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Systems consisting of several finite components that communicate via unbounded perfect FIFO
channels (i.e. FIFO systems) arise naturally in modeling distributed systems. Despite well-known
difficulties in analyzing such systems, they are of significant interest as they can describe a wide
range of communication protocols.

In this article, we study the problem of computing the set of reachable states of a FIFO system
composed of piecewise components. This problem is closely related to calculating the set of
all possible channel contents, i.e. the limit language, for each control location. We present an
algorithm for calculating the limit language of a system with a single communication channel.
For multi-channel systems, we show that the limit language is piecewise if the initial language
is piecewise. Our construction is not effective in general; however, we provide algorithms for
calculating the limit language of a restricted class of multi-channel systems in which messages are
not passed around in cycles through different channels. We show that the worst case complexity of
our algorithms for single-channel and important subclasses of multi-channel systems is exponential
in the size of the initial content of the channels.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Model checking

General Terms: Verification
Additional Key Words and Phrases: FIFO systems, reachability analysis, verification, infinite-
state systems

1. INTRODUCTION

Concurrent systems consisting of a set of finite state machines that communicate via un-
bounded First-In First-Out (FIFO) channels are a common model of computation for de-
scribing distributed protocols such as IP-telecommunication protocols, interacting web ser-
vices, and System on Chip (SoC) architectures (e.g., [Brand and Zafiropulo 1983; Boigelot
et al. 1997; Abdulla et al. 1999; Pachl 1987; Cece et al. 1996; Bond et al. 2001; Wodey
et al. 2003]). Even though all physically constructible systems have finite size channels,
their size is often an implementation parameter that is typically left unspecified. Modeling
such systems with unbounded channels often makes reasoning about them simpler. The
abstraction may of course fail to reveal certain deadlock situations that occur if the chan-
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Fig. 1. BoxOS call structure.

nels fill up, but the abstract system behaves otherwise essentially as the system with finite
channels.

Unboundedness of communication channels provides a useful modeling abstraction, but
it does in a theoretical sense complicate analysis if compared to a system of a given fixed
size, say with queues of length 1024. In fact, Brand and Zafiropulo [Brand and Zafiropulo
1983] showed that a single unbounded channel is already sufficient to simulate the tape of
a Turing machine. Hence, verification of any non-trivial property, such as reachability, is
undecidable. Despite these results, a substantial effort has gone into identifying subclasses
of FIFO systems for which the verification problem is decidable (e.g., [Abdulla et al. 1999;
Abdulla and Jonsson 1993; Boigelot 1998; Boigelot and Godefroid 1999; Boigelot et al.
1997; Bouajjani et al. 2000; Bouajjani et al. 2001; Cece et al. 1996; Pachl 1987]).

In this article, we study the class of piecewise FIFO systems. These systems can be used
for modeling distributed protocols such as IP-telecommunication protocols and interacting
web services. A piecewise FIFO system is composed of components whose behaviors can
be expressed by piecewise languages. Intuitively, a language is piecewise if it is accepted
by a non-deterministic finite state automaton whose only non-trivial strongly connected
components are states with self-loops. Formally, a piecewise language is a union of sets of
strings, where each set is given by a regular expression of the form M ∗

0a0M
∗
1 · · · an−1M

∗
n;

here, each Mi is a subset of the alphabet Σ and each ai is an element of Σ.

1.1 Motivating Example

Although piecewise languages may look restrictive, they can be used to express descrip-
tions of IP-telephony features [Ghafari and Trefler 2006] and seem amenable to describing
composite web services specified in Business Process Execution Language (BPEL) [IBM
2007]. For example, [Ghafari and Trefler 2006] studied the behavior of the telephony fea-
tures in BoxOS which is a generation of telecommunication service over IP developed at
AT&T Research [Bond et al. 2001; Jackson and Zave 1998]. As shown in Fig. 1, an active
call is represented by a graph of telephony features (referred to as boxes) while communi-
cation between neighboring boxes is handled via unbounded perfect FIFO channels. Boxes
at the end points represent telephones, intermediate boxes represent call features, for exam-
ple call-forwarding-on-busy. At a sufficient level of abstraction, boxes may all be viewed
as finite state transducers. Communication in these protocols begins with an initiator trying
to reach a given destination. A call is built recursively. The current endpoint begins the call
initiation protocol with a chosen neighbor, the callee. If this initiation results in a stable
connection, the callee becomes the new endpoint and the call construction continues. Call
termination is required to proceed in a reverse order and in general required to begin at a
call endpoint.

In order to manage inter-feature communication, it is desired that communication be-
tween features have certain pattern [Bond et al. 2001]. Thus, all of the feature boxes
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implement a communication template that consists of three phases (cf. [Bond et al. 2001]):
setup phase, transparent phase, and teardown phase. Fig. 2 describes a transparent box
that represents such a communication template. The transparent box communicates with
two neighbors across four separate channels. Messages to/from the upstream (initiating),
caller, are sent/received via ro/ri channels. Messages to/from the downstream (receiving),
callee, are sent/received via eo/ei channels. A message is received with the ‘?’ symbol
and sent with the ‘!’ symbol. For example ri?setup indicates a call setup message re-
ceived from the ri channel. Interestingly, this communication template can be expressed
by piecewise languages. To achieve piecewiseness, we have abstracted the transparent box
by replacing the original LINKED state and its left and right neighbors, shown in shaded
rectangle on the top right corner of Fig. 2, by the LINKED state, shown in the shaded
rectangle in the middle of the figure. Both of these states have the same functionality. The
difference is the addition of conditional actions of the form ri?status → eo!status, where
the status message is sent to the callee only if the status message has been received from
the caller first.

It is crucial to be able to reason about safety and deadlock properties of BoxOS imple-
mentations with multiple features, somethings that the techniques in [Bond et al. 2001] fell
short to address.

1.2 Our Contributions

The ability to calculate all possible channel contents that may arise from an initial state, i.e.
the limit language, plays a central role for automated verification of non-trivial properties
of FIFO systems. This problem is undecidable in general. Moreover, the limit language is
not necessarily regular, even if the initial language is [Cece et al. 1996], and even when the
limit language is known to be regular, determining it may still be undecidable [Cece et al.
1996].

In this article, we show that piecewise languages play an important role in the analysis
of FIFO channel systems. In particular, we focus on computing the limit languages in
piecewise FIFO systems. Our main contributions are summarized as below:

—For single-channel piecewise FIFO systems, we show in Sec. 4 that the limit language
is regular (piecewise) if the initial channel language is regular (piecewise). We provide
an algorithm to compute the limit language and discuss its complexity.

—For multi-channel piecewise FIFO systems, we show in Sec. 5 that the limit language
is regular, in fact piecewise, if the initial channel language is piecewise. However, the
construction of the limit language may not always be effective. In Sec. 6, we show for
systems with acyclic communication graph the limit language is piecewise if the initial
channel language is piecewise. We present an algorithm to calculate the limit language
and discuss its complexity.

The rest of the article is organized as follows. An overview of piecewise languages and
their properties is given in Sec. 2, and is followed by a description of the system model
in Sec. 3. Our main contributions are presented in Sec. 4, Sec. 5, and Sec. 6. We review
related work in Sec. 7, and conclude in Sec. 8.
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Fig. 2. Transparent feature box.

2. PRELIMINARIES AND NOTATIONS

In this section, we introduce some preliminary notation and give an overview of piecewise
languages and their properties.

Let Σ be a finite alphabet and ε the empty string. Let w1 and w2 be two strings in
Σ∗. In the sequel, w1 + w2 denotes the non-deterministic choice between w1 and w2 and
w1 · w2 denotes concatenation of the elements of w1 and w2. We sometimes omit ‘·’, i.e.
we may write w1w2 instead of w1 · w2. A regular expression (RE) over Σ is defined by
the following grammar R ::= a ∈ Σ | R · R | R +R | R∗ | 0 | 1. The symbol 0 denotes
the empty language, and 1 denotes the language {ε}; in particular, we have 1 = 0 ∗. We
sometimes write ε instead of 1.

The language L(R) of a RE R is defined in the usual way. We sometimes write R to
mean L(R). In a further abuse of notation, we often regard a set M ⊆ Σ ∪ {ε} as an
RE, namely the sum of elements in M . For a language L ⊆ Σ∗, we use �L to denote the
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complement of L: Σ∗\L. The expression test(R) is 1 if L(R) �= ∅ and 0 if L(R) = ∅.
We now introduce a new fragment of regular languages called piecewise languages.

Definition 2.1 (Piecewise Languages) A language is simply piecewise if it can be ex-
pressed by an RE of the form M ∗

0 a0M
∗
1 · · · an−1M

∗
n, where each Mi ⊆ Σ and ai ∈

Σ ∪ {ε}. A piecewise language is a finite (possibly empty) union of simply piecewise lan-
guages. A language is simply repetition piecewise if it can be expressed by an RE of the
form M ∗

0a0M
∗
1 · · · an−1M

∗
n, where for all i, ai is ε. A repetition piecewise language is a

finite (possibly empty) union of simply repetition piecewise languages.

For example, (a+ b)∗c is simply piecewise, where M0 = {a, b} and a0 = c, but (ab)∗

is not piecewise according to a simple application of the pumping lemma. For completion,
we give the definition of a finite state automaton.

Definition 2.2 (FSA) A finite state automaton (FSA) A is a tuple (Σ, Q, q 0, δ, F ), where
Σ is a finite alphabet; Q is a finite set of states; q0 ∈ Q is the initial state; δ : Q×Σ → 2Q

is the transition relation; and F ⊆ Q is a set of accepting (or final) states. When F is
omitted, it is assumed that F = Q.

For a ∈ Σ we write δ(q, a, q′) or q
a→ q′ to mean that q′ ∈ δ(q, a). We write q →

q′ when we do not distinguish the specific symbol on the transition of q to q ′. Given
q ∈ Q, and w ∈ Σ∗, δ(q, w) is defined as usual: δ(q, ε) � {q}, and δ(q, wa) � {p |
∃r ∈ δ(q, w), p ∈ δ(r, a)}. We say that a word w is accepted by A if and only if
(δ(q0, w)∩F ) �= ∅. The language ofA is defined asL(A) � {w ∈ Σ∗ | δ(q0, w)∩F �= ∅}.
A run in A is a finite or infinite sequence of states denoted P = q0 → q1 → . . . , where
q0 is the initial state and for all i, qi → qi+1 ∈ δ. We define the size of an FSA A as:
|A| � |Q|+ |δ|.

We often use RE notation with automata. For example, A1 ·A2 stands for concatenation
of two automata, A1 +A2 for an automaton with language L(A1) ∪ L(A2).

Definition 2.3 (PO-FSA) A partially ordered automaton (PO-FSA) is a tuple (A,	), where
A = (Σ, Q, q0, δ, F ) is an automaton, and 	⊆ Q×Q is a partial order on states such that
∀a ∈ Σ, q′ ∈ δ(q, a) implies that q 	 q′.

Proposition 2.4 A language is piecewise if and only if it is recognized by a PO-FSA.

PROOF. (⇐) Consider the PO-FSA A = ((Σ, Q, δ, q0, F ),	). Consider all acyclic runs

P = q0
a0−→ q1

a1−→ . . .
ak−2−→ qk−1

ak−1−→ qk, where any qi ∈ Q for i ∈ [0..k] occurs at
most once and q0 = q0 is initial and qk ∈ F is an accepting state. The number of such
runs is finite. For each qi we can associate Mi, the set of a’s such that δ(qi, a) = qi.
Let LP = M∗

0 a0M
∗
1 ...M

∗
k . Then, LP ⊆ L(A). Let L′ =

⋃
P LP , where the union

is over all appropriate runs P as just considered. We clearly have that L ′ ⊆ L(A). To
see that L(A) ⊆ L′, we use that automaton A is partially ordered. Consider w ∈ L(A).
Thus, w defines a run P from which an acyclic run P ′ for a word w′ can be constructed
by deleting letters ai in w for which δ(qi, ai) = qi. Then, w′ is a scattered subword of
w : w = u0b0 . . . bnun+1, where w′ = b0 . . . bn and ui, for 0 ≤ i ≤ n + 1, is in M ∗

i .
Hence, w ∈ LP ′ . As a result, L(A) ⊆ L′.

(⇒) A piecewise language is a finite union of simply piecewise languages. Each sim-
ply piecewise language is recognized by a totally ordered automaton. Consider the simply
piecewise language M ∗

0 a0 · · ·M∗
k−1ak−1M

∗
k . This language is recognized by an automa-

ton A = (Σ, Q, δ, q0, F ), where Q = {q0, q1, . . . , qk}, q0 = q0, and F = {qk}. The
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transition relation δ is defined as follows:

(q, a, q′) ∈ δ ⇔ (for i ∈ [1..k], q = qi−1 ∧ q′ = qi ∧ a = ai−1)∨
(for i ∈ [0..k], q = q′ = qi ∧ a ∈ Mi)

By construction, for i, j ∈ [0..k], the relation qi 	 qj ⇔ i ≤ j is a total order satisfying the
constraint of Definition 2.3. Let L = L1 + L2 be a piecewise language, where L1 and L2

are simply piecewise languages recognized by PO-FSAs A1 = ((Σ, Q1, δ1, q
0
1 , F1),	1)

and A2 = ((Σ, Q2, δ2, q
0
2 , F2),	2), respectively, with Q1 and Q2 disjoint. Then, L is

recognized by a PO-FSA A = ((Σ, Q, δ, q0, F ),	), where Q = Q1 ∪Q2 ∪ q0, and q0 is a
new state not appearing in Q1 ∪Q2, F = F1 ∪ F2, and δ is defined as follows:

(q, a, q′) ∈ δ ⇔ (q, q′ ∈ Q1 ∧ (q, a, q′) ∈ δ1)∨
(q, q′ ∈ Q2 ∧ (q, a, q′) ∈ δ2)∨
(q = q0 ∧ ((q01 , a, q

′) ∈ δ1 ∨ (q02 , a, q
′) ∈ δ2))

It is easy to see that A is a PO-FSA with the partial order 	 defined as follows:

q 	 q′ ⇔


true if q = q0

q 	1 q′ if q, q′ ∈ Q1

q 	2 q′ if q, q′ ∈ Q2

The following proposition summarizes the properties of the piecewise languages.

Proposition 2.5 Piecewise languages are closed under finite unions (+), finite intersec-
tions (∩), concatenation (·), shuffle (||)1 , letter-to-letter mappings, and inverse homomor-
phisms, but not under complementation and homomorphisms.

PROOF. Finite unions, intersections, and concatenation. Closure under finite unions
and concatenation follows immediately from Definition 2.1. Closure under finite intersec-
tions is shown in [Bouajjani et al. 2001], Proposition 1.

Shuffle. To show that piecewise languages are closed under shuffle, we show that PO-
FSAs are closed under shuffle. Let L1 and L2 be two piecewise languages recognized by
PO-FSAs, A1 = ((Σ, Q1, δ1, q

0
1 , F1),	1) and A2 = ((Σ, Q2, δ2, q

0
2 , F2),	2), respec-

tively. Let L = L1||L2. Then, L is recognized by a PO-FSA, A = ((Σ, Q, δ, q0, F ),	),
where Q = Q1×Q2, q0 = (q01 , q

0
2), and F = F1 ×F2. The transition relation δ is defined

as follows:

((q1, q2), a, (q
′
1, q

′
2)) ∈ δ ⇔ ((q1, a, q

′
1) ∈ δ1 ∧ q2 = q′2) ∨ ((q2, a, q

′
2) ∈ δ2 ∧ q1 = q′1)

It is easy to see that A is a PO-FSA, with the partial order 	 defined as follows:

(q1, q2) 	 (q′1, q
′
2) ⇔

{
q1 	1 q′1 if q2 = q′2
q2 	2 q′2 if q1 = q′1

Therefore, by Proposition 2.4, the language of the shuffled automaton A is piecewise.
Letter-to-letter mappings. Let T : Σ → Σ be a letter-to-letter mapping over a fi-

nite alphabet Σ. Consider simply piecewise language M ∗
0 a0M

∗
1 . . .M∗

k , where M0 =

1The shuffle of two words w and w′, w||w′, is the set of words that are obtained by interleaving w and w′; for
example ab||cd = {abcd, acbd, acdb, cabd, cdab, cadb} (||). In the sequel, L||L′ =

⋃
∀w∈L,w′∈L′ w||w′.
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{b0, . . . , bi},M1 = {c0, . . . , cj}, and so on. Applying T on this language results in the
simply piecewise language M ′∗

0 a′0M
′∗
1 . . .M ′∗

k where M ′
0 = {T (b0), . . . , T (bi)}, a′0 =

T (a0),M
′
1 = {T (c0), . . . , T (cj)} and so on. Clearly, this is a simply piecewise language.

Since T distributes over union, the result follows for arbitrary piecewise languages as well.
Inverse homomorphisms. Let A = ((Σ, Q, δ, q0, F ),	) be a partially ordered au-

tomaton accepting piecewise language L. Let ∆ be an alphabet, and h a homomorphism
from ∆ to Σ∗. We construct automaton A′ over ∆ that accepts h−1(L). Intuitively A′

works by reading a symbol a in ∆ and simulating PO-FSA A on h(a). Formally, let
A′ = ((∆, Q, δ′, q0, F ),	), and define δ′(q, a), for q ∈ Q and a ∈ ∆ to be δ(q, h(a)).
Since h(a) may be a long string or ε, δ is defined on all strings by extension. It is easy
to show by induction on |x| that δ ′(q0, x) = δ(q0, h(x)). Therefore, A′ accepts x if and
only if A accepts h(x). That is , L(A′) = h−1(L(A)). The transition relation of A′, δ′,
simulates the transition relation of A on h(x) for any symbol x ∈ ∆, thus it respects the
partial order relation on states of A. Hence, L(A ′) is also piecewise.

Homomorphism. Piecewise languages are not closed under homomorphisms. For ex-
ample, the piecewise language a∗ under the homomorphisms [a �→ (ab)] is (ab)∗, which
is not piecewise.

Complementation. Piecewise languages are not closed under complementation. For
example, consider a piecewise language L = Σ∗aaΣ∗ + Σ∗bbΣ∗, with Σ = {a, b}. The
complement of L is the set of sequences where a’s and b’s alternate — which is not piece-
wise.

Proposition 2.6 A language is repetition piecewise if and only if it is recognized by a PO-
FSA A = ((Σ, Q, δ, q0, F ),	), where F = Q and δ satisfies the following two conditions.
Let qi, qj , ql ∈ Q and a, b ∈ Σ. Then,

(I) (qi, a, qj) ∈ δ =⇒ (qj , a, qj) ∈ δ, and
(II) (qi, a, qj) ∈ δ ∧ (qj , b, ql) ∈ δ =⇒ (qi, b, ql) ∈ δ.

PROOF. (⇒) Let L be a simply repetition piecewise language and L = M ∗
0M

∗
1 . . .M∗

k .
Let A = ((Σ, Q, δ, q0, F ),	) be a PO-FSA with k + 1 states where Q = {q0, . . . , qk},
q0 = q0, and F = Q. For i, j ∈ [0..k], δ is defined as follows:

(qi, a, qj) ∈ δ ⇔ i ≤ j ∧ a ∈ Mj .

The transition relation δ satisfies the conditions (I) and (II). The partial ordering is defined
as follows: qi 	 qj ⇔ i ≤ j. We show that A recognizes L, i.e., L(A) = L.

Let w be a word in L. Then, w = P0 · P1 · · ·Pk, where Pi ∈ M∗
i . We use this

partitioning to define an accepting run ρ = ρ(0) → ρ(1) → . . . → ρ(n) of A on w as
follows:

ρ(i) = qj ⇔ Σj−1
t=0 |Pt| ≤ i < Σj

t=0|Pt|
Intuitively, the automaton goes to state qi when reading a letter from partition Pi. It is easy
to see that the run is well defined. It is accepting since every state of A is accepting. Thus,
L ⊆ L(A).

To show L(A) ⊆ L, assume ρ = q0 → . . . → qn is an accepting run of A on a word
w, where q0 = q0. Then, ρ induces a partitioning P0, . . . , Pk on w, such that Pi ∈ M∗

i .
Hence, w ∈ L. Thus, L(A) ⊆ L.

A repetition piecewise language is a finite union of simply repetition piecewise lan-
guages. Consider a repetition piecewise language L = L1 + L2, where L1 and L2 are
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two simply repetition piecewise languages that are recognized by PO-FSAs A 1 and A2,
respectively, satisfying conditions (I) and (II). Similarly to the proof of Proposition 2.4, we
construct PO-FSA A that recognizes L. It is easy to show that the construction satisfies
conditions (I) and (II).

(⇐) Let A be a PO-FSA satisfying conditions (I) and (II). For each state q i ∈ Q, let
Mqi = {a | (qi, a, qi) ∈ δ}. Let ρ = q0 → . . . → qn be an acyclic run of A, where
every qi ∈ Q for i ∈ [0..k] occurs at most once, and q0 = q0. The number of such
runs is finite. Let the language Lρ be defined as M ∗

ρ(0) · · ·M∗
ρ(n). It is easy to see that

Lρ ∈ L(A). Similarly, let L′ =
⋃
Lρ over all such acyclic runs. Then, L ′ ⊆ L(A). Since

L′ is repetition piecewise, we only need to show that L(A) ⊆ L ′. Let w be a word in
L(A), and ρ an accepting run of A on w. Let ρ ′ be a maximal subsequence of ρ in which
every state in Q appears at most once. For example, if ρ is q0 → q0 → q1 → q1, then ρ′ is
q0 → q1. Then, ρ′ is acyclic, and w ∈ Lρ′ . Hence, L(A) ⊆ L′.

The following proposition summarizes the properties of the repetition piecewise lan-
guages.

Proposition 2.7 Repetition piecewise languages are closed under finite unions and inter-
sections, concatenation, shuffle, and letter-to-letter mappings, but not under homomor-
phisms and inverse homomorphisms.

PROOF. Finite unions, intersections, concatenation, shuffle. Closure under finite
unions and concatenation follows immediately from Definition 2.1. To show closure under
finite intersections, let L1 and L2 be two repetition piecewise languages. By Proposi-
tion 2.6, they are recognized by PO-FSAs A1 and A2, respectively, such that both A1 and
A2 satisfy conditions (I) and (II) of the proposition. It is easy to check that conditions (I)
and (II) are preserved by intersection and shuffle. Thus, the automata A 1 ∩A2 and A1||A2

are PO-FSAs satisfying conditions (I) and (II). Hence, by Proposition 2.6 their languages
are repetition piecewise.

Letter-to-letter mapping. The proof is similar to that of piecewise languages (Proposi-
tion 2.5).

Homomorphisms. Repetition piecewise languages are not closed under homomor-
phisms. For example, repetition piecewise language a∗ under the homomorphisms [a �→
(ab)] is (ab)∗ which is not piecewise.

Inverse homomorphisms. Repetition piecewise languages are not closed under inverse
homomorphisms. For example, let Σ = {0}, and Σ ′ = {a, b}, and h be a homomorphism
from Σ to Σ′∗ such that h(0) = ab. Then, the repetition piecewise language L = a∗b∗ un-
der the inverse homomorphism is h−1(L) = {ε, 0} which is not repetition piecewise.

For a ∈ Σ and regular expressions R,S, the left residual operation (or derivative [Brzo-
zowski and Simon 1973]) is defined as:

a−10 � 0

a−11 � 0

a−1b � test(a ∩ b)

a−1(R · S) � (a−1R · S) + (test(R ∩ 1) · (a−1S))

a−1(R + S) � (a−1R) + (a−1S)

a−1(R∗) � (a−1R) · R∗
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It is easy to see that L(a−1R) = {v | a · v ∈ L(R)}. Similarly, we may define a residual
operation for M ∗, where M ⊆ Σ:

(M∗)−10 � 0

(M∗)−11 � 1

(M∗)−1a � a+ test(a ∩M)

(M∗)−1(R · S) � (((M∗)−1R) · S) + (test(R ∩M∗) · ((M∗)−1S))

(M∗)−1(R+ S) � ((M∗)−1R) + ((M∗)−1S)

(M∗)−1(R∗) � (((M∗)−1R) · R∗) + 1

Then, it can be verified that

L((M∗)−1R) = {v | ∃u ∈ L(M∗), u · v ∈ L(R)} .
We conclude this section with a review of recognizable (or regular) relations.

Definition 2.8 (Recognizable Relation) [Yu 1997] A relation ρ ⊆ (Σ∗)K is recognizable
(or regular) if and only if

ρ =
⋃

0≤i<I L(Ri
0)× · · · × L(Ri

K−1)

for some natural number I and regular expressions R i
j over Σ.

Similarly, we say that a relation is piecewise if and only if the expressions R i
j above are

piecewise, and say that a relation is repetition piecewise if and only if expressionsR i
j above

are repetition piecewise.

Proposition 2.9 [Yu 1997] Let ρ be a K-ary relation over Σ∗. Define L#(ρ) � {w0 ·
# · · ·# ·wK−1 | (w0, . . . , wK−1) ∈ ρ}. Then L#(ρ) is a regular language over Σ∪{#}
if and only if ρ is recognizable. Moreover, L#(ρ) is piecewise if and only if ρ is a piecewise
relation.

It is easy to see that regular and piecewise relations are closed under finite unions and
intersections.

3. FIFO SYSTEMS AND THE REACHABILITY PROBLEM

In this section, we review the definition of FIFO systems and the reachability problem for
them.

A channel over an alphabet Σ is a FIFO queue whose contents is given by a word w ∈
Σ∗. We define two types of channel actions: read a, denoted by ?a, and write a, denoted
by !a, that stand for reading and writing a letter a from/to a channel, respectively. We use
f : w to denote the application of an action f to a word w. For example, ?a : abb = bb and
!a : bb = bba.

Let Σrw � {?, !} × Σ denote the read/write(rw)-alphabet over Σ. For a set of channels
C = {c1, . . . , ck} this alphabet is extended as follows: Σrw(C) � [1..k]× Σrw. Thus, an
action 4?a corresponds to reading a from channel c 4, and 6!b corresponds to writing b to
channel c6. In the sequel, we drop C from the notation when it is clear from the context.
We call Σrw an action alphabet, and any subset of Σ∗

rw an action language.
A channel configuration for a system with k channels is a k-tuple w ∈ (Σ ∗)k. We use

〈w1, . . . , wk〉 to denote a tuple, where wi is the content of channel i. In single-channel
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1

2
3

Fig. 3. An example of a communication graph for a set of actions Act = {1?a →
2!a, 2?b → 3!b, 3?b → 1!a, 2?b → 2!b}.

systems, a configuration is just the content of the single channel. We use bold fonts to
differentiate between channel configurations in multi-channel and single-channel systems.
Let w[i] denote the content of channel i in w and w[i �→ y] denote a channel configuration
obtained from w by replacing the content of channel i with y.

In the single-channel case, for X ⊆ Σ∗
rw and W ⊆ Σ∗, we use X : W to denote the

result of applying a sequence of actions from X to a word in W . This is called the concrete
semantics of actions and is defined as follows:

Definition 3.1 (Action Language Semantics) Let W ⊆ Σ∗ be a set of words over Σ, and
X an action language, then X : W is defined as follows:

?a : W � (a−1)W !a : W � W · a
{x · y} : W � y : (x : W ) X : W �

⋃
x∈X

(x : W )

For example, ({?a!b , ?a!c} : a) = {b , c}.
Definition 3.1 is extended to a k-channel system as follows. Given w ∈ (Σ∗)k and an

action language X , then X : w for a single action is defined as shown below:

i?a : w � w[i �→ (?a : w[i])] i!a : w � w[i �→ (!a : w[i])]

and is extended to words identically to Definition 3.1. For example, given a 2-channel
system, ({1?a 2!b, 1?a 2!c} : 〈ab, b〉) = {〈b, bb〉, 〈b, bc〉}.

We write ?a →!b for a conditional action that means “b is written only if a is first read.”
In other words, ?a →!b is an abbreviation for a sequence of simple actions: ?a!b. Given an
action alphabet Σrw(C) over a set of channels C, we define a conditional action alphabet
Σrwc(C) that treats conditional actions as letters:

Σrwc(C) � Σrw(C) ∪ ((C × {?} × Σ) · (C × {!} × Σ)) .

For example, given Σ = {a} and C = {1}, then Σrwc(C) = {1?a, 1!a, 1?a → 1!a}.
For a set of actions Act ⊆ Σrwc(C), a communication graph of Act, CG(Act), is

a digraph (C,E), with an edge (i, j) ∈ E if and only if there are a and b in Σ such
that i?a → j!b is in Act. For example, given Act = {1?a → 2!a, 2?b → 3!b, 3?b →
1!a, 2?b → 2!b}, CG(Act) is a digraph with 3 nodes and 4 edges one for each conditional
action in Act (see Fig. 3).

Definition 3.2 (FIFO System) A FIFO system is a tuple S = (Σ, C,Q, q0, δ), where Σ is
a finite alphabet; C = {c1, . . . , ck} is a finite set of channels; Q is a finite set of control
locations; q0 ∈ Q is the initial control location; and δ ⊆ Q×Σrwc×Q is a set of transition
rules.
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1!a

A₁

2?b 2?d

2?c
2?d

A₂

1?a 2!b 1?a 2!d

2!d2!c

channel 1 channel 2

1

2

3 4

1

2 3

Fig. 4. An example of a FIFO system consisting of two processes and two channels.

Note that in Definition 3.2, a FIFO system is defined with respect to a conditional action
alphabet Σrwc. A global state of S is a pair (q,w) where q is a state in Q and w is
a channel configuration. The transition relation of S, ∆, is a set of triples of the form
((q,w), op, (q′,w′)), where op ∈ Σrwc, (q, op, q′) ∈ δ, and w′ ∈ (op : w).

A FIFO system S is piecewise if there exists a partial order 	 on Q such that q ′ ∈
δ(q, op) implies that q 	 q′.

Most often a FIFO system is represented as a set {Ai}ni of n processes communicating
through a set of channels,C. Each process is a finite state automaton,A i = (Σ, Qi, δi, q

0
i ).

The corresponding FIFO system, S = (Σ, C,Q, q0, δ), is constructed by computing the
cross product of these automata. Thus, Q � Πn

i=1Qi and the transition relation ∆ of S is
built up from the transition relations of the A i’s such that every transition in ∆ corresponds
to exactly one transition in some δi. Formally,

(((q1, . . . , qn),w), op, ((q′1, . . . , q
′
n),w

′)) ∈ ∆ if and only if

∃i, ∀j �= i, qj = q′j ∧ q′i ∈ δi(qi, op) ∧ w′ ∈ (op : w) .

Fig. 4 shows an example of a piecewise FIFO system consisting of two processes and
two channels. Initially, we assume that both of the processes are in their initial states and
both of the channels are empty, thus, the initial global state of the system is ((1, 1), 〈ε, ε〉).
Then, process A1 writes a on channel 1 and moves from state 1 to 2. The new global state
of the system is ((2, 1), 〈a, ε〉). Therefore, (((1, 1), 〈ε, ε〉), 1!a, ((2, 1), 〈a, ε〉)) ∈ ∆.

In this article, we are interested in the reachability problem:

FIFO Systems Reachability Problem. Given a FIFO system S and a set of config-
urations I (called initial), find the set of all global states reachable from I.

The set of all reachable global states of a FIFO system can be partitioned based on the
control locations. Each partition represents the set of all reachable channel configurations
at a particular control location. Thus, in order to calculate the set of all reachable global
states, we need to calculate the set of all reachable channel configurations at each control
location. This problem can be reduced to computing the semantics (Definition 3.1) of a
regular action language.

Proposition 3.3 Let S = (Σ, C,Q, q0, δ) be a FIFO system, q ∈ Q some control location,
and I a set of configurations. Then, the set of all reachable configurations of S at control
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?a

!a

?d

S

?c
!b

?c

1

2

34

FIFO System Initial Channel 
Content

I

Reachable Configurations

 L(A₁) : I (?d)* : I

L(A₂) : I (?d)* ?a (?c !a)* : I

L(A₃) : I (?d)* ?a (?c !a)* !b (?c)* : I

L(A₄) : I (?d)* ?a (?c !a)* ?c : I

Fig. 5. An example illustrating the calculation of all reachable global states by computing
the semantics of a regular action language.

location q is (L(Aq) : I), where Aq = (Σrwc, Q, q0, δ, {q}) is a finite automaton with
accepting state q.

Fig. 5 is an example illustrating this reduction. On the left, we show an example of a
FIFO system and on the right the set of all reachable configurations at control locations 1,
2, 3, and 4.

Finally, computing the semantics of a regular action language is itself reducible to the
limit language problem: given a regular language of actions L a and a regular language of
channel contentW, compute the language of (L∗

a : W). In the particular case of piecewise
FIFO systems, La is further restricted to subsets of Σrwc. This is the problem we study in
the rest of the article.

Proposition 3.4 For regular (piecewise) L, it holds that (?a : L), (!a : L), and (?a →!b :
L) are regular (piecewise).

PROOF. For a single write action, (!a : L) = L · a. For a read action, we have (?a :
L) = a−1L following from the definition of derivative. For the conditional action, we have
(?a →!b : L) = (a−1L) · b.
4. ANALYSIS OF SINGLE-CHANNEL PIECEWISE SYSTEMS

In this section, we focus on the analysis of a single-channel piecewise FIFO system. We
present an algorithm for calculating the limit language, show its correctness, and discuss
its worst case complexity.

Fig. 6 shows the algorithm SINGLELIMIT for calculating the limit language. The inputs
to the algorithm are an automaton AI representing a set of single-channel configurations
I ⊆ Σ∗, and a set Act ⊆ Σrwc of actions; the output is an automaton that accepts the
limit language (Act∗ : I). For notational convenience, in the examples we use regular
expressions instead of automata to represent channel configurations.

The algorithm has two phases. In the first phase, called PHASE1 (lines 3 – 6 of the
SINGLELIMIT), the algorithm iteratively computes all configurations reachable by (i) read-
ing the current channel content completely, and (ii) writing the result of conditional and
other write actions. Each iteration of PHASE1 is done using the function APPLY. Let
Act ⊆ Σrwc be partitioned into unconditional write actions Actw = {!a |!a ∈ Act},
and the rest Actr = Act \ Actw. In each iteration, if V is the set of currently reachable
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1: function AUT SINGLELIMIT(Aut AI, Set Act)
2: R := ε, F := AI
3: while L(F) � L(R) do
4: R := R+ F

5: F := APPLY(F, Act)

6: return PHASE2(R, Act)

Fig. 6. The SINGLELIMIT algorithm.

configurations, APPLY computes V ′ such that

V ′ � {v | ∃u ∈ V, v ∈ (Act|u|r : u)} || (Act∗w : ε) .

Note that APPLY misses some reachable configurations. For example, let Act = {?a →
!c, ?b →!d, !e} and I = ab. Then, APPLY results in L(e∗ce∗de∗) and misses reachable
configurations in L(be∗ce∗). This is fixed in the second phase, called PHASE2. Let W be
a set of reachable configurations, the result of PHASE2 is a set W ′ such that

W ′ � {w | ∃u, v, z, (v · u ∈ W ) ∧ (u · z = w) ∧ (z ∈ APPLY({v}, Act))} .
These two phases are implemented using automata as described below.

PHASE1. As inputs PHASE1 takes an automaton A = (Σ, Q, δ, q0, F ), and a set of ac-
tions Act. Then, it iteratively computes a set of reachable configurations using function
APPLY. Given automaton A and a set of actions Act, APPLY constructs an automaton
A′ = (Σ, Q, δ′, q0, F ), where δ′ consists of tuples of the form:

—(q, ε, q′) if for some a it holds that δ(q, a, q ′) and ?a ∈ Act, or

—(q, b, q′) if for some a it holds that δ(q, a, q ′) and ?a →!b ∈ Act, or
—(q, c, q) if !c ∈ Act.

Intuitively, the first rule of δ ′ corresponds to unconditional reads, the second – to renam-
ing the labels of the transitions according to the conditional actions, and the third – to
unconditional writes.

For example, let Act = {?a →!b, ?b →!a, ?c, !a} and I = (ac)∗aba∗. Fig. 7(a) shows
automatonA recognizingL(I). To construct A ′ = APPLY(A,Act), the transitions labeled
by a are relabeled to b, transitions labeled by b are relabeled to a, and transitions labeled
by c are replaced by ε-transitions. In addition, self-loop transitions labeled by a are added
to every state. Fig. 7(b) shows automaton A ′. Similarly, we can construct automaton
A′′ = APPLY(A′, Act) and A′′′ = APPLY(A′′, Act) which are shown in Fig. 7(c) and (d),
respectively. As can be seen, applying APPLY once more results in automaton A ′′, thus,
we have reached a fixpoint.

PHASE2. LetA = (Σ, Q, q0, δ, F ) be an automaton and s be a state inQ. We construct two
automata: A1 = (Σ, Q, q0, δ, {s}) and A2 = (Σ, Q, {s}, δ, F ). Let A′

1 be the automaton
constructed by applying APPLY to A1, i.e., A′

1 = APPLY(A1, Act). Then, the language
of A2 · A′

1 contains a word u · z if and only if (i) there exists a word v such that v · u is
accepted by A via a run passing through the state s, and (ii) z ∈ APPLY({v}, Act). We
call this operation PREFIX(A, s,Act). It is easy to see that:

PHASE2(A,Act) =
⋃
s∈Q

PREFIX(A, s,Act) .
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Fig. 7. An example illustrating PHASE1 with automaton A and Act = {?a →!b, ?b →
!a, ?c, !a} as inputs.

For our running example, Fig. 8 shows how PREFIX(A, s,Act) is implemented us-
ing automata. The leftmost automaton in Fig. 8 (automaton A) recognizes the language
I = (ac)∗aba∗. To compute PREFIX(A, s,Act), we break A on state s (see Fig. 8), which
results in two automata A1 and A2. We compute A′

1 by applying APPLY to A1. Then,
we concatenate A2 and A′

1. The resulting automaton represents PREFIX(A, s,Act) and is
shown on the rightmost of the Fig. 8.

The algorithm in Fig. 6 always terminates. Given an automaton A, APPLY produces an
automaton with the same number of states as A. Thus, the set {APPLY i(A,Act)}i is finite,
and the algorithm always terminates.

Theorem 4.1 Let AI be an automaton representing a set of configurations,Act be a set of
actions, and AL be the automaton returned by SINGLELIMIT(AI , Act). Then, L(AL) =
(Act∗ : L(AI)).

PROOF. According to the SINGLELIMIT algorithm shown in Fig. 6,

L(AL) = PHASE2

(⋃
i∈�

APPLYi(AI , Act), Act

)
.

Note that since in each iteration APPLY produces an automaton with the same number of
states as AI ,

⋃
i APPLYi(AI , Act) is a finite union.

Let w ∈ (Act∗ : L(AI)) be a reachable channel content. Then, w is reached by reading
the current channel content completely (and writing the results of conditional and other
write actions) zero or more times, and then reading the resulting content partially. Let # –
a fresh letter not in Σ, be a marker at the end of the initial channel content. The maker #
is used only for establishing the proof and is eliminated later using ERASE #. Then,

w ∈ (Act∗ : L(AI)) ⇔ ∃u, v, (u · v) = w ∧
∃p, q, (u#v) ∈ (((Act∗(?#)(!#))p(Act)q) : (L(AI) ·#)) .

At the end of each iteration of APPLY, # is read and then written again on the channel
to mark the beginning of the new iteration.
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Fig. 8. An example illustrating PREFIX operation with automaton A, state s, and Act =
{?a →!b, ?b →!a, ?c, !a} as inputs.

The theorem follows from the following two facts:

(APPLY(L(A), Act) ·#) = (Act∗(?#)(!#)) : (L(A) ·#)

and

PHASE2(L(A), Act) = ERASE#(Act
∗ : (L(A) ·#)) .

where ERASE# projects out the letter #.

Complexity Analysis. Let h = |AI | denote the size ofAI – the automaton representing the
set of initial configurations. As discussed above, APPLY(AI , Act) produces an automaton
with the same number of states as AI by relabeling the transitions of AI . In the worst case,
each transition can be updated at most |Σ| times. Thus, the worst case complexity of the
SINGLELIMIT algorithm is |Σ|h.

Theorem 4.2 Let AI be an automaton over a finite alphabetΣ representing a set of single-
channel configurations, and h = |AI |. Then, in the worst case, the running time of the
SINGLELIMIT algorithm is O(|Σ|h).

5. DECIDABILITY RESULTS ON MULTI-CHANNEL PIECEWISE SYSTEMS

In this section, we focus on the limit language problem for a set of actions, Act, on a k-
channel system, and a set of channel configurations L. A configuration 〈w 1, . . . , wk〉 of
a k-channel system is represented by a word of the form w 1 · # · · ·# · wk, where # is a
fresh letter not in Σ. Thus, a channel configuration can be seen as an element of a relation.
In the sequel, a set of channel configurations correspond to a relation over Σ ∗. A regular
configuration is a set of channel configurations that correspond to a regular relation and a
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piecewise configuration is a set of channel configurations that correspond to a piecewise
relation (refer to Definition 2.8).

We show that limit languages of multi-channel systems are not regular in general. How-
ever, regularity can be achieved by either restricting Act to exclude conditional actions, or
restricting L to piecewise configurations.

Proposition 5.1 There exists a set of actions Act ⊆ Σrwc and a regular configuration L,
such that the limit language (Act∗ : L) is not regular.

PROOF. Consider a 2-channel action set Act = {0?a → 1!a, 0?b → 0!b′, 0?b′ → 1!b}
and a regular configuration L = 〈(ab)∗, ε〉. The idea is that first all the a’s are transferred
to channel 1, then all the b’s (after each b has temporarily been renamed to b ′). In configu-
ration L, channel 0 contains exactly the same number of a’s and b’s. After applying Act ∗,
there should be equal number of a and b in channel 1, and all b’s should follow a’s. Thus,
we have

(Act∗ : L) ∩ 〈ε,Σ∗〉 = {〈ε, anbn〉 | n ≥ 0} .
Hence, (Act∗ : L) is non-regular.

In the rest of this section, we show how to achieve regularity in the limit language. First,
we show that restricting the action set to unconditional actions is sufficient to make the
limit language regular. However, excluding the conditional actions significantly restricts
the expressiveness of the system model. We then show that to achieve regularity in the
presence of conditional actions, we need to restrict the initial channel configuration to only
piecewise configurations.

5.1 Limit Languages by Restricting the Action Set

In this section, we present results on recognizability of limit languages in piecewise multi-
channel systems where conditional actions are excluded from the action set.

The following proposition shows that the limit language of a set of read and write actions
is regular (piecewise) if the initial channel language is regular (piecewise).

Proposition 5.2 Let Act ⊆ Σrw be a set of unconditional actions in a multi-channel
system and L a regular (piecewise) configuration. Then,

(a) (Act∗ : L) is regular (piecewise).

(b) For a piecewise expression T over Act, (T : L) is regular (piecewise).

PROOF. Without loss of generality, we consider a 2-channel system. Generalization to
systems with more channels is trivial.

(a) Since L is regular (piecewise), it is equivalent to
∑

0≤i<I R
i
0#Ri

1 for some I , where
each Ri

j is regular (piecewise), and # is a fresh letter not present in Σ (Proposi-
tion. 2.9). Let Mk = {a | k?a ∈ Act} and Nk = {a | k!a ∈ Act} for k = 0
and k = 1 represent the set of all letters that are read and written, respectively. Then,

(Act∗ : L) =
∑

0≤i<I

((M∗
0 )

−1Ri
0) ·N∗

0#((M∗
1 )

−1Ri
1) ·N∗

1 .

Hence, (Act∗ : L) is regular (piecewise) if L is regular (piecewise).
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(b) By definition, T is a sum of simply piecewise expressions of the form

Act∗0 act0 · · · act� Act∗�+1

on which (a) can be applied inductively.

5.2 Limit Languages by Restricting the Initial Channel Configuration

In this section, we present results on recognizability of limit languages in multi-channel
systems with initial piecewise channel configurations. First, we review some necessary
definitions such as well-quasi-ordering and upward and downward closed sets. Then, we
establish our main result by showing that an arbitrary union of repetition piecewise rela-
tions is piecewise.

5.2.1 Preliminaries. In the rest of this section, we assume a finite alphabet Σ and use
x and y to denote elements of Σ∗.

Definition 5.3 (WQO) [Kruskal 1972] A binary relation 	 on a set X is a well-quasi-
ordering (wqo) on X if 	 is reflexive, transitive, and any infinite sequence of elements
x0x1x2 · · · from X contains an increasing pair xi 	 xj with i < j. The set X is said to
be well-quasi-ordered by 	.

Note that if X is well-quasi-ordered then it does not contain an infinite descending chain,
nor an infinite set of pairwise incomparable elements.

Definition 5.4 (Subword Ordering) The subword relation ≤⊆ Σ∗ × Σ∗ is defined such
that x ≤ y if and only if x can be obtained by deleting some letters of y.

For example, ac ≤ abc, but abc �≤ abd. The relation ≤ is reflexive and transitive. Further-
more, it follows from Higman’s Lemma [Higman 1952] that the subword ordering relation
is a wqo. Intuitively, this means that any infinite subset of Σ∗ contains at least two words
x and y such that x is a subword of y.

Definition 5.5 (Upward/Downward Closure) For a set of words A, the upward closure of
A, denoted A≤, is the set of all words y such that x ≤ y for some x ∈ A. Dually, the
downward closure of A, denoted A≥, is the set of all words y such that y ≤ x for some
x ∈ A.

For example, an upward closure of the singleton set {abc} is:

{abc}≤ = {y | abc is a subword of y}
= Σ∗aΣ∗bΣ∗cΣ∗

The downward closure of the same set is:

{abc}≥ = {y | y is a subword of abc}
= {abc, ab, ac, bc, a, b, c, ε}

We say that a set A is upward closed or an upset if A≤ = A, and that it is downward
closed or a downset if A≥ = A. For example, Σ∗aΣ∗bΣ∗cΣ∗ is an upset, a∗b∗c∗ is a
downset, and {abc} is neither an upset nor a downset.

An upward closed set is uniquely determined by its minimal elements. For an upward
closed set A, let MIN(A) � {x ∈ A |� ∃y ∈ A, y ≤ x}, then A = (MIN(A))≤. Note
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that all elements of MIN(A) are pairwise incomparable and since ≤ is a wqo, MIN(A) is
finite.

The subword ordering is extended pointwise to tuples of words. Let w,u ∈ (Σ ∗)K

be such that w = (w1, . . . , wK) and u = (u1, . . . , uK). Then, w ≤ u if and only if
∀i, wi ≤ ui. This ordering is still a wqo, since it is a cross product of well-quasi-orderings.

The notions of upward and downward closures extend to sets of tuples in a natural way.
In particular, an upward closure of a set containing a single tuple is:

{(w1, . . . , wn)}≤ = {w1}≤ × {w2}≤ × · · · × {wn}≤

5.2.2 Repetition Piecewise Relations. In this section, we show that an arbitrary union
of repetition piecewise relations is piecewise.

Repetition piecewise languages are downward closed with respect to the subword order-
ing. For example, let Σ = {a, b, c}, and L = a∗b∗. The downward closure of L is the set
of all words that have an arbitrary number of a’s followed by an arbitrary number of b’s,
which is L itself.

For any downset L ⊆ Σ∗, its complement, �L ⊆ Σ∗, is upward closed. Since subword
ordering ≤ is a wqo, there exists a finite set A = MIN(�L) such that �L = A≤. For
example, for the language L above, �L = {c, ba}≤.

The same is true of repetition piecewise relations: they are downward closed, and allow
for a finite representation of their complements.

Lemma 5.6 Let R ⊆ (Σ∗)n be a relation that is upward closed with respect to the
subword ordering. Then, there exists a finite set {r1, . . . , rk} ⊆ (Σ∗)n such that R =
{r1, . . . , rk}≤.

PROOF. Since R is upward closed, R = MIN(R)≤, and all elements of MIN(R) are
pairwise incomparable. Since ≤ is a wqo, MIN(R) is finite.

The following lemma shows that the language of the complement of the upward closure
of a tuple of strings is piecewise.

Lemma 5.7 Let w ∈ (Σ∗)n be a tuple of strings, and {w}≤ be its upward closure. Then,
�{w}≤ is piecewise.

PROOF. Assume that w is of the form w = (w1, . . . , wn). Then {w}≤ = {w1}≤ ×
· · · × {wn}≤. The complement of this set can be expressed as:

�{w}≤ = (�{w1}≤ × Σ∗ × · · · × Σ∗) ∪
(Σ∗ × · · · × �{wi}≤ × · · · × Σ∗) ∪
· · · ∪
(Σ∗ × · · · × Σ∗ × �{wn}≤) .

Σ∗ is trivially piecewise. Thus, it is sufficient to show that �{wi}≤ is piecewise for any
word wi.

Let wi = wi(1)wi(2) · · ·wi(k), where wi(j) is the j-th letter in wi. The upward clo-
sure of wi is the set of all words y that contain wi as a subword. That is, {wi}≤ =
L(Σ∗wi(1)Σ

∗wi(2) · · ·Σ∗wi(k)Σ
∗). Thus, �{wi}≤ is the union of a set of languages as
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follows:

(Σ− {wi(1)})∗ ∪
(Σ− {wi(1)})∗wi(1)(Σ− {wi(2)})∗ ∪

· · · ∪
(Σ− {wi(1)})∗wi(1)(Σ− {wi(2)})∗ · · ·wi(k − 1)(Σ− {wi(k)})∗ .

�{wi}≤ is a finite union of a set of simply piecewise expressions, and therefore it is piece-
wise.

For example, consider a (trivial) tuple w = ab and Σ = {a, b, c}. The upward closure
of w is {ab}≤ = Σ∗aΣ∗bΣ∗. The complement �{ab}≤ is represented by a piecewise
expression (b+ c)∗ + (b+ c)∗a(a+ c)∗.

The following Lemma extends Lemma 5.6 to all downward closed relations.

Lemma 5.8 A relation that is downward closed with respect to the subword ordering is
piecewise.

PROOF. Let R be a downward closed relation. Its complement �R is upward closed. By
Lemma 5.6, �R = {r1, . . . , rk}≤ =

⋃k
i=1{ri}≤, and R =

⋂k
i=1 �{ri}≤. By Lemma 5.7,

R is a finite intersection of piecewise relations and is therefore a piecewise relation.

For example, (a∗b∗, a∗c∗) is downward closed and piecewise. The following lemma
establishes the piecewiseness of an arbitrary union of repetition piecewise relations.

Proposition 5.9 An arbitrary union of a family of repetition piecewise relations is a piece-
wise relation.

PROOF. Repetition piecewise relations are downward closed and an arbitrary union of
downward closed sets is downward closed. By Lemma 5.8, this union is a piecewise rela-
tion.

5.2.3 Main Results. Our main result follows directly from Proposition 5.9. However,
first we need to introduce the notion of an anchor sequence.

Definition 5.10 The anchor sequences of a piecewise expression

R =
∑

0≤i<I M
i
1
∗
ai1 · · ·M i

k(i)

∗
aik(i)M

i∗
k(i)+1

is the set {ai1 · · · aik(i)|0 ≤ i < I}. The anchor length of R is max0≤i<I k(i) and the
anchor length of piecewise L is the minimum anchor length of an R such that L(R) = L.

For example, given piecewise R = (a+ b)∗cd∗ba∗ + d∗ba∗, the anchor sequences of R
is {cb, b}, and the anchor length of R is 2.

The following proposition shows that an arbitrary union of piecewise languages with
bounded anchor length is piecewise.

Proposition 5.11 The union of any (possibly infinite) family of piecewise languages of
bounded anchor length is piecewise.

PROOF. Note that for any bound, there are finitely many different anchor sequences.
By a rearrangement of the simply piecewise expressions of the languages of the family, it
suffices to consider a finite union of languages L�, where L� is a union of simply piecewise
languages all having the same anchor sequence. Since piecewise languages are closed
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Initial Configuration Channel Configuration
multiple w/o conditionals multiple w/ conditionals

regular effectively regular non-regular
piecewise effectively piecewise piecewise

Table I. A summary of the decidability results for limit languages in piecewise FIFO systems.

under finite union, it is sufficient to show that L� is piecewise. ConsiderL� =
⋃

i≥0 L(Ri),
where Ri for example has the following form:

Ri = M i
1

∗
ai1 · · · aik(�)−1

∗
M i

k(�)

∗
aik(�)M

i∗
k(�)+1 .

By renaming aij’s to #, L� can be viewed as a union of repetition piecewise relations.
According to Proposition 5.9, L� is a piecewise relation. By restoring # with ai

j’s, we get
that the language L� is piecewise.

Recall that a piecewise configuration L can be seen as a piecewise language; hence, it
has an anchor sequence. The following proposition shows that the repeated application of
a single read, write, or a conditional action to a piecewise configuration does not increase
its anchor length.

Proposition 5.12 For an action act ∈ Σrwc and a piecewise channel configurationL with
anchor length l, the anchor length of (act∗ : L) is less or equal to l.

PROOF. Without loss of generality, we only consider a 2-channel system and conditional
actions. Generalization to systems with more channels and unconditional reads and writes
is trivial. The proof proceeds by induction on the anchor length of L. The base case is
trivial (and is omitted), the inductive cases are shown below. We assume L = 〈U, V 〉,
where U and V are simply piecewise expressions, and act is a conditional action of the
form 1?a → 2!b.

—Case 1: U = (a+ a1 + · · ·+ an) ·W , then

((1?a → 2!b)∗ : L) = 〈U, V 〉 ∨ ((1?a → 2!b)∗ : 〈W,V · b〉)

—Case 2: U = (a+ a1 + · · ·+ an)
∗ ·W , then

((1?a → 2!b)∗ : L) = 〈U, V · b∗〉 ∨ ((1?a → 2!b)∗ : 〈W,V · b∗〉)

—Case 3: U = c ·W or U = ε, then

((1?a → 2!b)∗ : L) = ε

It is easy to see that in all of the cases above the anchor length has not increased.

The following theorem establishes our main result that the limit language is piecewise if
the initial channel language is piecewise.

Theorem 5.13 Let Act be a set of actions in a multi-channel system andL a set of channel
configurations. Then, (Act∗ : L) is piecewise if L is piecewise.
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Fig. 9. Communication topologies: (a) star, (b) tree, (c) inverted tree, (d) DAG.

PROOF. Let Act = {act1, . . . , actn}. Then,

Act∗ : L = (act1 + · · ·+ actn)
∗ : L

= ((act∗1 · act∗2 · · · · · act∗n)∗) : L
=
⋃

w∈Act∗(STARALL(w)) : L

where for w = w(1)w(2) · · · , STARALL(w) = w(1)∗w(2)∗ · · · .

In a k-channel system, we may assume thatL =
∑

0≤i<I L(i) for some I , whereL(i) =
Ri

0#Ri
1# · · ·#Ri

k−1 and Ri
j for 0 ≤ j < k is simply piecewise. Then,

(Act∗ : L) =
∑

0≤i<I(
⋃

w∈Act∗(STARALL(w)) : L(i)) .

Let li denote the anchor length of L(i). By Proposition 5.12 (STARALL(w) : L(i)) is a
union of piecewise expressions with anchor length bounded by l i.

Let Lw(i) denote (STARALL(w) : L(i)). Then,

(Act∗ : L) =
∑

0≤i<I(
⋃

w∈Act∗ Lw(i)) .

Therefore, (Act∗ : L) is a (possibly infinite) union of piecewise expressions with anchor
length bounded by max{li | 0 ≤ i < I}. Thus, by Proposition 5.11 it is piecewise.

The results of this section are summarized in Table I, where the result of Theorem 5.13
is highlighted in bold. From the table, it is clear that in order for the limit language to
be regular, we either need to exclude conditional actions or consider only piecewise initial
channel configurations. The proof of Theorem 5.13 is non-effective: it does not provide an
algorithm for computing the limit language. In the next section, we partially remedy this
problem by providing algorithms for computing the limit language for restricted classes of
piecewise multi-channel systems with piecewise initial channel configurations. However,
answering this question in the general case remains an open problem.

6. ALGORITHMIC ANALYSIS OF MULTI-CHANNEL PIECEWISE SYSTEMS

In this section, we focus on the limit language problem for a set of actions with an acyclic
communication graph. For ease of presentation, we develop the algorithm for acyclic
communication graphs incrementally by restricting the topology of the graph to star, tree,
inverted tree, and eventually DAG. We show correctness of each algorithm and discuss its
complexity.

Throughout, we assume that all actions are conditionals. This is not a significant limita-
tion since: (i) unconditional reads can be modeled by conditionals that write to dummy
channels, and (ii) unconditional writes can be handled easily, but are omitted for pre-
sentational convenience. The algorithms are based on automata, and operate on piece-

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



22 · Naghmeh Ghafari et al.

wise configurations. A piecewise (k-channel) configuration u is represented by a tuple
〈A1, . . . , Ak〉, where each Ai is a PO-FSA over Σ. The size of u is the sum of the sizes
of all of the automata in it. L is extended to finite sets of piecewise configurations in the
usual way: L(U) =

⋃
u∈U L(u). Note that L(U) can be seen as a piecewise recognizable

relation.
For notational convenience, in the examples we use tuples of regular expressions instead

of PO-FSA to represent piecewise configurations. For example, u = 〈a∗b, (c + d)∗e〉
represents a piecewise configuration where u[1] is an automaton representing a ∗b, and
u[2] is an automaton representing (c+ d)∗e. In pseudo-code, we use Conf for the type of
piecewise configurations, and the notation “X with [i] = y” to mean X [i �→ y].

6.1 Star Topology

A set of actions Act has a star topology if and only if there exists a unique channel o, the
origin, such that for every action i?a → j!b in Act, i = o and j �= o, i.e., CG(Act) is a
star (see Fig. 9(a)). In the sequel, we assume that channel 1 is the origin channel.

Let u be a piecewise channel configuration. The algorithm DOREAD, shown in Fig. 10,
computes the limit (Act∗ : L(u)). The writeWL and readWL are two global work lists
used by the algorithm. DOREAD is driven by the automaton u[1] representing the content
of channel 1. For example, if u[1] = M ∗

1 a1M
∗
2 a2 then the algorithm first computes all

reachable configurations w whose channel 1 content, w[1], is in L(M ∗
1 a1M

∗
2 a2), then all

configurations with w[1] in L(M ∗
2 a2), then all configurations with w[1] being ε. Each

iteration of the algorithm is done using functions SATURATE and STEP. For our running
example, in the first iteration, SATURATE computes all reachable configurations with w[1]
in L(M∗

1 a1M
∗
2 a2) and STEP computes all configurations with w[1] in L(M ∗

2 a2), etc.

SATURATE. Let u be a piecewise configuration, where u[1] = M ∗ · Z for some Z , i.e.,
u[1] is a PO-FSA with a single initial state q0 and some self-loops on q0. Note that, u
represents a set of configurations with an arbitrary number of letters from M at the head
of channel 1. The SATURATE phase computes a set of configurations that are reachable by
reading an arbitrary number of these letters. Formally, SATURATE(u, 1) defines a piece-
wise configuration u′ such that L(u′) is {w | w ∈ (Act∗ : L(u)) ∧ (w[1] ∈ L(u[1]))}. It
corresponds to a transformation SATURATE(u, 1) = u ′ such that

u′[i] �
{
u[1] if i = 1

u[i] · (Act : M)∗ otherwise.

For example, givenAct = {1?a → 2!a, 1?a → 3!a} andu = 〈a∗(b+c), ε, ε〉, SATURATE(u, 1)
computes a piecewise configuration u ′ = 〈a∗(b + c), a∗, a∗〉.
STEP. Let u be a piecewise channel configuration, whereu[1] = (a0+· · ·+an)·Z for some
Z , i.e, u[1] is a PO-FSA with a single initial state with no self-loops. Here, u represents
a set of configurations whose channel 1 content starts with a letter in {a 0, . . . , an}. The
STEP phase computes all configurations that are reachable by reading exactly one letter
from channel 1. Formally, STEP(u, 1) defines a set U ′ of piecewise configurations such
that L(U′) � {w | w ∈ (Act∗ : L(u)) ∧ (w[1] ∈ Z)}. It corresponds to a transformation

STEP(u, 1) �
⋃

{1?a→i!b∈Act|a∈{a0,...,an}}
(1?a → i!b) : L(u) .
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1: global List readWL
2: global List writeWL

3: function List DOREAD(Conf u, Channel ch)
4: doReadRec(u, ch, true)
5: return writeWL

6: procedure doReadRec(Conf u, Channel ch, bool na) � na indicates whether the
current configuration is added to the writeWL

7: if u[ch] = (U1 + ...+ Un) ·W for some W then
8: for i ∈ [1..n] do doReadRec(u with [ch] := Ui ·W, ch, na)

9: else if u[ch] = M∗ ·W for some W then
10: u := SATURATE(u, ch)
11: writeWL := writeWL ∪ {u}
12: u := (u with [ch] :=W )
13: doReadRec(u, ch, false)
14: else if na ∧ (u[ch] = ε) then
15: writeWL := writeWL ∪ {u}
16: else if u[ch] = a ·W for some W then
17: if na then writeWL := writeWL ∪ {u}
18: U := STEP(u, ch)
19: for u′ ∈ U do doReadRec(u′, ch, true)

Fig. 10. DOREAD algorithm for star topology and its supporting routines.

For example, given Act = {1?b → 2!b, 1?c → 3!c} and u = 〈(b + c), ε, ε〉, STEP(u, 1)
computes two piecewise configurations u ′

1 = 〈ε, b, ε〉 and u′
2 = 〈ε, ε, c〉.

Detailed implementations of SATURATE and STEP for a set of actions Act on k channels
are shown in Fig. 11.

Theorem 6.1 Let u be a piecewise channel configuration, Act an action set with star
topology and origin o, and U ′ the set returned by DOREAD(u, o). Then, L(U′) = (Act∗ :
L(u)).

PROOF. The proof is straightforward by the induction on the structure of u[1].

Complexity Analysis. For a piecewise configuration u, the depth of the recursion of
DOREAD is bounded by h = |u[o]| for the origin o. Inside each call, SATURATE takes
constant time and returns a single configuration; however, STEP may return a set of config-
urations. In a k-channel system, the size of this set is bounded by k−1. Thus, the complex-
ity of the DOREAD algorithm is bounded by the number of internal nodes of a (k− 1)-ary
tree of height h. There are h such nodes for k = 2, and ((k − 1) (h+1) − 1)/(k − 2) for
k > 2.

Theorem 6.2 Let u be a piecewise channel configuration, Act a set of actions with star
topology on k channels with origin o, and h = |u[o]|. Then, in the worst case, the running
time of DOREAD(u, o) is O(max(kh, h)).

6.2 Tree Topology

A set of actions Act has a tree (or, more generally, a forest) topology if and only if for all
actions i?a → j!b and i′?a′ → j′!b′ in Act, j = j′ ⇒ i = i′. That is, CG(Act) is a finite
union of trees (e.g. Fig. 9(b)). In this section, for presentation convenience, we consider
CG(Act) to be a tree and not a forest.
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1: function Conf SATURATE(Conf u, Channel ch)
2: let (Q, q0, δ, F ) = u[ch], M = {a | (q0, a, q0) ∈ δ}
3: for all i ∈ ([1..k] \ {ch}) do � k is the number of channels
4: let M ′ = {b | (ch?a → i!b) ∈ Act ∧ a ∈ M}
5: u′[i] := (u[i] · (M ′)∗)
6: return u′

7: function Set STEP(Conf u, Channel ch)
8: U′ := ∅
9: let (Q, q0, δ, F ) = u[ch], M = {a ∈ Σ | ∃q′, (q0, a, q′) ∈ δ ∧ q′ �= q0}

10: for all a ∈ M ∧ i ∈ {j | ∃b, (ch?a → j!b) ∈ Act} do
11: M ′ := {b | (ch?a → i!b) ∈ Act}
12: u′[ch] := (Q, δ(q0, a) \ {q0}, δ, F )
13: u′[i] := u[i] ·M ′
14: U′ := U′ ∪ {u′}
15: return U′

Fig. 11. STEP and SATURATE algorithms.

The DOREAD algorithm for the star topology is not applicable to the tree topology since
it assumes that all reads come from a single channel. However, an action set with the tree
topology can be partitioned such that each partition has a star topology. Formally, for a
set of actions Act, let Acti denote all the actions that read from channel i. Then, {Act i}
partitions Act and each Acti has a star topology with origin i. For example, consider
the communication graph in Fig. 9(b): here, Act 1 = {1? → 2!, 1? → 3!, 1? → 4!},
Act2 = {2? → 5!}, and Act3 = {3? → 6!, 3? → 7!}.

This way, DOREAD can be used to compute Act∗i : L(u) for any channel i and a piece-
wise configuration u. Furthermore, it can be applied iteratively to compute sequential
composition of the partitions of Act. For example, computation of (Act ∗1 ·Act∗2) : L(u) is
done by using DOREAD to first compute U ′ such that L(U′) = (Act∗1 : L(u)), and using
it again to compute (Act∗2 : L(U′)). In the following, we show how to extend this to the
computation of the full limit language.

The graph CG(Act) is acyclic and, therefore, induces a partial order 	 on channels
(vertices of the graph). For channels i and j, i 	 j if and only if there exists a path from
i to j in CG(Act). Intuitively, channel i is less than channel j if the final content of j
depends on the initial content of i. We say that channel j depends on channel i if i 	 j,
and that i and j are interdependent if either i 	 j or j 	 i. Without loss of generality,
we assume that the partial order 	 is extended to a total order and that the channels are
numbered such that i ≤ j if i 	 j. For example, channel 3 depends on channels 1 and 2,
and 2 depends only on 1. The ordering and renaming of the channels can be done in time
linear in the size of the CG.

If Act has a tree topology, every channel in CG(Act) has at most one immediate prede-
cessor. Thus, for every sequence x ∈ Act∗, there exists a sequence y such that: (i) y has
the same actions as x, (ii) all reads of y are ordered, i.e., y ∈ Act∗1 · Act∗2 · · · · , and (iii) if
(x : w) �= ∅ for some w, then (y : w) = (x : w). For example, for Act in Fig. 9(b), and
x = 1? → 2! 1? → 3! 2? → 5! 1? → 4! 3? → 6!, an equivalent sequence y is:

y = 1? → 2! 1? → 3! 1? → 4!︸ ︷︷ ︸
∈Act∗1

2? → 5!︸ ︷︷ ︸
∈Act∗2

3? → 6!︸ ︷︷ ︸
∈Act∗3

.

Theorem 6.3 Let Act be an action set on k channels such that CG(Act) is a tree, and w
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a channel configuration. Then,

((Act∗ : w) = ((Act∗1 · · · · · Act∗k) : w)) .

PROOF. We say that two action sequences x and y are enabled equivalent, written
x ≡e y, if x and y behave identically on the input sequences that enable all actions of
x. Formally,

x ≡e y � (∀w, (x : w �= ∅) ⇒ (x : w = y : w)) .

In the proof, we use the following equivalences (rules):

(1) i?a j?b ≡e j?b i?a (i �= j)
(2) i!a j!b ≡e j!b i!a (i �= j)
(3) i!a j?b ≡e j?b i!a
(4) i?a j!b ≡e j!b i?a

Let p?c → q!d and i?a → j!b be two conditional actions such that i 	 p. Note that tree
topology implies that q �= j. We show that these two conditional actions can be commuted
in any sequence of actions. The theorem follows by recursive application of this rule.

p?c → q!d i?a → j!b notation
= p?c q!d i?a j!b using rule 3
= p?c i?a q!d j!b using rule 2
= p?c i?a j!b q!d using rule 1
= i?a p?c j!b q!d using rule 4
= i?a j!b p?c q!d notation
= i?a → j!b p?c → q!d

Thus, given a sequence of actions x ∈ Act∗, there exists an enabled equivalent sequence
of actions y ∈ Act∗1 · · · · · Act∗k where the conditional actions of x are ordered based on
their read part.

Theorem 6.3 leads to an obvious algorithm for computing the limit language in the tree
topology: (i) establish a total order on channels based on the CG, and (ii) use this order
to iteratively apply DOREAD to each partition Acti. We call this algorithm TREELIMIT

(see Fig. 12). Since TREELIMIT proceeds through a finite total order of channels, it always
terminates.

Theorem 6.4 Let u be a piecewise configuration,Act an action set with tree topology, and
U′ the set of configurations returned by TREELIMIT(u). Then, L(U ′) = (Act∗ : L(u)).
Complexity Analysis. Without loss of generality, we assume that CG(Act) is an N -ary
tree with M internal nodes and that the initial content of all the channels except the root
is empty. Let u be a piecewise configuration, and h = |u|. By Theorem 6.2, computation
of Act∗i : L(u) produces at most max(N h, h) piecewise configurations, each of size at
most h. TREELIMIT applies computation Act∗i : L(u), M times, which produces at most
max(Nh×M , hM ) configurations.

Theorem 6.5 Let u be a piecewise configuration,Act a set of actions with a tree topology
of degree N and M internal nodes, and h = |u[1]|. In the worst case, the running time of
TREELIMIT(u) is O(max(Nh×M , hM )).
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1: function List TREELIMIT(Conf u)
2: readWL := u

3: for ch = 1 to k do � k is the number of channels
4: writeWL := ∅
5: for all u ∈ readWL do doRead(u, ch)

6: readWL := readWL ∪ writeWL

7: return readWL

Fig. 12. The TREELIMIT algorithm.

6.3 Inverted Tree Topology

A set of actions Act has an inverted tree topology if and only if for all conditional actions
i?a → j!b and i′?a′ → j′!b′ in Act, i = i′ ⇒ j = j′. That is, CG(Act) is an inverted tree
(e.g., see Fig. 9(c)).

In the inverted tree topology, a channel may depend on several pairwise independent
channels. Therefore, Theorem 6.3 is no longer applicable. For example, let Act = {1?a →
3!a, 2?b → 3!b}, and w = 〈aa, bb, ε〉 be a configuration. The partial order on the channels
induced by CG(Act) is {1 	 3, 2 	 3}, with two obvious linearizations. A configuration
〈ε, ε, abab〉 is reachable from w, but does not belong to either ((1?a → 3!a)∗(2?b →
3!b)∗) : w, or ((2?b → 3!b)∗(1?a → 3!a)∗) : w, which contradicts the theorem.

For simplicity of presentation, we assume that there is a unique channel, referred to as
l, that has multiple dependencies, like channel 3 in the above example. That means l is
the only channel whose node in CG(Act) has an in-degree greater than or equal to 2. In
this case, it is possible to (i) replace channel l with new channels, called shadows of l, and
turn Act into a tree topology, (ii) solve the new limit problem using TREELIMIT, and (iii)
combine the contents of shadow channels together. This is further explained below.

We define a function ADDS that introduces shadow channels for l by redirecting each
conditional that reads from i and writes to l to write to a newly created shadow channel l̂i.
Formally,

ADDS(i?a → j!b, l) �
{
i?a → l̂i!b if j = l

i?a → j!b otherwise.

ADDS breaks dependencies between channels. Let Âct = ADDS(Act, l). If CG(Act)

is an inverted tree, then CG(Âct) is a tree. For our running example, we introduce two
shadow channels for channel 3; therefore, Âct = {1?a → 3̂1!a, 2?b → 3̂2!b}. We use S(l)
to denote the shadows of l.

Let w be a configuration, and ŵ be its extension to shadow channels. That is, ŵ[i] =
w[i] if i �∈ S(l), and ŵ[i] = ε otherwise. For example, if w = 〈aa, bb, b〉, then by
introducing two shadow channels for channel 3, ŵ = 〈aa, bb, b, ε, ε〉.

The sets (Act∗ : w) and ((Âct)∗ : ŵ) are closely related. Let t ∈ (x : w) be a
configuration reachable from w by a sequence x ∈ Act∗, and t̂ ∈ (ADDS(x, l) : ŵ) be a
configuration reachable from ŵ, where ADDS is extended to sequences in an obvious way.
ADDS only augments actions that write to l. Thus, t[i] = t̂[i] for any i that is different
from l or its shadow channels S(l). By adding shadow channels for l, all the writes on l are
redirected to its shadows and t̂[l] is the initial content of l, hence, it is a prefix of t[l]. Each
shadow channel l̂i keeps track of what was read from channel i and written to l, hence,
t̂[l̂i] is a subsequence of t[l].
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1: function Conf MERGES(Conf u, Channel ch);
2: function CONF doWrite(Conf conf, Channel ch)
3: return MERGES(u, ch)

4: function List MULTILIMIT(Conf u)
5: readWL := u

6: for ch = 1 to k do � for every non-shadow channel ch
7: writeWL := ∅
8: for all u ∈ readWL do doRead(u, ch)

9: if ch+ 1 ≤ k then � if ch is not the last channel
10: for all u ∈ writeWL do
11: readWL := readWL ∪ {doWrite(u, ch+ 1)}
12: return readWL

Fig. 13. MULTILIMIT algorithm and its supporting routines.

In our running example, Act = {1?a → 3!a, 2?b → 3!b}, Âct = {1?a → 3̂1!a, 2?b →
3̂2!b}, w = 〈aa, bb, b〉, and ŵ = 〈aa, bb, b, ε, ε〉. Let x be a sequence in Act∗:

x = 1?a → 3!a 2?b → 3!b 1?a → 3!a 2?b → 3!b .

Then,

ADDS(x, 3) = 1?a → 3̂1!a 2?b → 3̂2!b 1?a → 3̂1!a 2?b → 3̂2!b .

In order to formalize the relation between (Act∗ : w) and ((Âct)∗ : ŵ), we define a
function MERGES. Given a configuration over shadow channels, MERGES produces all
corresponding configurations without shadows. Formally,

t ∈ MERGES(t̂, l) ⇔ (∀i �= l ∧ i �∈ S(l), t[i] = t̂[i]) ∧ (t[l] ∈ L(t̂[l] · ||j∈S(l){t̂[j]}) .
In the above example, let t = (x : w) = 〈ε, ε, babab〉 and t̂ = (ADDS(x, 3) : ŵ) =

〈ε, ε, b, aa, bb〉. Then, MERGES(t̂, l) = {〈ε, ε, b · (aa || bb)〉} that is equal to

{〈ε, ε, baabb〉, 〈ε, ε, bbbaa〉, 〈ε, ε, babab〉, 〈ε, ε, bbaba〉, 〈ε, ε, babba〉, 〈ε, ε, bbaab〉} .
As can be seen, t ∈ MERGES(t̂, l).

Theorem 6.6 Let Act, Âct, w, ŵ, and l be as above. Then,

t ∈ (Act∗ : w) if and only if ∃t̂ ∈ ((Âct)∗ : ŵ), t ∈ MERGES(t̂, l) .

PROOF. The proof follows directly from the definition of Âct, ŵ, and MERGES. By
augmenting Act with shadow channels and extending w to ŵ, all the writes to the chan-
nel with in-degree greater than or equal to 2 are forwarded to the corresponding shadow
channels. Then, MERGES computes all possible configurations reachable by different in-
terleavings of actions by shuffling the contents of the shadow channels.

Both Theorem 6.6 and MERGES are easily lifted to piecewise configurations such that
if u is a piecewise configuration, then MERGES(u, l) defines a piecewise configuration as
well. This follows from the fact that piecewise languages are closed under concatenation
and shuffle (see Proposition 2.5).

The explained procedure can be extended to an arbitrary inverted tree. The correctness
follows by induction on the number of channels. The final algorithm MULTILIMIT is
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DAG toTree topology

Fig. 14. (a) DAG communication topology, (b) Converting DAG to inverted tree using
shadow channels.

shown in Fig. 13. The algorithm assumes that shadow channels are introduced where
they are needed. It traverses the channels according to the partial order induced by the
CG, applying read and write phases. The read phase is the same as in the star and tree
topologies (done by DOREAD). The write phase uses MERGES to merge the content of all
the shadows of a channel before applying a read phase to it.

Theorem 6.7 Let u be a piecewise configuration, Act an action set with inverted tree
topology, and U the set of configurations returned by MULTILIMIT(u). Then, L(U) =
(Act∗ : L(u)).
6.4 DAG Topology

In this section, we present an algorithm for computing the set of reachable configurations
for a set of actions whose CG is an arbitrary directed acyclic graph (DAG) (e.g. see
Fig. 9(d)). This subsumes the algorithms from the previous sections for star, tree, and
inverted tree topologies.

What makes the DAG topology different from the inverted tree is that immediate pre-
decessors (in the 	 partial order on the CG) of a channel may be interdependent. For
example, consider Act = {1?a → 3!a, 1?b → 2!b, 2?b → 3!b} whose CG is shown in
Fig. 14(a). Channel 3 has channels 1 and 2 as its immediate predecessors, and channel 2
depends on channel 1. This extra layer of dependence precludes the possibility of breaking
the topology by simply introducing shadow channels.

For our running example, consider the computation of reachable configurations start-
ing from 〈a∗b∗, ε, ε〉. We can replace channel 3 with two shadow channels to obtain
Âct = {1?a → 3̂1!a, 1?b → 2!b, 2?b → 3̂2!b} (see Fig. 14(b)). By applying TREELIMIT

to the resulting tree topology, we obtain two piecewise configurations {〈a ∗b∗, ε, ε, a∗, ε〉,
〈b∗, b∗, ε, a∗, b∗〉}. If we then proceed by merging the contents of the shadows of channel
3, as in the inverted tree topology, we obtain {〈a∗b∗, ε, a∗〉, 〈b∗, b∗, (a + b)∗〉}. The sec-
ond piecewise configuration includes configurations in which the content of channel 3 is in
b+a+. These configurations are infeasible since a came before b in channel 1 in any initial
configuration and this order must be preserved when the content is copied to channel 3.

To solve this problem, we extend MULTILIMIT algorithm by modifying the shuffle used
by MERGES (see Sec. 6.3) to respect the dependencies between the predecessors of the
channel whose shadows are merged. This requires (i) keeping track of the relative posi-
tions of each letter in a channel as it is copied between channels, and (ii) restricting the
shuffle based on the history of positions of each letter. The new algorithm, called MULTI-
LIMITDAG, is shown in Figure 15.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Reachability Problems in Piecewise FIFO Systems · 29

For a system with k channels, each letter is associated with a k-tuple of indices from
IDX, where IDX is [−1..∞). Intuitively, the jth index of a letter a indicates the relative
position of a when it was in channel j, with −1 meaning that a was never in that channel.
We write idx(i, a) for the ith index of a. For example, idx(2, a) = 4 means that a was
at some point at position 4 in channel 2, and idx(3, a) = −1 means that a was never in
channel 3. We use ch(a) to denote the latest channel that a was in. Formally, ch(a) �
max{i | idx(i, a) �= −1}.

To keep track of the indices, several parts of the MULTILIMIT are modified as shown in
Fig. 15. The doReadRecDAG procedure extends doReadRec (in Fig. 10) by accepting as
an argument the ch-index of a letter at the head of the current channel ch, and increment
it at each recursive call (lines 13 and 19). SATURATEDAG and STEPDAG extend the
corresponding algorithms in Fig. 11 by propagating and assigning indices (lines 23 and 30).

The interdependence of the channels implies the following constraint on the content of
every channel in every reachable configuration. Let w be a word describing a content of
channel l. Let a and b be letters at positions p and q in w, respectively. Assume that i is the
last channel a was in, and that i precedes the last channel that b was in, i.e., i = ch(a) <
ch(b). Furthermore, assume that a preceded b in channel i, i.e., idx(i, a) < idx(i, b). Then
a has to precede b in w, i.e., p < q, since a had to be read from channel i (and placed in w)
before b could be read.

We denote the set of all words that satisfy the above condition by WO. Formally, it is
the set of all words w in (Σ× IDXk)∗ that satisfy

∀p, q, (a = w(p) ∧ b = w(q) ∧ i = ch(a) ∧
ch(a) < ch(b) ∧ idx(i, a) < idx(i, b)) ⇒ p < q

(1)
where w(p) denotes the letter at position p of w.

For our running example, the word ba in channel 3 does not belong to WO: the last
channel of a is 1 (ch(a) = 1) which precedes 2 – the last channel of b (ch(b) = 2),
thus, ch(a) < ch(b). In the sequel, a preceded b in channel 1, i.e. idx(1, a) < idx(1, b).
Therefore, a must also precede b in channel 3.

The set WO defines a piecewise language, and is recognizable by a PO-FSA.

Theorem 6.8 The language WO, as defined in (1), is piecewise.

PROOF. To prove the theorem, we construct an automaton AWO that recognizes WO.
Then, we show that this automaton is a PO-FSA.

Let k be the number of channels. The state space of AWO is IDX[1..k][1..k]. An inter-
pretation of a state is

q[i][j] = p

if the automaton has seen a letter that its latest channel was i, and it was at some point at
position p in channel j. The initial state q0 is such that ∀i, j, q0[i][j] = −1, and every state
is accepting. The transition relation of AWO, δ, is deterministic, and is defined as follows:

δ(q, a, q′) ⇔
(∀ch(a) < i ≤ k, q[i][ch(a)] ≤ idx(ch(a), a))∧

(∀i, j, (i �= ch(a) ⇒ q′[i][j] = q[i][j])∧
(i = ch(a) ⇒ q′[i][j] = max(q[i][j], idx(j, a)))) .
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The first conjunct of δ ensures that the WO condition is satisfied, and the second updates
the state. Let I denote the latest channel letter a was in. Intuitively, the automaton accepts
letter a if and only if it has not seen a letter from any channel greater than I which was
behind of letter a in I . The state of the automaton is updated if letter a has a greater
position in any channel than any other letter that the automaton has seen in that channel.

The automaton AWO is a PO-FSA, where the partial order 	 on states is:

q 	 q′ ⇔ ∀i, j, q[i][j] ≤ q′[i][j] .

In order to restrict MERGES to only include words that satisfy WO, we replace it with
a function MERGEDAGS defined as follows. Let t̂ be a configuration reachable from an
initial configuration extended with shadow channels, and l a non-shadow channel. Then,
MERGEDAGS(t̂, l) � MERGES(t̂, l) ∩ WO. Since WO is piecewise (by Theorem 6.8)
and piecewise languages are closed under intersection (by Proposition 2.5), MERGEDAGS
defines a piecewise configuration.

With this change, MULTILIMITDAG algorithm (see Fig. 15) computes the exact set of
reachable configurations.

Theorem 6.9 Let u be a piecewise configuration,Act a set of actions with DAG topology
and U′ a set of configurations returned by MULTILIMIT(u) algorithm, where MERGES is
replaced by MERGEDAGS. Then L(U′) = (Act∗ : L(u)).

In this section, we presented an automata-theoretic algorithm for computing the limit
language subject to the following conditions: (i) the initial language is piecewise, and (ii)
the communication graph of actions is acyclic. For star and tree topologies we showed that
the complexity of our algorithm is exponential in the size of the automaton representing
the initial channel configuration. In the case of the inverted tree and DAG topologies, the
complexity of the algorithms remains an open problem.

7. RELATED WORK

FIFO systems play key roles in description and analysis of distributed systems. It is
well-known that most non-trivial verification problems for FIFO systems are undecid-
able [Brand and Zafiropulo 1983]. However, a substantial effort has gone into analysis
of these systems. In general, two main approaches have been followed for the analysis of
FIFO systems. The first approach, and the one taken in this article, is to identify practically
useful subclasses of FIFO systems with decidable properties (e.g., [Pachl 1987; Finkel and
Rosier 1988; Sistla and Zuck 1991; Klarlund and Trefler 2005]). The second approach is
to look for efficient semi-algorithms that scale to realistic examples, but do not guarantee
to always terminate (e.g., [Boigelot and Godefroid 1999; Boigelot et al. 1997; Gall et al.
2006]). Although this approach may look promising, in many cases finding a good bound
between scalability and termination is very challenging.

The two approaches may be combined, as illustrated in the analysis of lossy channel
systems in which channels may lose messages. In these systems, the problem of reacha-
bility of a given state is decidable [Abdulla and Jonsson 1993; Cece et al. 1996; Abdulla
et al. 1999]; however, calculating the set of all reachable states is impossible. The systems
considered in this article are not lossy; all channels are perfect, i.e., they do not lose any
message.
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Pachl [Pachl 1987] proves that if the set of reachable channel configurations (the limit
language) is recognizable then it is decidable to check for reachability of any given state.
It was later shown in [Cece et al. 1996] that even though the reachability set might be
recognizable, determining it may still be undecidable.

An appealing general model to distributed systems with channels is that of FIFO nets,
which are formulated as Petri nets except that places are replaced by FIFO channels. The
survey [Finkel and Rosier 1988] contains several decidability results, but they depend on
the channel languages being bounded, i.e. a subset of some language w ∗

0 . . . w
∗
n−1, where

the wi’s are words.
Sistla and Zuck [Sistla and Zuck 1987; 1991; 1993] study the logic restricted LTL –

Linear Temporal Logic restricted to only the eventually operator – and the corresponding
problem of verification of FIFO systems with respect to this logic. They show that the
class of languages expressed by restricted LTL is exactly characterized by a finite union of
restricted regular sub-class of ω-regular languages. A language is restricted regular if it is
of the form:

a0M
∗
1 a1M

∗
2a2 · · ·M∗

m−1am−1M
ω
m

for some M1, . . . ,Mm ⊆ Σ such that a0 ∈ M1 and for every i, 1 ≤ i ≤ m, ai ∈
Mi \ Mi+1. Furthermore, they show that for FIFO systems whose behavior can be de-
scribed by a finite union of restricted regular languages, the verification problem with re-
spect to restricted LTL is decidable and is in co-NP. At a first glance, restricted regular
languages appear similar to piecewise languages used in this paper. Formally, they are
different, for example, restricted regular languages are closed under complementation, but
piecewise languages are not. However, the key distinction is in the alphabet considered
when modeling FIFO systems with those languages. In the work of Sistla and Zuck, the
alphabet consists of single read and write (or send and receive) actions (we call this Σ rw

in Section 3). In our work, the alphabet is further extended to include conditional actions,
i.e., a read followed by a write (we call this Σrwc in Section 3). On one hand, condi-
tional actions are crucial for modeling realistic communication protocols as we illustrated
throughout the paper. On the other hand, FIFO systems with conditional actions can not
be modeled with restricted regular languages. Whether the theory of Sistla and Zuck can
be extended to handle conditional actions is an open problem.

Boigelot et al. [Boigelot and Godefroid 1999; Boigelot et al. 1997; Boigelot 1998] de-
scribe a data structure, QDD, for representing sets of queue contents, and a QDD-based
semi-algorithm to compute a set of reachable states. The termination of this algorithm de-
pends on handling iterations of arbitrary sequences of actions. This is equivalent to limit
languages in our terminology. In [Boigelot and Godefroid 1999], automata-theoretic al-
gorithms are given to calculate f : L and f ∗ : L for a single read, write, or conditional
action f . Boigelot’s Ph.D. thesis [Boigelot 1998] and [Boigelot et al. 1997] extend that to
action sequences that preserve recognizability of channel contents. Our results are quite
different and do not follow from the work on QDDs. The key difference between [Boigelot
and Godefroid 1999; Boigelot et al. 1997] and our work is our focus on conditional actions
that are often occur in practice in models of communication protocols. In particular, we
focus on computing the limit language of the iteration of multiple conditional actions, i.e.,
Kleene closure of a sum or non-deterministic choice between conditional actions. This is a
much harder problem since, in general, the limit language is not recognizable (i.e., regular)
and the algorithms in [Boigelot 1998; Boigelot et al. 1997] do not apply. Furthermore,
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we focus on computing the effects of application of a piecewise action language, which
are not expressible in the QDD formalism. Therefore, none of the results in [Boigelot
1998; Boigelot et al. 1997] could be re-used and our proofs are constructed from the basic
principles.

A special kind of regular expression, called semilinear, was introduced in [Finkel et al.
2003] as a symbolic presentation of regular, bounded languages describing channel con-
tents. Unfortunately, a bounded language L has polynomial density: there are at most
P (n) words of size n for some polynomial P . This is a severe restriction. For example, it
precludes sending a’s and b’s that are arbitrarily interspersed.

An approach for model-checking piecewise FIFO systems was studied in [Ghafari and
Trefler 2006]. That work presents a procedure for calculating an abridged model of a FIFO
system, which when successful, constructs such a model by computing an abstraction of
the reachable channel contents. It is shown in [Ghafari and Trefler 2006] that abridged
models preserve path properties expressed by a restricted class of Büchi automata. In
contrast, the work presented in this paper focuses on calculating the exact limit languages
and applies to reachability/safety properties only.

8. CONCLUSION

FIFO systems are a common model of computation for distributed protocols. We have
studied the reachability problem for a class of FIFO systems composed of piecewise com-
ponents. We show that this problem is reducible to computing the limit language of a
regular language of actions.

We consider single-channel and multi-channel FIFO systems separately. For the single-
channel case, we show that the limit language is regular (piecewise) if the initial language is
regular (piecewise). We present an automata-theoretic algorithm for calculating the limit
language starting with an arbitrary regular initial content. We show that the worst case
complexity of our algorithm is exponential in the size of the automaton representing the
initial channel content. A prototype of the algorithm was implemented using the Automa-
ton package [Møller 2007].

For multi-channel systems, the limit language is not regular in generel. However, we
show for it to be regular either we have to exclude conditional actions or consider only
piecewise initial channel configurations. We present an automata-theoretic algorithm for
computing the limit language subject to the following conditions: (i) the initial language
is piecewise, and (ii) the communication graph of actions is acyclic. For the star and the
tree topology, we show that the complexity of our algorithm is exponential in the size of
the automaton representing the initial channel configuration. In the cases of inverted tree
and DAG topologies the complexity of the algorithms remains an open problem.
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BOND, G. W., IVANČIĆ, F., KLARLUND, N., AND TREFLER, R. 2001. “ECLIPSE Feature Logic Analysis”. In
Proceedings of Second IP Telephony Workshop.

BOUAJJANI, A., JONSSON, B., NILSSON, M., AND TOUILI, T. 2000. “Regular Model Checking”. In Pro-
ceedings of the 12th International Conference on Computer Aided Verification (CAV’00). LNCS, vol. 1855.
403–418.

BOUAJJANI, A., MUSCHOLL, A., AND TOUILI, T. 2001. “Permutation Rewriting and Algorithmic Verification”.
In Proceedings of the 16th IEEE Symposium on Logic in Computer Science (LICS’01). 399 – 408.

BRAND, D. AND ZAFIROPULO, P. 1983. “On Communicating Finite-State Machines”. Journal of the
ACM 30, 2, 323–342.

BRZOZOWSKI, A. AND SIMON, I. 1973. Characterization of locally testable events. Discrete Mathematics 4,
243–271.

CECE, G., FINKEL, A., AND IYER, S. P. 1996. “Unreliable Channels are Easier to Verify than Perfect Chan-
nels”. Information and Computation 124, 1, 20–31.

FINKEL, A., IYER, S. P., AND SUTRE, G. 2003. “Well-abstracted transition systems: application to FIFO
automata”. Information and Computation 181, 1, 1–31.

FINKEL, A. AND ROSIER, L. 1988. “A Survey on the Decidability Questions for Classes of FIFO Nets”. In
Advances in Petri Nets 1988. LNCS, vol. 340. Springer, 106–132.
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1: global List readWL
2: global List writeWL

3: function List DOREADDAG(Conf u, Channel ch)
4: doReadRecDAG(u, ch, 0, true)
5: return writeWL

6: procedure doReadRecDAG(Conf u, Channel ch, int idx, bool na) � na indicates whether
the current configuration is added to the writeWL

7: if u[ch] = (U1 + ...+ Un) ·W for some W then
8: for i ∈ [1..n] do doReadRecDAG(u with [ch] := Ui ·W, ch, idx, na)

9: else if u[ch] = M∗ ·W for some W then
10: u := SATURATEDAG(u, ch, idx)
11: writeWL = writeWL ∪ {u}
12: u := (u with [ch] :=W )
13: doReadRecDAG(u, ch, idx+ 1, false)
14: else if na ∧ (u[ch] = ε) then
15: writeWL := writeWL ∪ {u}
16: else if u[ch] = a ·W for some W then
17: if na then writeWL := writeWL ∪ {u}
18: U := STEPDAG(u, ch, idx)
19: for u′ ∈ U do doReadRecDAG(u′, ch, idx+ 1, true)

20: function Conf SATURATEDAG(Conf u, Channel ch, int idx)
21: let (Q, q0, δ, F ) = u[ch], M = {a | (q0, a, q0) ∈ δ}
22: for all i ∈ ([1..k] \ {ch}) do � k is the number of channels

23:
let M ′ = {b | (ch?a → i!b) ∈ Act ∧ a ∈ M∧

(∀j < ch, idx(j, b) = idx(j, a)) ∧ idx(ch, b) = idx} � Copy indices of a into b

24: u′[i] := (u[i] · (M ′)∗)
25: return u′

26: function Set STEPDAG(Conf u, Channel ch, int idx)
27: U′ := ∅
28: let (Q, q0, δ, F ) = u[ch], M = {a ∈ Σ | ∃q′, (q0, a, q′) ∈ δ ∧ q′ �= q0}
29: for all a ∈ M ∧ i ∈ {j | ∃b, (ch?a → j!b) ∈ Act} do

30:
M ′ = {b | (ch?a → i!b) ∈ Act∧

(∀j < ch, idx(j, b) = idx(j, a)) ∧ idx(ch, b) = idx} � Copy indices of a into b

31: u′[ch] := (Q, δ(q0, a) \ {q0}, δ, F )
32: u′[i] := u[i] ·M ′
33: U′ := U′ ∪ {u′}
34: return U′

35: function Conf MERGEDAGS(Conf u, Channel ch)

36: function Conf DOWRITEDAG(Conf conf, Channel ch)
37: return MERGEDAGS(u, ch)

38: function List MULTILIMITDAG(Conf u)
39: readWL := u

40: for ch = 1 to k do � for every non-shadow channel ch
41: writeWL := ∅
42: for all u ∈ readWL do DOREADDAG(u, ch)

43: if ch+ 1 ≤ k then � if ch is not the last channel
44: for all u ∈ writeWL do
45: readWL := readWL ∪ {DOWRITEDAG(u, ch+ 1)}
46: return readWL

Fig. 15. MULTILIMITDAG algorithm for DAG topology and its supporting routines.
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