder models, while alignment error and ML score are highly

correlated on all models. This correlation analysis suggests that using the ML score to

select an alignment might be a good idea. It also suggests that when the conditions are

such that improving the alignment would improve the tree (which seems to be the case

for harder models rather than easier models), using the ML score to select the tree might

also be a good idea. In other words, it suggested the following optimization problem:

Definition 4 The MLGTR Tree/Alignment Search Problem: Given a set S of

unaligned sequences, find a tree T and an alignment A of S so as to maximize likelihood

under GTR, treating gaps as missing data.

4The p-distance between two aligned sequences is the number of positions in which the two sequences
differ, and then normalized to give a number between 0 and 1.
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However, the Jukes-Cantor version of this optimization problem is not a good way

of trying to optimize alignments or trees, as we now show. Recalling the definition of

“monotypic” alignments (see Section 2.3.6), we proved:

Theorem [From Liu et al. [39]]: If alignments are allowed to vary arbitrarily, then

for all input sets of sequences, the alignment that gives the best Jukes-Cantor ML score

(treating gaps as missing data) is monotypic, and every tree is an optimal solution for

this alignment.

Thus, optimizing the ML score while allowing the alignments to change arbitrarily

is not helpful. Given that we observed a correlation between the ML score and align-

ment and tree accuracy generated during a SATé analysis, how does this make sense?

The explanation between these two seemingly contradictory statements is that the set of

tree/alignment pairs in which we observed the correlation is not arbitrary. Instead, the

set of alignments computed during a SATé run is not random at all, nor are the align-

ments and trees in that set explicitly modified to optimize ML. Instead, the alignments

are computed using a divide-and-conquer strategy where MAFFT is used to align subsets

and Muscle is used to merge these subset alignments. Thus, although allowing alignments

to change arbitrarily is definitely not desirable (and will lead to an optimal ML score but

poor trees), using ML to select among the alignments and trees produced during the SATé

process may be beneficial.

SATé-II: Subsequent studies revealed that for some datasets, the SATé analysis was

very slow, and this turned out to be due to some subset sizes being very large – too large,

in fact, for MAFFT to comfortably analyze the dataset using its most accurate setting

(-l -insi). A careful analysis revealed that these large subsets came about as a result of

the specific decomposition we used (consider, for example, the result of using the SATé-

decomposition on a caterpillar tree). We then changed the decomposition technique,

as follows. The new decomposition keeps removing centroid edges in the subtrees that

are created until every subtree has no more than a maximum number of leaves (200 by

default). As a result, all the subsets are “small”, and MAFFT -l -insi can comfortably

analyze each subset. Note also that these subsets are not necessarily clades in the tree!

The resultant version of SATé, called SATé-II, produces trees and alignments that are

even more accurate than SATé, and is also faster. This is the version of SATé that is in
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the public distribution.

3.3.2 SATCHMO-JS

SATCHMO-JS [78] is another co-estimation method designed for empirical performance,

and specifically for protein sequence alignment. SATCHMO stands for “Simultaneous

Alignment and Tree Construction using Hidden Markov models”, and SATCHMO-JS

stands for “jump-start SATCHMO”. The basic approach here has three steps. First,

SATCHMO-JS computes a neighbor joining tree on a MAFFT alignment, and uses this

tree to divide the dataset into clades, each of which has a maximum pairwise p-distance

that is below some threshold. For each such subset, a tree is computed on the alignment

using the SciPhy method [289]. These subtrees are then passed to the SATCHMO [77]

method, which then completes the task of computing an overall alignment and tree.

Finally, the branch lengths on the tree are optimized using maximum likelihood.

Thus, SATCHMO-JS is a hybrid between MAFFT and SATCHMO that combines the

best of the two methods – MAFFT to align closely related sequences, and SATCHMO

to align distantly related sequences. Since a tree is estimated at the same time as the

alignment is estimated, the output is both a tree and an alignment - hence the name of

the method.

As shown by Hagopian et al. [78], SATCHMO-JS produced more accurate alignments

than MAFFT, SATCHMO, Clustalw and Muscle on several protein benchmarks. Further-

more, although by design SATCHMO-JS is slower than MAFFT (since it runs MAFFT

to obtain its initial decomposition into subsets), it is much faster than SATCHMO, and

was able to analyze a dataset with 500 protein sequences of moderate length (392 aa) in

about 18 minutes.

It is worth noting that the way SATCHMO determines the tree cannot be described

as finishing the alignment estimation and then computing a tree on that alignment; this

distinguishes SATCHMO-JS from SATé and mega-phylogeny, which always return a max-

imum likelihood tree on the output alignment.

4 Tree estimation without full alignments

Because multiple sequence alignment estimation tends to be computationally intensive

and inaccurate on large datasets that evolve with high rates of evolution [4,6], estimating
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trees without any multiple sequence alignment step has obvious appeal. In this section,

we first discuss alignment-free estimation, and then estimation methods that use multiple

sequence alignment estimation on subsets but not on the full set of taxa.

4.1 Alignment-free Estimation

Potential Benefits of Alignment-free Estimation. There are several reasons that

alignment-free estimation has been considered promising, which we briefly discuss here

(see [290, 291] for longer and more detailed discussions). First, recall that standard mul-

tiple sequence alignments insert gaps between letters within sequences in order to “align”

them, and hence only model homologies that result from substitutions and indels. How-

ever, genome-scale evolution is very complex, involving recombination, rearrangements,

duplications, and horizontal gene transfers, none of which is easily handled in standard

multiple sequence alignments. Thus, one of the points in favor of alignment-free estimation

methods is that they may be more robust to these genome-scale events (rearrangements,

recombination, duplications, etc.) than alignment-based methods. Another point in fa-

vor is that alignment-free methods are able to avoid the need to do each step of the

standard analysis pipeline, and hence can be robust (possibly) to the difficulties in iden-

tifying orthology groups, aligning sequences, estimating gene trees, and combining gene

trees and/or alignments. Thus, alignment-free estimation may be robust to some of the

methodological challenges inherent in the standard phylogenetic pipeline.

Alignment-free estimation also have another distinct advantage, in that they enable

the use of all the nucleotides in the genomes, not just the ones that fall into the regions

identified for the phylogenomic analysis. Thus, alignment-free methods have the potential

to utilize more of the genomic data, and this could enable more accurate trees.

Finally, as we shall see, alignment-free estimation is in general very fast, especially for

datasets that involve many markers and/or many taxa. This is one of the big advantages

over the standard analysis pipeline.

History of Alignment-free Estimation. The first method for alignment-free phy-

logeny estimation was developed in 1986 [292], and new methods continue to be devel-

oped [290,291,293–295].

Alignment-free methods are based upon computing distances (often, but not always,

by computing k-mer distributions) between unaligned sequences. Once these distances are
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computed, trees can be computed on the resultant distance matrix, using distance-based

methods (e.g., the well-known neighbor joining [121] method, but there are many others).

Because both steps can be quite fast, these alignment-free methods can be applied to very

large genomes.

While some of the alignment-free techniques for estimating pairwise distances are fairly

heuristic, others use sophisticated statistical techniques, and some have provable perfor-

mance under Markov models of evolution. A particularly exciting result is by Daskalakis

and Roch [237], who gave a polynomial time distance-based alignment-free method and

proved that it is statistically consistent under the TFK1 model [269].

These methods have shown some promise, as some simulation studies evaluating trees

based on these distances have shown that these can be more accurate than trees based

on distances calculated using estimated multiple sequence alignments [296]. Furthermore,

plausible phylogenetic trees have been estimated on biological datasets using these meth-

ods [290, 291].

Comparison to two-phase methods Despite all the potential benefits of alignment-

free estimation, there has not been any comparison of alignment-free methods to the most

accurate ways of computing large trees, e.g., Bayesian or maximum likelihood analyses on

good alignments. Instead, the only comparisons have been to distance-based phylogeny

estimation, and in some cases only to distances computed using other alignment-free

methods. Therefore, while there is distinct potential for alignment-free estimation to

provide improved species tree estimations, this possibility has not been properly evaluated.

However, as noted before, alignment-free estimation does provide a distinct compu-

tational advantage over the standard pipelines, and it can enable the use of all of the

genomic data. Thus, even if alignment-free estimation is not as accurate as maximum

likelihood on alignments, the ability to use more data may offset the possible reduction

in accuracy. The question might then become whether more data analyzed using a less

accurate method is as good as less data analyzed using a more accurate method !

4.2 DACTAL

DACTAL [30], which stands for “Divide-And-Conquer Trees (almost) without ALign-

ments”, is a method that estimates trees without requiring an alignment on the full

dataset. Unlike the methods discussed in the previous subsection, DACTAL is not truly
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Figure 7. DACTAL algorithmic design. DACTAL can begin with an initial tree
(bottom triangle), or through a technique that divides the unaligned sequence dataset
into overlapping subsets. Each subsequent DACTAL iteration uses a decomposition
strategy called “PRD” (padded recursive decomposition) to divide the dataset into
small, overlapping subsets, estimates trees on each subset, and merges the small trees
into a tree on the entire dataset. (This figure appeared in Nelesen et al. [30].)

alignment-free. Instead, DACTAL uses an iterative divide-and-conquer strategy, and esti-

mates alignments and trees on small (and carefully selected) subsets of taxa. By ensuring

that the subsets have sufficient overlap, this makes it possible to produce a tree on the

full set of taxa. The key to making this work well is ensuring that the taxon sampling in

each subset is favorable to tree and alignment estimation, the subsets are small enough

that the best alignment and tree estimation methods can be used on them, and that the

overlap patterns enable a highly accurate supertree to be estimated [297].

A DACTAL analysis can be initiated in one of several ways. The simplest way is to

obtain a starting tree for the dataset (e.g., a taxonomy for the dataset, or an estimated tree

obtained using a fast two-phase method). This starting tree is then used to decompose

the dataset into small overlapping subsets of sequences that are close together in the

starting tree, using the “PRD” technique [30, 298]. Alternatively, this decomposition

into small overlapping subsets of similar sequences can be obtained using one of several

BLAST-based decompositions [298].

Once this decomposition is computed, alignments and trees are computed on each

subset, and the subtrees are merged into a tree on the full set of taxa using SuperFine

[53,299], a new supertree method that can produce more accurate trees on large datasets
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Figure 8. DACTAL (based upon five iterations) compared to ML trees
computed on alignments of three large biological datasets with 6,323 to
27,643 sequences. We used FastTree-2 (FT) and RAxML to estimate ML trees on the
MAFFT-PartTree (Part) and ClustalW-Quicktree (Quick) alignments. The starting tree
for DACTAL on each dataset is FT(Part). (This figure appeared in Nelesen et al. [30].)
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than other supertree methods [54, 300]. The resultant tree is then used to start the

next iteration, which continues with a decomposition of the taxa into small, overlapping

subsets, the estimation of alignments and trees on each subset, and the merger of the

subset-trees into a tree on the full dataset. Finally, this iterative process (shown in Figure

7) continues for a user-defined maximum number of iterations.

DACTAL has comparable accuracy to SATé-I (the initial implementation of SATé as

described by Liu et al. [10]), and substantially improved accuracy compared to the leading

two-phase methods. on datasets with 1000 or more sequences. In addition, DACTAL is

faster than SATé-I, and gives very good accuracy on large biological datasets.

Figure 8 [30] shows the results for five iterations of DACTAL on three large rRNA

datasets with up to 27,643 sequences, in comparison to maximum likelihood trees (com-

puted using FastTree-2 and RAxML) on two alignments (Clustal-Quicktree and MAFFT-

Parttree). DACTAL was run using a subset decomposition size of 200 and RAxML(MAFFT)

to estimate trees on the subsets. Each of these datasets has a reliable curated alignment

based on rRNA structure [301]. The reference trees for this study were obtained by es-

timating maximum likelihood trees (using RAxML with bootstrapping) on the curated

alignment, and then collapsing all branches with bootstrap support below 75%. Note

the substantial reduction in tree error obtained using DACTAL in comparison to these

two-phase methods. Furthermore, other analyses show that DACTAL is highly robust to

its starting tree, and that even a single iteration produces a large improvement [30].

5 Lessons Learned and Future Directions

5.1 Basic Observations

This chapter has introduced several new methods and techniques for both alignment and

phylogeny estimation, and shown that highly accurate large-scale estimation is beginning

to be possible. However, there are several recurring themes in this chapter, which point

to the limitations of the current research, and the need for future work. These are:

1. Only a few techniques have been developed that are capable of large-scale alignment

or phylogeny estimation, and very few methods have been even tested on large

datasets,
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2. The standard criteria used to evaluate alignment estimation methods (e.g., the SP-

and TC-scores) are not suited to predicting accuracy with respect to tree estimation,

especially for large datasets,

3. Many promising alignment estimation methods have not been formally tested on

simulated or biological benchmark datasets for their impact on phylogeny estima-

tion,

4. The relative performance of phylogeny estimation methods (and perhaps of align-

ment estimation methods) can change with the number of taxa (e.g., compare

HGT+FP and NJ in Figure 1), and so performance studies that only examine small

datasets are not predictive of performance on larger datasets, and

5. In general, the simulation studies used to evaluate alignment or phylogeny estima-

tion methods have been based on very simple models of evolution, and so it is not

clear how well these methods will perform under more realistic conditions.

These limitations are due to a number of factors, one being that many (though not all)

of the alignment estimation methods were developed for use by the structural biologists,

and hence were tested with respect to the ability to identify structural and functional

features. Since structural and functional homology may not be identical to positional

homology, this contributes to the issues raised above. Furthermore, the two communities -

phylogenetics and structural biology - are still fairly disconnected, and alignment methods

continue to be tested almost exclusively on structural benchmarks, typically based on

protein datasets. Bridging the gaps between the various disparate communities, including

phylogenetics, structural biology, and functional genomics, may be necessary in order to

change this practice.

Many of these issues also reflect the challenges in evaluating phylogeny estimation

methods, especially on large datasets. For example, although we know a great deal about

the performance of methods in terms of statistical consistency under the General Markov

model and simpler models of sequence evolution, much less is known mathematically about

performance on finite data, and even less about the performance under more complex

models.

As a whole, these observations highlight the importance of benchmark datasets (whether

biological or simulated), since mathematical results are typically limited to statistical
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consistency or model identifiability. However, biological datasets that are appropriate for

evaluating phylogeny estimation methods are rare, since the true tree is rarely known.

In our own studies, we have used biological datasets with curated alignments, and used

maximum likelihood bootstrap trees estimated on these curated alignments as the bench-

mark trees. This approach has the advantage of being phylogenetically based, but has

two disadvantages: the alignment itself (however well curated) may not be correct, and

even if it is correct, the tree estimated on the alignment may also not be correct. Thus,

more - and better - biological benchmarks are needed.

As noted, simulation studies are a standard technique used to evaluate phylogenetic es-

timation methods, but designing good simulation studies and extracting general principles

from them is not easy. Among the many challenges, the first is that the models available

in most (but not all) simulator software are too simple, generally no more complex than

the models available in the phylogeny estimation software; thus, data generated by most

simulation software do not exhibit the properties of biological data. Another challenge is

that the relative performance of methods can change with the model condition, and ex-

ploring the parameter space is computationally infeasible. Perhaps because of this, many

studies have focused on small trees, where more thorough exploration of the parameter

space is feasible. However, computational challenges in analyzing large datasets also ex-

plains why few studies have examined performance on large datasets, and relatively little

is known about performance on large datasets. All these issues add to the challenge in

developing good benchmarks, and thus of understanding phylogeny estimation methods

- especially on large datasets.

5.2 Future Research Directions

As noted, substantial progress towards developing methods that can estimate alignments

and trees on very large datasets has been made. For example, we have presented new

approaches for estimating alignments and trees, for co-estimating alignments and trees,

and for phylogenetic placement, each of which has provided substantial improvements in

accuracy (and in some cases scalability) over previous methods. Here we discuss additional

research questions that remain, acknowledging that these are just a small sample of the

open problems in this area.
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5.2.1 Theoretical performance of phylogeny estimation methods under long

indel models

While much is known about the theoretical performance of phylogeny estimation under

indel-free models of evolution, much less is known about the statistical guarantees of

methods when sequences evolve with indels; even the result by Daskalakis and Roch

[237] establishing statistical consistency under a model with indels only allows indels of

single nucleotides. Open questions here include the statistical guarantees (both statistical

consistency and sequence length requirements) for methods under models with long indels

given the true alignment, and when alignments must be estimated.

5.2.2 Sequence length requirements for phylogeny estimation

While much is known about the sequence length requirements under the General Markov

model for many methods, several questions remain. For example, the best published

upper bound on the sequence length requirement for maximum likelihood is no better

than that of neighbor joining [166], but this bound is likely to be loose, as suggested

by Roch [302]. Thus, a basic question is whether maximum likelihood is an absolute fast

converging method? Other questions of this sort include the sequence length requirements

of methods to recover some fixed percentage of the model tree bipartitions, or to estimate

the model tree under more complex models than the General Markov model. Finally,

from an empirical standpoint, it would be good to have implementations of absolute fast

converging methods so that these methods can be compared to other methods, such as

maximum likelihood.

5.2.3 Genome rearrangements and duplications

Genomes evolve with duplications, rearrangements (inversions, transpositions, transver-

sions), fissions and fusions, and alignment and phylogeny estimation in the presence of

these events is very complicated. While some work has been done on the problem of

estimating whole genome alignments [303–311], much still needs to be done.

The problem of estimating trees in this case is similarly challenging, and is the subject

of a chapter in this volume by Bernard Moret et al. A basic open problem here is whether

genome-scale events and sequence evolution events can be analyzed together, since they

are likely to be complementary.
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5.2.4 Evolutionary Networks

The objective of finding a “Tree of Life” presents a very basic challenge, since not all

evolution is tree-like (e.g., horizontal gene transfer [312–317] and hybridization [318–320]);

thus, the phrase “Tree of Life” is in a sense a misnomer, as discussed by Mindell [321].

The failure of trees to completely represent the evolutionary history is most obvious

in the case of hybridization, where two species hybridize to make a new species; clearly,

this history cannot be represented by a tree, and instead requires a network (i.e., a graph

that has cycles). However, in the case of horizontal gene transfer, the underlying species

history may still be reasonably represented by a tree [45], and edges representing the HGT

events can be added to the tree to create a network. (This is how the phylogenetic network

for language evolution is obtained, where horizontal edges represent “borrowing” between

languages [322,323].) Thus, in the event of hybridization or horizontal gene transfer, the

evolutionary history is best represented by a network, though the specific representation

(and meaning of edges) can differ between these networks.

In the literature, the term “phylogenetic network” [324–326] has been used to describe

these graphical models, but, as Morrison points out [325], this term is used for more than

one purpose. That is, there are two types of networks that have been proposed: one type

is suited for exploratory data analysis (EDA) and another that is suited for a hypotheses

of evolutionary history. Morrison suggests that networks that are best suited for EDA of

phylogenetic data should be referred to as “Data-Display Networks”, and that networks

that are graphical representations of a reticulate evolutionary history should be referred to

as “Evolutionary Networks”; in accordance with his suggestions, we will use these terms

here.

This distinction is important, since a data-display network does not provide any direct

information about the evolutionary history. As Morrison says (page 47 [325]),

The basic issue, of course, is the simple fact that data-display networks and

evolutionary networks can look the same. That is, they both contain retic-

ulations even if they represent different things... Many people seem to have

confused the two types of network, usually by trying to interpret a data-display

network as an evolutionary network... The distinction between the two types

of network has frequently been noted in the literature, so it is hardly an original

point for me to make here. Interestingly, a number of authors have explicitly
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noted the role of display networks in exploratory data analysis and then pro-

ceeded to treat them as genealogies anyway. It is perhaps not surprising, then,

that non-experts repeatedly make the same mistake.

Both types of networks serve valuable purposes (as noted also by Morrison), but the

purposes are different. However, there are many more methods that produce data-display

networks than evolutionary networks, and the estimation of evolutionary networks is much

more complicated and challenging. For examples of some of the few evolutionary network

methods, see [327–333].

Note that while the species history is not tree-like, the evolution of individual genes

may still be treelike. However, since reticulate events can result in genes with different

trees, the detection of differences, sometimes strongly supported differences, between gene

trees can indicate that some kind of reticulation may have occurred. However, gene trees

can also be incongruent under other conditions, including cases where the species history

is still treelike; a prime example of this is incomplete lineage sorting [40, 42, 57].

Many challenges remain for estimating evolutionary histories in the case of these

events. One obvious challenge is the estimation of the underlying species tree from either

gene sequence alignments or trees, for the case where genes evolve with horizontal gene

transfer but without hybridization. Lapierre et al. [334] performed a simulation study to

evaluate supertree and supermatrix methods for estimating the species tree, and found

that supermatrix methods gave better results when there was only small amounts of hori-

zontal gene transfer, and supertree methods were better when there were many horizontal

gene transfers. A new method for estimating the underlying species tree, and a proba-

bilistic analysis of this method, has also been developed by Roch and Snir [335], but has

not been evaluated in simulation or on real data. New methods, and evaluations of these

methods, are clearly needed.

In addition, since there are very few methods for estimating evolutionary networks,

more work in this area needs to be done. However, all evolutionary networks - especially

those that operate by combining estimated gene trees - need to be able to distinguish

incongruence between estimated gene trees that is due to true reticulation (as in lateral

gene transfer or hybridization), incongruence that is due to incomplete lineage sorting or

gene duplication and loss (for which a species tree still makes sense), and incongruence due

to estimation error. Recent progress has been made in developing statistical methods for

distinguishing between different causes for incongruence, and for estimating evolutionary
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histories given a mixture of different events [333, 336, 337]. While these are still in their

infancy, the potential for substantial advances in phylogenomic analysis could be very

high.

5.2.5 Incorporating biological knowledge into alignment and phylogeny esti-

mation

One of the most interesting developments in both alignment and phylogeny estimation is

the attempt to utilize biological knowledge, especially about structure, into the process

[102]. Although structurally-based alignments may not always reflect positional homology

[100], the use of external knowledge has greatly impacted the alignment of sets of protein

sequences that are close to the twilight zone, in which sequence similarity can be close to

random while structural properties may still be conserved. A similar effort is occurring on

the phylogeny estimation side, so that the Markov models used in phylogeny estimation

(especially those involving protein analyses) are becoming more realistic [138, 139]. For

example, Liberles et al. [139] say:

At the interface of protein structure, protein biophysics, and molecular evolu-

tion there is a set of fundamental processes that generate protein sequences,

structures and functions. A better understanding of these processes requires

both biologically realistic models that bring structural and functional consid-

erations into evolutionary analysis, and similarly incorporation of evolutionary

and population genetic approaches into the analysis of protein structure and

underlying protein biophysics... The potential benefits of the synergy be-

tween biophysical and evolutionary approaches can hardly be overestimated.

Their integration allows us not only to incorporate structural constraints into

improved evolutionary models, but also to investigate how natural selection

interacts with biophysics and thus explain how both physical and evolutionary

laws have shaped the properties of extant macromolecules.

But, as Claus Wilke said in “Bringing Molecules Back into Molecular Evolution” [138]:

A side effect of the strong emphasis on developing sophisticated methods for

sequence analysis has been that the underlying biophysical objects represented

by the sequences, DNA molecules, RNA molecules, and proteins, have taken a
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back-seat in much computational molecular evolution work. The vast majority

of algorithms for sequence analysis, for example, incorporate no knowledge of

biology or biochemistry besides that DNA and RNA sequences use an alphabet

of four letters, protein sequences use an alphabet of 20, and the genetic code

converts one into the other. The choice to treat DNA, RNA, and proteins

simply as strings of letters was certainly reasonable in the late 20th century.

Computational power was limited and many basic aspects of sequence analysis

were still relatively poorly understood. However, in 2012 we have extremely

powerful computers and a large array of highly sophisticated algorithms that

can analyze strings of letters. It is now time to bring the molecules back into

molecular evolution.

Both Wilke and Liberles et al. point out excellent work that is being done to add more

biological realism into existing models and methods, and are passionate about the poten-

tial benefits to science that could result. However, the challenges to using more realistic

models in phylogenetic estimation are enormous. As Wilke’s article suggests, the added

complexity in these models will lead to increased computational challenges (e.g., more pa-

rameters to estimate for maximum likelihood, or longer MCMC runs to reach convergence

for the Bayesian methods). However, there are other challenges as well: as discussed ear-

lier, increased model complexity can lead to non-identifiable models, making inferences

under the model less reliable and interpretable. Furthermore, it is not always the case

that adding complexity (even if realistic) to a model will improve inferences under the

model, and it may be that phylogeny estimation under simpler, not necessarily as realistic

models, may give the most accurate results.

However, even this question depends on what one is trying to estimate. Is it just the

gene tree, or also the numerical parameters on the tree? If more than just the topology,

then which parameters? Or is the tree itself just a nuisance parameter, and the objective

something else? Indeed, it is possible that more parameter rich and biologically realistic

models may not have a substantial impact on phylogeny estimation, but they may im-

prove the detection of selection, the estimation of dates at internal nodes in the tree, and

the inference of protein function and structure. That said, the prospects for improved ac-

curacy in biological understanding through these new approaches that integrate biological

knowledge with statistical methods may be large, and are worth investigating.
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A final point about biologically realistic models: even if they turn out not to be partic-

ularly useful for estimation, they are certainly useful for simulation! That is, simulating

under more realistic models and then estimating under simpler models allows us to de-

termine the robustness of the method to model violations, and to predict performance

under more realistic conditions. Therefore, the development of improved statistical mod-

els of evolution may be important for testing methods, even if the use of these models for

inference turns out to be impractical.

6 Conclusions

This chapter set out to survey large-scale phylogeny and alignment estimation. As we have

seen, large-scale alignment and phylogeny estimation (whether of species or of individual

genes) is a complicated problem. Despite the multitude of methods for each step, the

estimation of very large sequence alignments or gene trees is still quite difficult, and the

estimation of species phylogenies (whether trees or networks!), even more so. Furthermore,

the challenges in large-scale estimation are not computational feasibility (running time and

memory), as inferential methods can differ in their theoretical and empirical performance.

The estimation of very large alignments and trees, containing tens of thousands of

sequences, is now feasible; see Tables 1 and 2 for a summary of the methods that have

been demonstrated to be able to estimate alignments and trees, respectively, on at least

25,000 sequences. Even co-estimation of alignments and trees of this size is now feasible,

as shown in Table 3. However, improvements in scalability of many alignment and tree

estimation methods is likely, and some of the methods not listed in these tables may also

be able to analyze datasets of this size.

Furthermore, very substantial progress has been made for large-scale estimation, and

the field seems poised to move very dramatically forward. For example, there are new

algorithmic approaches being used that have the ability to improve the performance of

base methods for alignment and phylogeny estimation, including iteration, divide-and-

conquer, probabilistic models, and the incorporation of external biological knowledge.

At the same time, there is a definite move to incorporate more biological realism and

knowledge into statistical estimation methods. The combination of these approaches

is likely to be a very powerful tool towards substantial improvements in accuracy and,

potentially, scalability.
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webserver for simultaneous protein multiple sequence alignment and phylogenetic

tree construction. Nucl Acids Res 38 (Web Server Issue): W29–W34.

79. O’Sullivan O, Suhre K, Abergel C, Higgins D, Notredame C (2004) 3DCoffee:

combining protein sequences and structure within multiple sequence alignments.

J Mol Biol 340: 385–395.

80. Zhou H, Zhou Y (2005) SPEM: improving multiple sequence alignment with se-

quence profiles and predicted secondary structures. Bioinf 21: 3615–3261.

81. Deng X, Cheng J (2011) MSACompro: protein multiple sequence alignment using

predicted secondary structure, solvent accessibility, and residue-residue contacts.

BMC Bioinf 12: 472.

82. Roshan U, Livesay DR (2006) Probalign: Multiple sequence alignment using par-

tition function posterior probabilities. Bioinf 22: 2715-21.

83. Roshan U, Chikkagoudar S, Livesay DR (2008) Searching for RNA homologs

within large genomic sequences using partition function posterior probabilities.

BMC Bioinf 9: 61.

84. Do C, Mahabhashyam M, Brudno M, Batzoglou S (2006). PROBCONS: Prob-

abilistic consistency-based multiple sequence alignment of amino acid sequences.

Software available at http://probcons.stanford.edu/download.html.



68

85. Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: Inference of RNA align-

ments. Bioinf 25: 1335-1337.

86. Nawrocki EP (2009) Structural RNA Homology Search and Alignment using Co-

variance Models. Ph.D. thesis, Washington University in Saint Louis, School of

Medicine.

87. Gardner D, Xu W, Miranker D, Ozer S, Cannonne J, et al. (2012) An accurate

scalable template-based alignment algorithm. In: Proc. International Conference

on Bioinformatics and Biomedicine, 2012. pp. 237–243.

88. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced

time and space complexity. BMC Bioinf 5: 113.

89. Mirarab S, Warnow T (2011) FastSP: Linear-time calculation of alignment accu-

racy. Bioinf 27: 3250–3258.

90. Blackburne B, Whelan S (2012) Measuring the distance between multiple sequence

alignments. Bioinf 28: 495–502.

91. Stojanovic N, Florea L, Riemer C, Gumucio D, Slightom J, et al. (1999) Com-

parison of five methods for finding conserved sequences in multiple alignments of

gene regulatory regions. Nucleic Acids Res 27: 3899–3910.

92. Edgar R (2010) Quality measures for protein alignment benchmarks. Nucleic Acids

Research 7: 2415–2153.

93. Thompson JD, Plewniak F, Poch O (1999) A comprehensive comparison of mul-

tiple sequence alignment programs. Nucleic Acids Research 27: 2682–2690.

94. Thompson J, Plewniak F, Poch O (1999) BAliBASE: A benchmark alignments

database for the evaluation of multiple sequence alignment programs. Bioinf 15:

87–88.

95. Raghava G, Searle SM, Audley PC, Barber JD, Barton GJ (2003) Oxbench: A

benchmark for evaluation of protein multiple sequence alignment accuracy. BMC

Bioinf 4: 47.



69

96. Gardner P, Wilm A, Washietl S (2005) A benchmark of multiple sequence align-

ment programs upon structural RNAs. Nucleic Acids Res 33: 2433–2439.

97. Walle ILV, Wyns L (2005) SABmark-a benchmark for sequence alignment that

covers the entire known fold space. Bioinf 21: 1267–1268.

98. Carroll H, Beckstead W, O’Connor T, Ebbert M, Clement M, et al. (2007) DNA

reference alignment benchmarks based on tertiary structure of encoded proteins.

Bioinf 23: 2648–2649.

99. Blazewicz J, Formanowicz P, Wojciechowski P (2009) Some remarks on evaluating

the quality of the multiple sequence alignment based on the BAliBASE benchmark.

Int J Appl Math Comput Sci 19: 675–678.

100. Iantomo S, Gori K, Goldman N, Gil M, Dessimoz C (2012) Who watches

the watchmen? An appraisal of benchmarks for multiple sequence alignment.

arXiv:12112160 [q-bio.QM].

101. Aniba M, Poch O, Thompson JD (2010) Issues in bioinformatics benchmarking:

the case study of multiple sequence alignment. Nucleic Acids Res 38: 7353–7363.

102. Morrison DA (2009) Why would phylogeneticists ignore computerized sequence

alignment? Syst Biol 58: 150–158.

103. Reeck G, de Haen C, Teller D, Doolitte R, Fitch W, et al. (1987) “homology” in

proteins and nucleic acids: a terminology muddle and a way out of it. Cell 50:

667.

104. Galperin M, Koonin E (2012) Divergence and convergence in enzyme evolution. J

Biol Chem 287: 21–28.

105. Sjolander K (2010) Getting started in structural phylogenomics. PLoS Comput

Biol 6: e1000621.

106. Katoh K, Kuma K, Miyata T, Toh H (2005) Improvement in the acccuracy of

multiple sequence alignment MAFFT. Genome Inf 16: 22–33.

107. Do C, Mahabhashyam M, Brudno M, Batzoglou S (2005) PROBCONS: Proba-

bilistic consistency-based multiple sequence alignment. Genome Res 15: 330–340.



70

108. Loytynoja A, Goldman N (2005) An algorithm for progressive multiple alignment

of sequences with insertions. Proc Nat Acad Sci 102: 10557-10562.

109. Nelesen S, Liu K, Zhao D, Linder CR, Warnow T (2008) The effect of the guide

tree on multiple sequence alignments and subsequent phylogenetic analyses. In:

Proc Pacific Symposium on Biocomputing 13: 15–24.

110. Fletcher W, Yang Z (2010) The effect of insertions, deletions, and alignment errors

on the branch-site test of positive selection. Mol Biol Evol 27: 2257–2267.

111. Penn O, Privman E, Landan G, Graur D, Pupko T (2010) An alignment confidence

score capturing robustness to guide tree uncertainty. Mol Biol Evol 27: 1759–1767.

112. Toth A, Hausknecht A, Krisai-Greilhuber I, Papp T, Vagvolgyi C, et al. (2013)

Iteratively refined guide trees help improving alignment and phylogenetic inference

in the mushroom family bolbitiaceae. PLoS One 8: e56143.

113. Capella-Gutiérrez S, Gabaldón T (2013) Measuring guide-tree dependency of in-

ferred gaps for progressive aligners. Bioinf 29(8):1011–7.

114. Preusse E, Quast C, Knittel K, Fuchs B, Ludwig W, et al. (2007) SILVA: a compre-

hensive online resource for quality checked and aligned ribosomal RNA sequence

data compatible with ARB. Nucleic Acids Res 35: 718–96.

115. DeSantis T, Hugenholtz P, Keller K, Brodie E, Larsen N, et al. (2006) NAST: a

multiple sequence alignment server for comparative analysis of 16S rRNA genes.

Nucleic Acids Res 34: W394–9.

116. Lytynoja A, Vilella AJ, Goldman N (2012) Accurate extension of multiple se-

quence alignments using a phylogeny-aware graph algorithm. Bioinf 28: 1685–

1691.

117. Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool

for multiple protein sequences. Bioinf 23: 1073–1079.

118. Berger SA, Stamatakis A (2011) Aligning short reads to reference alignments and

trees. Bioinf 27: 2068–2075.



71

119. Sievers F, Dineen D, Wilm A, Higgins DG (2013) Making automated multiple

alignments of very large numbers of protein sequences. Bioinf 29(8): 989–995.

120. Smith S, Beaulieu J, Donoghue M (2009) Mega-phylogeny approach for compara-

tive biology: an alternative to supertree and supermatrix approaches. BMC Evol

Biol 9: 37.

121. Saitou N, Nei M (1987) The neighbor-joining method: A new method for recon-

structing phylogenetic trees. Mol Biol Evol 4: 406–425.

122. Roquet C, Thuiller W, Lavergne S (2013) Building megaphylogenies for macroe-

cology: taking up the challenge. Ecography 36: 013026.

123. Steel MA (1994) Recovering a tree from the leaf colourations it generates under a

Markov model. Appl Math Lett 7: 19–24.

124. Evans S, Warnow T (2005) Unidentifiable divergence times in rates-across-sites

models. IEEE/ACM Trans Comp Biol Bioinf 1: 130-134.
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