
Smoke Brush

Sarah Abraham and Donald Fussell
Computer Science Department at University of Texas at Austin

Figure 1: Cat drawing with animated smoke effects — generated and constrained by brush stroke.

Abstract

Non-Photorealistic Rendering covers a wide range of visual effects,
and much work has been dedicated to create digital representations
of traditional media — either through artist controls or program-
matically. We explore a variation of this work, which aims to create
digital media that takes the metaphors of traditional media but ap-
plies them in ways that have no physical equivalent — thus expand-
ing notions of what digital media can represent. Smoke Brush is a
system for applying smoke-like brush strokes to a digital canvas.
Using Smoke Brush, artists can add animated, constrained smoke
effects to existing pictures or create images represented entirely by
smoke. Our drawing system produces artifacts that are realized as
animated gifs — a commonly available digital format used in cin-
emagraphs. We also describe a technique that produces smooth
continuous motion in these looped animations that is faithful to the
original artist input.

CR Categories: I.3.m [Computer Graphics]: Miscellaneous—
Non-Photorealistic Rendering, I.3.4 [Computer Graphics]: Graph-
ics Utilities—Paint Systems;

Keywords: non-photorealistic rendering, smoke, painting, inter-
active techniques, artistic media

1 Introduction

The area of Non-Photorealistic Rendering (NPR) covers a wide
range of techniques and ideas — from digital techniques for artists
to programmatic generation of art and stylization. Gooch et al dis-
cuss the future of NPR, listing one of its “grand challenges” as de-
signing new artistic media [Gooch et al. 2010], but what constitutes
a new artistic medium remains open-ended. One potential area of
exploration is understanding how artists can interact with entirely
digitally-based media using traditional painting metaphors. Smoke
Brush provides a “proof of concept” example as to what a digitally-

based medium could constitute, as well as considerations for how
artists might interact with such a medium.

Smoke Brush allows an artist to generate smoke-like particles in a
localized area of a digital canvas using tablet controls. The stylus
provides high-level, intuitive control over a smoke cloud’s shape
and density, while low-level features, like the individual particle
trajectory along the flow is automatic and mostly randomized. The
idea of using underlying randomness to create pleasing but unique
and recognizable structures has been previously applied for texture
generation [Efros and Freeman 2001]. We apply this aesthetic prin-
ciple to the generation and control of smoke — a fluid used with
great effect to enhance visual works with its lively and dynamic
movements.

Our system uses the metaphor of paint and brush, where smoke is
the “pigment” of the stylus-based brush and an underlying 2D ve-
locity field acts as the paint’s “binder” — dispersing the particles in
turbulent patterns. By emphasizing simplistic tablet controls with
only a few on-screen sliders, we reduce the number of explicit pa-
rameters that are often associated with computational fluid dynam-
ics (CFD).

We wish to recreate the real-world experience of painting as the
artist generates and controls smoke on a digital canvas, so Smoke
Brush runs at interactive rates, which we achieve by emphasizing
the aesthetic “feel” of smoke over the physical accuracy of a CFD
simulation. In order to provide further visual interest, our systems
imports images for the canvas’ background. Users can then export
seamless animated gifs, which are ideal for cinemagraphs — a pop-
ular method of displaying animated art on websites.

2 Previous Work

NPR techniques that recreate traditional media in digital form in-
clude everything from charcoal [Bleser et al. 1988] to oils and
acrylics [Baxter et al. 2004] to watercolor [Curtis et al. 1997].
What effects digital brushes are able to create outside the realm
of traditional media is less explored. Kalnin’s WYSIWYG sys-
tem provides stylistic controls with a more natural painting ana-
logue [Kalnins et al. 2002], but the visual effects are still based
on traditional painting. Smoke Brush also aims for an easily un-
derstood painting metaphor, but it uses an entirely digital form of
“paint.” Smoke particles generated in Smoke Brush are restricted to
the artist’s strokes, and continuously flow in a physically plausible
way, while ignoring the physics of heat and particle dissipation —



properties that dictate behavior of smoke in the real world. Since
the smoke generated has non-physically-based constraints, Smoke
Brush is not equivalent to any traditional art media.

To model smoke effects, it is necessary to understand fluid simu-
lation, which is the standard technique for recreating its distinctive
turbulent patterns. Fluid simulation is an area within CFD that mod-
els the diffusion and movement of particles. One class of techniques
involves an underlying grid of velocity vectors based on the Navier-
Stokes equation, which models fluid movements by pushing parti-
cles along this flow [Stam 1999]. These particle movements simu-
late the visually familiar patterns of fluids including water, smoke
and fire. Smoke in particular is known for its unique turbulent pat-
terns and vortices [Foster and Metaxas 1997] [Fedkiw et al. 2001].

Fluid simulations also aid modeling of traditional artistic media,
such as the diffusion of paint on canvas in Curtis’ watercolor tech-
nique [Curtis et al. 1997] or the sumi-e system, MoXi [Chu and Tai
2005], which recreate the effects of watercolor and ink respectively
and allow users to interact with the medium via a digital canvas
and painting interface. Like these systems, Smoke Brush uses an
underlying fluid simulation to reproduce smoke-like turbulence in
digital paintings, but the effects it generates have no equivalent to a
real-world artistic medium, making it distinct.

The question of how to control and constrain fluid has generated its
own area of study within the CFD community. Systems can empha-
size a high level of control [Treuille et al. 2003][Fattal and Lischin-
ski 2004][Shi and Yu 2005], where the user specifies specific key-
frame targets, to mid-level [Barnat et al. 2011], where the user has a
general notion of a target, to a low level [Madill and Mould 2013],
where the user directs the fluid using parameters based on the un-
derlying physics.

These methods create a variety of unique and visually interesting
effects, but our system focuses on “brush-style” control, which at-
tempts to provide a digital analogue to the well-understood paint
brush. This is intended to “demystify” the fluid parameters associ-
ated with prior control systems and create a highly intuitive, easily
mastered program for painters and illustrators of all levels. While
Kim et al. created similar controls using paths [Kim et al. 2006],
their method does not emphasize the brush metaphor and instead
uses 3D NURBS curves. Olsen et al. use interactive vector fields to
recreate painterly styles on existing images [Olsen et al. 2005], but
this technique is not focused on brush controls or new expressions
of artistic media, which is Smoke Brush’s primary goal.

Smoke Brush’s output is a procedurally-generated series of frames
that allows users to create cinemagraphs without looping arti-
facts. Existing techniques address the problem of seamlessly loop-
ing video segments by searching for potential cycles within a se-
quence [Tompkin et al. 2011] or optimizing each pixel’s looping
period [Liao et al. 2013]. Video textures use structural analysis of a
clip to reorder frames into a seamless loop [Schödl et al. 2000]. In
Smoke Brush, the movement of individual smoke particles is inher-
ently random. To match artist intent, the outputted animation only
needs to maintain the overall form of the strokes. Thus our tech-
nique can avoid the overhead of sequence analysis by overlaying
multiple sections of smoke that preserve particle trajectory when
the animation loops.

3 Smoke Brush System

Smoke Brush allows an artist to paint smoke particles onto a digi-
tal canvas in a way analogous to existing artistic media — namely
by using a brush (generation of smoke particles) and canvas (move-
ment of smoke particles). Using a stylus, the artist controls and
constrains the general form of the smoke cloud within each stroke.

Meanwhile the canvas’ underlying velocity field moves particles
within the stroke’s area in chaotic, turbulent patterns, which make
smoke so recognizable as a fluid effect.

The canvas initially is particle-free, and artists can import a back-
ground image if they wish to enhance an existing scene with dy-
namic smoke effects. Artists can create smoke strokes using a stylus
as if painting. Similar to how physical paint is comprised of pig-
ment to mark the canvas and binder to diffuse the pigment across
the surface of the canvas, the smoke particles have a “pigment”
component and a “binder” component. The smoke’s pigment is
the particles themselves, while the binder is an underlying 2D ve-
locity field, which moves the smoke particles in a turbulent fashion
around the canvas. Each particle p has a trajectory defined as its
velocity −→υ p, angular velocity −→ω p and transparency αp. The can-
vas has an underlying grid of velocity vectors (see Figure 2), and p
uses the nearest velocity value to update −→υ p and −→ω p. The system
then automatically updates p’s position using the semi-implicit Eu-
ler method at each time step. Meanwhile αp modulates based on
p’s distance from its parent stroke to create a more wispy, visually-
pleasing effect.

Figure 2: Underlying velocity grid influences particle position and
velocity at every time step.

Without additional constraints, a particle would move arbitrar-
ily across the canvas. While potentially desirable, this ignores
the intent of a brush stroke, which provides directionality and
limitations on physically-based paint flow. To achieve these
qualities, we discretize strokes into a sequence of “touches,”
which dictate the behavior of child particles along the stroke.
The movements of p are based on the properties of its par-
ent touch, t, which include strokeWidtht, numParticlest and
lengthScalet. strokeWidtht controls how far child particles can
move away from the parent stroke, numParticlest effects smoke
density within t’s influence, and lengthScalet modulates the speed
of particles along the underlying velocity field.

3.1 Touch Subdivisions

Particles are constrained to a strokeWidth distance from the par-
ent stroke. While particles should flow freely and smoothly within
this area, they remain unaffected by any non-parent strokes, which
also helps maintain a sense of stroke cohesion, even when strokes
intersect and overlap. Yet simply connecting a stroke’s touches into
a piecewise series of line segments creates choppy, disjoint sec-
tions of smoke, which is undesirable. To create a smoother stroke,
we used cubic interpolation to generate subdivisions along the path
between touches. The number of subdivisions is dynamically de-
termined during the painting process using the equation:

n =
dist(t0, t1)

strokeWidtht0
(1)



where n is the number of subdivisions between touches t0 and t1
that ensures an even flow of particles along the stroke regardless
of distance between touches. These subdivisions, along with the
stroke’s touches, form an implicit, continuous path (see Figure 3).

Figure 3: Subdivisions, spaced strokeWidth distance apart from
each other and existing touches, generated along the interpolated
stroke.

3.2 Particle Generation and Placement

Figure 4: Particles generated at random within strokeWidth ra-
dius around touches or subdivisions. This guarantees particles to
be within strokeWidth distance from the stroke.

Once t’s subdivisions are defined, Smoke Brush generates the par-
ticles parented by t. For each particle p, we randomly select one
of t’s subdivisions as a point of origin then randomly generate p’s
coordinates within a strokeWidtht radius. This guarantees that
p is within the acceptable stroke area (see Figure 4) and simpli-
fies the calculations. While this does not create a mathematically
even distribution of particles along the stroke, we found that, due to
the nature of the underlying fluid simulation, the particles rapidly
disperse into the greater area without deteriorating the final visual
output.

To keep p constrained within its parent stroke, S, we must deter-
mine whether p is within S’s range at each time step. We achieve
this by calculating p’s perpendicular distance from the nearest sub-
division line segment, s, where s = s1 − s0. To find this distance,
we must first calculate b, which is the point along s that is perpen-
dicular to p.

b = s0 + s(
l · s
s · s ) (2)

where l = p − s0. We can then calculate dist(p, b) and com-
pare it to strokeWidtht. Since particles can flow anywhere along
the stroke, they are not limited to a particular touch or subdivision.
Using l · s and s · s, we also determine whether p is beyond the
end points of s. We can then reparent p to the nearest neighboring
touch as necessary. If p moves beyond the outermost touches of S,
we reposition and reattach it to a randomly chosen touch within the
stroke, thus preserving particle density while maintaining the touch
constraints.

For visual effect we “thin out” the stroke’s edges, by linearly fading

αp as it moves away from the stroke curve.

αp = αp × (1− rampα) (3)

where

rampα =
dist(p, S)

strokeWidtht
(4)

and t is p’s parent touch within S.

3.3 Curl Noise for Turbulent Effect

Since our goal is a highly responsive, interactive system for artists,
we considered methods for fluid simulation that do not necessar-
ily rely on physically accurate calculations. Specifically we used
the insights of Bridson’s curl-noise technique [Bridson et al. 2007]
to generate Smoke Brush’s underlying divergence-free 2D velocity
field. Curl-noise emphasizes real-time efficiency over physical re-
alism, but like many other fluid simulation techniques, curl noise
generates velocity vectors on a grid. These vectors dictate the di-
rection and magnitude of particle trajectories at that given location.
At each time-step, −→υ p and −→ω p are updated based on p’s current
velocity and nearest velocity vector along the underlying grid.

Curl-noise uses Perlin noise to model a potential field Ψ. Taking the
curl of Ψ creates a turbulent velocity field that remains smooth (no
energy sources or sinks that could create numerical instabilities),
making it ideal for representing incompressible fluids. This allows
for fast, straightforward fluid modeling with easily modulated ve-
locity amplitudes. For our purposes – a 2D medium that runs at
interactive rates – we implemented the 2D version. This reduces
overall calculations and allows us to move particles across a grid
sized at pixel resolutions. On such a fine-grained grid, we’re better
able to depict the intricate movements of turbulence.

The potential field Ψ extends across the entire canvas, but we want
different strokes to have different properties within it, as well as
variation within the stroke itself. To accomplish this, each parent
touch t independently determines how Ψ effects its child particles.
t’s length scale (lengthScalet) modifies Ψ’s magnitude for −→υ p,
while strokeWidtht determines p’s maximum distance from the
parent stroke, S. This allows the artist to generate a variety of stroke
effects using the same underlying Ψ.

We considered constraining p by modulating Ψ with a smoothing
ramp (also discussed in the Bridson paper), but this results in par-
ticles slowing as they move away from S, whereas we expect an
even speed across all particles as the smoke emerges and dissipates.
Thus we perform a simple check of dist(p, S) at each time step and
reposition p if necessary.

3.4 Noise over Time

Using a single Perlin noise map eventually results in particles “sta-
bilizing” within cyclic eddies, which is not a desirable effect. To
prevent this, we randomly generate Perlin noise every few seconds
and linearly interpolate Ψ from the existing noise field to the new
noise field. Since Ψ remains smooth during this interpolation, the
velocity field also remains incompressible and stable. Particles can
then move smoothly along the velocity field with no jumps or shifts
between Ψ modulations for indefinite periods of time. This also
ensures each picture has its own, unique patterns to the underlying
flow.

4 Additional Controls

Smoke Brush aims to create an intuitive, easy-to-learn interface
for artists with limited experience in fluid simulation. We found



the tablet/stylus interface best suited our needs, and our GUI pro-
vides sliders only when fine-grained control outweighs the need for
a brush-based interface. The only two slider controls are Stroke
Width, which determines an initial value for strokeWidth, and
Smoke Speed, which modulates lengthScale. A checkbox, Re-
strict Smoke, informs the system whether a touch’s particles are
constrained by strokeWidth, or whether they should flow freely
across the entire canvas.

The stylus implicitly provides further control over the smoke. Sty-
lus pressure determines the number of particles (i.e. particle den-
sity) and also modulates strokeWidth for a more natural line ef-
fect. This is based on traditional painting models, where an artist
would use brush pressure to modulate both width and pigment
quantity, creating visually pleasing variation along a stroke.

The stylus’ eraser removes both particles and touches within the
eraser stroke’s radius. For simplicity, we remove all particles as-
sociated with an erased touch as well, but it’s possible to reparent
these to neighboring touches if desired.

5 Exporting Seamless Animation Loops

Since Smoke Brush aims to create animated smoke effects, artists
can output their work as a series of frames, which can be recon-
structed as either a cinemagraph or short movie. Ideally this se-
quence should loop seamlessly to create a smooth, high-quality an-
imation, but creating a seamless loop is non-trivial. Since particles
are repositioned throughout the simulation, there is not necessarily
any frame-to-frame coherency in terms of particle position.

In the interests of computational efficiency and simplicity, we use
the following insights: the particles already have random trajecto-
ries, so the output will not change qualitatively if we overlay addi-
tional particles with similar trajectories, and the appearance of den-
sity will also not change qualitatively if we modulate these overlaid
particles’ transparencies. Thus we can use these qualitative equiva-
lences by overlaying particles from different time steps to smoothly
transition between the animation’s last and first frame.

First, we capture particle information from a sequence of frames
F , starting at F1 and ending at FT , where T is the total number of
frames in the desired animation loop. We additionally capture par-
ticle information from frame sequences of length S before and after
F . S− is the sequence F1−S to F1, and S+ is the sequence FT
to FT+S . Since looping F creates a discontinuity between frames
FT and F1 as the particles return to their initial positions, we take
the particle information from S− and S+ and overlay them on F ,
aligning S+ starting at F1 and S− starting at FT−S (see Figure 5).
This eliminates the discontinuity between FT and F1 as the parti-
cles in FT continue on their current trajectories in F1 and the earlier
trajectories of particles in F1 are visible in frames leading up to FT .

Figure 5: Frames over time showing the particle trajectories within
frames F1−S to F1 and FT to FT+S shifted to their respective po-
sitions within the captured sequence of frames — F1 to FT . This
provides a smooth transition in the particle trajectories from FT to
F1 when the sequence loops.

While not quantitatively equivalent to the initial output, this tech-
nique maintains the overall consistency of individual strokes. The
density of particles roughly doubles, but the appearance of density
is reduced by lowering each particle’s alpha across F , S+ and S−.

Overlaying S+ and S− onto F does lead to discontinuities where
S− begins and S+ ends (similar to our initial problem transition-
ing between FT and F1). But we correct this by choosing S such
that S > T

2
. Now S+ and S− overlap across the time period

represented by frames O as shown in Figure 6. This makes the dis-
continuities less noticeable, as now only a third of the particles have
a discontinuity at any given time step. Yet the density is again no
longer consistent, so a visible increase in particles occurs withinO.
We correct for this visual artifact by cross-fading S− and S+, so
that S− fades in at the same rate S+ fades out. This reduces the
appearance of a density increase within O and leads to a smooth
transition across all frames.

Figure 6: Particles from S− and S+ cross-fade within the overlap
region O. By calculating a step size based on max(pα) within S+
at frameO1 and themax(pα) within S− at frameON , we linearly
interpolate pα in S− to 0 at frame O1, and pα in S+ to 0 at ON .

5.1 Cross-fade

For this cross-fade to appear continuous, we must select an ap-
propriate alpha step size to apply to particles within S− and S+.
Within each frame, particles have unique α values, so for a true
linear interpolation, not only does each particle need a unique al-
pha step size, but we also need to track the particle between frames
for temporal coherency. To avoid this overhead, we instead find a
single step size value for αS− and αS+ within the “most opaque”
frame of S in O. For S−, this is the frame at ON where N is num-
ber of frames in O, while for S+, this is its frame at O1 or the first
frame in O (see Figure 6).

αS− and αS+ are then the maximum αp represented within this
frame. We then use these to calculate the alpha step size.

αSstep =
αS
N

(5)

for both αS+ and αS− independently.

We can now linearly interpolate along the frames in S+ and S−,
adjusting αp according to:

αp = αp − (αstep × t) (6)

where t is frame position in O. We experimented with cosine in-
terpolation, but linear interpolation provided smoother transitions.
Using S of length 15 frames or more provided a pleasing, imper-
ceptible transition.

6 Results

We tested a single-threaded version of Smoke Brush on a 2.16 GHz
Intel Core Duo MacBook Pro with 2 GB of RAM. The system’s
performance varies whether or not the user has loaded in an existing
image to paint on, suggesting optimizations within QT (the GUI



framework used) could benefit Smoke Brush’s overall performance.
For our initial experiments, we used a small library of hand-drawn
textures to render the smoke particles, and the system ran at around
20 frames per second with 3000 particles simulated (roughly two or
three brush strokes), but this frame rate drops as particles are added.
In most of test cases, the system could handle over 17000 particles
before dropping below 5 frames per second (see Figure 7).

Figure 7: Frames per second based on total number of particles
across canvases with and without a pre-loaded background image.

6.1 User Study

As an initial user study, we asked 5 artists (some with digital back-
ground and some with traditional) to use our system. Responses
were positive, and they agreed the novelty of the experience was
enjoyable. Controls were intuitive, and the familiarity of the stylus
interface created a workflow similar to what even traditional artists
used in their regular work. Within a few test sketches, they were
able to grasp controls well enough to produce satisfying artifacts.

Figure 8: A photograph of a train enhanced with animated smoke
painted in a single brush stroke c©Chelsea Hostetter.

Users expressed interest in the fluid nature of the medium, while
also finding it a challenge — particle movements creating a “looser”

Figure 9: A photograph of an octopus enhanced with an animated
ink jet created with few brush strokes c©Chelsea Hostetter.

Figure 10: A free-drawn tree made entirely in Smoke Brush using
numerous brush strokes c©Katie Bauer.

feel than usually expected with brush placement. The uniqueness
of this interaction also invited different approaches to strokes and
content. Especially with the “free-drawn” smoke pictures, artists
favored organic, flowing content like the tree in Figure 10 or the
specter in Figure 11.

It is possible to insert smoke in places where smoke is a natural fit,
such as the steam train example in Figure 8, but it can also be used
as a substitute for other turbulent fluids, like the octopus’ ink jet in
Figure 9. Artists also added smoke to digitally drawn images like
the phoenix in Figure 12 or the smoke stacks in Figure 13.

Suggestions for future iterations of Smoke Brush included more
precise controls as an option and the standard digital controls, such
as masking capabilities to enforce strict “no smoke” boundaries,
color palette control and layers.

7 Future Work

Smoke Brush is a very initial exploration into a form of new artistic
media and intuitive system for drawing fluids. We intend to incor-
porate feedback from the initial user study to increase the range of
effects possible, including customizable smoke color and textures
for smoother, more natural results. A higher quality selection of
professionally drawn textures could potentially lead to more visu-
ally pleasing results, but rendering has not been the focus of our
work thus far and will require more thorough analysis in future it-
erations.



Figure 11: A free-drawn abstract specter made entirely in Smoke
Brush c©Chelsea Hostetter.

Figure 12: A digitally drawn phoenix enhanced with smoke clouds
c©Lauren Liebowitz.

Another important aspect to examine is the user controls and inter-
face. Thus far we have only explored the stylus’ pressure controls,
which maps to the real-world analogue of brush pressure, but stylus
tilt and stroke velocity have real-world analogues within painting
as well. We intend to explore these avenues to create greater func-
tionality and increase the intuitiveness of the controls.

More generally, Smoke Brush focuses on rendering smoke-like ef-
fects, but the core idea — and implementation — allows for a
general-purpose system that takes velocity data from any underly-
ing fluid simulation. Therefore we intend to experiment with other
types of fluid, such as water, fire, and clouds, and potentially ex-
plore other motions as well. We believe capturing directional move-
ment of particles in addition to the localized turbulence will expand
the range of effects possible within our system. Such extensions
will likely require new techniques to seamlessly loop the animated
output as well.

Figure 13: A digitally drawn factory enhanced with smoke c©Evan
Kight.

Acknowledgements

Artists/Photographers: Chelsea Hostetter, Katie Bauer, Lauren
Liebowitz, Jeff Isacksen, Evan Kight.

References

BARNAT, A., LI, Z., MCCANN, J., AND POLLARD, N. S. 2011.
Mid-level smoke control for 2d animation. In Proceedings of
Graphics Interface 2011, Canadian Human-Computer Commu-
nications Society, School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada, GI ’11, 25–32.

BAXTER, W., WENDT, J., AND LIN, M. C. 2004. Impasto: A
realistic, interactive model for paint. In Proceedings of the 3rd
International Symposium on Non-photorealistic Animation and
Rendering, ACM, New York, NY, USA, NPAR ’04, 45–148.

BLESER, T. W., SIBERT, J. L., AND MCGEE, J. P. 1988. Charcoal
sketching: Returning control to the artist. ACM Trans. Graph. 7,
1 (Jan.), 76–81.

BRIDSON, R., HOURIHAM, J., AND NORDENSTAM, M. 2007.
Curl-noise for procedural fluid flow. In ACM SIGGRAPH 2007
Papers, ACM, New York, NY, USA, SIGGRAPH ’07.

CHU, N. S.-H., AND TAI, C.-L. 2005. Moxi: Real-time ink dis-
persion in absorbent paper. In ACM SIGGRAPH 2005 Sketches,
ACM, New York, NY, USA, SIGGRAPH ’05.

CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEIS-
CHER, K. W., AND SALESIN, D. H. 1997. Computer-
generated watercolor. In Proceedings of the 24th Annual Confer-
ence on Computer Graphics and Interactive Techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
SIGGRAPH ’97, 421–430.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques,
ACM, New York, NY, USA, SIGGRAPH ’01, 341–346.

FATTAL, R., AND LISCHINSKI, D. 2004. Target-driven smoke
animation. ACM Trans. Graph. 23, 3 (Aug.), 441–448.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simu-
lation of smoke. In Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques, ACM, New
York, NY, USA, SIGGRAPH ’01, 15–22.



FOSTER, N., AND METAXAS, D. 1997. Modeling the motion of
a hot, turbulent gas. In Proceedings of the 24th Annual Confer-
ence on Computer Graphics and Interactive Techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
SIGGRAPH ’97, 181–188.

GOOCH, A. A., LONG, J., JI, L., ESTEY, A., AND GOOCH, B. S.
2010. Viewing progress in non-photorealistic rendering through
heinlein’s lens. In Proceedings of the 8th International Sym-
posium on Non-Photorealistic Animation and Rendering, ACM,
New York, NY, USA, NPAR ’10, 165–171.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. Wysiwyg npr: Drawing
strokes directly on 3d models. ACM Trans. Graph. 21, 3 (July),
755–762.

KIM, Y., MACHIRAJU, R., AND THOMPSON, D. 2006. Path-based
control of smoke simulations. In Proceedings of the 2006 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, SCA ’06, 33–42.

LIAO, Z., JOSHI, N., AND HOPPE, H. 2013. Automated video
looping with progressive dynamism. ACM Trans. Graph. 32, 4
(July), 77:1–77:10.

MADILL, J., AND MOULD, D. 2013. Target particle control of
smoke simulation. In Proceedings of the 2013 Graphics In-
terface Conference, Canadian Information Processing Society,
Toronto, Ont., Canada, Canada, GI ’13, 125–132.

OLSEN, S. C., MAXWELL, B. A., AND GOOCH, B. 2005. In-
teractive vector fields for painterly rendering. In Proceedings
of Graphics Interface 2005, Canadian Human-Computer Com-
munications Society, School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada, GI ’05, 241–247.

SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I.
2000. Video textures. In Proceedings of the 27th Annual Confer-
ence on Computer Graphics and Interactive Techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
SIGGRAPH ’00, 489–498.

SHI, L., AND YU, Y. 2005. Controllable smoke animation with
guiding objects. ACM Trans. Graph. 24, 1 (Jan.), 140–164.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th An-
nual Conference on Computer Graphics and Interactive Tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, SIGGRAPH ’99, 121–128.

TOMPKIN, J., PECE, F., SUBR, K., AND KAUTZ, J. 2011. To-
wards moment imagery: Automatic cinemagraphs. In Proceed-
ings of the 2011 Conference for Visual Media Production, IEEE
Computer Society, Washington, DC, USA, CVMP ’11, 87–93.

TREUILLE, A., MCNAMARA, A., POPOVIĆ, Z., AND STAM, J.
2003. Keyframe control of smoke simulations. ACM Trans.
Graph. 22, 3 (July), 716–723.


