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Superscalar Core – “Spot the ALU”

Two FPUs

Two ALUs

Two LD/ST

CPU Core

Only 12% of Non-Cache, Non-TLB Core Area is Execution Units
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Looking Back: Conventional Superscalar

• Enormous gains in frequency
• 1998: 500MHz       2002: 3000MHz

• Equal contributions from pipelining and technology

• IPC Basically Unchanged
• 1998: ~1 IPC      2002: ~1 IPC

• uArch innovations just overcome losses due to pipelining

• Issue width remains at 4 instructions

• Pushing the limits of Complexity Management
• uArch innovations    Verification is the Gate

• Hundreds of full custom macros

• 250-500 person design teams

• Execution units are a small % of processor area
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Faster, Higher IPC Superscalar Processors?

Faster    Deeper Pipelines (8 FO4)

– Key latencies increase … IPC decreases

– Pipeline bubbles

– uArch innovations mitigate losses, but …
» Increases complexity and performance anomalies

– After 8 FO4 jump, frequency growth limited to technology only

Higher IPC    Wide Issue (16) and Large Window (512+)

– Growth is quadratic but gain is logarithmic

– Broadcast results to all pending instructions

– Studies indicate only incremental performance gains

– Wire delay limits size of monolithic structures

– Large structures must be partitioned to meet cycle time

– Key latencies increase, reducing IPC gain (again!)

– Additional logical and circuit complexity
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Superscalar Cores – Key Circuit Elements

Execution 2 FP, 2 INT, 2 LD/ST

I-Cache 64KB 1 Port, 64B (1 instance)

Mapper 8 port x 72-entry CAM (2)

Issue Queue 4P x 20-entry dual CAM (3)

RegFiles 72-entry, 4R, 5W ports (4)

D-Cache 32KB 2R/1W ports (1)

… and pipeline these to use only 8 FO4 delays / cycle !

Conventional 4-Issue

8 FP, 8 INT, 8 LD/ST

128KB 2 Ports, 128B (1)

32 port x 512-entry CAM (2)

4P x 40-entry dual CAM (12)

512-entry, 4R, 18W ports (8)

128KB 8R/4W ports (1)

Hypothetical 16-issue
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What is Going Wrong?

1. Superscalar MicroArchitecture: Scalability is Limited
– Relies on large, centralized structures that want to grow larger

– Partitioning is a slippery slope:   Complexity, IPC loss…

2. Architecture: Conventional Binary Interface is outdated !
– Linear sequence of instructions

– Defined for simple, single-issue machines

– Not natural for compiler …..

• Internally builds and optimizes 2D Control Flow Graph

• Forced to map CFG into 1D linear sequence

• Lots of useful information gets thrown away

– Not natural for instruction parallel machines …..

• Instruction relationships scattered throughout linear sequence

• Dynamically re-establish by scanning linear sequence

• N2 problem  large, centralized structures
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Execution Node
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Grid Processor Overview

 Wire-delay constraints exposed at the architecture level
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GPA Execution Model

• Compiler structures program into sequence of hyperblocks
– Atomic unit of fetch / schedule / execute / commit

• Blocks specify explicit instruction placement in the GRID
– Critical path placed to minimize communication delays

– Less critical instructions placed in remaining positions

• Instructions specify consumers as explicit targets
– CFG cast into instruction encoding  no HW dependency analysis!

– Point-to-point results forwarding  no associative issue queues!

 no global bypass network!

– In-GRID storage expands register space  no register renaming!

– Only block outputs written back to RF  Fewer RF ports needed!

• Dynamic Instruction Issue
– GRID forms large distributed window with independent issue controls

– Instructions execute in original dataflow-order



10

Block Compilation

Data flow graph

i1) add r1, r2, r3

i2) add r7, r2, r1

i3) ld r4, (r1)

i4) add r5, r4, 1

i5) beqz r5, 0xdeac

Intermediate Code

Inputs (r2, r3)

Temporaries (r1, r4, r5)

Outputs (r7)

Compiler

Transforms

Intermediate

Code

Data Flow

Graph
Mapping

GPA

Code

move r2, i1,i2

move r3, i1

i1

i2 i3
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i5

r7

r3r2
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Data flow graph

Scheduler

Mapping onto GPA

Block Compilation (cont)
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I1) : (1,3) add (2,2) (2,3)

GPA code

Code generation

Instruction

location

Targets

Opcode

Block Compilation (cont)
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Graph
Mapping
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Block Execution

Block termination Logic
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Instruction Buffers - frames

• Instruction Buffers add depth and define frames
– 2D GRID of execution units; 3D scheduling of instructions

– Allows very large blocks to be mapped onto GRID

– Result addresses explicitly specified in 3-dimensions (x,y,z)

Control

Router

ALU

Execution Node

opcode src

val 1

src

val 2
opcode src

val 1

src

val 2
opcode src

val 1

src

val 2

Instruction Buffers form 

a logical “z-dimension” 

in each node

opcode src

val 1

src

val 2

4 logical frames

each with 16 instruction slots

add

add

add

load

beqz
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16 total frames (4 sets of 4)

Predict C is next block

Speculatively execute C

Predict is D is after C

Speculatively execute D

Predict is E is after D

Speculatively execute E

start

end

A

B

C

D

E

Using frames for Speculation and ILP

Map A onto GRID

Start executing A

Result:

• Enormous effective instruction window for extracting ILP

• Increased utilization of execution units (accuracy counts!)

• Latency tolerance for GRID delays and Load instructions

16 total frames (4 sets of 4)

E (spec)

D (spec)

C (spec)

A
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Results – GPA Instructions per Cycle
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Using frames for Thread-Level Parallelism

Result:

• Simultaneous Multithreading (SMT) for Grid Processors

• Polymorphism: Use same resources in different ways

for different workloads (“T-morph”)

B(spec)

A

Thread 2 Divide frame space

among threadsThread 1

B(spec)

A - Each can be further 

divided to enable some 

degree of speculation

- Shown: 2 threads,

each

with 1 speculative block

- Alternate configuration

might provide 4 threads
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Using frames for Data-Level Parallelism

Result:

The instruction buffers act as a distributed I-Cache

Ability to absorb and process large amounts of streaming data

Another type of Polymorphism (“S-morph”)
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Conclusions

• Technology and Architecture Trends:

Good News: Lots of transistors, faster transistors

Bad News: Global wire delays are growing

Pipeline depth near optimal

Superscalar pushing the limits of complexity

• GPA Represents a Promising Technology Direction

Wire delay constraints:  MicroArchitecture and Architecture

Eliminates difficult centralized structures dominating today’s designs

Architectural partitioning encourages regularity and re-use

Enhanced information flow between compiler and hardware

Polymorphic features:  performance on a wide range of workloads
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Future Work

• Architectural Refinement
• Block-oriented predictors

• Selective re-execution

• Enhance Compilation and Scheduling Tools
• Hyperblock formation

• 3D Instruction Scheduling algorithms

• Compatibility bridge to existing architectures

• Hardware Prototype (currently in planning stage)
• Four 4x4 GPA cores + NUCA L2 cache on chip

• 0.10um, ~350mm2, 1000+ signal I/O, 300MHz

• 4Q 2004 tape-out


