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Answer set programming (ASP) is a form of declarative programming oriented to-

wards difficult combinatorial search problems. It has been applied, for instance, to

plan generation and product configuration problems in artificial intelligence and to

graph-theoretic problems arising in VLSI design and in historical linguistics. Syn-

tactically, ASP programs look like Prolog programs, but the computational mech-

anisms used in ASP are different: they are based on the ideas that have led to the

development of fast satisfiability solvers for propositional logic.

ASP is based on the answer set/stable model semantics for logic programs,

originally intended as a specification for query answering in Prolog. From the orig-

inal definition of 1988, the semantics was independently extended by different re-

search groups to more expressive kinds of programs, with syntax and semantics that

are incompatible with each other. In this thesis we study how the various exten-

sions are related to each other. In order to do that, we propose another definition

of an answer set. This definition has three main characteristics: (i) it is very sim-

ple, (ii) its syntax is more general than the usual concept of a logic program, and

(iii) strong theoretical tools can be used to reason on it. About (ii), we show that
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our syntax allows constructs defined in many other extensions of the answer sets

semantics. This fact, together with (iii), allows us to study the expressiveness of

those constructs. We also compare the answer set semantics with another important

formalism developed by Norm McCain and Hudson Turner, called causal logic.
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Chapter 1

Introduction

Answer set programming (ASP) is a form of declarative programming oriented to-

wards difficult combinatorial search problems. It has been applied, for instance, to

plan generation and product configuration problems in artificial intelligence and to

graph-theoretic problems arising in VLSI design and in historical linguistics. Syn-

tactically, ASP programs look like Prolog programs, but the computational mech-

anisms used in ASP are different: they are based on the ideas that have led to the

development of fast satisfiability solvers for propositional logic. ASP has emerged

from interaction between two lines of research—on the semantics of negation in logic

programming and on applications of satisfiability solvers to search problems. It was

identified as a new programming paradigm in 1999.

ASP is based on the answer set (stable model) semantics for logic programs,

originally intended as a specification for query answering in Prolog. The answer set

semantics defines, for each logic program, a collection of sets of atoms. Each of these

set is called an answer set for the logic program. Figure 1.1 shows how the Prolog-

like syntax used in the original 1988 definition of an answer set has been extended

by different research groups over the years, for different purposes. The left side of

the figure traces the process of extending the traditional syntax towards expressions

1



traditional programs (1988)

negation in the head (1992)

nested expressions (1999)

"propositional" extensions
FLP−aggregates (2004)

disjunction in the head (1991)

extensions with aggregates

weight
constraints (1999)

ASET−Prolog (2002)

PDB−aggregates (2003)

Figure 1.1: Evolution of answer set languages.

more and more similar to arbitrary propositional formulas. To a large degree, this

was motivated by the desire to make the syntax of logic programs more uniform and

elegant. On the right side, we see the introduction of the concept of an aggregate in

logic programs. Aggregates are motivated by applications of ASP. They allow us, for

instance, to talk about the number of atoms in a set that are true. In the figure, we

mention three proposals of this kind that have been at least partially implemented.

The four definitions differ from each other both syntactically and semantically. One

reason for that is the lack of a common understanding of what an aggregate should

be.

Part of this dissertation is devoted to comparing programs with weight con-

straints with the formalisms on the left side of Fig 1.1. The fact that this is possible

is not surprising as, in case of PDB-aggregates, a relationship is well-known: the

semantics of programs with PDB-aggregates is defined in terms of a translation into

traditional programs.

First of all, we will show that weight constraints can be seen as abbreviations

for nested expressions. Our theorem shows that if we replace, in any program with

weight constraints, each weight constraint with a corresponding nested expression,

2



we obtain a program with nested expressions that has exactly the same answer sets

of the original program. This also allows us to study properties of programs with

weight constraints (such as strong equivalence, reviewed later in this introduction)

using mathematical tools developed for programs with nested expressions.

We will also show how to rewrite a program with weight constraints as a

traditional program. This procedure is similar to the procedure used in polynomial

time clausifications of propositional formulas; the “signature” of the language is

extended, the answer sets of the output program may contain auxiliary atoms,

and the translation can be computed in polynomial-time in most cases of practical

interest. Finally, we show that this conversion can always be done polynomially, by

a more complicated procedure.

We will prove that nested expressions are not expressive enough to represent

FLP-aggregates. In fact, it is generally not possible to replace FLP-aggregates with

nested expressions without changing the answer sets, as we did for programs with

weight constraints. This fact led us to extend the syntax of programs with nested

expressions.

We will define the concept of an answer set for a “propositional theory”.

Syntactically, we discarded the idea that a “program” consists of “rules”, by allowing

arbitrary “propositional formulas” in it. We also propose a new definition of an

aggregate inside propositional formulas. (The picture of the evolution of answer

set semantics can be updated as in Figure 1.2.) For it we propose two equivalent

semantics: one of them considers an aggregate as a primitive construct of the syntax,

and the other as an abbreviation for a propositional formula. The first semantics is

important computational-wise, the second because there are several theorems about

propositional formulas that can be used for formulas with aggregates as well (see

below). The new definition of an aggregate is more general than the definition of

weight constraints and of PDB- and FLP-aggregates. This, for instance, allows us to

3



traditional programs (1988)

negation in the head (1992)

nested expressions (1999)

FLP−aggregates (2004)

disjunction in the head (1991)

extensions with aggregates

weight
constraints (1999)

"propositional" extensions
a new definition of aggregates

propositional theories

ASET−Prolog (2002)

PDB−aggregates (2003)

Figure 1.2: New extensions to the answer set semantics.

see under what conditions a weight constraint and an FLP-aggregate with the same

intuitive meaning are actually equivalent to each other. Moreover, our definition of

an aggregate seems to have the most intuitively correct properties.

Our definition of an answer set for propositional theories has other interesting

properties. For instance, it is closely related to another formalism called equilib-

rium logic [Pearce, 1997]. This allows us to apply mathematical theorems about

equilibrium logic to propositional theories and vice versa.

An important concept in the theory of logic programs is strong equivalence.

Two logic programs are said to be strongly equivalent if they have the same answer

sets even after we append any third logic program to both of them [Lifschitz et al.,

2001]. Strong equivalence between propositional theories can be defined similarly.

We propose a method to check strong equivalence between propositional theories,

similar to the one from [Turner, 2003] for logic programs, but simpler. We will extend

other important theorems about programs with nested expressions to propositional

theories as well.

We will also show that strong equivalence plays an important role if we

4



want to translate logic programs (or propositional theories) in one language into

another, in a modular way (i.e., so that each rule/formula in the first language is

independently replaced by a set of rules/formulas in the second language). In fact, it

turns out that in most cases a transformation of this kind is guaranteed to preserve

the answer sets if and only if each rule/formula is replaced by a strongly equivalent

set of rules/formulas. We will use this fact to compare the expressiveness — in terms

of modular translations — of some of the languages of Figure 1.1 and some of their

subclasses, verifying if strongly equivalent transformations exist between them. As

there are ways to check strong equivalence, we will use the above property to study

the expressiveness of languages in terms of the presence of modular transformations.

Finally, we compare the expressiveness of answer set languages with another

important formalism: causal logic [McCain and Turner, 1997], [Giunchiglia et al.,

2004a]. Causal logic defines the models of “causal theories”, and has been used to

encode several domains involving actions and their effects. A method of translating

causal theories into logic programs was known for causal theories of a very simple

form. We show how we can translate every causal theory into a logic program that

is not much larger that the original causal theory.

After a historical overview in Chapter 2 and the necessary background infor-

mation in Chapter 3, Chapters 4 and 5 describe how we can translate programs with

weight constraints into programs with nested expressions and traditional programs,

respectively.

Next we discuss the definition of an answer set for propositional theories (Chap-

ter 6), how we can represent aggregates under this new syntax, and the relationship

with FLP-aggregates (Chapter 7).

Finally, in Chapter 8 we investigate modular translations between logic pro-

grams and the relationship with strong equivalence, and in Chapter 9 we show how

we can translate causal theories into logic programs.

5



Chapter 2

History

2.1 The Origins of Answer Set Programming

2.1.1 The Answer Set Semantics for Traditional Programs

The answer set (stable model) semantics was defined in [Gelfond and Lifschitz, 1988]

for logic programs with rules of the form

A0 ← A1, . . . , Am,not Am+1, . . . ,not An (2.1)

where n ≥ m ≥ 0 and A0, . . . , An are propositional atoms. The symbol not is called

negation as failure. The part before the arrow (A0) is the head of the rule, while the

part after the arrow is called its body. When the body is empty (i.e., m = n = 0),

the rule is called a fact and it is usually identified with its head. We call rules of

the form (2.1) traditional. A traditional (logic) program is a set of traditional rules.

Several other kinds of rules will be introduced in Section 2.2.

The answer set semantics defines when a set of atoms is an answer set for

a logic program. First answer sets are defined for programs without negation as

failure, i.e., when each rule has the form

A0 ← A1, . . . , Am (2.2)

6



(such programs are called positive). We say that a set X of atoms is closed under a

positive program Π if, for each rule (2.2) in Π, A0 ∈ X whenever A1, . . . , Am ∈ X.

It is easy to see that there is a unique minimal set of atoms closed under Π. That

is, there is exactly one set X of atoms such that

• X is closed under Π, and

• every proper subset of X is not closed under Π.

This set is defined to be the only answer set for Π. The definition resembles the

semantics for positive programs given in [van Emden and Kowalski, 1976].

To define the answer sets for a generic traditional program Π, we first define

a positive program ΠX , called the reduct of Π relative to a set of atoms X: ΠX is

obtained from Π by dropping

• each rule (2.1) such that {Am+1, . . . , An} ∩X 6= ∅, and

• the part not Am+1, . . . ,not An from every other rule (2.1).

For instance, the reduct of

p← not q

q ← not r
(2.3)

relative to {q} is

q (2.4)

A set X of atoms is an answer set for Π if X is the answer set for ΠX . For instance,

{q} is an answer set for program (2.3), because {q} is an answer set for (2.4). It is

easy to check that no other set of atoms is an answer set for (2.3).

From the point of view of computational complexity, the problem of the

existence of an answer set for a traditional logic program is NP-complete [Marek

and Truszczyński, 1991].

7



Set of rules are often described by “schematic rules” that involve variables.

Each schematic rule can be seen as an abbreviation for rules without variables, ob-

tained by replacing each variable with one of the constants occurring in the program.

This process is called grounding. For instance, the expression

p(X)← q(X)

q(a)

r(b)

(2.5)

stands for logic program

p(a)← q(a)

p(b)← q(b)

q(a)

r(b)

(2.6)

whose only answer set is {p(a), q(a), r(b)}.

2.1.2 Relationship with Prolog

The answer set semantics was originally proposed as a semantics for Prolog. A well-

written (unambiguous and consistent) Prolog program has — after grounding — a

unique answer set. This answer set is the collection of all atoms that are answered

“yes” by Prolog queries. For instance, if we write (2.5) as a Prolog program, the

only atoms that are answered “yes” in queries are p(a), q(a) and r(b); these are the

three atoms in the only answer set for (2.6).

2.1.3 The Answer Set Programming Paradigm

The answer set programming paradigm was proposed in [Marek and Truszczyński,

1999] and [Niemelä, 1999]. A combinatorial search problem is encoded in a logic

program so that the program’s answer sets are the solutions of the problem. An

example of a puzzle game that can be solved using answer set programming is hitori.
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Figure 2.1: An hitori puzzle and its solution

a(1, 1, 4) a(2, 1, 8) · · · a(8, 1, 7)
a(1, 2, 3) a(2, 2, 6) · · · a(8, 2, 4)

...
...

...
a(1, 8, 8) a(2, 8, 7) · · · a(8, 8, 6)

Figure 2.2: Encoding of the sample hitori puzzle

Figure 2.1 (from http://en.wikipedia.org/wiki/Hitori) shows a hitori puzzle

and its solution. You are given a square grid (usually 8x8) filled with numbers, and

the goal is to darken (cancel out) some of the cells in such a way that the following

conditions are satisfied:

• among uncancelled cells, the same number cannot occur twice in the same row

or column; (for instance, in Figure 2.1, a 4 and a 3 had to be cancelled from

the first column)

• there cannot be two horizontal or vertical adjacent cells both canceled; (for

instance, we cannot cancel out both cells (1,1) and (1,2))

• all undarkened cells are connected to each other, through horizontal and ver-

tical connections.
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1 {dark(X,Y )} ← a(X,Y, V )

2 ← dark(X,Y ), dark(X,Y + 1)
3 ← dark(X + 1, Y ), dark(X,Y )

4 ← not dark(X,Y ),not dark(X,Y1), Y < Y1, a(X,Y, V ), a(X,Y1, V )
5 ← not dark(X,Y ),not dark(X1, Y ),X < X1, a(X,Y, V ), a(X1, Y, V )

6 conn(X,Y,X, Y )← not dark(X,Y ), a(X,Y, V )
7 conn(X,Y,X1, Y1)← not dark(X,Y ), conn(X,Y + 1,X1, Y1), a(X,Y, V )
8 conn(X,Y,X1, Y1)← not dark(X,Y ), conn(X,Y − 1,X1, Y1), a(X,Y, V )
9 conn(X,Y,X1, Y1)← not dark(X,Y ), conn(X + 1, Y,X1, Y1), a(X,Y, V )

10 conn(X,Y,X1, Y1)← not dark(X,Y ), conn(X − 1, Y,X1, Y1), a(X,Y, V )

11 ← not dark(X,Y ),not dark(X1, Y1),not conn(X,Y,X1, Y1),
a(X,Y, V ), a(X1, Y1, V1)

Figure 2.3: Rules that solve hitori puzzles

In order to solve a hitori puzzle (or, in general, combinatorial search problems

of this kind) in answer set programming we need

1. an encoding of the problem instance, and

2. a set of rules that “solve” the problem.

An encoding of the puzzle of Figure 2.1 is shown in Figure 2.2. It consists

of facts of the form a(X,Y, V ), which means that the cell with coordinates (X,Y )

((1, 1) is the top-leftmost cell) has value V .

A set of rules that “solve” hitori puzzles is in Figure 2.3. The syntax is

richer than the one of traditional programs. Functions such as the sum in line 2

are evaluated when rules are grounded. The relation symbol of line 4 tells us that,

in the process of grounding, we use only values of variables such that Y ≤ Y1, and

similarly for line 5.
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The first line is called a “choice rule”: it says that, for each cell (X,Y ), we

can either choose that dark(X,Y ) holds or not. More precisely, if n is the number

of cells, it generates 2n candidate answer sets, each of them containing a different

collection of atoms of the form dark(X,Y ). Each of those “candidate” answer sets

corresponds to a set of darkened cells. The goal of the remaining lines is to remove

the answer sets that do not satisfy the three conditions in the definition of a valid

hitori puzzle solution.

Line 2 is an example of a “constraint” 1. It tells us that dark(X,Y ) and

dark(X,Y + 1) cannot both belong to an answer set. That is, two horizontally

adjacent cells cannot be both darkened. Similarly, line 3 expresses the same concept

for vertically adjacent cells. Lines 4 and 5 prohibits that two undarkened cells on

the same column or row contain the same value.

To encode the last condition on a hitori puzzle solution — that all undarkened

cells are connected — we introduce, in our program, a predicate expressing that two

undarkened cells (X,Y ) and (X1, Y1) are connected. We define this concept using

atoms of the form conn(X,Y,X1, Y1), by the following recursive definition:

• each undarkened cell is connected to itself (line 6), and

• if a cell adjacent to an undarkened cell (X,Y ) is connected to (X1, Y1) then

(X,Y ) is connected to (X1, Y1) as well (lines 7–10).

Finally, line 11 imposes the condition that every two undarkened cells are connected

to each other.

By merging the 11 lines above with any puzzle description as in Figure 2.2,

we get a program whose answer sets is in a 1–1 correspondence to a solution to

the puzzle. Indeed, each solution of the puzzle corresponds to the answer set that

contains an atom of the form dark(X,Y ) iff (X,Y ) is a darkened cell.

1Not to be confused with cardinality or weight constraints.
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We can notice that, unlike most other programming languages (including

Prolog and many implementations of constraint programming), answer set program-

ming is completely declarative: in particular, the order of rules in a program and the

order of elements in the body of each rule are completely irrelevant. Moreover, the

semantics is well-defined and simple; this makes it easier to develop mathematical

tools for proving the correctness of a logic program. Some of the tools discussed in

this dissertation are strong equivalence and the splitting set theorem.

Answer set programming is possible because there are systems, called answer

set solvers, that compute the answer sets of logic programs. An incomplete list of

the currently developed answer set solvers is

• ASET-solver 2 [Heidt, 2001]

• ASSAT 3 [Lin and Zhao, 2002]

• cmodels 4 [Lierler and Maratea, 2004]

• csmodels 5 [Sabuncu et al., 2004]

• DLV 6 [Eiter et al., 1998]

• GNT 7 [Janhunen et al., 2003]

• NoMoRe 8 [Anger et al., 2002]

• smodels 9 [Niemelä and Simons, 2000]

2http://www.cs.ttu.edu/~mellarko/aset.html .
3http://assat.cs.ust.hk/ .
4http://www.cs.utexas.edu/users/tag/cmodels.html .
5http://www.ceng.metu.edu.tr/~orkunt/csmodels/ .
6http://www.dbai.tuwien.ac.at/proj/dlv/ .
7http://www.tcs.hut.fi/Software/gnt/ .
8http://www.cs.uni-potsdam.de/~linke/nomore/ .
9http://www.tcs.hut.fi/Software/smodels/ .
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Answer set programming is similar to the use of satisfiability to solve combi-

natorial search problems: in that approach, a problem is first encoded as a propo-

sitional formula whose models (interpretations that satisfy the formula) correspond

to the solutions of the problem ([Kautz and Selman, 1992]). Then a satisfiability

solver is used to find such models. Both formalisms are declarative, and answer sets

can be seen as truth assignments to atoms just like models in propositional logic.

Moreover, the computational mechanism of answer set solvers doesn’t rely on the

definition of an answer set directly but it is similar to the one used in satisfiability

solvers.

On the other hand, answer set programming is different from satisfiability in

a number of ways.

• The language of answer set programming allows the use of variables. The

language accepted by satisfiability solvers (propositional formulas, usually

clauses) doesn’t allow variables, and higher level languages that can express

variables are generally domain-dependent and not compatible with each other.

• We can easily express recursive definitions, such as the one of conn in the

hitori example, in answer set programming. Recursive definitions are usually

difficult to express in other formalisms. For instance, it is commonly believed

the definition of conn in Figure 2.3 can be expressed in classical propositional

logic — in view of [Spira, 1971], under some commonly believed conjecture

in computational complexity, and without the use of auxiliary atoms — only

with an exponentially large formula. On the other hand, after the elimination

of variables, lines 6-10 of Figure 2.3 turn into a polynomially large set of rules.

• It is easy to express, in answer set programming, concepts such as defaults (“a

proposition holds unless there is a reason for not being true”) and common-

sense inertia (“an object doesn’t change its properties unless there is a reason

for such a change”). For instance, we can express that a door with a spring is
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normally closed, or that a piece on a chess-board remains in the same position

unless it moves or its position is taken by an opponent piece. Those concepts

are important, for instance, in commonsense reasoning and in planning.

Answer set programming has been used to solve combinatorial search prob-

lems in various fields, such as planning 10 [Dimopoulos et al., 1997; Lifschitz, 1999],

diagnosis [Eiter et al., 1999; Gelfond and Galloway, 2001], model checking [Liu

et al., 1998; Heljanko and Niemelä, 2001], reachability analysis [Heljanko, 1999],

product configuration [Soininen and Niemelä, 1998], dynamic constraint satisfac-

tion [Soininen et al., 1999], logical cryptanalysis [Hietalahti et al., 2000], network

inhibition analysis [Aura et al., 2000], workflow specification [Trajcevski et al., 2000;

Koksal et al., 2001], learning [Sakama, 2001], reasoning about policies [Son and Lobo,

2001], circuit design [Balduccini et al., 2000; Balduccini et al., 2001], wire routing

problems [Erdem et al., 2000], phylogeny reconstruction problems [Erdem et al.,

2003], query answering [Baral et al., 2004], puzzle generation [Truszczynski et al.,

2006], data mining [Ruffolo et al., 2006] and spacial reasoning [Cabalar and Santos,

2006].

2.2 Extensions to the Traditional Syntax

In the introduction, in Figure 1.1, we showed that the original syntax of the answer

set semantics has been extended several times. In this section we present the syntax

of the propositional extensions and of programs with weight constraints and the

concept of an aggregate. The semantics of weight constraints, as well as the syntax

and semantics of PDB- and FLP-aggregates are given in the next chapter.

10The idea of relating planning to answer sets was first proposed in [Subrahmanian and Zaniolo,
1995].
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2.2.1 Propositional Extensions

The first important generalizations of traditional rules were given in [Gelfond and

Lifschitz, 1991]. An alternative negation symbol ¬ (classical negation) was intro-

duced. A literal is either an atom A or ¬A. A rule, as defined in [Gelfond and

Lifschitz, 1988], is extended to have the form

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln (2.7)

where n ≥ m ≥ 0 and L0, . . . , Ln are literals. Even in presence of classical negation,

we say that a rule of this kind is traditional. The concept of classical negation in

logic programs is “orthogonal” to the other syntactical extensions of a logic program

that we review, in the sense that classical negation can be introduced in all such

extensions. (In our definitions, unless otherwise specified, we always allow it.) What

changes, in the presence of classical negation, is the basic concept of an answer set:

if classical negation is not allowed, an answer set is a collection of atoms: otherwise,

it is a consistent set of literals, i.e., a set of literals that doesn’t include both A and

¬A for the same atom A.

Another important extension proposed in [Gelfond and Lifschitz, 1991] allows

the head of each rule to be the disjunction (represented by a semicolon) of several

atoms. A rule has the form

L1; . . . ; Lp ← Lp+1, . . . , Lm,not Lm+1, . . . ,not Ln (2.8)

where n ≥ m ≥ p ≥ 0 and L1, . . . , Ln are literals. Rules of this kind are important

from two points of view. First of all, when we allow p > 1, the problem of the

existence of an answer set for a program moves up in the polynomial hierarchy from

NP to ΣP
2 [Eiter and Gottlob, 1993, Corollary 3.8]. Second, when p = 0, rule (2.8),

which is usually written as

← L1, . . . , Lm,not Lm+1, . . . ,not Ln, (2.9)
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is called a constraint, 11 and intuitively it imposes the requirement that at least one

of L1, . . . , Lm, not Lm+1, . . . ,not Ln be false. Lines 2–5 and 10 of Figure 2.3 are

examples of rules of such a kind.

Negation as failure was first allowed in the head of a rule in [Lifschitz and

Woo, 1992]: literals in the head can be preceded by the symbol not. As a result of

this extension, answer sets for a program can be subsets of one another: for instance,

the answer sets for the single rule program

p; not p (2.10)

are ∅ and {p}. No program in the sense of [Gelfond and Lifschitz, 1991] has both

∅ and {p} as its answer sets. One of the results of the research presented in Chap-

ter 4 shows that there is a close relationship between choice rules, mentioned in

Section 2.1.3 above, and rules with negation as failure in the head. For instance,

the first line of Figure 2.3 can be alternatively written as

dark(X,Y ); not dark(X,Y )← a(X,Y, V ).

Finally, programs with nested expressions were introduced in [Lifschitz et al.,

1999]. Nested expressions are built from literals and the symbols ⊥ (“false”) and ⊤

(“true”) using the unary connective not and the binary connectives , (conjunction)

and ; (disjunction). An example of a nested expression is

p,not(q; r).

A rule with nested expressions has the form

Head ← Body (2.11)

where both Body and Head are nested expressions. The rule← Body is a shorthand

for ⊥ ← Body , and the nested expression Head stands for rule Head ← ⊤. It is easy

11not to be confused with weight and cardinality constraints.
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to see that rules with nested expressions are a generalization of all kinds of rules

described so far.

A program with nested expressions is any set of rules with nested expressions.

2.2.2 Programs with Weight Constraints

Version 2.0 of answer set solver smodels supported a new construct, called weight

constraints. Their syntax and semantics were first described in [Niemelä et al., 1999].

Our presentation mostly follows [Niemelä and Simons, 2000]. A rule element is a

literal (positive rule element) or a literal prefixed with not (negative rule element).

A weight constraint is an expression of the form

L ≤ {c1 = w1, . . . , cm = wm} ≤ U (2.12)

where

• each of L, U is (a symbol for) a real number or one of the symbols −∞, +∞,

• c1, . . . , cm (m ≥ 0) are rule elements, and

• w1, . . . , wm are real numbers (“weights”).

The intuitive meaning of (2.12) is that the sum of the weights wi for all the ci

that are true is not lower than L and not greater than U . The part L ≤ can be

omitted if L = −∞; the part ≤ U can be omitted if U = +∞. A rule with weight

constraints is an expression of the form

C0 ← C1, . . . , Cn (2.13)

where C0, . . . , Cn (n ≥ 0) are weight constraints. We call the rule elements of C0

the head elements of rule (2.13).

Finally, a program with weight constraints is a set of rules with weight con-

straints.12

12In [Niemelä and Simons, 2000], programs are not allowed to contain classical negation. But
classical negation is allowed in the input files of the current version of smodels.
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This syntax becomes a generalization of traditional programs if we identify

a rule element c with the weight constraint

1 ≤ {c = 1}.

By

← C1, . . . , Cn

we denote the rule

1 ≤ { } ← C1, . . . , Cn.

A cardinality constraint is a weight constraint with all weights equal to 1. A

cardinality constraint

L ≤ {c1 = 1, . . . , cm = 1} ≤ U

can be abbreviated as

L ≤ {c1, . . . , cm} ≤ U. (2.14)

It becomes clear that the rules in Figure 2.3 are rules in the syntax of weight

constraints. For instance, line 1 is, without abbreviations,

−∞ ≤ {dark(X,Y ) = 1} ≤ +∞ ← 1 ≤ {a(X,Y, V ) = 1} ≤ +∞.

Intuitively, it seems possible to represent disjunctive programs also as pro-

grams with weight constraints. For instance, a disjunctive rule

l1; . . . ; ln (n > 0) (2.15)

(intuitively: one of l1, . . . , ln must hold) seems to have the same meaning as the

cardinality constraint

1 ≤ {l1, . . . , ln}. (2.16)

However, this is not true. For instance, according to the definitions of answer sets in

the next chapter, the answer sets for (2.15) are the singletons {l1}, . . . , {ln}, while

18



the answer sets for (2.16) are arbitrary nonempty subsets of {l1, . . . , ln}. Represent-

ing (2.15) as

1 ≤ {l1, . . . , ln} ≤ 1 (2.17)

is generally not adequate either. Indeed, if we append the two facts l1, l2 to (2.15)

we get a program with the unique answer set {l1, l2}, while by appending the same

facts to (2.17) we get a program that has no answer sets. The fact that programs

with weight constraints don’t generalize disjunctive programs has a theoretical jus-

tification: checking if a logic program with weight constraints has answer sets is an

NP-complete problem, and not ΣP
2 as for disjunctive programs.

2.2.3 Aggregates

By a (ground) aggregate we understand an expression of the form

op〈{F1 = w1, . . . , Fn = wn}〉 ≺ N (2.18)

where

• op is (a symbol for) a function from multisets of R (real numbers) to R ∪

{−∞, +∞} (such as sum, product, min, max, etc.),

• each of F1, . . . , Fn is (a symbol for) some kind of “formula” (usually in the

syntax of nested expressions), and w1, . . . , wn are (symbols for) real numbers

(“weights”),

• ≺ is (a symbol for) a binary relation between real numbers, such as ≤ and =,

and

• N is (a symbol for) a real number.

As an intuitive explanation of an aggregate, take the multiset W consisting of the

weights wi (1 ≤ i ≤ n) such that Fi is “true”. The aggregate is considered “true” if
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op(W ) ≺ N . For example,

sum〈{p = 1, q = 1}〉 6= 1.

intuitively expresses the condition that either both p are q are “true” or none of

them is.

It is clear that a weight constraint of the form L ≤ S has the same intuitive

meaning of aggregate sum〈S〉 ≥ L, and that S ≤ U has the same intuitive meaning

of aggregate sum〈S〉 ≤ U .

The syntax and semantics of PDB- and FLP-aggregates are reviewed in Sec-

tions 3.3 and 3.4 respectively.

2.3 Strong Equivalence

In logic programming with the answer set semantics we distinguish between two

kinds of equivalence between logic programs 13.

We say that two programs are weakly equivalent if they have the same answer

sets. For instance, each of the one-rule programs

a and a← not b

has a unique answer set: {a}, so they are weakly equivalent. However, if we append

the rule b to each program then the answer sets don’t remain the same for both

programs: in the first case, we have the answer set {a, b}; in the second, {b}.

For this reason, another relationship between programs has been defined. We

say that two programs with nested expressions Π1 and Π2 are strongly equivalent if,

for any program Π with nested expressions, Π1∪Π and Π2∪Π have the same answer

sets [Lifschitz et al., 2001]. Strong equivalence implies weak equivalence: take Π to

be empty.

13To be precise, other kinds of equivalences have been defined, but we don’t discuss them in this
thesis.
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For instance, it can be proved that (2.10) is strongly equivalent to the rule

p← not not p (2.19)

Strong equivalence is an important tool for reasoning about answer sets,

because it allows us to replace a part of a program with a strongly equivalent set of

rules, with the guarantee that the answer sets for the whole program don’t change.

It is often used to simplify programs, or to rewrite them in a simpler syntax. For

instance, a rule

F ← G; H

(F , G and H are nested expressions) is strongly equivalent to the pair of rules

F ← G

F ← H.

Similarly,

F,G← H

is strongly equivalent to the pair of rules

F ← H

G← H

The definition of strong equivalence and a condition characterizing when it

holds were originally proposed in [Lifschitz et al., 2001] for programs with nested

expressions. In particular, in the definition, the third logic program Π can range

over all programs with nested expressions. However, when we consider programs

belonging to a subclass of programs with nested expressions — for instance, tradi-

tional programs — it would be natural to allow Π to range over such subclass of

logic programs. It turns out, however, that the choice of the class of programs for

which Π is taken is inessential. Indeed, [Lifschitz et al., 2001] showed that, if any two

programs with nested expressions are not strongly equivalent to each other, there is
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always a counterexample Π that is a positive traditional program of a very simple

form: the bodies of its rules consist of at most one element. Such programs, called

unary programs, consists of facts and of rules of the form l1 ← l2, where l1 and l2 are

literals. Consequently, whether two logic programs are strongly equivalent doesn’t

depend on the syntax of logic programs that we are considering, as long as all unary

programs are allowed.

Several characterizations of strong equivalence exist: for programs with nested

expressions, we will review in Section 3.5 the original one from [Lifschitz et al., 2001]

and another equivalent from [Turner, 2003]. This last paper covers also programs

with weight constraints (in this case, Π ranges over the set of programs with weight

constraints). Finally, [Turner, 2004] defines the concept of strong equivalence be-

tween causal theories, presented in Chapter 9. Later in this thesis we will present

yet another characterization of strong equivalence, based on the definition of an

answer set for propositional theories.
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Chapter 3

Background

3.1 Semantics of Programs with Nested Expressions

The syntax of programs with nested expressions [Lifschitz et al., 1999] is described

in Section 2.2.1. The semantics of these programs is characterized by defining when

a consistent set X of literals is an answer set for a program Π. As a preliminary

step, we define when a consistent set X of literals satisfies a nested expression F

(symbolically, X |= F ), as follows:

• for a literal l, X |= l if l ∈ X

• X |= ⊤

• X 6|= ⊥

• X |= (F,G) if X |= F and X |= G

• X |= (F ; G) if X |= F or X |= G

• X |= not F if X 6|= F .

We say that X satisfies a program Π (symbolically, X |= Π) if, for every rule (2.11)

in Π, X |= Head whenever X |= Body .
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The reduct1 FX of a nested expression F with respect to a consistent set X

of literals is defined recursively as follows:

• if F is a literal, ⊤ or ⊥, then FX = F

• (F,G)X = FX , GX

• (F ; G)X = FX ; GX

• (not F )X =











⊥ , if X |= F,

⊤ , otherwise.

The reduct ΠX of a program Π with respect to X is the set of rules

HeadX ← BodyX

for each rule (2.11) in Π. For instance, the reduct of (2.19) with respect to X is

p← ⊤ (3.1)

if p ∈ X, and

p← ⊥ (3.2)

otherwise.

The concept of an answer set is defined first for programs not containing

negation as failure: a consistent set X of literals is an answer set for such a program

Π if X is a minimal set (relative to set inclusion) satisfying Π. For an arbitrary

program Π, we say that X is an answer set for Π if X is an answer set for the reduct

ΠX .

For instance, the reduct of (2.19) with respect to {p} is (3.1), and {p} is a

minimal set satisfying (3.1); consequently, {p} is an answer set for (2.19). On the

other hand, the reduct of (2.19) with respect to ∅ is (3.2), and ∅ is a minimal set

satisfying (3.2); consequently, ∅ is an answer set for (2.19) as well.

1This definition of reduct is the same as the one in [Lifschitz et al., 2001], except that the
condition X |= F

X is replaced with X |= F . It is easy to check by structural induction that the
two conditions are equivalent.
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3.2 Semantics of Programs with Weight Constraints

The syntax of programs with weight constraints [Niemelä and Simons, 2000] is

reviewed in Section 2.2.2. The semantics of such programs was defined for programs

whose weight constraints contain positive weight only. Indeed, [Niemelä and Simons,

2000] proposed to eliminate weight constraints with negative weights as follows:

consider any weight constraint L ≤ S ≤ U and an element l = w of S where w is

negative: this element can be replaced by not l = |w| if we add w to both L and U .

For instance,

0 ≤ {p = 2, p = −1} (3.3)

can be rewritten as

1 ≤ {p = 2,not p = 1}. (3.4)

(Recall that U is +∞, so adding 1 to it is irrelevant.) Similarly, not l = w can be

replaced by l = |w| if we again add w to both L and U . However, we find this way

of considering negative weights not completely satisfactory: (3.3) intuitively has the

same meaning of

0 ≤ {p = 1},

which is different from (3.4): indeed,

p← 1 ≤ {p = 2,not p = 1} (3.5)

has no answer sets, while

p← 0 ≤ {p = 1} (3.6)

has answer set ∅. We will see later, in Section 7.6.1, a different way of considering

negative weights that solves this problem.

The semantics of programs with weight constraints with nonnegative weights

uses the following auxiliary definitions. A consistent set X of literals satisfies a

weight constraint (2.12) if the sum of the weights wj for all j such that X |= cj is
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not less than L and not greater than U . For instance, X satisfies the cardinality

constraint

1 ≤ {a = 1, b = 1} ≤ 1 (3.7)

iff X contains exactly one of the atoms a, b. About a program Ω with weight

constraints we say that X satisfies Ω if, for every rule (2.13) in Ω, X satisfies C0

whenever X satisfies C1, . . . , Cn. As in the case of nested expressions, we will use

|= to denote the satisfaction relation for both weight constraints and programs with

weight constraints.

The next part of the semantics of weight constraints is the definition of the

reduct for weight constraints of the form

L ≤ {c1 = w1, . . . , cm = wm}.

The reduct (L ≤ S)X of a weight constraint L ≤ S with respect to a consistent set

X of literals is the weight constraint LX ≤ S′, where

• S′ is obtained from S by dropping all pairs c = w such that c is negative, and

• LX is L minus the sum of the weights w for all pairs c = w in S such that c

is negative and X |= c.

For instance, the reduct of the constraint

1 ≤ {not a = 3,not b = 2}

relative to {a} is

−1 ≤ { }.

The reduct of a rule

L0 ≤ S0 ≤ U0 ← L1 ≤ S1 ≤ U1, . . . , Ln ≤ Sn ≤ Un (3.8)

with respect to a consistent set X of literals is
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• the set of rules of the form

l← (L1 ≤ S1)X , . . . , (Ln ≤ Sn)X

where l is a positive head element of (3.8) such that X |= l, if, for every i

(1 ≤ i ≤ n), X |= Si ≤ Ui;

• the empty set, otherwise.

The reduct ΩX of a program Ω with respect to X is the union of the reducts of the

rules of Ω.

Consider, for example, the one-rule program

1 ≤ {a = 2} ≤ 2← 1 ≤ {not a = 3,not b = 2} ≤ 4. (3.9)

Since the only head element of (3.9) is a, the reduct of this rule with respect to a

set X of atoms is empty if a 6∈ X. Consider the case when a ∈ X. Since

X |= {not a = 3,not b = 2} ≤ 4,

the reduct consists of one rule

a← (1 ≤ {not a = 3,not b = 2})X .

It is clear from the definition of the reduct of a program above that every

rule in a reduct satisfies two conditions:

• its head is a literal, and

• every member of its body has the form L ≤ S where S does not contain

negative rule elements.

A rule satisfying these conditions is called a Horn rule. If a program Ω consists of

Horn rules then there is a unique minimal set X of literals such that X |= Ω. This

set is called the deductive closure of Ω and denoted by cl(Ω).
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Finally, a consistent set X of literals is an answer set for a program Ω if

X |= Ω and cl(ΩX) = X.

To illustrate this definition, assume that Ω is (3.7). Set {a, b} is not an answer

set for Ω because it does not satisfy Ω. Let us check that every proper subset of

{a, b} is an answer set. Clearly, every such subset satisfies Ω. It remains to show

that each of these sets is the deductive closure of the corresponding reduct of Ω.

• Ω∅ is empty, so that cl(Ω∅) = ∅.

• Ω{a} consists of the single rule a, so that cl(Ω{a}) = {a}.

• Ω{b} consists of the single rule b, so that cl(Ω{b}) = {b}.

To give another example, let Ω be (3.9). Set {b} is not an answer set for Ω

because it does not satisfy Ω. The other subsets of {a, b} satisfy Ω. Consider the

corresponding reducts.

• Ω∅ is empty, so that cl(Ω∅) = ∅.

• Ω{a} is

a← −1 ≤ {}.

Consequently, cl(Ω{a}) = {a}.

• Ω{a,b} is

a← 1 ≤ {}

Consequently, cl(Ω{a,b}) = ∅ 6= {a, b}.

We conclude that the answer sets for (3.9) are ∅ and {a}.
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3.3 PDB-aggregates

The semantics of aggregates that we call “PDB” has been invented by Pelov, Deneker

and Bruynooghe (2003).2 We review the syntax of program with PDB-aggregates

using the notation from Section 2.2.3. We also allow classical negation. A (ground)

PDB-aggregate is an expression of the form (2.18) where each of F1, . . . , Fn is a rule

element (that is, a literal possibly prefixed by not).

A program with PDB-aggregates is a set of rules of the form

l← A1, . . . , Am,

where m ≥ 0, l is a literal and A1, . . . , Am are PDB-aggregates. Programs with

PDB-aggregates can seen as a generalization of traditional programs if we encode,

in the body of each rule, a rule element c as sum〈{c = 1}〉 > 0.

The semantics of [Pelov et al., 2003] for programs with PDB-aggregates con-

sists in a procedure that transforms programs with such aggregates into a tradi-

tional program. In this section we show how we can convert a program with PDB-

aggregates into a program with nested expressions. It is actually not hard to see

that the program with nested expressions that we obtain is strongly equivalent to

the traditional program result of translation of PDB-aggregates proposed in [Pelov

et al., 2003].

For the following definition, we will use the following notation: for a rule

element c, by c we denote l, if c has the form not l, and not c, otherwise. The

translation Πtr of a PDB-program Π is the result of replacing each PDB-aggregate

A of the form

op〈{c1 = w1, . . . , cn = wn}〉 ≺ N

2A semantics for such aggregates was proposed in [Denecker et al., 2001], based on the approx-
imation theory [Denecker et al., 2002]. But the first characterization of PDB-aggregates in terms
of answer sets is from [Pelov et al., 2003].
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with the following nested expression Atr (WI stands for the multiset {wi : i ∈ I})

;
I1,I2:I1⊆I2⊆{1,...,n} and for all I such that I1 ⊆ I ⊆ I2, op(WI) ≺ N

G(I1,I2)

where G(I1,I2) stands for

,
i∈I

ci, ,
i∈{1,...,n}\I2

ci.

The use of the “big comma” and the “big semicolon” in the formulas above to

represent a multiple conjunction and a multiple disjunction is similar to the familiar

use of
∧

and
∨

. In particular, the empty conjunction is understood as ⊤, and the

empty disjunction as ⊥.

For instance, for a PDB-aggregate A = sum〈{p = −1, q = 1}〉 ≥ 0, if we

take F1 = p, F2 = q then the pairs (I1, I2) that “contribute” to the disjunction of

Atr are

(∅, ∅) ({2}, {2}) ({1, 2}, {1, 2}) (∅, {2}) ({2}, {1, 2}).

The corresponding nested expressions G(I1,I2) are

not p,not q q,not p p, q not p q

and their disjunction is equivalent, in the logic of here and there, to not p; q.

PDB-aggregates seem to have the same problems of weight constraints in

case of negative weights. For instance, program

p← sum〈{p = 2, p = −1}〉 ≥ 0 (3.10)

(the way of writing (3.5) using a PDB-aggregate) has no answer sets, while

p← sum〈{p = 1}〉 ≥ 0 (3.11)

which is intuitively equivalent to A, has answer set ∅.
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In addition to this, PDB aggregates seem to give some other unintuitive

results when negation as failure occurs in an aggregate. Consider the following Π:

p← sum〈{q = 1}〉 < 1

q ← not p
(3.12)

and Π′:

p← sum〈{not p = 1}〉 < 1→ p

q ← not p
(3.13)

Intuitively, the two programs should have the same answer sets. Indeed, the op-

eration of replacing q with ¬p in the first rule of Π should not affect the answer

sets since the second rule “defines” q as ¬p: it is the only rule with q in the head.

However, under the semantics of [Pelov et al., 2003], Π has answer {p} and Π′ has

answer set {q} also.

3.4 FLP-aggregates

A semantics for aggregates that we call “FLP” has been invented by Faber, Leone

and Pfeifer (2004). Here again we use the notation from Section 2.2.3, and we allow

classical negation, not allowed in the usual definition.

An FLP-aggregate is an expression of the form (2.18) where each of F1, . . . , Fn

is a conjunction l1, . . . , lm of literals. A program with FLP-aggregates is a set of rules

of the form

l1; . . . ; ln ← A1, . . . , Am,not Am+1, . . . ,not Ap (3.14)

where n ≥ 0, 0 ≤ m ≤ p, l1, . . . , ln are literals and A1, . . . , Ap are FLP-aggregates.

Programs with FLP-aggregates can seen as a generalization of disjunctive programs

if we encode, in the body of each rule, a literal l as sum〈{l = 1}〉 > 0.

The semantics of [Faber et al., 2004] defines whether a consistent set of

literals3 is an answer set for a program with FLP-aggregates.

3Similarly to [Niemelä and Simons, 2000] for programs with weight constraints, in the original
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The satisfaction of an aggregate A of the form

op〈{F1 = w1, . . . , Fn = wn}〉 ≺ N

by a consistent set X of literals is defined as follows. Consider the multiset W

consisting of all numbers wi (i = 1, . . . , n) such that X |= li. Set X satisfies A if

op(W ) ≺ N . This catches the intuitive meaning of an aggregate. The definition of

satisfaction for aggregates is extended to bodies of rules and to programs with FLP-

aggregates in the same way as in the case of programs with nested expressions (see

Section 3.1).

The reduct ΠX of a program Π with FLP-aggregates consists of the rules of

the form (3.14) such that X satisfies its body. Set X is an answer set for Π if X is

a minimal set satisfying ΠX .

For instance, the only answer set for the following FLP-program Π.

p← sum〈{p = 2}〉 ≥ 0

is the empty set. Indeed, since the empty set doesn’t satisfy the aggregate, Π∅ = ∅,

which has ∅ as the unique minimal model; we can conclude that ∅ is an answer set

for Π. On the other hand, Π{p} = Π because {p} satisfies the aggregate in Π. Since

{p} |= Π, {p} is not a minimal model of Π{p} and then it is not an answer set for Π.

This definition of a reduct is different from the other definitions of reducts

for traditional programs, with nested expressions and with weight constraints, in the

sense that it may leave negative rule elements in the body of a rule. For instance, the

reduct of a← not b relative to {a} is, accordingly to the other definitions, essentially

the fact a. In the definition of this section, the reduct doesn’t modify the rule. On

the other hand, this definition of an answer set is equivalent to the definition of an

syntax of [Faber et al., 2004] classical negation doesn’t occur, and the word “literal” is used there
to denote an atom possibly prefixed by not, i.e. what we call “rule element”. We don’t need such
concept since we view rule elements as abbreviations for FLP-aggregates: see Section 2.2.3.
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answer set in the sense of [Gelfond and Lifschitz, 1991] and of [Lifschitz et al., 1999]

when applied to disjunctive programs.

FLP-aggregates probably are the best proposal for a definition of an ag-

gregate, as they don’t have the same problems as weight constraints and PDB-

aggregates in the case of sums with negative weights. For instance, both (3.10)

and (3.11) have answer set {p}.

Under the semantics of [Faber et al., 2004], an expression of the form

not op〈S〉 ≺ N

has the same meaning of

op〈S〉 6≺ N,

so that negation can be eliminated from programs with FLP-aggregates. We have

to say that this negation is not really “negation as failure”. Consider the following

programs Π:

p← not sum〈{q = 1}〉 < 1

q ← sum〈{q = 1}〉 < 1

and Π′:

p← not q

q ← sum〈{q = 1}〉 < 1

If the negation in the first rule of Π is negation as failure then the two programs

should have the same answer sets. Indeed, the operation of replacing sum〈{q =

1}〉 < 1 with q in the first rule of Π should be safe since the second rule “defines”

q as sum〈{q = 1}〉 < 1: it is the only rule with q in the head. However, under the

semantics of [Faber et al., 2004], Π has answer {p} only, while Π′ has answer set {q}

also.
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3.5 Logic of Here-and-There

In this section we introduce the logic of here-and-there, which is needed for defining

equilibrium logic and for a characterization of strong equivalence.

A propositional formula is any combination of atoms formed using the con-

nectives ⊥ (false), ∨, ∧, and →. An expression of the form ¬F stands for F → ⊥,

⊤ for ⊥ → ⊥ and F ↔ G for (F → G) ∧ (G→ F ). As usual, a propositional theory

is a (possibly infinite) set of propositional formulas. We identify an interpretation

in classical logic with the set of atoms satisfied by it. That means that for every

interpretation X and any atom a, X satisfies a iff a ∈ X. Satisfaction of non-atomic

formulas is defined recursively in terms of truth-tables, as usual in classical logic.

The logic of here-and-there was originally defined in [Heyting, 1930]. The

semantics of the logic of here-and-there is defined as follows. An HT-interpretation

is a pair (X,Y ) of sets of atoms (respectively called “here” and “there”) such that

X ⊆ Y . Each HT-interpretation intuitively “assigns” one of three possible values

to each atom: atoms in X are considered to be true, atoms not in Y are considered

to be false, and the rest (Y −X) are thought to be undefined. We say that an HT-

interpretation (X,Y ) is total when X = Y (no undefined atoms). In this section

and all the others where the logic of here-and-there is discussed we will drop the

suffix “HT-” from “HT-interpretation”.

We recursively define4 when an interpretation (X,Y ) satisfies a formula F ,

written (X,Y ) |= F , as follows:

• for any atom a, (X,Y ) |= a if a ∈ X,

• (X,Y ) 6|= ⊥,

4We have slightly simplified the definition in comparison with the usual definition of satisfaction
in the logic of here-and-there which is typically provided in terms of a Kripke structure as in
intuitionistic logic, but under the assumption that it consists of only two worlds. It can be easily
seen that both definitions are equivalent.
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• (X,Y ) |= F ∧G if (X,Y ) |= F and (X,Y ) |= G,

• (X,Y ) |= F ∨G if (X,Y ) |= F or (X,Y ) |= G,

• (X,Y ) |= F → G if (X,Y ) |= F implies (X,Y ) |= G, and Y |= F → G.

Although we use the same symbol ‘|=’ for satisfaction in logic programs,

classical logic and the logic of here-and-there, this will not lead to ambiguity if we

note with object serve as the operands of |=. It is clear, for instance, that the

expression Y |= F → G in the last line of the definition above refers to satisfaction

in the sense of classical logic.

For instance, formula F = (p→ q)→ q is satisfied by ({q}, {q}). Indeed, first

we notice that, in the “there” world, {q} |= F . It remains to notice that ({q}, {q})

satisfies the consequent q of F . It is also easy to check that interpretation, (∅, {q})

is not a model of F , because (∅, {q}) |= p→ q but (∅, {q}) 6|= q.

As usual, an interpretation is a model of a theory T if it satisfies all the

formulas in T . Two formulas (theories) are equivalent if they have the same models.

Note that when the interpretation is total (X=Y ), (Y, Y ) |= F simply col-

lapses into classical satisfaction Y |= F . Another interesting property is that

(X,Y ) |= F implies (Y, Y ) |= F (that is, Y |= F ). Finally, using the definition

of ¬F as F → ⊥, it also follows that (X,Y ) |= ¬F iff Y |= ¬F .

Axiomatically, the logic of here-and-there is intermediate between intuition-

istic and classical logic. A natural deduction system for intuitionistic logic can be

obtained from the corresponding classical system [Bibel and Eder, 1993, Table 3] by

dropping the law of the excluded middle

F ∨ ¬F

from the list of postulates. The logic of here-and-there, on the other hand, is the

result of replacing the excluded middle in the classical system with the weaker axiom
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schema [De Jongh and Hendriks, 2003]:

F ∨ (F → G) ∨ ¬G. (3.15)

In addition to all intuitionistically provable formulas, the set of theorems

of the logic of here-and-there includes, for instance, the weak law of the excluded

middle

¬F ∨ ¬¬F

(note that ¬¬F is not equivalent to F ) and De Morgan’s law

¬(F ∧G)↔ ¬F ∨ ¬G

(the dual law can be proved even intuitionistically).

The logic of here-and-there differs from intuitionistic logic also as far as min-

imal adequate sets of connectives are concerned. In intuitionistic logic, disjunction

cannot be expressed in terms of the other connectives; in the logic of here-and-there,

a disjunction

F ∨G

is equivalent [Lukasiewicz, 1941] to

((F → G)→ G) ∧ ((G→ F )→ F ).

3.6 Equilibrium Logic

Equilibrium logic [Pearce, 1997] defines when a set Y of atoms (i.e., an interpretation

in the sense of classical logic) is an equilibrium logic for a propositional theory Γ.

A set Y is an equilibrium model of Γ if

for all X ⊆ Y , (X,Y ) is a model for Γ iff X = Y .
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For instance, consider a propositional theory Γ consisting of the single for-

mula F = (p → q) → q. We have seen in the previous section that ({q}, {q}) |= F

and that (∅, {q}) 6|= F . Consequently, {q} is an equilibrium model of Γ.

A logic program with nested expressions without classical negation can be

written as a propositional theory by substituting, in each nested expression, each

comma with ∧, each semicolon by ∨, the negation not by ¬; then we consider each

rule F ← G as the implication G→ F . The equilibrium models of the propositional

theory obtained in this way are the answer sets of the original logic program [Pearce,

1997; Lifschitz et al., 2001].

When classical negation occurs in the logic program, to translate it into

equilibrium logic we first replace each occurrence of a negative literals ¬a by a new

atom ∼ a. The symbol ∼ is called strong negation. We say that a set of atoms

is coherent if it doesn’t contain pairs of “complementary” atoms a, ∼ a. When

the logic program contains classical negation, coherent equilibrium models of the

corresponding propositional theory become the answer sets of the logic program

after having replaced each ¬a with ∼a [Pearce, 1997].

3.7 Proving Strong Equivalence

Recall that two logic programs Π1 and Π2 are said to be strongly equivalent to

each other if, for every program Π, the union Π1 ∪ Π has the same answer sets as

Π2 ∪Π (Section 2.3).

The first characterization of strong equivalence is applicable to programs

with nested expressions, and it is based on the logic of here-and-there. Let Π1

and Π2 be two programs with nested expressions, and S the set of negative literals

occurring in any of the two programs. Let Γ1 and Γ2 be the two propositional

theories obtained from Π1 and Π2 as explained in Section 3.6. Program Π1 and Π2

are strongly equivalent iff Γ1 and Γ2 are equivalent in the logic of here-and-there
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under the set of hypotheses

{¬(a∧ ∼a) : ¬a ∈ S}

[Lifschitz et al., 2001]. Note that if Π1 and Π2 don’t contain classical negation then

the set of hypotheses is empty.

In addition to this, [Lifschitz et al., 2001] shows that equivalence between two

propositional theories Γ1 and Γ2 in the logic of here-and-there characterizes strong

equivalence in equilibrium logic as well, if we define this relation as follows: Γ1 is

strongly equivalent to Γ2 if, for every propositional theory Γ, Γ1 ∪ Γ has the same

equilibrium models of Γ2 ∪ Γ.

The second characterization of strong equivalence between logic programs

with nested expressions is in terms of satisfaction of the reduct [Turner, 2003], and

we will rephrase it as follows. Let A be the set of atoms occurring in programs Π1

and Π2. Programs Π1 and Π2 are strongly equivalent iff, for every consistent set Y

of literals subset of A,

• Y |= ΠY
1 iff Y |= ΠY

2 , and

• if Y |= ΠY
1 then, for each X ⊂ Y , X |= ΠY

1 iff X |= ΠY
2 .

The same paper showed that this characterization of strong equivalence holds also

if Π1 and Π2 are programs with weight constraints. The characterization of strong

equivalence between causal theories (see Chapter 9) is similar [Turner, 2004].
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Chapter 4

Weight Constraints as Nested

Expressions

Weight constraints, in particular in the form of cardinality constraints, are an impor-

tant construct for answer set programming, and are found in many logic programs.

On the other hand, programs with nested expressions were introduced for more

theoretical reasons.

It may appear that the two extensions of the basic syntax of logic programs —

nested expressions and weight constraints — have little in common. The following

observation suggests that it would not be surprising actually if these ideas were

related to each other. The original definition of an answer set is known to have the

“anti-chain” property: an answer set for a program cannot be a subset of another

answer set for the same program. Examples (2.10) and (2.19) show that the anti-

chain property is lost as soon as nested expressions are allowed in rules. Example

{p}

shows that in the presence of cardinality constraints the anti-chain property does

not hold either.

39



We show that there is indeed a close relationship between these two forms

of the answer set semantics: cardinality and weight constraints can be viewed as

shorthand for nested expressions of a special form. We define a simple, modular

translation that turns any program Ω with weight constraints into a program [Ω]

with nested expressions that has the same answer sets as Ω. Furthermore, every rule

of [Ω] can be equivalently replaced with a set of nondisjunctive rules: rules whose

head is a literal or ⊥. This will lead us to a nondisjunctive version [Ω]nd of the basic

translation.

The translations defined in this chapter can be of interest for several rea-

sons. First, the definition of an answer set for programs with weight constraints

(Section 3.2) is technically somewhat complicated. Instead of introducing that def-

inition, we can treat any program Ω with weight constraints as shorthand for its

translation [Ω].

Second, the definition of program completion from [Clark, 1978] has been ex-

tended to nondisjunctive programs with nested expressions [Lloyd and Topor, 1984],

and this extension is known to be equivalent to the definition of an answer set when-

ever the program is “tight” [Erdem and Lifschitz, 2003]. In view of this fact, answer

sets for a tight logic program can be generated by running a satisfiability solver

on the program’s completion [Babovich et al., 2000]. Consequently, answer sets for

a program Ω with weight constraints can be computed by running a satisfiability

solver on the completion of the translation [Ω]nd if it is tight. This idea has led to

the development of the answer set solver cmodels (see Chapter 5 below).

Third, this translation can be used to reason about strong equivalence. We

will show that the translations [Ω1] and [Ω2] of two programs with weight constraints

Ω1 and Ω2 are strongly equivalent iff Ω1 and Ω2 are strongly equivalent. Since strong

equivalence of two programs with nested expressions can be expressed in terms of

the logic of here-and-there, we can use this logic to reason about strong equivalence
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between Ω1 and Ω2.

4.1 A Useful Abbreviation

The following abbreviation is used in the definition of the translation [Ω] in Sec-

tion 4.2. For any nested expressions F1, . . . , Fn and any set X of subsets of {1, . . . , n},

by

〈F1, . . . , Fn〉 : X

we denote the nested expression

;
I∈X

(

,
i∈I

Fi

)

. (4.1)

The use of the “big comma” and the “big semicolon” in (4.1) to represent a multiple

conjunction and a multiple disjunction is similar to the familiar use of
∧

and
∨

. In

particular, the empty conjunction is understood as ⊤, and the empty disjunction

as ⊥.

For instance, if X is the set of all subsets of {1, . . . , n} of cardinality ≥ 3,

then (4.1) expresses, intuitively, that at least 3 of the nested expressions F1, . . . , Fn

are true. It is easy to check, for this X, that a consistent set Z of literals satisfies (4.1)

iff Z satisfies at least 3 of the nested expressions F1, . . . , Fn. This observation can

be generalized:

Proposition 1. Assume that for every subset I of {1, . . . , n} that belongs to X,

all supersets of I belong to X also. For any nested expressions F1, . . . , Fn and any

consistent set Z of literals,

Z |= 〈F1, . . . , Fn〉 : X iff {i : Z |= Fi} ∈ X.

41



Proof.

Z |= 〈F1, . . . , Fn〉 : X iff for some I ∈ X, for all i, if i ∈ I then Z |= Fi

iff for some I ∈ X, I ⊆ {i : Z |= Fi}

iff for some I ∈ X, I = {i : Z |= Fi}

iff {i : Z |= Fi} ∈ X.

As a last remark, note that, by the absorption property of the logic of here-

and-there, if we take a program containing a multiple disjunction of the form (4.1)

and restrict this disjunction to the sets I that are minimal in X, then the answer

sets of the program will remain the same.

4.2 Translations

4.2.1 Basic Translation

In this section, we give the description of a translation from the language of weight

constraints to the language of nested expressions, and state a theorem about the

soundness of this translation. The definition of the translation consists of 4 parts.

1. The translation of a constraint of the form

L ≤ {c1 = w1, . . . , cm = wm} (4.2)

is the nested expression

〈c1, . . . , cm〉 :
{

I : L ≤
∑

i∈I wi

}

(4.3)

where I ranges over the subsets of {1, . . . ,m}. We denote the translation of L ≤ S

by [L ≤ S].

2. The translation of a constraint of the form

{c1 = w1, . . . , cm = wm} ≤ U (4.4)
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is the nested expression

not
(

〈c1, . . . , cm〉 :
{

I : U <
∑

i∈I wi

})

. (4.5)

where I ranges over the subsets of {1, . . . ,m}. We denote the translation of S ≤ U

by [S ≤ U ].

3. The translation of a general weight constraint is defined by

[L ≤ S ≤ U ] = [L ≤ S], [S ≤ U ].

Recall that L ≤ S is shorthand for L ≤ S ≤ ∞, and S ≤ U is shorthand for

−∞ ≤ S ≤ U ; translations of weight constraints of these special types have been

defined earlier. It is easy to see that the old definition of [L ≤ S] gives a nested

expression equivalent to [L ≤ S ≤ ∞] in the logic of here-and-there, and similarly

for [S ≤ U ].

4. For any program Ω with weight constraints, its translation [Ω] is the program

with nested expressions obtained from Ω by replacing each rule (2.13) with

(l1; not l1), . . . , (lp; not lp), [C0]← [C1], . . . , [Cn] (4.6)

where l1, . . . , lp are the positive head elements of (2.13).

The conjunctive terms in (l1; not l1), . . . , (lp; not lp) express, intuitively, that

we are free to decide about every positive head element of the rule whether or not

to include it in the answer set.

To illustrate this definition, let us apply it first to program (3.7). The trans-

lation of the cardinality constraint 0 ≤ {a, b} ≤ 1 is

[0 ≤ {a, b}], [{a, b} ≤ 1]. (4.7)

The first conjunctive term is

〈a, b〉 : {∅, {1}, {2}, {1, 2}}
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which equals

⊤; a; b; (a, b)

and is equivalent to ⊤. Similarly, the second conjunctive term is equivalent to

not (a, b). Consequently, (4.7) can be written as not (a, b). It follows that the

translation of program (3.7) can be written as

(a; not a), (b; not b),not (a, b). (4.8)

Similarly, we can check that program (3.9) turns into

a← (not a; not b),not (not a,not b).

The translation defined above is sound:

Theorem 1. For any program Ω with weight constraints, Ω and [Ω] have the same

answer sets.

The proof of this theorem is presented in Section 4.4.

We will conclude this section with a few comments about translating weight

constraints of the forms L ≤ S and S ≤ U .

In Section 2.2.2 we have agreed to identify any rule element c with the car-

dinality constraint 1 ≤ {c}, and to drop the head of a rule with weight constraints

when this head is 1 ≤ { }. It is easy to check that [1 ≤ {c}] is equivalent to c,

and [1 ≤ { }] is equivalent to ⊥.

If the weights w1, . . . , wm are integers then the inequality in (4.5) is equivalent

to ⌊U⌋ + 1 ≤
∑

i∈I wi. Consequently, in the case of integer weights (in particular,

in the case of cardinality constraints), [S ≤ U ] can be written as not [⌊U⌋+ 1 ≤ S].

This is similar to a transformation that is used by the preprocessor lparse of system

smodels.

The sign < in place of ≤ is not allowed in weight constraints. But sometimes

it is convenient to write expressions of the form

[L < {c1 = w1, . . . , cm = wm}]
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understood as shorthand for

〈c1, . . . , cm〉 :
{

I : L <
∑

i∈I wi

}

. (4.9)

Using this notation, we can write [S ≤ U ] as not [U < S].

Finally, note that each of the sets X used in the expressions 〈c1, . . . , cm〉 : X

in nested expressions (4.3), (4.5) and (4.9) satisfies the assumption of Proposition 1

(Section 4.1), because the weights wi are nonnegative.

4.2.2 Nondisjunctive Translation

For any program Ω with weight constraints, its nondisjunctive translation [Ω]nd is

the nondisjunctive program obtained from Ω by replacing each rule (2.13) with p+1

rules

lj ← not not lj , [C1], . . . , [Cn] (1 ≤ j ≤ p),

⊥ ← not [C0], [C1], . . . , [Cn],
(4.10)

where l1, . . . , lp are the positive head elements of (2.13).

For example, if Π is (3.7) then [Π], as we have seen, is (4.8); the nondisjunctive

translation [Π]nd of the same program is

a← not not a,

b← not not b,

⊥ ← not not (a, b).

(4.11)

Proposition 2. For any program Ω with weight constraints, [Ω]nd is strongly equiv-

alent to [Ω].

In combination with Theorem 1, this fact shows that the nondisjunctive

translation is sound: Ω and [Ω]nd have the same answer sets.

Its proof is based on the following well-known fact about intuitionistic logic:

Fact 1. If F is a propositional combination of formulas F1, . . . , Fm then F ∨¬F is

intuitionistically derivable from F1 ∨ ¬F1,. . . ,Fm ∨ ¬Fm.
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Proof of Proposition 2. We will show that formula (4.6) is equivalent to the conjunc-

tion of the formulas (4.10) in the logic of here-and-there. By Fact 1, the formula

[C0] ∨ ¬[C0] (4.12)

is entailed by the formulas c ∨ ¬c for all head elements c of rule (2.13). For every

negative c, c ∨ ¬c is provable in the logic of here-and-there. It follows that (4.12)

is derivable in the logic of here-and-there from the formulas c ∨ ¬c for all positive

head elements c, that is, from the formulas l1 ∨ ¬l1,. . . ,lp ∨ ¬lp. Consequently,

¬¬[C0]↔ [C0] is derivable from these formulas as well. Hence (4.6) is equivalent in

the logic of here-and-there to the rule

(l1; not l1), . . . , (lp; not lp),not not [C0]← [C1], . . . , [Cn]

which can be broken into the rules

lj; not lj ← [C1], . . . , [Cn] (1 ≤ j ≤ p),

not not [C0]← [C1], . . . , [Cn].

The first line is equivalent to the first line of (4.10) in the logic of here-and-there.

The second line is intuitionistically equivalent to the second line of (4.10).

4.3 Strong Equivalence of Programs with Weight Con-

straints

For programs with weight constraints, the definition of strong equivalence is similar

to the definition given in Section 2.3 above: Ω1 and Ω2 are strongly equivalent

to each other if, for every program Ω with weight constraints, the union Ω1 ∪ Ω

has the same answer sets as Ω2 ∪ Ω. The method of proving strong equivalence of

programs with weight constraints discussed in this section is based on the following

proposition:
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Proposition 3. Ω1 is strongly equivalent to Ω2 iff [Ω1] is strongly equivalent to [Ω2].

Proof. Assume that [Ω1] is strongly equivalent to [Ω2]. Then, for any program with

weight constraints Ω, [Ω1] ∪ [Ω] has the same answer sets as [Ω2] ∪ [Ω]. The first

program equals [Ω1 ∪ Ω], and, by Theorem 1, has the same answer sets as Ω1 ∪ Ω.

Similarly, the second program has the same answer sets as Ω2 ∪ Ω. Consequently

Ω1 is strongly equivalent to Ω2.

Assume now that [Ω1] is not strongly equivalent to [Ω2]. Consider the cor-

responding programs [Ω1]′, [Ω2]′ without classical negation, formed as described at

the end of Section 3.5, and let Cons be the set of nested expressions ¬(a ∧ a′) for

all new atoms a′ occurring in these programs. By Theorem 2 from [Lifschitz et al.,

2001], [Ω1]′ ∪ Cons is not equivalent to [Ω2]′ ∪ Cons in the logic of here-and-there.

It follows by Theorem 1 from [Lifschitz et al., 2001] that there exists a unary pro-

gram Π such that [Ω1]′ ∪Cons ∪Π and [Ω2]′ ∪Cons ∪Π have different collections of

answer sets. (A program with nested expressions is said to be unary if each of its

rules is an atom or has the form a1 ← a2 where a1, a2 are atoms.) Let Π∗ be the

program obtained from Π by replacing each atom of the form a′ by ¬a. In view of

the convention about identifying any literal l with the weight constraint 1 ≤ {l = 1}

(Section 2.2.2), Π∗ can be viewed as a program with weight constraints, and it’s

easy to check that [Π∗]′ is strongly equivalent to Π. Then, for i = 1, 2, the program

[Ωi]
′ ∪Cons ∪Π has the same answer sets as the program [Ωi]

′∪Cons ∪ [Π∗]′, which

can be rewritten as [Ωi∪Π∗]′∪Cons . By the choice of Π, it follows that the collection

of answer sets of [Ω1 ∪Π∗]′ ∪ Cons is different from the collection of answer sets of

[Ω2 ∪ Π∗]′ ∪ Cons . Consequently, the same can be said about the pair of programs

[Ω1 ∪Π∗] and [Ω2 ∪Π∗], and, by Theorem 1, about Ω1 ∪Π∗ and Ω2 ∪Π∗. It follows

that Ω1 is not strongly equivalent to Ω2.
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As an example, let us check that the program

1 ≤ {p, q} ≤ 1

p
(4.13)

is strongly equivalent to

← q

p.
(4.14)

Rules (4.13), translated into the language of nested expressions and written in the

syntax of propositional formulas, become

(p ∨ ¬p) ∧ (q ∨ ¬q) ∧ (p ∨ q) ∧ ¬(p ∧ q)

(p ∨ ¬p) ∧ p.

Rules (4.14), rewritten in a similar way, become

¬q

(p ∨ ¬p) ∧ p.

It is clear that each of these sets of formulas is intuitionistically equivalent to {p,¬q}.

The fact that programs (4.13) and (4.14) are strongly equivalent to each

other can be also proved directly, using the definition of strong equivalence and the

definition of an answer set for programs with weight constraints. But this proof

would not be as easy as the one above. Generally, to establish that a program Ω1

is strongly equivalent to a program Ω2, we need to show that for every program Ω

and every consistent set Z of literals,

(a1) Z |= Ω1 ∪ Ω and

(b1) cl((Ω1 ∪ Ω)Z) = Z

if and only if

(a2) Z |= Ω2 ∪ Ω and
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(b2) cl((Ω2 ∪ Ω)Z) = Z.

Sometimes we may be able to check separately that (a1) is equivalent to (a2) and

that (b1) is equivalent to (b2), but in other cases this may not work. For instance,

if Ω1 is (4.13) and Ω2 is (4.14) then (b1) may not be equivalent to (b2).

An alternative method of establishing the strong equivalence of programs

with weight constraints is proposed in [Turner, 2003, Section 6]. According to that

approach, we check that for every consistent set Z of literals and every subset Z ′ of

Z,

(a3) Z |= Ω1 and

(b3) Z ′ |= ΩZ
1

if and only if

(a4) Z |= Ω2 and

(b4) Z ′ |= ΩZ
2 .

4.4 Proof of Theorem 1

Lemma 1. For any weight constraint C and any consistent set Z of literals, Z |= [C]

iff Z |= C.

Proof. It is sufficient to prove the assertion of the lemma for constraints of the forms

L ≤ S and S ≤ U . Let S be {c1 = w1, . . . , cm = wm}. Then, by Proposition 1

(Section 4.1),

7

Z |= [L ≤ S] iff {i : Z |= ci} ∈
{

I : L ≤
∑

i∈I wi

}

iff L ≤
∑

i:Z|=ci
wi

iff Z |= L ≤ S.
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Similarly,

Z |= [S ≤ U ] iff {i : Z |= ci} 6∈
{

I : U <
∑

i∈I wi

}

iff U ≥
∑

i:Z|=ci
wi

iff Z |= S ≤ U.

Lemma 2. For any constraint L ≤ S and any consistent sets Z, Z ′ of literals,

Z ′ |= [L ≤ S]Z iff Z ′ |= (L ≤ S)Z .

Proof. Let S be {c1 = w1, . . . , cm = wm} and let I stand for {1, . . . ,m}. It is

immediate from the definition of the reduct in Section 3.1 that

(

〈F1, . . . , Fn〉 : X
)Z

= 〈FZ
1 , . . . , FZ

n 〉 : X. (4.15)

For any subset J of I, let ΣJ stand for
∑

i∈J wi. Using (4.15) and Proposition 1,

we can rewrite the left-hand side of the equivalence to be proved as follows:

Z ′ |= [L ≤ S]Z iff Z ′ |= 〈cZ
1 , . . . , cZ

m〉 : {J ⊆ I : L ≤ ΣJ}

iff {i ∈ I : Z ′ |= cZ
i } ∈ {J ⊆ I : L ≤ ΣJ}

iff L ≤ Σ{i ∈ I : Z ′ |= cZ
i }

Let I ′ be the set of all i ∈ I such that the rule element ci is positive, and let I ′′ be

the set of all i ∈ I \ I ′ such that Z |= ci. It is clear that cZ
i is ci for i ∈ I ′, ⊤ for
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i ∈ I ′′, and ⊥ for all other values of i. Consequently

Z ′ |= [L ≤ S]Z iff L ≤ Σ{i ∈ I ′ : Z ′ |= ci}+ ΣI ′′

iff L− ΣI ′′ ≤ Σ{i ∈ I ′ : Z ′ |= ci}

iff Z ′ |= (LZ ≤ S′)

where LZ and S′ are defined as in Section 3.2. It remains to notice that (L ≤ S)Z =

(LZ ≤ S′).

Lemma 3. For any constraint S ≤ U and any consistent set Z of literals,

[S ≤ U ]Z =











⊤ , if Z |= (S ≤ U),

⊥ , otherwise.

Proof. By the definition of the reduct in Section 3.1, [S ≤ U ]Z is

• ⊤, if Z 6|= [U < S],

• ⊥, otherwise.

It remains to notice that Z 6|= [U < S] iff Z |= [S ≤ U ], and then iff Z |= S ≤ U by

Lemma 1.

In Lemmas 4–7, Ω is an arbitrary program with weight constraints. Recall

that, according to Section 4.2.2, the nondisjunctive translation [Ω]nd of Ω consists

of rules of two kinds:

lj ← not not lj , [C1], . . . , [Cn] (4.16)

and

⊥ ← not [C0], [C1], . . . , [Cn]. (4.17)
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We will denote the set of rules (4.16) corresponding to all rules of Ω by Π1, and the

set of rules (4.17) corresponding to all rules of Ω by Π2, so that

[Ω]nd = Π1 ∪Π2. (4.18)

Lemma 4. A consistent set Z of literals is an answer set for [Ω]nd iff Z is an

answer set for Π1 and Z |= Π2.

In view of (4.18), this is an instance of a general fact, proved in [Lifschitz et

al., 1999] as Proposition 2, that can be restated as the following:

Fact 2. Let Π1, Π2 be programs with nested expressions such that the head of every

rule in Π2 is ⊥. A consistent set Z of literals is an answer set for Π1 ∪Π2 iff Z is

an answer set for Π1 and Z |= Π2.

Lemma 5. For any consistent set Z of literals, Z |= Ω iff Z |= Π2.

Proof. It is sufficient to consider the case when Ω consists of a single rule (2.13). In

this case, Z |= Ω iff

Z |= C0 or, for some i (1 ≤ i ≤ m), Z 6|= Ci.

On the other hand, Z |= Π2 iff

Z |= [C0] or, for some i (1 ≤ i ≤ m), Z 6|= [Ci].

By Lemma 1, these conditions are equivalent to each other.

Lemma 6. For any consistent sets Z, Z ′ of literals, Z ′ |= ΩZ iff Z ′ |= ΠZ
1 .

Proof. It is sufficient to consider the case when Ω consists of a single rule (3.8).

Then ΠZ
1 consists of the rules

l← (not not l)Z , [L1 ≤ S1]Z , [S1 ≤ U1]Z , . . . , [Ln ≤ Sn]Z , [Sn ≤ Un]Z (4.19)
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for all positive head elements l of (3.8).

Case 1: for every i (1 ≤ i ≤ n), Z |= Si ≤ Ui. Then, by Lemma 3, each of the

formulas [S1 ≤ U1]Z , . . . , [Sn ≤ Un]Z is ⊤. Note also that if l 6∈ Z then (not not l)Z

is ⊥, so that (4.19) is satisfied by any consistent set of literals. Consequently Z ′

satisfies ΠZ
1 iff, for each positive head element l ∈ Z,

Z ′ |= l or, for some i (1 ≤ i ≤ m), Z ′ 6|= [Li ≤ Si]
Z . (4.20)

On the other hand, according to the definition of the reduct from Section 3.2, ΩZ

is the set of rules

l← (L1 ≤ S1)Z , . . . , (Ln ≤ Sn)Z

for all positive head elements l satisfied by Z. Then Z ′ |= ΩZ iff, for each positive

head element l ∈ Z,

Z ′ |= l or, for some i (1 ≤ i ≤ m), Z ′ 6|= (Li ≤ Si)
Z .

By Lemma 2, this condition is equivalent to (4.20).

Case 2: for some i, Z 6|= Si ≤ Ui. Then, by Lemma 3, one of the formulas

[Si ≤ Ui]
Z is ⊥, so that each rule (4.19) is trivially satisfied by any Z ′. On the other

hand, in this case ΩZ is empty.

Lemma 7. If set cl(ΩZ) is consistent then it is the only answer set for ΠZ
1 ; other-

wise, ΠZ
1 has no answer sets.

Proof. Recall that cl(ΩZ) is defined as the unique minimal set satisfying ΩZ (Sec-

tion 3.2). The answer sets for a program with nested expressions that does not

contain negation as failure are defined as the minimal consistent sets satisfying that

program (Section 3.1). It remains to notice that ΩZ and ΠZ
1 are satisfied by the

same sets of literals (Lemma 6).
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Theorem 1. For any program Ω with weight constraints, Ω and [Ω] have the same

answer sets.

Proof. By the definition of an answer set for programs with weight constraints (Sec-

tion 3.2), a consistent set Z of literals is an answer set for Ω iff

cl(ΩZ) = Z and Z |= Ω.

By Lemmas 7 and 5, this is equivalent to the condition

Z is an answer set for ΠZ
1 and Z |= Π2.

By the definition of an answer set for programs with nested expressions (Section 3.1)

and by Lemma 4, this is further equivalent to saying that Z is an answer set for

[Ω]nd. By Proposition 2, [Ω]nd has the same answer sets as [Ω].
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Chapter 5

Programs with Weight

Constraints as Traditional

Programs

A nondisjunctive rule is nonnested if its body is a conjunction of literals, each

possibly prefixed with not. A nonnested program is a program whose rules are

nonnested. Thus the syntactic form of nonnested programs is the same as traditional

programs, except that the head of a nonnested rule can be ⊥. (This difference is

not very essential: using an auxiliary atom we can rewrite any nonnested program

as a traditional program.)

Since the answer sets for a nonnested program have the anti-chain property

(see the introduction of Chapter 4), turning a program with weight constraints

into a nonnested program with the same answer sets is, generally, impossible. But

we can turn any program with weight constraints into its nonnested conservative

extension—into a program that may contain new atoms; dropping the new atoms

from the answer sets of the translation gives the answer sets for the original program.

In this chapter, we first show a “nonnested translation” [Ω]nn of Ω that can
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be seen as the result of eliminating nested expressions in [Ω]nd (see Section 4.2.2)

in favor of additional atoms. This translation is implemented by Yuliya Lierler in

the answer set solver cmodels to eliminate weight constraints [Giunchiglia et al.,

2004b].

The possibility of translating programs with cardinality constraints into the

language of nonnested programs at the price of introducing new atoms was first es-

tablished by Marek and Remmel [2002]. Our nonnested translation is more general,

because it is applicable to programs with arbitrary weight constraints. Its other

advantage is that, in the special case when all weights in the program are expressed

by integers of a limited size (in particular, in the case of cardinality constraints) the

translation can be computed in polynomial time. 1

The second translation described in this chapter is limited to programs with

integer weights. It reduces all weights in a program to 1. This can be done in

polynomial time, so that, together with the previous translation, we can reduce

every program with weight constraints into a nonnested program in polynomial

time.

The first translation is described in Section 5.1, while the reduction to car-

dinality constraints is presented in Sections 5.2.1 and 5.2.

5.1 Eliminating Nested Expressions

Each of the new atoms introduced in the nonnested translation [Ω]nn below is, intu-

itively, an “abbreviation” for some nested expression related to the nondisjunctive

translation [Ω]nd. For instance, to eliminate the nesting of negations from the first

line of the nondisjunctive translation (4.10), we will introduce, for every j, a new

1The fast algorithm for transforming such a program Ω into [Ω]nd does not go through the
intermediate step of constructing [Ω]nn: that program can be exponentially larger than Ω.
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atom qnot lj , and replace that line with the rules

qnot lj ← not lj ,

lj ← not qnot lj , [C1], . . . , [Cn]

(1 ≤ j ≤ p). The first of these rules tells us that the new atom qnot lj is used to

“abbreviate” the nested expression not lj . The second rule is the first of rules (4.10)

with this subexpression replaced by the corresponding atom. For instance, the

nondisjunctive translation (4.11) of program (3.7) turns after this transformation

into

qnot a ← not a,

a← not qnot a,

qnot b ← not b,

b← not qnot b,

⊥ ← not not (a; b).

(5.1)

Introducing the atoms qnot lj brings us very close to the goal of eliminating

nesting altogether, because every rule of the program obtained from [Ω]nd by this

transformation is strongly equivalent to a set of nonnested rules. One way to elim-

inate nesting is to convert the body of every rule to a “disjunctive normal form”

using De Morgan’s laws, the distributivity of conjunction over disjunction, and, in

the case of the second line of (4.10), double negation elimination.2 After that, we

can break every rule into several nonnnested rules, each corresponding to one of the

disjunctive terms of the body. For instance, the last rule of (5.1) becomes

⊥ ← a; b

after the first step and

⊥ ← a,

⊥ ← b

2All these transformations are intuitionistically equivalent, and consequently preserve strong
equivalence (Section 3.7). In particular, double negation elimination in the body of a rule with the
head ⊥ is intuitionistically valid.
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after the second.

The definition of [Ω]nn below follows a different approach to the elimination of

the remaining nested expressions. Besides the “negation atoms” of the form qnot lj ,

it introduces other new atoms, to make the translation of weight constraints more

compact in some cases. These “weight atoms” have the forms qw≤S and qw<S, where

w is a number and S is an expression of the form {c1 = w1, . . . , cm = wm} for some

rule elements c1, . . . , cm and nonnegative numbers w1, . . . , wm. They “abbreviate”

the nested expressions [w ≤ S] and [w < S] respectively.

In the following definition, {c1 = w1, . . . , cm = wm}
′, where m > 0, stands for

{c1 = w1, . . . , cm−1 = wm−1}. Consider a nonnested program Π that may contain

atoms of the forms qw≤S and qw<S. We say that Π is closed if

• for each atom of the form qw≤S that occurs in Π, Π contains the rule

qw≤S (5.2)

if w ≤ 0, and the pair of rules

qw≤S ← qw≤S′,

qw≤S ← cm, qw−wm≤S′

(5.3)

if 0 < w ≤ w1 + · · ·+ wm;

• for each atom of the form qw<S that occurs in Π, Π contains the rule

qw<S (5.4)

if w < 0, and the pair of rules

qw<S ← qw<S′,

qw<S ← cm, qw−wm<S′

(5.5)

if 0 ≤ w < w1 + · · ·+ wm.
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We define the nonnested translation [L ≤ S ≤ U ]nn of a weight constraint

L ≤ S ≤ U as the conjunction

qL≤S ,not qU<S.

Now we are ready to define the nonnested translation of a program. For

any program Ω with weight constraints, [Ω]nn is the smallest closed program that

contains, for every rule

L0 ≤ S0 ≤ U0 ← C1, . . . , Cn

of Ω, the rules

qnot l ← not l (5.6)

and

l← not qnot l, [C1]nn, . . . , [Cn]nn (5.7)

for each of its positive head elements l, and the rules

⊥ ← not qL0≤S0
, [C1]nn, . . . , [Cn]nn,

⊥ ← qU0<S0
, [C1]nn, . . . , [Cn]nn.

(5.8)

For instance, if Ω is (3.7) then rules (5.6)–(5.8) are

qnot a ← not a,

a← not qnot a,

qnot b ← not b,

b← not qnot b,

⊥ ← not q0≤{a,b},

⊥ ← q1<{a,b}.

(5.9)

To make this program closed, we add to it the following “definitions” of the weight

atoms q0≤{a,b} and q1<{a,b}, and, recursively, of the weight atoms that are used in
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these definitions:

q0≤{a,b},

q1<{a,b} ← q1<{a},

q1<{a,b} ← b, q0<{a},

q0<{a} ← q0<{},

q0<{a} ← a, q−1<{},

q−1<{}.

(5.10)

The nonnested translation of (3.7) consists of rules (5.9) and (5.10).

The following theorem describes the relationship between the answer sets for

Ω and the answer sets for [Ω]nn. In the statement of the theorem, QΩ stands for

the set of all new atoms that occur in [Ω]nn—both negation atoms qnot l and weight

atoms qw≤S, qw<S.

Theorem 2. For any program Ω with weight constraints, Z 7→ Z \ QΩ is a 1–1

correspondence between the answer sets for [Ω]nn and the answer sets for Ω.

It is easy to see that the translation Ω 7→ [Ω]nn is modular, in the sense that

it can be computed by translating each rule of Ω separately.

Recall that the introduction of the new atoms qw≤S and qw<S is motivated by

the desire to make the translations of programs more compact. We will investigate

now to what degree this goal has been achieved.

The basic translation [C] of a weight constraint, as defined in Section 4.2.1,

can be exponentially larger than C. For this reason, the basic and nondisjunctive

translations of a program Ω are, generally, exponentially larger than Ω.

The nonnested translation of a program Ω consists of the rules (5.6)–(5.8)

corresponding to all rules of Ω, and the additional rules (5.2)–(5.5) that make the

program closed. The part consisting of rules (5.6)–(5.8) cannot be significantly larger

than Ω, because each of the nested expressions [Ci]
nn is short — it contains at most

two atoms. The second part consists of the “definitions” of all weight atoms in [Ω]nn,
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and it contains at most two short rules for every such atom. Under what conditions

can we guarantee that the number of weight atoms is not large in comparison with

the size of Ω?

The length of a weight constraint (2.12) is m, and its weight is w1 + · · ·+wm.

We will denote the length of C by L(C), and the weight of C by W (C).

Proposition 4. For programs Ω without non-integer weights, the number of weight

atoms occurring in [Ω]nn is O
(
∑

L(C) · W (C)
)

, where the sum extends over all

weight constraints C occurring in Ω.

If the weights in Ω come from a fixed finite set of integers (for instance, if

every weight constraint in Ω is a cardinality constraint) then W (C) = O(L(C)), and

the proposition above shows that the number of weight atoms in [Ω]nn is not large

in comparison with the size of Ω. Consequently, in this case [Ω]nn cannot be large

in comparison with Ω either.

Proof of Proposition 4. Let Ω be a program without non-integer weights. About a

rule from [Ω]nn we will say that it is relevant if for every weight atom w ≤ S or

w < S occurring in that rule there is a weight constraint (2.12) in Ω such that S is

{c1 = w1, . . . , cj = wj} for some j ∈ {0, . . . ,m}, and

w ∈ {−max(w1, . . . , wm), . . . , w1 + · · ·+ wm} ∪ {L,U}.

It is clear that the number of weight atoms occurring in relevant rules can be esti-

mated as O
(
∑

L(C) ·W (C)
)

. On the other hand, it is easy to see that the set of

relevant rules contains the rules (5.6)–(5.8) corresponding to all rules of Ω, and that

it is closed. Consequently, all rules in [Ω]nn are relevant.

The fact that, in case of integer and bounded weights, [Ω]nn can be computed

from Ω in polynomial time, is not hard to check in view of Proposition 4.
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5.2 Removing the Weights

5.2.1 Simplifying the Syntax of Weight Constraints

The second translation is limited to the case when all weights in the program are

positive integers, and the bounds are integers. In addition to this, the translation

requires the logic programs to satisfy some conditions:

• the head of each rule is an atom, ⊥ or a cardinality constraints without lower

and upper bound (that is, the rule is a choice rule),

• all weight constraints in the body have the form L ≤ S or S ≤ U , and

• the bound conditions of weight constraints are not trivially true or false. (That

is, lower bounds are positive and not greater than the sum of the weights, and

upper bounds are nonnegative and lower than the sum of the weights.)

Those conditions can be satisfied by applying transformations similar to the ones

computed by the preprocessor lparse of the answer set solver smodels. The first

condition can be satisfied by rewriting each generic rule with weight constraints of

the form (3.8) as 3 rules

S0 ← F

⊥ ← F, S0 ≤ (L0 − 1)

⊥ ← F, (U0 + 1) ≤ S0

(5.11)

where F stands for

L1 ≤ S1, S1 ≤ U1, . . . , Ln ≤ Sn, Sn ≤ Un.

It is actually not hard to see that this transformation is correct, in view of Propo-

sition 2 and Theorem 1.

For the second condition, we can rewrite each weight constraint L ≤ S ≤ U

in the body of a rule as two elements L ≤ S and S ≤ U .
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function wc2cc(Ω)
1 Ω′ := ∅
2 rewrite each expression of the form S ≤ U in Ω as not (U + 1) ≤ S
3 foreach L ≤ S occurring in the body of a rule of Ω
4 while a weight in S is greater than 1

(let S be {c1 = w1, . . . , cn = wm})
5 R := {ci : i ∈ {1, . . . , n}, wi is odd}
6 H := {ci = ⌊wi/2⌋ : i ∈ {1, . . . , n}, wi > 1}
7 foreach i : 0 < i ≤ |R|, i + L is even
8 d := new atom
9 H := H ∪ {d}

10 Ω′ := Ω′ ∪ {d← i ≤ R}
11 end foreach
12 replace L ≤ S with ⌈L/2⌉ ≤ H
13 end while
14 end foreach
15 rewrite each expression of the form not L ≤ S in Ω as S ≤ (L− 1)
16 return Ω ∪ Ω′

Figure 5.1: A translation that eliminates weight constraints in favor of cardinality
constraints

For the last condition, we drop each rule that contains a weight constraint

where the upper bound is negative, or the lower bound is greater than the sum of

weights (trivially false bounds). From the remaining rules, we drop every weight

constraint in the body where the lower bound is not positive, or the upper bound

is not lower than the sum of weights (trivially true bounds).

5.2.2 The Procedure

In Figure 5.1, we have a procedure wc2cc that eliminates, in a finite program with

weight constraints in the syntax explained above, weight constraints in favor of

cardinality constraints. In it, S, R and H are considered multisets.

Line 2 replaces each weight constraint of the form S ≤ U with not ((U +1) ≤

S), and line 15 reverses the process. This allows (U + 1) ≤ S to be considered as

an expression of the form L ≤ S in line 3. This transformation not only follows the
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intuitive meaning of a weight constraint, but also [S ≤ U ] = not [(U + 1) ≤ S]. It

is also easy to check that if S ≤ U has no trivial bounds conditions iff (U + 1) ≤ S

doesn’t have them.

At each iteration of the while loop the bound L and the weights in S are

halved. At line 5, set H contains the result of the integer division of weights in S

by 2, and set R contains the “remainder” of the division. We need to include the

contribution of the atoms in R to H, where each atom in R should count with a

“weight” 1/2. The auxiliary atoms d added to H (and that are “defined” with rules

added to Ω′) have this role: intuitively, the number of these atoms that are “true”

is about half the number of “true” elements of R.

Consider, for instance, the following program:

p← {r = 3, q = 1} ≤ 3

q

r ← not p

(5.12)

At the first step, {r = 3, q = 1} ≤ 3 becomes not 4 ≤ {r = 3, q = 1}, so

4 ≤ {r = 3, q = 1} is the only weight constraint L ≤ S with a weight greater than

1. For such values of L and S, R = {r, q}, H is initially computed as {r}, and i

assumes value 2 only. Consequently, if d is the name of the new atom, H becomes

{r, d}, {d ← 2 ≤ {r, q}} is added to Ω′ and 4 ≤ {r = 3, q = 1} is replaced by

2 ≤ {r, d} in Ω. No other weight is greater than 1, so the procedure returns the

current values of Ω ∪ Ω′ after having converted not 2 ≤ {r, d} into {r, d} ≤ 1: the

output is the program is

p← {r, d} ≤ 1

q

r← not p

d← 2 ≤ {r, q}

(5.13)
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In the following theorem Ω is a program with weight constraints satisfying

the conditions from Section 5.2.1. By the size of a number we mean its length in

binary notation.

Theorem 3. For any Ω,

(a) the mapping Z 7→ Z ∩ σ is a 1–1 correspondence between the answer sets of

wc2cc(Ω) and the answer sets of Ω, and

(b) wc2cc terminates in time polynomial in the size of the input.

As an example of (a), the answer sets of (5.12) are {p, q} and {q, r}, and the

answer sets of the translation (5.13) are {p, q} and {d, q, r}. The difference between

the answer sets of the two programs is only in the presence of the atom d in one of

the answer sets.

5.3 Proofs

The proof of Theorem 2 requires important properties of programs with nested

expressions, which are introduced in the next section.

5.3.1 Two Lemmas on Programs with Nested Expressions

The idea of program completion [Clark, 1978] is that the set of rules of a program

with the same atom q in the head is the “if” part of a definition of q; the “only if”

half of that definition is left implicit. If, for instance, the rule

q ← F

is the only rule in the program whose head is q then that rule is an abbreviated

form of the assertion that q is equivalent to F .
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Since in a rule with nested expressions the head is allowed to have the same

syntactic structure as the body, the “only if” part of such an equivalence can be

expressed by a rule also:

F ← q.

The lemma below shows that adding such rules to a program does not change its

answer sets.

An occurrence of a formula F in a formula or a rule is singular if the symbol

before this occurrence of F is ¬; otherwise the occurrence is regular [Lifschitz et al.,

1999]. The expression

F ↔ G

stands for the pair of rules

F ← G

G← F.

Proposition 5 (Completion Lemma). Let Π be a program with nested expressions,

and let Q be a set of atoms that do not have regular occurrences in the heads of the

rules of Π. For every q ∈ Q, let Def (q) be a formula. Then the program

Π ∪ {q ← Def (q) : q ∈ Q}

has the same answer sets as the program

Π ∪ {q ↔ Def (q) : q ∈ Q}.

In the special case when Q is a singleton this fact was first proved by Esra

Erdem (personal communication).

In the statement of the completion lemma, if the atoms from Q occur neither

in Π nor in the formulas Def (q) then adding the rules q ← Def (q) to Π extends the

program by “explicit definitions” of “new” atoms. According to the lemma below,

such an extension is conservative: the answer sets for Π can be obtained by dropping

the new atoms from the answer sets for the extended program.
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Proposition 6 (Lemma on Explicit Definitions). Let Π be a program with nested

expressions, and let Q be a set of atoms that do not occur in Π. For every q ∈ Q,

let Def (q) be a formula that contains no atoms from Q. Then Z 7→ Z \Q is a 1–1

correspondence between the answer sets for Π ∪ {q ← Def (q) : q ∈ Q} and the

answer sets for Π.

The completion lemma and the lemma on explicit definitions will be gener-

alized to arbitrary propositional theories in Section 6.3, and the proofs of the more

general statements are provided in Section 6.5.

5.3.2 Proof of Theorem 2

Let Ω be a program with weight constraints. Consider the subset ∆ of its nonnested

translation [Ω]nn consisting of the rules whose heads are atoms from QΩ. The rules

included in ∆ have the forms (5.2)–(5.6); they “define” the atoms in QΩ. The rest

of [Ω]nn will be denoted by Π; the rules of Π have the forms (5.7) and (5.8). The

union of these two programs is [Ω]nn:

[Ω]nn = Π ∪∆. (5.14)

The idea of the proof of Theorem 2 is to transform Π ∪ ∆ into a program with

the same answer sets so that Π will turn into [Ω]nd and ∆ will turn into a set of

explicit definitions in the sense of Section 5.3.1, and then use the lemma on explicit

definitions.
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For every atom q ∈ QΩ, define the formula Def (q) as follows:

Def (qnot l) = not l

Def (qw≤S) =



























⊤, if w ≤ 0,

qw≤S′; (cm, qw−wm≤S′), if 0 < w ≤ w1 + · · ·+ wm,

⊥, otherwise

Def (qw<S) =



























⊤, if w < 0,

qw<S′; (cm, qw−wm<S′), if 0 ≤ w < w1 + · · ·+ wm,

⊥, otherwise

Lemma 8. Program [Ω]nn has the same answer sets as

Π ∪ {q ↔ Def (q) : q ∈ QΩ}.

Proof. From the definitions of [Ω]nn and QΩ we conclude that ∆ consists of the

following rules:

• rule (5.2) for every atom of the form qw≤S in QΩ such that w ≤ 0;

• rules (5.3) for every atom of the form qw≤S ∈ QΩ such that

0 < w ≤ w1 + · · ·+ wm;

• rule (5.4) for every atom of the form qw<S in QΩ such that w < 0;

• rules (5.5) for every atom of the form qw<S in QΩ such that

0 ≤ w < w1 + · · ·+ wm;

• rule (5.6) for every atom of the form qnot l in QΩ.

Consequently ∆ is strongly equivalent to {q ← Def (q) : q ∈ QΩ}. Then, by (5.14),

program [Ω]nn has the same answer sets as Π ∪ {q ← Def (q) : q ∈ QΩ}. The

assertion to be proved follows by the completion lemma.
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Lemma 9. Let S be {c1 = w1, . . . , cm = wm}. In the logic of here-and-there,

[w ≤ S]↔



























⊤, if w ≤ 0,

[w ≤ S′]; (cm, [w − wm ≤ S′]), if 0 < w ≤ w1 + · · · + wm,

⊥, otherwise.

[w < S]↔



























⊤, if w < 0,

[w < S′]; (cm, [w − wm < S′]), if 0 ≤ w < w1 + · · · + wm,

⊥, otherwise.

Proof. Recall that [w ≤ S] is an expression of the form (4.3), which stands for a

disjunction of conjunctions (4.1). If w ≤ 0 then the set after the : sign in (4.3) has

the empty set as one of its elements, so that one of the disjunctive terms of this

formula is the empty conjunction ⊤. If w > w1 + · · · + wm then the set after the :

sign in (4.3) is empty, so that the formula is the empty disjunction ⊥. Assume now

that 0 < w1 + · · ·+wm ≤ w. Let I stand for {1, . . . ,m} and let I ′ be {1, . . . ,m−1}.
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For any subset J of I, by ΣJ we denote the sum
∑

i∈J wi. Then

[w ≤ S] = ;
J⊆I : ΣJ≥w

(

,
i∈J

ci

)

↔ ;
J⊆I′ : ΣJ≥w

(

,
i∈J

ci

)

; ;
J⊆I : m∈J,ΣJ≥w

(

,
i∈J

ci

)

= [w ≤ S′]; ;
J⊆I′ : ΣJ+wm≥w

(

,
i∈J∪{m}

ci

)

↔ [w ≤ S′];
(

cm, ;
J⊆I′ : ΣJ≥w−wm

(

,
i∈J

ci

))

= [w ≤ S′]; (cm, [(w − wm) ≤ S′]).

The proof of the second equivalence is similar.

Lemma 10. Program

{q ↔ Def (q) : q ∈ QΩ} (5.15)

is strongly equivalent to

{qnot l ↔ not l : qnot l ∈ QΩ}∪

{qw≤S ↔ [w ≤ S] : qw≤S ∈ QΩ}∪

{qw<S ↔ [w < S] : qw<S ∈ QΩ}.

(5.16)

Proof. The rules of (5.16) can be obtained from the rules of (5.15) by replacing

Def (qw≤S) with [w ≤ S] for the atoms qw≤S in QΩ, and Def (qw<S) with [w < S] for

the atoms qw<S in QΩ. Consequently, it is sufficient to show that, for every atom

of the form qw≤S in QΩ, the equivalences

Def (qw≤S)↔ [w ≤ S] (5.17)
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are derivable in the logic of here-and-there both from (5.15) and from (5.16), and

similarly for atoms of the form qw<S. The proofs for atoms of both kinds are similar,

and we will only consider qw≤S. Let S be {c1 = w1, . . . , cm = wm}.

The definition of Def (qw≤S) and the statement of Lemma 9 show that the

right-hand side of (5.17) is equivalent to the result of replacing qw≤S′ in the left-hand

side with [w ≤ S′], and qw−wm≤S′ with [w − wm ≤ S′]. Since qw≤S′ and qw−wm≤S′

belong to QΩ, this observation implies the derivability of (5.17) from (5.16).

The derivability of (5.17) from (5.15) will be proved by strong induction

on m. If w ≤ 0 or w > w1 + · · · + wm then, by the definition of Def (qw≤S)

and by Lemma 9, (5.17) is provable in the logic of here-and-there. Assume that

0 < w ≤ w1 + · · · + wm. Then qw≤S′ and qw−wm≤S′ belong to QΩ, and, by the

induction hypothesis, the equivalences

Def (qw≤S′)↔ [w ≤ S′]

and

Def (qw−wm≤S′)↔ [w − wm ≤ S′]

are derivable from (5.15). Consequently, the equivalences

qw≤S′ ↔ [w ≤ S′]

and

qw−wm≤S′ ↔ [w − wm ≤ S′]

are derivable from (5.15) as well. By Lemma 9, this implies the derivability of (5.17).

Theorem 2. For any program Ω with weight constraints, Z 7→ Z \ QΩ is a 1–1

correspondence between the answer sets for [Ω]nn and the answer sets for Ω.
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Proof. From Lemmas 8 and 10 we see that [Ω]nn has the same answer sets as the

union of Π and (5.16). Furthermore, this union is strongly equivalent to the union

of [Ω]nd and (5.16). Indeed, Π consists of the rules

l← not qnot l, [C1]nn, . . . , [Cn]nn,

⊥ ← not qL0≤S0
, [C1]nn, . . . , [Cn]nn,

⊥ ← qU0<S0
, [C1]nn, . . . , [Cn]nn

for every rule

L0 ≤ S0 ≤ U0 ← C1, . . . , Cn

in Ω and every positive head element l of that rule; [Ω]nd consists of the rules

l← not not l, [C1], . . . , [Cn],

⊥ ← not [L0 ≤ S0, S0 ≤ U0], [C1], . . . , [Cn].

It is easy to derive each of these two programs from the other program and (5.16)

in the logic of here-and-there. Consequently, [Ω]nn has the same answer sets as the

union of [Ω]nd and (5.16). By the completion lemma, it follows that [Ω]nn has the

same answer sets as the union of [Ω]nd and the program

{qnot l ← not l : qnot l ∈ QΩ}∪

{qw≤S ← [w ≤ S] : qw≤S ∈ QΩ}∪

{qw<S ← [w < S] : qw<S ∈ QΩ}.

The assertion of Theorem 2 follows now by the lemma on explicit definitions.

5.3.3 Proof of Theorem 3(b)

In the following lemma, L ≤ S is a cardinality constraint such that S contains only

positive integer weights; let f(S) be the maximum between the cardinality |S| of

S and twice the number of weights in S that are greater than 1. For instance, if

S = {p,not q = 3, r = 2}, f(S) = max{3, 2 · 2} = 4. Function f(S) offers an upper

and lower bound for |S|: in fact, it is easy to verify that f(S) ≤ |S| ≤ 2f(S).
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Lemma 11. At each execution of lines 5–12 in Figure 5.1, f(S) never increases.

Proof. We essentially need to compare f(S) and f(H) before H is assigned to S

at line 12. Since S cannot contain more than f(S)/2 weights greater than 1, H

is initially assigned — at line 6 — at most f(S)/2 elements. Then line 9 adds at

most |R|/2 ≤ |S|/2 ≤ f(S)/2 auxiliary atoms (their weights are implicitly 1) to H.

Consequently, at the end, |H| ≤ f(S), and the number of weights greater than 1 in

H doesn’t exceed f(S)/2. We can conclude that f(H) ≤ f(S).

Theorem 3(b). For any program Ω, wc2cc terminates in time polynomial in the

size of the input.

Proof. Consider Figure 5.1. The algorithm can be divided into three parts: lines 1–

2, lines 3–14, and lines 15–16. It is sufficient to show that each part terminates in a

time polynomial in the size of its input (in this case, the value of Ω and Ω′ before the

execution of that part of code). This is easy to be verified for lines 1–2 and 15–16.

It remains to show that lines 3–14 require polynomial time.

The external foreach loop is clearly executed a linear number of times.

Inside that loop, the while loop is executed a number of times linear to the the size

of the largest weight in S, since that weight is halved at each iteration. (Recall that

the size of a number is the number of bits required to memorize the number.) It

remains to consider the time needed in each iteration of lines 5–12.

Let L0 ≤ S0 be the value of L ≤ S before the first iteration of lines 5–12.

Each iteration of such lines is polynomial in the size of the current L ≤ S. The rest

of the proof consists in showing that L ≤ S doesn’t become more than polynomially

larger than L0 ≤ S0, so that the time of an execution of lines 5–12 is polynomially

bounded by the size of L0 ≤ S0.

Since L always decreases at each iteration, it remains to consider the size of

S only. The size of S is polynomially bounded by
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(i) the number |S| of rules elements in it,

(ii) the size of the atom in each rule element, and

(iii) the total size of weights (we omit “= w” in c = w when w = 1).

For part (iii), the weights always decrease, so their total size decrease. For

part (i), we know that f(S) — an upper bound for the value of |S|— never increases

by Lemma 11. It remains to notice that the value of f(S) before the first iteration

of lines 5–12 is not more than twice the initial value of |S|.

5.3.4 Proof of Theorem 3(a)

For this proof, we extend the syntax of a weight constraint L ≤ S ≤ U in the

body of a rule, by allowing each element in S to be of the form F = w, where F

is an arbitrary nested expression instead of a rule element. We call those weight

constraints extended weight constraints. Clearly, the original definition of an answer

set for programs with weight constraints in not applicable. However, we can easily

extend our definition of [L ≤ S ≤ U ] to this new kind of weight constraints, and

define the concept of an answer set for programs with extended weight constraints

in terms of nested expressions.

Here are some lemmas about (extended) weight constraints. The first two

are immediate from the definition of [L ≤ S].

Lemma 12. For any two extended weight constraints L1 ≤ S and L2 ≤ S with

L1 ≥ L2, [L1 ≤ S] entails [L2 ≤ S].

Lemma 13. For any extended weight constraint L ≤ S where L and all weights in

S are even, [L ≤ S] = [(L− 1) ≤ S].

Lemma 14. For any extended weight constraints L1 ≤ S, . . . , Ln ≤ S (n ≥ 1) where

L1 ≤ L2 ≤ · · · ≤ Ln, and any integer i = 1, . . . , n,

[i ≤ {[L1 ≤ S], . . . , [Ln ≤ S]}]↔ [Li ≤ S].
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Proof. Let F be the left-hand side of the claim. By Lemma 12,

F = ;
X⊆{1,...,n} : i≤|X|

(

,
j∈X

[Lj ≤ S]
)

↔ ;
X⊆{1,...,n} : i≤|X|

[Lmax(X) ≤ S]

Since |X| ≥ i, the value of max(X) ranges from i (when X = {1, . . . , i}) through

n (when n ∈ X). Consequently, by Lemma 12 again, the disjunction in the last

expression above can be simplified into [Li ≤ S].

For any weight constraint L ≤ S, we denote by ΣS the sum of the weights

in S.

Lemma 15. Consider any extended weight constraint L ≤ S where all weights are

positive integers and L is a nonnegative integer. Let S1 and S2 be any partitioning

of S in two (multi)sets. Then

[L ≤ S]↔ ;
i=0,...,ΣS1

([i ≤ S1], [L− i ≤ S2]).

Proof. Let F and G be the left-hand side and the right-hand side of the above

equivalence. Let S be {F1 = w1, . . . , F|S| = w|S|} We assume, without losing in

generality, that the elements of S1 are the first |S1| elements of S. In the following

formulas, we omit mentioning that X ⊆ {1, . . . , |S|}, X1 ⊆ {1, . . . , |S1|} and X2 ⊆
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{|S1|+ 1, . . . , |S|}. For each X, by WX we denote
∑

i∈X wi.

F = [L ≤ S] = ;
X : L≤WX

(

,
j∈X

Fj

)

↔ ;
X1,X2 : L≤WX1

+WX2

(

,
j∈X1

Fj , ,
j∈X2

Fj

)

↔ ;
X1

(

;
X2 : L−WX1

≤WX2

(

,
j∈X1

Fj , ,
j∈X2

Fj

))

↔ ;
X1

((

,
j∈X1

Fj

)

,
(

;
X2 : L−WX1

≤WX2

(

,
j∈X2

Fj

)))

↔ ;
X1

((

,
j∈X1

Fj

)

, [(L−WX1
) ≤ S2]

)

.

On the other hand, considering that ΣS1 ≥WX1
for all X1,

G = ;
i=0,...,ΣS1

((

;
X1 : i≤WX1

(

,
j∈X1

Fj

))

, [L− i ≤ S2]
)

↔ ;
X1

i=0,...,WX1

((

,
j∈X1

Fj

)

, [L− i ≤ S2]
)

↔ ;
X1

((

,
j∈X1

Fj

)

,
(

;
i=0,...,WX1

[L− i ≤ S2]
))

.

It remains to notice that

;
i=0,...,WX1

[L− i ≤ S2]↔ [L−WX1
≤ S2]

by Lemma 12.
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Lemma 16. For every extended weight constraint L ≤ S where all weights are

positive integers and L is a nonnegative integer, replacing two elements F = w1 and

F = w2 in S with a single element F = w1 + w2 preserves strong equivalence of

[L ≤ S].

This assertion is actually true even if we allow the weights to be arbitrary

nonnegative numbers. However, the less general form is sufficient for our purposes

and it is easier to prove.

Proof of Lemma 16. Let S1 be {F = w1, F = w2} and S2 be {F = w1 + w2}. It is

easy to verify that, for any integer i,

[i ≤ S1]↔ [i ≤ S2].

Then, for any integer L and any set expression S′, by Lemma 15,

[L ≤ (S1 ∪ S′)]↔ ;
i=0,...,ΣS1

([i ≤ S1], [N − i ≤ S′])

↔ ;
i=0,...,ΣS2

([i ≤ S2], [N − i ≤ S′])

↔ [L ≤ (S2 ∪ S′)]

Given a weight constraint L ≤ S where S = {c1 = w1, . . . , cn = wm}, all

weights are positive integers and L is a nonnegative integer, let H ′ be

{[i ≤ R] : 0 < i ≤ |R|, i+L is even}∪{ci = ⌊wi/2⌋ : i ∈ {1, . . . , n}, wi > 1}, (5.18)

where R is the set as computed in line 5 of Figure 5.1.

77



Lemma 17.

[⌈L/2⌉ ≤ H ′]↔ [L ≤ S]

Proof. We consider the case in which L is even. The other case is similar. Let H ′
1

and H ′
2 be the first and second term of the union (5.18) respectively. By Lemma 15,

[⌈L/2⌉ ≤ H ′]↔ ;
i=0,...,|H′

1
|

([i ≤ H ′
1], [L/2 − i ≤ H ′

2])

For i = 0 then both i ≤ H ′
1 and 2i ≤ R are clearly equivalent to ⊤. For i > 0, we

use Lemma 14 to rewrite i ≤ H ′
1 as 2i ≤ R. Consequently,

[⌈L/2⌉ ≤ H ′]↔ ;
i=0,...,⌊|R|/2⌋

([2i ≤ R], [L/2− i ≤ H ′
2])

Let T be H ′
2 with all weights doubled. Then

[⌈L/2⌉ ≤ H ′]↔ ;
i=0,...,⌊|R|/2⌋

([2i ≤ R], [L− 2i ≤ T ])

↔ ;
i=0,...,|R|, i is even

([i ≤ R], [L− i ≤ T ])

Consider each disjunctive term above. In view of Lemma 12, [i + 1 ≤ R] entails

[i ≤ R]; moreover, since L− i is even, by Lemma 13, [L− i ≤ T ] = [L− (i+ 1) ≤ T ].

Consequently, ([(i + 1) ≤ R], [L − (i + 1) ≤ T ]) entails ([i ≤ R], [L − i ≤ T ]).

Consequently, we can add disjunctive terms ([i ≤ R], [L− i ≤ T ]) relative to odd i’s

while preserving strong equivalence. It follows, by Lemma 15 again, that

[⌈L/2⌉ ≤ H ′]↔ ;
i=0,...,|R|

([i ≤ R], [L− i ≤ T ])

↔ [L ≤ (R ∪ T )].

It remains to notice that [L ≤ (R∪T )] is strongly equivalent to [L ≤ S] by Lemma 16.
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Recall that, at any step in our algorithm, Ω may not be a program with

weight constraints, since it may contain occurrences of weight constraints L ≤ S

preceded by negation not. By Ω̂ we denote the program with weight constraints

obtained from Ω by replacing each expression of the form not (L ≤ S) by S ≤ U .

We agree to write
[

Ω̂
]

simply as [Ω]: this doesn’t lead to ambiguity when Ω is a

program with weight constraints, since, in this case, Ω̂ = Ω.

Lemma 18. Let Ω2 be Ω with one occurrence of a weight constraint L ≤ S (possibly

prefixed by not) in a body of a rule replaced by another weight constraint L′ ≤ S′.

Then [Ω2] coincides with the result of replacing, in [Ω], one occurrence of [L ≤ S]

with [L′ ≤ S′].

Proof. If the occurrence of L ≤ S in Ω is not prefixed by not then it is not hard

to see that the same relationship between Ω and Ω2 holds between Ω̂ and Ω̂2. If

we consider that the transformation into nested expressions replaces L ≤ S with

[L ≤ S] and L′ ≤ S′ with [L′ ≤ S′] then the claim is obvious. Otherwise, Ω̂2 is Ω̂

with one occurrence of S ≤ (U + 1) replaced by one occurrence of S′ ≤ (U ′ + 1).

It remains to notice that S ≤ (U + 1) is translated, in [Ω], as not [L ≤ S], and

S′ ≤ (U ′ + 1) is translated, in [Ω2], as not [L′ ≤ S′].

Lemma 19. Consider one execution of lines 5–12 of the algorithm in Figure 5.1.

Let Ω1 and Ω′
1 be the initial values of Ω and Ω′ respectively, and let Ω2 and Ω′

2 be

the same sets after one execution of lines 5–12. Let D be the set of auxiliary atoms

d introduced at line 8. Then X 7→ X \D is a 1–1 correspondence between the answer

sets of Ω̂2 ∪ Ω′
2 and the answer sets of Ω̂1 ∪ Ω′

1.

Proof. For each d ∈ D, let Def (d) be the formula [i ≤ R] for which rule d← i ≤ R

has been added to Ω′
1 at line 10. In view of Theorem 1, we can compare the answer

sets of [Ω2 ∪ Ω′
2] = [Ω2] ∪ [Ω′

2] and the answer sets of [Ω1 ∪ Ω′
1] = [Ω1] ∪ [Ω′

1]. The

difference between Ω1 and Ω2 is that Ω2 contains ⌈L/2⌉ ≤ H in place of L ≤ S.
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Then, by Lemma 18, the difference between [Ω1] and [Ω2] is that [Ω2] contains

[⌈L/2⌉ ≤ H] in place of [L ≤ S]. Moreover, [Ω′
2] is essentially [Ω′

2] plus rules of the

form (after a few simplifications)

d← Def (d). (5.19)

Let ∆ be the set of rules

Def (d)← d

for all d ∈ D. Since each of such atoms d ∈ D occurs in the head of a rule of

[Ω2] ∪ [Ω′
2] uniquely in (5.19), then, by the Completion Lemma, [Ω2] ∪ [Ω′

2] has the

same answer sets as [Ω2] ∪ [Ω′
2] ∪∆.

Let Γ be [Ω1] with the occurrence of [L ≤ S] replaced by [⌈L/2⌉ ≤ H ′], where

H ′ is defined as (5.18). Program Γ can also be seen as the result of replacing, in [Ω′
1]

every auxiliary atom d ∈ D with Def (d). Since [Ω′
2] ∪∆ contains

d↔ [i ≤ S],

for each d ∈ D, we can strongly equivalently rewrite [Ω2]∪ [Ω′
2]∪∆ as Γ∪ [Ω′

2]∪∆.

This program can also be rewritten as [Ω]∪[Ω′
2]∪∆, since Γ is [Ω] with the occurrence

of [L ≤ S] replaced by the strongly equivalent formula (by Lemma 17) [⌈L/2⌉ ≤ H ′].

Finally, we can drop ∆ from program [Ω1] ∪ [Ω′
2] ∪∆ by the Completion Lemma.

To sum up, we showed that [Ω2]∪ [Ω′
2] has the same answer sets of [Ω1]∪ [Ω′

2].

It remains to notice that X 7→ X \D is a 1–1 correspondence between the answer

set for [Γ] ∪ [Ω′
2] and for [Γ] ∪ [Ω′] by the Lemma on Explicit definitions, since

the only occurrences of auxiliary atoms d ∈ D in [Γ] ∪ [Ω′
2] are the heads of rules

[Ω′
2] \ [Ω′

1].

Theorem 3(a). For any Ω, the mapping Z 7→ Z ∩ σ is a 1–1 correspondence

between the answer sets of wc2cc(Ω) and the answer sets of Ω.
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Proof. Consider Figure 5.1. It is easy to verify that the value of Ω̂ ∪ Ω′ after the

execution of line 2 equals the value of Ω given as a parameter to the procedure.

Moreover, the program with nested expression returned by the procedure is identical

to the value of Ω̂ ∪ Ω′ before the execution of line 15. Consequently, it is sufficient

to show that Z 7→ Z ∩ σ is a 1–1 correspondence between the answer sets of Ω̂ ∪Ω′

after line 2 and the answer sets of Ω̂ ∪ Ω′ before line 15.

Between lines 2 and 14, programs Ω and Ω′ are modified only inside the while

loop (lines 5–12). Lemma 19 shows that the answer sets of Ω̂ ∪Ω′ are preserved by

each iteration of lines 5–12, with the possible addition — to each answer set — of

auxiliary atoms. The claim is then immediate.
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Chapter 6

Answer Sets for Propositional

Theories

Recall (see Section 3.6) that a rule with nested expression is seen, in equilibrium

logic, as a propositional formula — over atoms that may contain strong negation

— of a special kind: it is an implication whose antecedent and consequent don’t

contain other implications [Pearce, 1997].

In this section we present an extension of the definition of an answer set,

which allows every “rule” to be any arbitrary propositional formula.

This new definition of an answer set turns out to be equivalent to the con-

cept of an equilibrium model. This fact is important for several reasons. First of all,

theorems about equilibrium models — for instance the characterization of strong

equivalence in terms of the logic of here-and-there — hold for the new definition of

an answer set. Second, this new definition of an answer set provides a simpler char-

acterization of an equilibrium model, originally defined in terms of Kripke models.

We will also show how we can extend many useful theorems about logic

programs to arbitrary propositional theories.

In the next chapter we will show how we can use this new definition of an
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answer set to represent aggregates.

Proofs of the theorems stated in this chapter are presented in Section 6.5.

6.1 Formulas, reducts and answer sets

As in equilibrium logic, we consider (propositional) formulas formed from atoms of

the form a and ∼a (with strong negation) and connectives ⊥, ∨, ∧ and →. 1

A rule with nested expression can be seen as a formula as in Section 3.6. A

theory is a set of formulas. In view of the relationship between theories and logic

programs, we will sometimes call theories as programs. In the rest of the chapter,

F and G denote formulas, Γ a theory, X and Y coherent sets of atoms (that is, sets

of atoms that don’t contain a and ∼a for the same a), and ⊗ a binary connective.

As we did in Section 3.5, we identify an interpretation with the set of atoms

satisfied by it, and we write X |= F (X |= Γ) if X satisfies F (or Γ) in the sense of

classical logic.

The reduct FX of F relative to X is defined recursively:

• if X 6|= F then FX = ⊥,

• if X |= a (a is an atom) then aX = a, and

• if X |= F ⊗G then (F ⊗G)X = FX ⊗GX .

This definition of reduct is similar to a transformation proposed in [Osorio et al.,

2004, Section 4.2].

The reduct FX can be alternatively defined as the formula obtained from F

by replacing every outermost subformula not satisfied by X with ⊥ (this alternative

definition applies even if we treat ¬, ⊤ and ↔ as primitive connectives).

1¬F stands for F → ⊥; ⊤ stands for ⊥ → ⊥; F ↔ G stands for (F → G) ∧ (G → F ).
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For instance, if X contains p but not q then

((p→ q) ∨ (q → p))X = ⊥ ∨ (⊥ → p).

It is easy to see that, for every X, Y , ⊗, F and G,

Y |= (F ⊗G)X iff X |= F ⊗G and Y |= FX ⊗GX . (6.1)

The reduct ΓX of Γ relative to X is {FX : F ∈ Γ}. A set X is an answer set

for Γ if X is a minimal set satisfying ΓX .

For instance, let Γ be {(p → q) ∨ (q → p), p}. Set {p} is an answer set for

Γ because {p} is a minimal model satisfying the reduct {⊥ ∨ (⊥ → p), p}. It is not

difficult to see that no other set of atoms is an answer set for Γ.

6.2 Relationship to equilibrium logic and to the tradi-

tional definition of reduct

Theorem 4. For any theory, its models in the sense of equilibrium logic are identical

to its answer sets.

Since in application to programs with nested expressions equilibrium logic

is equivalent to the semantics defined in [Lifschitz et al., 1999], Theorem 4 implies

that our definition of an answer set extends the corresponding definition from that

paper.

In the language of propositional formulas, a nested expression can be seen as

a formula that contains no implications F → G with G 6= ⊥, and no equivalences.

In a program with nested expressions, the “rules” are implications with nested

expressions in the antecedent and the consequent. In application to programs with

nested expressions, our definition of the reduct is quite different from the traditional
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definition [Lifschitz et al., 1999]. Consider, for instance, the following program:

p← not q

q ← not r

According to [Lifschitz et al., 1999], its reduct relative to {r} is

p← ⊤

q ← ⊥;

under our definition, it is

⊥

q ← ⊥.

The first reduct is satisfied, for instance, by {p}, while the second is unsatisfiable.

However, some similarities between these formalisms exist. For instance, it is easy

to see that for any formula F , (¬F )X , according to the new definition, is ⊤ when

X 6|= F , and ⊥ otherwise, as with the traditional definition. Indeed, if X |= F then

X 6|= F → ⊥ and consequently

(¬F )X = (F → ⊥)X = ⊥.

Otherwise, X |= F → ⊥, so that

(¬F )X = (F → ⊥)X = FX → ⊥ = ⊥ → ⊥ = ⊤.

The following proposition states a more general relationship between the new

definition of the reduct and the traditional one. We denote by FX the reduct of a

nested expression F relative to X according to the definition from [Lifschitz et al.,

1999], and similarly for the reduct of a program.

Proposition 7. For any program Π with nested expressions and any set X of atoms,

ΠX is equivalent, in the sense of classical logic,

• to ⊥, if X 6|= Π, and
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• to the program obtained from ΠX by replacing all atoms that do not belong to

X by ⊥, otherwise.

Corollary 1. Given two sets of atoms X and Y with Y ⊆ X and any program Π,

Y |= ΠX iff X |= Π and Y |= ΠX .

This corollary suggests another way to verify that the definition of an answer

set proposed in this paper is equivalent to the usual one in the case of programs

with nested expressions. If X 6|= Π then X is not an answer set for Π under either

semantics. Otherwise, for every subset Y of X, Y |= ΠX iff Y |= ΠX by Corollary 1.

6.3 Properties of propositional theories

Several theorems about answer sets for logic programs can be extended to proposi-

tional theories.

Two theories Γ1 and Γ2 are strongly equivalent if, for every theory Γ, Γ1 ∪ Γ

and Γ2 ∪ Γ have the same answer sets.

Proposition 8. For any two theories Γ1 and Γ2, the following conditions are equiv-

alent:

(i) Γ1 is strongly equivalent to Γ2,

(ii) Γ1 is equivalent to Γ2 in the logic of here-and-there, and

(iii) for each set X of atoms, ΓX
1 is equivalent to ΓX

2 in classical logic.

The two characterizations of strong equivalence stated in this theorem are

similar to the ones between logic programs reviewed in Section 3.7. The equivalence

between (i) and (ii) is essentially Lemma 4 from [Lifschitz et al., 2001]. The equiv-

alence between (i) and (iii) is similar to Theorem 1 from [Turner, 2003]. However,

ours is not only more general — applicable to arbitrary propositional formulas —

but also simpler.
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To state several theorems below, we need the following definitions. An oc-

currence of an atom in a formula is positive if it is in the antecedent of an even

number of implications. An occurrence is strictly positive if such number is 0, and

negative if it odd. For instance, in a formula (p→ r)→ q, the occurrences of p and

q are positive, the one of r is negative, and the one of q is strictly positive.

The following proposition is an extension of the property that in each answer

set of a program, each atom occurs in the head of a rule of that program [Lifschitz,

1996, Section 3.1]. An atom is an head head atom of a theory Γ if it has a strictly

positive occurrence in Γ. 2

Proposition 9. Each answer set for a theory Γ consists of heads atoms of Γ.

In a logic program, adding constraints (rules whose heads are ⊥) to a program

Π removes the answer sets of Π that don’t satisfy the constraints. As a formula, a

constraint has the form ¬F , a typical formula without head atoms. Next theorem

generalizes the property of logic programs stated above to propositional theories.

Proposition 10. For every two propositional theories Γ1 and Γ2 such that Γ2 has

no head atoms, a consistent set X of atoms is an answer set for Γ1 ∪Γ2 iff X is an

answer set for Γ1 and X |= Γ2.

The following two propositions are generalizations of propositions stated in

Section 5.3.1 in the case of logic programs. We say that an occurrence of an atom

is in the scope of negation when it occurs in an implication F → ⊥.

Proposition 11 (Lemma on Explicit Definitions). Let Γ be any propositional theory,

and Q a set of atoms without strong negation such that, for each q ∈ Q, neither q

nor ∼ q occur in Γ. For each q ∈ Q, let Def(q) be a formula that doesn’t contain

any atoms from Q. Then X 7→ X \Q is a 1–1 correspondence between the answer

sets for Γ ∪ {Def(q)→ q : q ∈ Q} and the answer sets for Γ.

2In case of programs with nested expressions, it is easy to check that head atoms are atoms that
occur in the head of a rule outside the scope of negation.
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Proposition 12 (Completion Lemma). Let Γ be any propositional theory, and Q

a set of atoms without strong negation such that all positive occurrences of atoms

from Γ in Γ are in the scope of negation. For each q ∈ Q, let Def(q) be a formula

such that all negative occurrences of atoms from Q in Def(q) are in the scope of

negation. Then Γ ∪ {Def(q)→ q : q ∈ Q} and Γ ∪ {Def(q) ↔ q : q ∈ Q} have the

same answer sets.

The following proposition is essentially a generalization of the splitting set

theorem from [Lifschitz and Turner, 1994] and [Erdoğan and Lifschitz, 2004], which

allows to break logic programs/propositional theories into parts and compute the

answer sets separately.

Proposition 13 (Splitting Set Theorem). Let Γ1 and Γ2 be two theories such that

Γ1 doesn’t contain head atoms of Γ2. A set X of atoms is an answer set for Γ1 ∪Γ2

iff there is an answer set Y of Γ1 such that X is an answer set for Γ2 ∪ Y .

6.4 Computational complexity

Since the concept of an answer set is equivalent to the concept of an equilibrium

model, checking the existence of an answer set for a propositional theory is a ΣP
2 -

complete problem as for equilibrium models [Pearce et al., 2001].

In a logic program, if the head of each rule is an atom or ⊥ then the existence

of an answer set is NP-complete [Marek and Truszczyński, 1991]. We may wonder

if the existence of an answer set for a theory consisting of implications of the form

F → a

(a is an atom or ⊥) is still in class NP. The answer is negative: the following

proposition shows that as soon as we allow implications (that are not negations) in

formula F then we have the same expressivity — and complexity — of disjunctive

rules.
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Proposition 14. Rule

l1 ∧ · · · ∧ lm → a1 ∨ · · · ∨ an

(n > 0,m ≥ 0) where a1, . . . , an are atoms and l1, . . . , lm are literals, is strongly

equivalent to the set of n implications (i = 1, . . . , n)

(l1 ∧ · · · ∧ lm ∧ (a1 → ai) ∧ · · · ∧ (an → ai))→ ai. (6.2)

We will see, in the next chapter, that the conjunctive terms in the antecedent

of (6.2) can equivalently be replaced by aggregates of a simple kind, thus showing

that adding aggregates to the language of nondisjunctive programs increases the

complexity.

6.5 Proofs

6.5.1 Proofs of Theorem 4 and Proposition 7

Lemma 20. For any formulas F1, . . . , Fn (n ≥ 0), any set X of atoms, and any

connective ⊗ ∈ {∨,∧}, (F1 ⊗ · · · ⊗ Fn)X is classically equivalent to FX
1 ⊗ · · · ⊗ FX

n .

Proof. Case 1: X |= F1 ∧ · · · ∧ Fn. Then, by the definition of reduct, (F1 ∧ · · · ∧

Fn)X = FX
1 ∧ · · · ∧ FX

2 . Case 2: X 6|= F1 ∧ · · · ∧ Fn. Then (F1 ⊗ · · · ⊗ Fn)X = ⊥;

moreover, one of F1, . . . , Fn is not satisfied by X, so that one of FX
1 , . . . , FX

n is ⊥.

The case of disjunction is similar.

Lemma 21. For any X and Y such that X ⊆ Y and any theory Γ,

X |= ΓY iff (X,Y ) |= Γ.

Proof. It is sufficient to consider the case when Γ is a singleton {F}. The proof is

by induction on F .

• F is ⊥. X 6|= ⊥ and (X,Y ) 6|= ⊥.

89



• F is an atom a. X |= aY iff Y |= a and X |= a. Since X ⊆ Y , this means iff

X |= a, which is the condition for which (X,Y ) |= a.

• F has the form G ∧H. X |= (G ∧H)Y iff X |= GY ∧HY by Lemma 20, and

then iff X |= GY and X |= HY . This is equivalent, by induction hypothesis,

to say that (X,Y ) |= G and (X,Y ) |= H, and then that (X,Y ) |= G ∧H.

• The proof for disjunction is similar to the proof for conjunction.

• F has the form G→ H. X |= (G → H)Y iff X |= GY → HY and Y |= (G →

H), and then iff

X |= GY implies X |= HY , and Y |= G→ H.

This is equivalent, by the induction hypothesis, to

(X,Y ) |= G implies (X,Y ) |= H, and Y |= G→ H,

which is the definition of (X,Y ) |= G→ H.

Theorem 4. For any theory, its models in the sense of equilibrium logic are identical

to its answer sets.

Proof. A set Y is an equilibrium model of Γ iff

(Y, Y ) |= Γ and, for all proper subsets X of Y , (X,Y ) 6|= Γ.

In view of Lemma 21, this is equivalent to the condition

Y |= ΓY and, for all proper subsets X of Y , X 6|= ΓY .

which means that Y is an answer set for Γ.
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Lemma 22. The reduct FX of a nested expression F is equivalent, in the sense

of classical logic, to the nested expression obtained from FX by replacing all atoms

that do not belong to X by ⊥.

Proof. The proof is by structural induction on F .

• When F is ⊥ then FX = ⊥ = FX .

• For an atom a, aX = a. The claim is immediate.

• Let F be a negation ¬G (for instance, ¬⊥ = ⊤). If X |= G then FX = ⊥ =

FX ; otherwise, FX = ¬⊥ = ⊤ = FX .

• for ⊗ ∈ {∨,∧}, (G ⊗ H)X is GX ⊗ HX , and, by Lemma 20, (G ⊗ H)X is

equivalent to GX ⊗HX . The claim now follows by the induction hypothesis.

Proposition 7. For any program Π with nested expressions and any set X of atoms,

ΠX is equivalent, in the sense of classical logic,

• to ⊥, if X 6|= Π, and

• to the program obtained from ΠX by replacing all atoms that do not belong to

X by ⊥, otherwise.

Proof. If X 6|= Π then clearly ΠX contains ⊥. Otherwise, ΠX consists of formulas

FX → GX for each rule G ← F ∈ Π, and consequently for each rule GX ←

FX ∈ ΠX . Since each F and G is a nested expression, the claim is immediate by

Lemma 22.

6.5.2 Proofs of Propositions 8–10

Proposition 8. For any two theories Γ1 and Γ2, the following conditions are

equivalent:
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(i) Γ1 is strongly equivalent to Γ2,

(ii) Γ1 is equivalent to Γ2 in the logic of here-and-there, and

(iii) for each set X of atoms, ΓX
1 is equivalent to ΓX

2 in classical logic.

Proof. We will prove the equivalence between (i) and (ii) and between (ii) and (iii).

We start with the former. Lemma 4 from [Lifschitz et al., 2001] tells that, for any

two theories, the following conditions are equivalent:

(a) for every theory Γ, theories Γ1 ∪ Γ and Γ2 ∪ Γ have the same equilibrium

models, and

(b) Γ1 is equivalent to Γ2 in the logic of here-and-there.

Condition (b) is identical to (ii). Condition (a) can be rewritten, by Theorem 4, as

(a′) for every theory Γ, theories Γ1 ∪ Γ and Γ2 ∪ Γ have the same answer sets,

which means that Γ1 is strongly equivalent to Γ2.

It remains to prove the equivalence between (ii) and (iii). We have that

Γ1 is equivalent to Γ2 in the logic of here-and-there

iff, for every Y ,

for every X such that X ⊆ Y , (X,Y ) |= Γ1 iff (X,Y ) |= Γ2.

This condition is equivalent to

for every X ⊆ Y , (X,Y ) |= Γ1 iff (X,Y ) |= Γ2

and, by Lemma 21, to

for every X ⊆ Y , X |= ΓY
1 iff X |= ΓY

2 .

Since ΓY
1 and ΓY

2 contain atoms from Y only (the other atoms are replaced by ⊥ in

the reduct), this last condition expresses equivalence between ΓY
1 and ΓY

2 .
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Lemma 23. For any theory Γ, let S be a set of atoms that contains all head atoms

of Γ. For any set X of atoms, if X |= Γ then X ∩ S |= ΓX .

Proof. It is clearly sufficient to prove the claim for Γ that is a singleton {F}. The

proof is by induction on F .

• If F = ⊥ then X 6|= F , and the claim is trivial.

• For an atom a, if X |= a then aX = a, so that, since a ∈ S, X ∩ S |= aX .

• If X |= G ∧ H then X |= G and X |= H. Consequently, by induction

hypothesis, X ∩ S |= GX and X ∩ S |= HX . It remains to notice that

(G ∧H)X = GX ∧HX .

• The case of disjunction is similar to the case of conjunction.

• If X |= G → H then (G → H)X = GX → HX . Assume that X ∩ S |= GX .

Then X |= G. Consequently, since X |= G → H, X |= H. Since S contains

all head atoms of H, the claim follows by the induction hypothesis.

Lemma 24. For any theory Γ and any set X of atoms, X |= ΓX iff X |= Γ.

Proof. Reduct ΓX is obtained from Γ by replacing some subformulas that are not

satisfied by X with ⊥.

Proposition 9. Each answer set for a theory Γ consists of heads atoms of Γ.

Proof. Consider any theory Γ, the set S of head atoms of Γ, and an answer set X

of Γ. By Lemma 24, X |= Γ, so that, by Lemma 23, X ∩S |= ΓX . Since X ∩S ⊆ X

and no proper subset of X satisfies ΓX , it follows that X∩S = X, and consequently

that X ⊆ S.
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Proposition 10. For every two propositional theories Γ1 and Γ2 such that Γ2 has

no head atoms, a consistent set X of atoms is an answer set for Γ1 ∪Γ2 iff X is an

answer set for Γ1 and X |= Γ2.

Proof. If X |= Γ2 then ΓX
2 is satisfied by every subset of X by Lemma 23, so that

(Γ1∪Γ2)X is classically equivalent to ΓX
1 ; then clearly X is an answer set for Γ1∪Γ2

iff it is an answer set for Γ1. Otherwise, ΓX
2 contains ⊥, and X cannot be an answer

set for Γ1 ∪ Γ2.

6.5.3 Proofs of Propositions 11 and 13

We start with the proof of Proposition 13. Some lemmas are needed.

Lemma 25. If X is a answer set for Γ then ΓX is equivalent to X.

Proof. Since all atoms that occur in ΓX belong to X, it is sufficient to show that

the formulas are satisfied by the same subsets of X. By the definition of an answer

set, the only subset of X satisfying ΓX is X.

Lemma 26. Let S be a set of atoms that contains all atoms that occur in a theory Γ1

but does not contain any head atoms of a theory Γ2. For any set X of atoms, if X

is a answer set for Γ1 ∪ Γ2 then X ∩ S is an answer set for Γ1.

Proof. Since X is an answer set for Γ1 ∪ Γ2, X |= Γ1, so that X ∩ S |= Γ1, and, by

Lemma 24, X ∩ S |= ΓX∩S
1 . It remains to show that no proper subset Y of X ∩ S

satisfies ΓX∩S
1 . Let S′ be the set of head atoms of Γ2, and let Z be X ∩ (S′ ∪ Y ).

We will show that Z has the following properties:

(i) Z ∩ S = Y ;

(ii) Z ⊂ X;

(iii) Z |= ΓX
2 .
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To prove (i), note that since S′ is disjoint from S, and Y is a subset of X ∩ S,

Z ∩ S = X ∩ (S′ ∪ Y ) ∩ S = X ∩ Y ∩ S = (X ∩ S) ∩ Y = Y.

To prove (ii), note that set Z is clearly a subset of X. It cannot be equal to X,

because otherwise we would have, by (i),

Y = Z ∩ S = X ∩ S;

this is impossible, because Y is a proper subset of X ∩S. Property (iii) follows from

Lemma 23, because X |= Γ2, and S′ ∪ Y contains all head atoms of Γ2.

Since X is a answer set for Γ1 ∪ Γ2, from property (ii) we can conclude that

Z 6|= (Γ1∪Γ2)X . Consequently, by property (iii), Z 6|= ΓX
1 . Since all atoms that occur

in Γ1 belong to S, ΓX
1 = ΓX∩S

1 , so that we can rewrite this formula as Z 6|= ΓX∩S
1 .

Since all atoms that occur in ΓX∩S
1 belong to S, it follows that Z ∩ S 6|= ΓX∩S

1 . By

property (i), we conclude that Y 6|= ΓX∩S
1 .

Proposition 13. Let Γ1 and Γ2 be two theories such that Γ1 doesn’t contain head

atoms of Γ2. A set X of atoms is an answer set for Γ1 ∪ Γ2 iff there is an answer

set Y of Γ1 such that X is an answer set for Γ2 ∪ Y .

Proof. Take theories Γ1 and Γ2 such that Γ1 does not contain any head atoms of Γ2,

and let S be the set of atoms that occur in Γ1. Observe first that if a set X of atoms

is an answer set for Γ2 ∪ Y then X ∩ S = Y . Indeed, by Lemma 26 with Y as Γ1,

X ∩ S is an answer set for Y , and the only answer set of Y is Y . Consequently, the

assertion to be proved can be reformulated as follows: a set X of atoms is an answer

set for Γ1 ∪ Γ2 iff

(i) X ∩ S is an answer set for Γ1, and

(ii) X is an answer set for Γ2 ∪ (X ∩ S).
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If X∩S is not an answer set for Γ1 then X is not an answer set for Γ1∪Γ2 by

Lemma 26. Now suppose that X ∩ S is an answer set for Γ1. Then, by Lemma 25,

ΓX∩S
1 is equivalent to X ∩ S. Consequently,

(Γ1 ∪ Γ2)X = ΓX
1 ∪ ΓX

2 = ΓX∩S
1 ∪ ΓX

2 ↔ X ∩ S ∪ ΓX
2

= (X ∩ S)X ∪ ΓX
2 =

(

(X ∩ S) ∪ Γ2

)X

We can conclude that X is an answer set for Γ1 ∪ Γ2 iff X is an answer set for

Γ2 ∪ (X ∩ S).

Proposition 11. Let Γ be any propositional theory, and Q a set of atoms without

strong negation such that, for each q ∈ Q, neither q nor ∼ q occur in Γ. For each

q ∈ Q, let Def(q) be a formula that doesn’t contain any atoms from Q. Then X 7→

X \Q is a 1–1 correspondence between the answer sets for Γ∪{Def(q)→ q : q ∈ Q}

and the answer sets for Γ.

Proof. Let Γ2 be {Def(q) → q : q ∈ Q}. In view of the splitting set theorem

(Proposition 13), a set X is an answer set for Γ ∪ Γ2 iff

there is an answer set Y for Γ such that X is an answer set for Γ2 ∪ Y .

By reasoning similar to one used in the proof of Proposition 13, the only set Y

such that X is an answer set for Γ2 ∪ Y is X \ Q. Then the splitting set theorem

(Proposition 13) tells us that X is an answer set for Γ ∪ Γ2 iff

X \Q is an answer set for Γ and X is answer set for Γ2 ∪ (X \Q).

Clearly, if X is an answer set for Γ∪Γ2 then X \Q is an answer set for Γ. Now take

any answer set Y for Γ. We need to show that there is exactly one answer set X of

Γ ∪ Γ2 such that X \Q = Y . In view of the splitting set theorem, it is sufficient to

show that

Z = {q ∈ Q : X \Q |= Def(q)} ∪ Y
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is the only answer set X for Γ2 ∪ Y such that X \Q = Y . If X doesn’t contain an

element q ∈ Q such that X |= Def(q) then X 6|= Γ2, so that X is not an answer set

for Γ2 ∪ Y . In all other cases, X |= Γ2, so that (Γ2 ∪ Y )X is equivalent to

{Def(q)X → q : q ∈ Q,X |= Def(q)} ∪ Y.

In this reduct, each Def(q)X is classically equivalent to ⊤. Indeed, first of all, since

Y = X \Q, all atoms that occur in Def(q)X belong to Y , and then we can replace

such occurrences with ⊤, obtaining a formula that is either equivalent to ⊤ or ⊥.

It remains to notice that since X |= Def(q) then X |= Def(q)X .

Theory (Γ2 ∪ Y )X is then equivalent to the set Z defined above. We can

conclude that the only answer set X for Γ2 ∪ Y such that X |= Def(q) is Z.

6.5.4 Proof of Proposition 12

In order to prove the Completion Lemma, we will need the following lemma.

Lemma 27. Take any three sets X, Y and S of atoms such that Y ⊆ X. For any

formula F ,

(a) if each positive occurrence of an atom from S in F is in the scope of negation

and Y |= FX then Y \ S |= FX , and

(b) if each negative occurrence of an atom from S in F is in the scope of negation

and Y \ S |= FX then Y |= FX .

Proof. We prove the two claims simultaneously by induction on F .

• If X 6|= F then FX = ⊥, and the claim is trivial. This covers the case in which

F = ⊥.

• If X |= F and F is an atom a then claim (b) holds because if a ∈ Y \ S then

a ∈ Y . For claim (a), if a 6∈ S and a ∈ Y then a ∈ Y \ S.
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• If X |= F and they are a conjunction or a disjunction, the claim is almost

immediate by Lemma 20 and induction hypothesis.

• The case in which X |= F and F has the form G → H remains. Clearly,

(G → H)X = GX → HX . We describe a proof of claim (a). The proof

for (b) is similar. Case 1: H = ⊥. Then, since X |= F , FX = ⊤, and the

claim clearly follows. Case 2: H 6= ⊥. Assume that no atom from S has

a positive occurrence in GX → HX outside the scope of the negation, and

that Y \ S |= GX . We want to show that Y \ S |= HX . Notice that no

atom from S has a negative occurrence in GX outside the scope of negation;

consequently, by the induction hypothesis (claim (b)), Y |= GX . On the other

hand, Y |= (G → H)X , so that Y |= HX . Since no atom from S has a

positive occurrence in HX outside the scope of negation, we can conclude that

Y \ S |= HX by induction hypothesis (claim (a)).

Proposition 12. Let Γ be any propositional theory, and Q a set of atoms without

strong negation such that all positive occurrences of atoms from Γ in Γ are in the

scope of negation. For each q ∈ Q, let Def(q) be a formula such that all negative

occurrences of atoms from Q in Def(q) are in the scope of negation. Then Γ ∪

{Def(q)→ q : q ∈ Q} and Γ ∪ {Def(q)↔ q : q ∈ Q} have the same answer sets.

Proof. Let Γ1 be Γ∪{Def(q)→ q : q ∈ Q} and Let Γ2 be Γ1∪{q → Def(q) : q ∈

Q}. We want to prove that a set X is an answer set for both theories or for none of

them. Since ΓX
1 ⊆ ΓX

2 , ΓX
2 entails ΓX

1 . If the opposite entailment holds also then we

clearly have that ΓX
2 and ΓX

1 are satisfied by the same subsets of X, and the claim

immediately follows. Otherwise, for some Y ⊆ X, Y 6|= ΓX
2 and Y |= ΓX

1 . First of

all, that means that X |= Γ1, so that ΓX
1 is equivalent to

ΓX ∪ {Def(q)X → q : q ∈ Q ∩X}.
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Secondly, set Y is one of the sets Y ′ having the following properties:

(i) Y ′ \Q = Y \Q, and

(ii) Y ′ |= Def(q)X → q for all q ∈ Q ∩X.

Let Z be the intersection of such sets Y ′, and let ∆ be {q → Def(q)X : q ∈ Q∩X}.

Set Z has the following properties:

(a) Z ⊆ Y ,

(b) Z |= ΓX
1 , and

(c) Z |= ∆.

Indeed, claim (a) holds since Y is one of the elements Y ′ of the intersection. To

prove (b), first of all, we observe that Z \Q = Y \Q, so that, by (a), there is a set

S ⊆ Q such that Z = Y \S; as Y |= ΓX and Γ has all positive occurrences of atoms

from S ⊆ Q in the scope of negation, it follows that Z |= ΓX by Lemma 27(a).

It remains to show that, for any q, if Z |= Def(q)X then q ∈ Z. Assume that

Z |= Def(q)X . Then, since Def(q) has all negative occurrences of atoms from Q in

the scope of negation, and since all Y ′ whose intersection generate Z are superset

of Z with Y ′ \Z ⊆ Q, all those Y ′ satisfy Def(q)X by Lemma 27. By property (ii),

we have that q ∈ Y ′ for all Y ′, and then q ∈ Z.

It remains to prove claim (c). Take any q ∈ Z. Set Y ′ = Z \ {q} satisfies

condition (i), but it cannot satisfy (ii), because sets Y ′ that satisfy (i) and (ii) are

supersets of Z by construction of Z. Consequently, Y ′ 6|= Def(q)X . Since all positive

occurrences of atom q in Def(q) are in the scope of negation and Y ′ = Z \ {q}, we

can conclude that Z 6|= Def(q)X by Lemma 27 again.

Now consider two cases. If X 6|= Γ2 then clearly X is not an answer for Γ2.

It is not an answer set for Γ1 as well. Indeed, since X |= Γ1, we have that, for some

q ∈ Q ∩X, X 6|= Def(q). Consequently, Def(q)X = ⊥ and then X 6|= ∆, but, since
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Z |= ∆ by (c) and Z ⊆ Y ⊆ X by (a), Z is a proper subset of X. Since Z |= ΓX
1

by (b), X is not an answer set for Γ1.

In the other case (X |= Γ2) it is not hard to see that ΓX
2 is equivalent to

ΓX
1 ∪∆. We have that Z |= ΓX

1 by (b), and then Z |= ΓX
2 by (c). Since Y 6|= ΓX

2 ,

Z 6= Y . On the other hand, Z ⊆ Y ⊆ X by (a). This means that Z is a proper

subset of X that satisfies ΓX
1 and ΓX

2 , and we can conclude that X is not an answer

set for any of Γ1 and Γ2.

6.5.5 Proof of Proposition 14

Proposition 14. Rule

l1 ∧ · · · ∧ lm → a1 ∨ · · · ∨ an (6.3)

(n > 0,m ≥ 0) where a1, . . . , an are atoms and l1, . . . , lm are literals, is strongly

equivalent to the set of n implications (i = 1, . . . , n)

(l1 ∧ · · · ∧ lm ∧ (a1 → ai) ∧ · · · ∧ (an → ai))→ ai. (6.4)

Proof. Let F be (6.3) and Gi (i = 1, . . . , n) be (6.4). We want to prove that F is

strongly equivalent to {G1, . . . , Gn} by showing that FX is classically equivalent to

{GX
1 , . . . , GX

n }. Let H be l1 ∧ · · · ∧ lm.

Case 1: X 6|= H. Since H is a conjunctive term of F and all Gi’s, it is easy

to verify that their reducts relative to X are all equivalent to ⊥. Case 2: X |= H

and X 6|= F . Then clearly FX = ⊥. But ΓX is ⊥: indeed, since X 6|= F , X 6|= li for

all i = 1, . . . ,m. It follows that the consequent of each Gi is not satisfied by X, but

the antecedent is satisfied, because X |= H and in each implication aj → ai in Gi,

the antecedent is not satisfied. Case 3: X |= H and X |= F . This means that some

of a1, . . . , an belong to X. Assume, for instance, that a1, . . . , ap (0 < p ≤ n) belong
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to X, and ap+1, . . . , an don’t. Then FX is equivalent to HX → (a1 ∨ · · · ∨ ap). Now

consider formula Gi. If i > p then the consequent ai is not satisfied by X, but also

the antecedent is not: it contains an implication a1 → ai; consequently GX
i is ⊤.

On the other hand, if i ≤ p then the consequent ai is satisfied by X, as well as each

implication aj → ai in the antecedent of Gi. After a few simplifications, we can

rewrite GX
i as

(HX ∧ (a1 → ai) ∧ · · · ∧ (ap → ai))→ ai.

It is not hard to see that this formula is classically equivalent to FX , so that the

claim easily follows.
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Chapter 7

A New Definition of an

Aggregate

Aggregates are an important construct in answer set programming 2.2.3. In this

section, we provide a new definition of an aggregate. They are introduced in the

syntax of propositional theories (Chapter 6) in a natural way, essentially behaving

— in some sense — as propositional connectives.

This definition has three nice properties. First of all, it is very general and

uniform. It allows, for instance, both disjunctive rules and choice rules. It also

allows aggregates nested into each other. It is unclear if nested aggregates may

be useful in an ASP-program, but they can be useful for theoretical purposes: for

instance, we used nested weight constraints to prove Theorem 3(a).

Second, our definition of an aggregate doesn’t give the unintuitive results of

weight constraints and PDB-aggregates that were mentioned in Sections 3.2 and 3.3.

We will see that when aggregates are monotone or antimonotone (see Section 7.3),

all definitions of an aggregates are essentially equivalent to each other; in the most

general case, our definition of an aggregate is a generalization of FLP-aggregates.

Finally, it turns out (Section 7.2) that an arbitrary aggregate can be rewritten
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as a propositional formula, reducing the syntax to the one of propositional theories

proposed in Chapter 6. This provides a way to apply theorems about proposi-

tional theories (Section 6.3) to programs with aggregates. For instance, the proof

of Proposition 17 uses several of such theorems.

7.1 Representing Aggregates

A formula with aggregates is defined recursively as follows:

• atoms of the form a and ∼a, and ⊥ are formulas with aggregates,

• propositional combinations formed from formulas with aggregates using con-

nectives ∨, ∧ and → are formulas with aggregates, and

• any expression of the form

op〈{F1 = w1, . . . , Fn = wn}〉 ≺ N (7.1)

where

– op is (a symbol for) a function from multisets of real numbers to R ∪

{−∞, +∞} (such as sum, product, min, max, etc.),

– F1, . . . , Fn are formulas with aggregates, and w1, . . . , wn are (symbols for)

real numbers (“weights”),

– ≺ is (a symbol for) a binary relation between real numbers, such as ≤

and =, and

– N is (a symbol for) a real number,

is a formula with aggregates.

A (ground) aggregate is a formula with aggregates of the form (7.1). A theory with

aggregates is a set of formulas with aggregates.
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Recall that a PDB-aggregate was introduced in Section 3.3 as an expression of

the form (7.1) also, except that F1, . . . , Fn are literals; similarly, in FLP-aggregates

(Section 3.4), F1, . . . , Fn are conjunctions of atoms.

We extend the recursive definition of satisfaction for propositional formulas

to formulas with aggregates, by adding a clause for aggregates: a coherent set X of

atoms satisfies an aggregate (7.1) if op(W ) ≺ N for the multiset W consisting of

the weights wi (1 ≤ i ≤ n) such that X |= Fi. As usual, we say that X satisfies a

theory Γ if X satisfies all formulas in Γ.

For example,

sum〈{p = 1, q = 1}〉 6= 1 (7.2)

is satisfied by sets of atoms that contain both p and q or none of them.

The definition of reduct for formulas with aggregates extends the one of

propositional formulas (Section 6.1), with the case of aggregates: for an aggregate

A of the form (7.1),

AX =











op〈{FX
1 = w1, . . . , F

X
n = wn}〉 ≺ N, if X |= A,

⊥, otherwise.

This is similar to the clause for binary connectives:

(F ⊗G)X =











FX ⊗GX , if X |= F ⊗G,

⊥, otherwise.

As in the case of propositional formulas, we can see the reduct process for a formula

with aggregates as the result of replacing with ⊥ each maximal subformula not

satisfied by X.

As usual, the reduct ΓX of a theory Γ with aggregates relative to a coherent

set X of atoms is the set of reducts FX for all F ∈ Γ. Set X is an answer set for Γ

if X is a minimal model of ΓX .
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Consider, for instance, the theory Γ consisting of one formula

sum〈{p = −1, q = 1}〉 ≥ 0→ q. (7.3)

Set {q} is an answer set for Γ. Indeed, since both the antecedent and consequent

of (7.3) are satisfied by {q}, Γ{q} is

sum〈{⊥ = −1, q = 1}〉 ≥ 0→ q.

The antecedent of the implication above is satisfied by any set of atoms, so the

whole formula is equivalent to q. Consequently, {q} is the minimal model of Γ{q},

and then an answer set for Γ.

7.2 Aggregates as Propositional Formulas

The introduction of the concept of a formula/theory with aggregates is actually not

necessary. In fact, we can identify (7.1) with the formula

∧

I⊆{1,...,n} : op({wi : i∈I})6≺N

((

∧

i∈I

Fi

)

→
(

∨

i∈I

Fi

))

, (7.4)

where I stands for {1, . . . , n} \ I, and 6≺ is the negation of ≺.

For instance, if we consider aggregate (7.2), the conjunctive terms in (7.4)

correspond to the cases when the sum of weights is 1, that is, when I = {1} and

I = {2}. The two implications are q → p and p→ q respectively, so that (7.2) is

(q → p) ∧ (p→ q). (7.5)

Similarly,

sum〈{p = 1, q = 1}〉 = 1 (7.6)

is

(p ∨ q) ∧ ¬(p ∧ q). (7.7)
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Even though (7.2) can be seen as the negation of (7.2), the negation of (7.7) is not

strongly equivalent to (7.5) (although they are classically equivalent). This shows

that it is generally incorrect to “move” a negation from a binary relation symbol

(such as 6=) in front of the aggregate as the unary connective ¬.

Next proposition shows that this understanding of aggregates as proposi-

tional formulas is equivalent to the semantics for theories with aggregates of the

previous section.

Proposition 15. Let A be an aggregate of the form (7.1), and let G be the corre-

sponding formula (7.4). For any coherent sets X and Y of atoms,

(a) X |= G iff X |= A, and

(b) Y |= GX iff Y |= AX .

It can be shown using Proposition 8 from Section 6.3 that if we want to

identify (7.1) with a formula so that Proposition 15 holds then (7.4) is the only

choice, modulo strong equivalence.

Treating aggregates as propositional formulas allows us to apply many prop-

erties of propositional theories presented in the previous chapter to theories with

aggregates also. We then have the concept of an head atom, of strong equivalence,

we can use the completion lemma and so on. We will use several of those properties

to prove Proposition 17 below. In the rest of the chapter we will often make no

distinctions between the two ways of defining the semantics of aggregates discussed

here.

7.3 Monotone Aggregates

An aggregate op〈{F1 = w1, . . . , Fn = wn}〉 ≺ N is monotone if, for each pair of

multisets W1, W2 such that W1 ⊆W2 ⊆ {w1, . . . , wn}, op(W2) ≺ N is true whenever
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op(W1) ≺ N is true. The definition of an antimonotone aggregate is similar, with

W1 ⊆W2 replaced by W2 ⊆W1.

For instance,

sum〈{p = 1, q = 1}〉 > 1. (7.8)

is monotone, and

sum〈{p = 1, q = 1}〉 < 1. (7.9)

is antimonotone. An example of an aggregate that is neither monotone nor anti-

monotone is (7.2).

Proposition 16. For any aggregate op〈{F1 = w1, . . . , Fn = wn}〉 ≺ N , for-

mula (7.4) is strongly equivalent to

∧

I⊆{1,...,n} : op({wi : i∈I})6≺N

(

∨

i∈I

Fi

)

(7.10)

if the aggregate is monotone, and to

∧

I⊆{1,...,n} : op({wi : i∈I})6≺N

(

¬
∧

i∈I

Fi

)

(7.11)

if the aggregate is antimonotone.

In other words, if op〈S〉 ≺ N is monotone then the antecedents of the im-

plications in (7.4) can be dropped. Similarly, in case of antimonotone aggregates,

the consequents of these implications can be replaced by ⊥. In both cases, (7.4) is

turned into a nested expression, if F1, . . . , Fn are nested expressions.

For instance, the monotone aggregate (7.8) is

(p ∨ q) ∧ (p→ q) ∧ (q → p),

which is equivalent, in the logic of here and there, to

(p ∨ q) ∧ q ∧ p
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and then to q ∧ p. In the case of the antimonotone aggregate (7.9), the formula

((p ∧ q)→ ⊥) ∧ (p→ q) ∧ (q → p)

is equivalent, in the logic of here-and-there, to

¬(p ∧ q) ∧ ¬p ∧ ¬q,

and then to ¬p ∧ ¬q.

On the other hand, if an aggregate is neither monotone nor antimonotone, it

may be not possible to find a nested expression equivalent, in the logic of here-and-

there, to (7.4), even if F1, . . . , Fn are nested expressions. This is the case for (7.2).

Indeed, let A denote (7.2). Considering that this expression stands for (7.5), it is

easy to check that ({p}, {p, q}) 6|= A and (∅, {p, q}) |= A. On the other hand, for

any nested expression F , if ({p}, {p, q}) 6|= F then (∅, {p, q}) 6|= F (easily provable

by structural induction.)

In some uses of ASP, aggregates that are neither monotone nor antimonotone

are essential, as discussed in the next Section.

7.4 Example

We consider the following variation of the combinatorial auction problem [Baral and

Uyan, 2001], which can be naturally formalized using an aggregate that is neither

monotone nor antimonotone.

Joe wants to move to another town and has the problem of removing all his

bulky furniture from his old place. He has received some bids: each bid may be for

one piece or several pieces of furniture, and the amount offered can be negative (if

the value of the pieces is lower than the cost of removing them). A junkyard will

take any object not sold to bidders, for a price. The goal is to find a collection of

bids for which Joe doesn’t lose money, if there is any.
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Assume that there are n bids, denoted by atoms b1, . . . , bn. We express by

the formulas

bi ∨ ¬bi (7.12)

(1 ≤ i ≤ n) that Joe is free to accept any bid or not. Clearly, Joe cannot accept

two bids that involve the selling of the same piece of furniture. So, for every such

pair i, j of bids, we include the formula

¬(bi ∧ bj). (7.13)

Next, we need to express which pieces of the furniture have not been given to bidders.

If there are m objects we can express that an object i is sold by bid j by adding the

rule

bj → si (7.14)

to our theory.

Finally, we need to express that Joe doesn’t lose money by selling his items.

This is done by the aggregate

sum〈{b1 = w1, . . . , bn = wn,¬s1 = −c1, . . . ,¬sm = −cm}〉 ≥ 0, (7.15)

where each wi is the amount of money (possibly negative) obtained by accepting

bid i, and each ci is the money requested by the junkyard to remove item i. Note

that (7.15) is neither monotone nor antimonotone.

Proposition 17. X 7→ X∩{b1, . . . , bn} is a 1–1 correspondence between the answer

sets of the theory consisting of formulas (7.12)–(7.15) and the sets of accepted bids

b1, . . . , bn that are solutions of this problem.

7.5 Computational Complexity

Since theories with aggregates generalize disjunctive problems, the problem of the

existence of an answer set for a theory with aggregates clearly is ΣP
2 -hard. We need
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to check in which class of the computational hierarchy this problem belongs.

If we represent aggregates as formulas (7.4) then a theory with aggregates

is just a propositional theory, and we saw in Section 6.4 that this problem is in

class ΣP
2 . However, we should consider that a formula (7.4) can be exponentially

larger that the original aggregate, so this is generally not a good way of representing

aggregates from a computational point of view.

We can avoid the growth in size by using the semantics of Section 7.1, and

it turns out that the computation is not harder than for propositional theories.

Proposition 18. If, for every aggregate, computing op(W ) ≺ N requires polynomial

time, then the existence of an answer set for a theory with aggregates is a ΣP
2 -

complete problem.

For a logic program with nested expressions, if the heads are atoms or ⊥ then

the existence of an answer set is NP-complete. If we allow nonnested aggregates in

the body, for instance by allowing rules

A1 ∧ · · · ∧An → a

(A1, . . . , An are aggregates and a is an atom or ⊥) then the complexity increases

to ΣP
2 . This follows from Proposition 14, since, in (6.2), each formula li is the

propositional representation of sum〈{li = 1}〉 ≥ 1; similarly, each aj → ai is the

propositional representation of sum〈{aj = −1, ai = 1}〉 ≥ 0.

However, if we allow monotone and antimonotone aggregates only — even

nested — in the antecedent, we are in class NP.

Proposition 19. Consider theories with aggregates consisting of formulas of the

form

F → a,

where a is an atom or ⊥, and F contains monotone and antimonotone aggregates

only, and no implications other than negations. If, for every aggregate, computing
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op(W ) ≺ N requires polynomial time then the problem of the existence of an answer

set for theories of this kind is an NP-complete problem.

Similar results have been independently proven in [Calimeri et al., 2005] for

FLP-aggregates.

7.6 Other Formalisms

7.6.1 Programs with weight constraints

Recall that a weight constraint L ≤ S has the same intuitive meaning of sum〈S〉 ≥

L, and S ≤ U has the same intuitive meaning of sum〈S〉 ≤ U . Next theorem shows

that there is indeed a relationship between them.

Theorem 5. If L ≤ S and S ≤ U are weight constraints where all weights are

nonnegative,

(a) [L ≤ S] is strongly equivalent to sum〈S〉 ≥ L, and

(b) [S ≤ U ] is strongly equivalent to sum〈S〉 ≤ U.

The theorem above and Theorem 1 shows that our concept of a general ag-

gregate captures the concept of weight constraints defined in [Niemelä and Simons,

2000], when all weights are nonnegative. When we consider negative weights, how-

ever, such correspondence doesn’t hold. (As mentioned in the introduction of this

chapter, our view of negative weights is equivalent to the one proposed in [Faber et

al., 2004].) For instance, we don’t consider (3.3) to be the same as (3.4), while —

under our semantics — program

p← 0 ≤ {p = 2, p = −1}

has the same answer set ∅ of (3.6).
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While weight constraints with positive weights only are either monotone or

antimonotone, this is not the case when negative weights are allowed as in (7.15). In

particular, it may not be possible to represent an aggregate of this kind by a nested

expression.

Under the semantics of [Niemelä and Simons, 2000], the existence of an

answer set for a program Ω with weight constraints is an NP-complete problem

even in presence of negative weights, since they reduce nonmonotone aggregates

into monotone and antimonotone ones. On the other hand, under our semantics,

the same problem is in class Σ2
P .

7.6.2 PDB-aggregates

We reviewed the syntax and semantics of PDB-aggregates [Pelov et al., 2003] in

Section 3.3. Under the syntax of propositional formulas with aggregates, a PDB-

aggregate has the form (7.1) where F1, . . . , Fn are literals. A program with PDB-

aggregates has the form

A1 ∧ · · · ∧Am → a

where A1, . . . , Am are PDB-aggregates and a is an atom.

In case of monotone and antimonotone PDB-aggregates and in the absence of

negation as failure, the semantics of Pelov et al. is equivalent to ours. The theorem

refers to definitions given in Section 3.3.

Proposition 20. For any monotone or antimonotone PDB-aggregates A of the

form (7.1) where F1, . . . , Fn are atoms, Atr is strongly equivalent to (7.4).

The claim above is not necessarily true when either the aggregates are not

monotone or antimonotone, or when some formula in the aggregate is a negative

literal. Programs (3.10) and (3.12) are examples of programs of PDB-aggregates of

those two kinds where the semantics of Pelov et al. and ours give different answer
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sets. For those programs, our semantics seems to give more intuitive results: for

us, (3.10) has the same answer sets of (3.11), and (3.12) has the same answer sets

of (3.13).

7.6.3 FLP-aggregates

We will now show that our semantics of aggregates is an extension of the semantics

proposed by Faber, Leone and Pfeifer [2004]. Under the syntax of propositional

formulas extended with aggregates, an FLP-program is a set of formulas

A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬Ap → a1 ∨ · · · ∨ an (7.16)

(n,m ≥ 0), where a1, . . . , an are atoms and A1, . . . , Ap are FLP-aggregates. An

FLP-program is positive if, in each formula (7.16), p = m.

Theorem 6. The answer sets for a positive FLP-program under our semantics are

identical to its answer sets in the sense of [Faber et al., 2004].

The theorem doesn’t apply to arbitrary FLP-aggregates for the different

meaning that has negation ¬ in front of an aggregate. In case of [Faber et al., 2004],

¬op〈S〉 ≺ N is semantically the same as op〈S〉 6≺ N , while we have seen that this

fact doesn’t always hold in our semantics. As a program with FLP-aggregate can

be easily rewritten as a positive program with FLP-aggregate, our definition of an

aggregate essentially generalizes the one of [Faber et al., 2004].

7.7 Proofs

Lemma 28. Let F be formula (7.1). If X |= F then FX is classically equivalent to

∧

I⊆{1,...,n} : op({wi : i∈I})6≺N

((

∧

i∈I

FX
i

)

→
(

∨

i∈I

FX
i

))

. (7.17)
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Proof. Formula FX is classically equivalent, in view of Lemma 20, to

∧

I⊆{1,...,n} : op({wi : i∈I})6≺N

((

∧

i∈I

Fi

)

→
(

∨

i∈I

Fi

))X
.

Notice that all implications in (7.1) are satisfied by X because X |= F . Conse-

quently, FX is classically equivalent to

∧

I⊆{1,...,n} : op({wi : i∈I})6≺N

((

∧

i∈I

Fi

)X
→

(

∨

i∈I

Fi

)X)

,

and then, by Lemma 20 again, to (7.17).

Proposition 15. Let A be an aggregate of the form (7.1), and let G be the corre-

sponding formula (7.4). For any coherent sets X and Y of atoms,

(a) X |= G iff X |= A, and

(b) Y |= GX iff Y |= AX .

Proof. We start with part (a). Consider formula HI (where I ⊆ {1, . . . , n}):

(

∧

i∈I

Fi

)

→
(

∨

i∈I

Fi

)

.

For each coherent set X of atoms there is exactly one set I such that X 6|= Hi: the

set IX that consists of the i’s such that X |= Fi. Consequently,

X |= G iff HIX
is not a conjunctive term of G

iff op({wi : i ∈ IX}) ≺ N

iff op({wi : X |= Fi}) ≺ N

iff X |= A.

For (b), if X 6|= A then X 6|= G by (a) and then both reducts are ⊥. Oth-

erwise, by (a) again, X |= G, and then GX is equivalent, in view of Lemma 28,

to (7.17). By (a) again, this formula is satisfied by the same consistent sets of atoms

that satisfy

op〈{FX
1 = w1, . . . , F

X
n = wn}〉 ≺ N,
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which is AX .

Lemma 29. For any aggregate op〈{F1 = w1, . . . , Fn = wn}〉 ≺ N , formula (7.4) is

classically equivalent to

∧

I⊆{1,...,n} : op({wi : i∈I})6≺N

(

∨

i∈I

Fi

)

(7.18)

if the aggregate is monotone, and to

∧

I⊆{1,...,n} : op({wi : i∈I})6≺N

(

¬
∧

i∈I

Fi

)

if the aggregate is antimonotone.

Proof. Consider the case of a monotone aggregate first. Let G be (7.4), and H

be (7.18). It is easy to verify that H entails G. The opposite direction remains.

Assume H, and we want to derive every conjunctive term

∨

i∈I

Fi (7.19)

in G. For every conjunctive term D of the form (7.19) in G, op({wi : i ∈ I}) 6≺ N .

As the aggregate is monotone then, for every subset I ′ of I, op({wi : i ∈ I ′}) 6≺ N ,

so that the implication
(

∧

i∈I′

Fi

)

→
(

∨

i∈I′

Fi

)

is a conjunctive term of H for all I ′ ⊆ I. Then, since I ′ = I ∪ (I \ I ′), (“⇒” denotes

entailment, and “⇔” equivalence)
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H ⇒
∧

I′⊆I

((

∧

i∈I′

Fi

)

→
(

∨

i∈I′

Fi

))

⇔
∧

I′⊆I

(((

∧

i∈I′

Fi

)

∧
∧

i∈I′\I

¬Fi

)

→
(

∨

i∈I

Fi

))

⇔
(

∨

I′⊆I

((

∧

i∈I′

Fi

)

∧
∧

i∈I′\I

¬Fi

))

→ D.

The antecedent of the implication is a tautology: for each interpretation X,

the disjunctive term relative to I ′ = {i ∈ I : X |= Fi} is satisfied by X. We can

conclude that H entails D.

The proof for antimonotone aggregates is similar.

Proposition 16. For any aggregate op〈{F1 = w1, . . . , Fn = wn}〉 ≺ N , for-

mula (7.4) is strongly equivalent to

∧

I⊆{1,...,n} : op({wi : i∈I})6≺N

(

∨

i∈I

Fi

)

if the aggregate is monotone, and to

∧

I⊆{1,...,n} : op({wi : i∈I})6≺N

(

¬
∧

i∈I

Fi

)

if the aggregate is antimonotone.

Proof. Consider the case of a monotone aggregate first. Let G be (7.4), and H

be (7.18). In view of Proposition 8, it is sufficient to show that GX is equivalent to

HX in classical logic for all sets X. If X 6|= H then also X 6|= G by Lemma 29, so

that both reducts are ⊥. Otherwise (X |= H), by the same lemma, X |= G. Then,
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by Lemma 28, GX is classically equivalent to (7.17). On the other hand, it is easy

to verify, by applying Lemma 20 to HX twice, that HX is classically equivalent to

∧

I⊆{1,...,n} : op({wi : i∈I})6≺N

(

∨

i∈I

FX
i

)

.

The claim now follows by Lemma 29.

The reasoning for nonmonotone aggregates is similar.

For the proof of Proposition 17, let Γ be the theory consisting of formu-

las (7.12)–(7.15).

Lemma 30. For any answer set X of Γ, X contains an atom si iff X contains an

atom bj such that bid j involves selling object i.

Proof. Consider Γ as a propositional theory. We notice that

• formulas (7.14) can be strongly equivalently grouped as m formulas (i =

1, . . . ,m)
(

∧

j=1,...,n: object i is part of bid j

bj

)

→ si,

and

• no other formula of Γ contains atoms of the form si outside the scope of

negation.

Consequently, by the Completion lemma (Proposition 12), formulas (7.14) in Γ can

be replaced by by m formulas (i = 1, . . . ,m)

(

∧

j=1,...,n: object i is part of bid j

bj

)

↔ si. (7.20)

preserving the answer sets. It follows that every answer set for Γ must satisfy

formulas (7.20), and the claim immediately follows.

A solution of Joe’s problem is a set of atoms bi such that
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(a) the relative bids involve selling disjoint sets of items,

(b) the sum of the money earned from the bids is greater than the money spent

giving away the remaining items.

Proposition 17. X 7→ X∩{b1, . . . , bn} is a 1–1 correspondence between the answer

sets of the theory consisting of formulas (7.12)–(7.15) and the sets of accepted bids

b1, . . . , bn that are solutions of this problem.

Proof. Take any answer set X of Γ. Since X satisfies rules (7.13) of Γ, condition (a)

is satisfied. Condition (b) is satisfies as well, because X contains exactly all atoms si

sold in some bids by Lemma 30, and since X satisfies aggregate (7.15) that belongs

to Γ.

Now consider a solution of Joe’s problem. This determines which atoms

of the form bi belongs to a possible corresponding answer set X. Consequently,

Lemma 30 determines also which atoms of the form sj belong to X, reducing the

candidate answer sets X to one. We need to show that this X is indeed an answer

set for Γ. The reduct ΓX consists of (after a few simplifications)

(i) all atoms bi that belong to X (from (7.12)),

(ii) ⊤ from (7.13) since (a) holds,

(iii) (by Lemma 30) implications (7.14) such that both bj and si belong to X, and

(iv) the reduct of (7.15) relative to X.

Notice that (i)–(iii) together are equivalent to X, so that every every proper subset

of X doesn’t satisfy ΓX . It remains to show that X |= ΓX . Clearly, X satisfies

(i)–(iii). To show that X satisfies (iv) it is sufficient, by Lemma 24 (consider (7.15)

as a propositional formula), to show that X satisfies (7.15): it does that by hypoth-

esis (b).
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7.7.1 Proof of Propositions 18 and 19

Lemma 31. If, for every aggregate, computing op(W ) ≺ N requires polynomial

time, then

(a) checking satisfaction of a theory with aggregates requires polynomial time, and

(b) computing the reduct of a theory with aggregates requires polynomial time.

Proof. Part (a) is easy to verify by structural induction. Computing the reduct

essentially consists of checking satisfaction of subexpressions of each formula of the

theory. Each check doesn’t require too much time by (a). It remains to notice that

each formula with aggregates has a linear number of subformulas.

Proposition 18. If, for every aggregate, computing op(W ) ≺ N requires polynomial

time, then the existence of an answer set for a theory with aggregates is a ΣP
2 -

complete problem.

Proof. Hardness follows from the fact that theories with aggregates are a generaliza-

tion of theories without aggregates. To prove inclusion, consider that the existence

of an answer set for a theory Γ is equivalent to:

exists X such that for all Y , if Y ⊆ X then Y |= ΓX iff X = Y

It remains to notice that, in view of Lemma 31, checking

if Y ⊆ X then Y |= ΓX iff X = Y

requires polynomial time.

Lemma 32. Let F be a formula with aggregates containing monotone and anti-

monotone aggregates only, and no implications different from negations. For any

consistent sets X, Y and Z such that Y ⊆ Z, if Y |= FX then Z |= FX .
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function verifyAS(Γ,X}
if X 6|= Γ then return false
∆ := {FX → a : F → a ∈ Γ and X |= a}
Y := ∅
while there is a formula G→ a ∈ ∆ such that Y |= G and a 6∈ X

Y := Y ∪ {a}
end while
if Y = X then return true
return false

Figure 7.1: A polynomial-time algorithm to find minimal models of special kinds of
theories

Proof. Let G be F with each monotone aggregate replaced by (7.10) and each an-

timonotone aggregate replaced by (7.11). It is easy to verify that G is a nested

expression. Nested expressions have all negative occurrences of atoms in the scope

of negation, so if Y |= GX then Z |= GX by Lemma (27). It remains to notice that

FX and GX are satisfied by the same sets of atoms by Propositions 16 and 15.

Proposition 19. Consider theories with aggregates consisting of formulas of the

form

F → a, (7.21)

where a is an atom or ⊥, and F contains monotone and antimonotone aggregates

only, and no implications other than negations. If, for every aggregate, computing

op(W ) ≺ N requires polynomial time then the problem of the existence of an answer

set for theories of this kind is an NP-complete problem.

Proof. NP-hardness follows from the fact that theories with aggregates are a gener-

alization of traditional programs, for which the same problem is NP-complete. For

inclusion in NP, it is sufficient to show that the time required to check if a coherent

set X of atoms is an answer set for Γ. An algorithm that does this test is in Fig-

ure 7.1. It is easy to verify that it is a polynomial time algorithm. It remains to
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prove that it is correct. If X 6|= Γ then it is trivial. Now assume that X |= Γ. It is

sufficient to show that

(a) ∆ is classically equivalent to ΓX , and

(b) the last value of Y (we call it Z) is the unique minimal model of ∆.

Indeed, for part (a), we notice that, since X |= Γ, ΓX is

{FX → aX : F → a ∈ Γ and X |= a} ∪ {FX → aX : F → a ∈ Γ and X 6|= a}.

The first set is ∆. The second set (which includes the case in which a = ⊥) is a set

of ⊥ → ⊥. Indeed, each aX = ⊥, and since X |= Γ, X doesn’t satisfy any F and

then FX = ⊥.

For part (b) it is easy to verify that the while loop iterates as long as Y 6|= ∆,

so that Z |= ∆. Now assume, in sake of contradiction, that there is a set Z ′ that

satisfies ∆ and that is not a superset of Z. Then consider, in the algorithm, the last

value of Y that is a subset of Z ′, and the atom a added to that Y (that is, a 6∈ Z ′).

This means that ∆ contains a formula G → a such that Y |= G. Recall that G

stands for a formula of the form FX , where F is a formula with aggregates with

monotone and antimonotone aggregates only and without implications that are not

negations. Consequently, by Lemma 32, Z ′ |= G. On the other hand, a 6∈ Z ′, so

Z ′ 6|= G→ a, contradicting the hypothesis that Z ′ is a model of ∆.

7.7.2 Proof of Theorem 5

Lemma 33. Let F (u) and G(u) be two formulas that are AND-OR combinations

of ⊤, ⊥ and atoms from the list of atoms u. If, for any list H of formulas of the

same arity of u, F (H) is classically equivalent to G(H), then, for the same lists H

of formulas, F (H) is strongly equivalent to G(H).
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Proof. In view of Proposition 8, it is sufficient to show that, for every coherent set

X of atoms, (F (H))X is classically equivalent to (G(H))X. By Lemma 20, (F (H))X

is classically equivalent to F (HX), where HX is the result of applying the reduct

operation to each element of H. Similarly, (G(H))X is classically equivalent to

G(HX). It remains to notice that F (HX) is classically equivalent to G(HX) by

hypothesis.

Lemma 34. For every weight constraints L ≤ S and S ≤ U and any coherent set

X of atoms,

(a) X |= [L ≤ S] iff X |= sum〈S〉 ≥ L, and

(b) X |= [S ≤ U ] iff X |= sum〈S〉 ≤ U .

Proof. Immediate by the definition of satisfaction of aggregates (Section 7.1), the

definition of [L ≤ S] and [S ≤ U ], and Lemma 1.

Theorem 5. If L ≤ S and S ≤ U are weight constraints where all weights are

nonnegative,

(a) [L ≤ S] is strongly equivalent to sum〈S〉 ≥ L, and

(b) [S ≤ U ] is strongly equivalent to sum〈S〉 ≤ U .

Proof. Let S be {F1 = w1, . . . , Fn = wn}. We start with (a). We know, by Lem-

mas 34 and 15(a), that, for any formulas F1, . . . , Fn, [L ≤ S] is classically equivalent

to formula (7.1) corresponding to aggregate sum〈S〉 ≥ L. In view of Lemma 33, it

is then sufficient to show that both formulas can be written as AND-OR combina-

tions of F1, . . . , Fn,⊤ and ⊥. Formula [L ≤ S] is already a formula of such kind. It

remains to notice that, since sum〈S〉 ≥ L is monotone, (7.1) is strongly equivalent

to (7.10) by Lemma 16.
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For part (b), the reasoning is similar, except that we want [S ≤ U ] and (7.1)

(corresponding to aggregate sum〈S〉 ≤ U) to be written as AND-OR combinations

of not F1, . . . ,not Fn, ⊤ and ⊥. Formula [S ≤ U ], which has the form (written as a

propositional formula)

¬
(

∨

I⊆{1,...,n}:···

(

∧

i∈I

Fi

))

is strongly equivalent to
∧

I⊆{1,...,n}:···

(

∨

i∈I

¬Fi

)

.

It remains to show that, since sum〈S〉 ≤ U is an antimonotone aggregate, (7.1) is

strongly equivalent to (7.11), which can be strongly equivalently written as

∧

I⊆{1,...,n} : op({wi : i∈I})6≺N

(

∨

i∈I

¬Fi

)

.

7.7.3 Proof of Theorem 6

We observe, first of all, that the definition of satisfaction of FLP-aggregates and

FLP-programs in [Faber et al., 2004] is equivalent to ours. The definition of a reduct

is different, however. We denote the reduct of a program Π with FLP-aggregates

relative to X in the sense of [Faber et al., 2004] as ΠX .

Next lemma is easily provable by structural induction.

Lemma 35. For any nested expression F without negations and any two sets X

and Y of atoms such that Y ⊆ X, Y |= FX iff Y |= F.

Lemma 36. For any FLP-aggregate A and any set X of atoms, if X |= A then

Y |= AX iff Y |= A.

Proof. Let A have the form (7.1). Since X |= A, AX has the form

op〈{FX
1 = w1, . . . , F

X
n = wn}〉 ≺ N.
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In case of FLP-aggregates, each Fi is a conjunction of atoms. Then, by Lemma 35,

Y |= FX
i iff Y |= Fi. The claim immediately follows from the definition of satisfac-

tion of aggregates.

Theorem 6. The answer sets for a positive FLP-program under our semantics are

identical to its answer sets in the sense of [Faber et al., 2004].

Proof. It is easy to see that if X 6|= Π then X 6|= ΠX and X 6|= ΠX , so that X is not

an answer set under either semantics. Now assume that X |= Π. We will show that

the two reducts are satisfied by the same subsets of X. It is sufficient to consider

the case in which Π contains only one rule

A1 ∧ · · · ∧Am → a1 ∨ · · · ∨ an. (7.22)

If X 6|= A1 ∧ · · · ∧Am then ΠX = ∅, and ΠX is the tautology

⊥ → (a1 ∨ · · · ∨ an)X .

Otherwise, ΠX is rule (7.22), and ΠX is

AX
1 ∧ · · · ∧AX

m → (a1 ∨ · · · ∨ an)X .

These two reducts are satisfied by the same subsets of X by Lemmas 35 and 36.

7.7.4 Proof of Proposition 20

This proof refers to the semantics of PDB-aggregates reviewed in Section 3.3. Given

a PDB-aggregate of the form (7.1) and a coherent set X of literals, by IX we denote

the set {i ∈ {1, . . . , n} : X |= Fi}.

Lemma 37. For each PDB-aggregate of the form (7.1), a set X of atoms satisfies

a formula of the form G(I1,I2) iff I1 ⊆ IX ⊆ I2.
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Proof.

X |= G(I1,I2) iff X |= Fi for all i ∈ I1, and X 6|= Fi for all i ∈ {1, . . . , n} \ I2

iff X |= Fi for all i ∈ I1, and for every i such that X |= Fi, i ∈ I2

iff I1 ⊆ IX and IX ⊆ I2.

Lemma 38. For every PDB-aggregate A, Atr is classically equivalent to (7.4).

Proof. Consider a coherent set X of atoms. By Lemma 37,

X |= Atr iff X satisfies one of the disjunctive terms G(I1,I2) of Atr

iff for a disjunctive term G(I1,I2) of Atr, I1 ⊆ IX ⊆ I2.

It is easy to verify that Atr contains a disjunctive term G(I1,I2) with I1 ⊆ IX ⊆ I2

iff Atr contains disjunctive term G(IX ,IX). Consequently,

X |= Atr iff Atr contains disjunctive term G(IX ,IX)

iff op(WIX
) ≺ N.

We have essentially found that X |= Atr iff X |= A. The claim now follows by

Proposition 15(a).

Lemma 39. For any PDB-aggregate A, Atr is strongly equivalent to

(a)
∨

I∈{1,...,n}:op(WI)≺N

G(I,{1,...,n})

if A is monotone, and to

(b)
∨

I∈{1,...,n}:op(WI)≺N

G(∅,I)

if it is antimonotone.

125



Proof. To prove (a), assume that A is monotone. Then, if Atr contains a disjunctive

term G(I1,I2) then it contains the disjunctive term G(I1,{1,...,n}) as well. Consider also

that formula G(I1,{1,...,n}) entails G(I1,I2). Then we can drop all disjunctive terms of

the form G(I1,I2) with I2 6= {1, . . . , n}. Formula Atr becomes

∨

I1⊆{1,...,n}: for all I such that I1 ⊆ I ⊆ {1, . . . , n}, op(WI) ≺ N

G(I1,{1,...,n}).

It remains to notice that, since A is monotone, if op(WI1) ≺ N then op(WI) ≺ N

for all I superset of I1.

The proof for (b) is similar.

Proposition 20 For any monotone or antimonotone PDB-aggregates A of the

form (7.1) where F1, . . . , Fn are atoms, Atr is strongly equivalent to (7.4).

Proof. Let S be {F1 = w1, . . . , Fn = wn}. Lemma 38 says that Atr is classically

equivalent to (7.4) for every formulas F1, . . . , Fn in S. We can prove the claim

using Lemma 33, by showing that both Atr and (7.4) can be strongly equivalently

rewritten as AND-OR combinations of

• F1, . . . , Fn,⊤,⊥, if A is monotone, and

• not F1, . . . ,not Fn,⊤,⊥, if A is antimonotone.

About Atr, this follows by Lemma 39. Indeed, each G(I,{1,...,n}) is a (possibly empty)

conjunction of terms of the form Fi, and each G(∅,I) is a (possibly empty) conjunction

of terms of the form Fi. About (7.4), this has already been shown in the proof of

Theorem 5.
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Chapter 8

Modular Translations and

Strong Equivalence

In this chapter we consider logic programs/propositional theories without classi-

cal/strong negation. Under this hypothesis, Figure 8.1 summarizes the syntax of

rules in traditional programs and “propositional extensions” of this class, as well as

some of its subclasses. The language in each line of the table contains the languages

shown in the previous lines.

When we compare the expressiveness of two classes of rules R and R′, several

criteria can be used. First, we can ask whether for any R-program (that is, a set of

rules of the type R) one can find an R′-program that has exactly the same answer

sets. (That means, in particular, that the R′-program does not use “auxiliary atoms”

not occurring in the given R-program.) From this point of view, the classes of rules

shown in Figure 8.1 can be divided into three groups: a UR- or PR-program has

a unique answer set; TR-, TRC- and DR-programs may have many answer sets,

but its answer sets always have the “anti-chain” property (one cannot be a proper

subset of another); a NDR-, RNE or PF-program can have an arbitrary collection

of sets of atoms as its collection of answer sets.
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class of rules syntactic form

UR unary rules:
a← (also written as simply a) and a← b

PR positive rules:
a← b1, . . . , bn

TR traditional rules:
a← b1, . . . , bn,not c1, . . . ,not cm

TRC TRs + constraints:
TRs and ← b1, . . . , bn,not c1, . . . ,not cm

DR disjunctive rules:
a1; . . . ; ap ← b1, . . . , bn,not c1, . . . ,not cm

NDR negational disjunctive rules:
a1, . . . ; ap; not d1; . . . ; not dq ← b1, . . . , bn,not c1, . . . ,not cm

RNE rules with nested expressions:
F ← G

PF propositional formulas:
H

Figure 8.1: A classification of logic programs under the answer set semantics. Here
a, b, c, d stand for propositional atoms. F , G stand for nested expressions without
classical negation (that is, expressions formed from atoms, ⊤ and ⊥, using con-
junction (,), disjunction (;) and negation as failure (not), see Section 2.2.1), and H
stands for an arbitrary propositional formula.
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Another comparison criterion is based on the computational complexity of

the problem of the existence of an answer set. We pass, in the complexity hier-

archy, from P in case of UR- and PR-programs, to NP in case of TR- and TRC-

programs [Marek and Truszczyński, 1991], and finally to ΣP
2 for more complex kinds

of programs [Eiter and Gottlob, 1993].

A third criterion consists in checking whether every rule in R is strongly

equivalent [Lifschitz et al., 2001] (see Section 3.7) to an R′-program. From this

point of view, PR is essentially more expressive than UR: we will see at the end of

Section 8.2 that a ← b, c is not strongly equivalent to any set of unary rules. Fur-

thermore, TRC and DR are essentially different from each other, since no program

in TRC is strongly equivalent to the rule p; q in DR [Turner, 2003, Proposition 1].

A fourth comparison criterion is based on the existence of a translation from

R-programs to R′-programs that is not only sound (that is, preserves the program’s

answer sets) but is also modular: it can be applied to a program rule-by-rule. For

instance, Janhunen (2000) showed that there is no modular translation from PR to

UR, and no modular translation from TR to PR.1 On the other hand, RNE can

be translated into NDR by a modular procedure similar to converting formulas to

conjunctive normal form [Lifschitz et al., 1999].

The main theorem of this chapter shows that under some general conditions,

the last two criteria — the one based on strong equivalence and the existence of a

sound modular translation — are equivalent to each other. This offers a method

to prove that there is no modular translation from R to R′ by finding a rule in

R that is not strongly equivalent to any R′-program. For instance, in view of the

Proposition 1 from [Turner, 2003] mentioned above, no modular translation exists

from DR to TRC.

To apply the main theorem to other cases, we need to learn more about the

1His results are actually stronger, see Section 8.1 below.
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strong equivalence relations between a single rule of a language and a set of rules. We

show that for many rules r in NDR, any NDR-program that is strongly equivalent to

r contains a rule that is at least as “complex” as r. This fact will allow us to conclude

that all classes UR, PR, TR, TRC, DR and NDR are essentially different from each

other in terms of strong equivalence. In view of the main theorem, it follows that

they are essentially different from each other in the sense of the modular translation

criterion as well.

Finally, we show how to apply our main theorem to programs with weight

constraints [Simons et al., 2002] (Section 2.2.2). As a result, we find that it is not

possible to translate programs with weight constraints into programs with monotone

cardinality atoms [Marek et al., 2004] in a modular way (unless the translation

introduces auxiliary atoms).

The chapter continues with the statement of our main theorem (Section 8.1).

In Section 8.2, we study the expressiveness of subclasses of NDR in terms of strong

equivalence and modular translations. We move to the study of cardinality con-

straints in Section 8.3. The proofs of all claims of this chapter are in Section 8.4.

8.1 Modular Transformations and Strong Equivalence

A (modular) transformation is a function f such that

• Dom(f) ⊆ PT, and

• for every formula r ∈ Dom(f), f(r) is a theory such that every atom occurring

in it occurs in r also.

A transformation f is sound if, for every theory Π ⊆ Dom(f), Π and
⋃

r∈Π f(r) have

the same answer sets.

For example, the transformation defined in the proof of Proposition 7 from [Lif-

schitz et al., 1999], which eliminates nesting from a program with nested expressions,
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is a sound transformation. For instance, for this transformation f ,

f(a← b; c) = {a← b, a← c}.

As another example of a sound transformation, consider the transformation f with

Dom(f) = NDR, where

f(not d1; . . . ; not dq ← b1, . . . , bn,not c1, . . . ,not cm) =

{← b1, . . . , bn, d1, . . . , dq,not c1, . . . ,not cm}

and f(r) = {r} for the rules r in NDR that contains at least one nonnegated atom

in the head. On the other hand, the familiar method of eliminating constraints from

a program that turns ← p into q ← p,not q is not a transformation in the sense of

our definition, because it introduces an atom q that doesn’t occur in ← p.

Other definitions of a modular transformation allow the the introduction

of auxiliary atoms. This is, for instance, the case of the definitions in [Janhunen,

2000], and of the translation [Ω]nn of a program with nested expressions into a

traditional program (see Section 5.1). These two works are also different from the

work described in this chapter in that they take into account the computation time

of translation algorithms.

This is the theorem that relates strong equivalence and modular transforma-

tions:

Theorem 7. For every transformation f such that Dom(f) contains all unary rules,

f is sound iff, for each r ∈ Dom(f), f(r) is strongly equivalent to r.

Our definition of transformation requires that all atoms that occur in f(r)

occur in r also. The following counterexample shows that without this assumption

the assertion of Theorem 7 would be incorrect. Let p and q be two atoms, and, for
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each rule r = F ← G in RNE, let f1(r) be

F ← G,not p

F ← G,not q

Fp↔q ← Gp↔q,not not p,not not q.

where Fp↔q and Gp↔q stand for F and G with all the occurrences of p replaced by

q and vice versa. Note that f1 is not a transformation as defined in this chapter

since q occurs in f1(p ← ⊤). It can also be shown that p ← ⊤ and f1(p ← ⊤) are

not strongly equivalent. However, the “transformation” is sound:

Proposition 21. For any program Π, Π and
⋃

r∈Π f1(r) have the same answer sets.

Without the assumption that UR ⊆ Dom(f), Theorem 7 would not be correct

either. We define a transformation f2 such that Dom(f2) consists of all rules (of

DR) of the form

a1; . . . ; ap ← not c1, . . . ,not cm. (8.1)

with p > 0 and where a1, . . . , ap are all distinct. We denote the set of rules of this

form by NBR. For each rule r of the form (8.1), f2(r) is defined as

{ai ← not a1, . . . ,not ai−1,not ai+1, . . . ,not ap,not c1, . . . ,not cm : 1 ≤ i ≤ p}.

For instance, f2(p; q) = {p← not q , q ← not p}. It is easy to see that this program

is not strongly equivalent to p; q. However, this transformation is sound:

Proposition 22. For any program Π ⊆ NBR, Π and
⋃

r∈Π f2(r) have the same

answer sets.

8.2 Applications: Negational Disjunctive Rules

In order to apply Theorem 7 to modular translations, we first need to study some

properties of strong equivalence. We focus on the class NDR.
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If r is

a1, . . . ; ap; not d1; . . . ; not dq ← b1, . . . , bn,not c1, . . . ,not cm

define

head+(r) = {a1, . . . , ap} head−(r) = {d1, . . . , dq}

body+(r) = {b1, . . . , bn} body−(r) = {c1, . . . , cm}.

We say that r is basic if any two of these sets, except possibly for the pair head+(r),

head−(r), are disjoint.

Any nonbasic rule can be easily simplified: it is either strongly equivalent to

the empty program or contains redundant terms in the head. A basic rule, on the

other hand, cannot be simplified if it contains at least one nonnegated atom in the

head:

Theorem 8. Let r be a basic rule in NDR such that head+(r) 6= ∅. Every program

subset of NDR that is strongly equivalent to r contains a rule r′ such that

head+(r) ⊆ head+(r′) body+(r) ⊆ body+(r′)

head−(r) ⊆ head−(r′) body−(r) ⊆ body−(r′)

This theorem shows us that for most basic rules r (the ones with at least one

positive element in the head), every program strongly equivalent to r must contain

a rule that is at least as “complex” as r.

Given two subsets R and R′ of RNE, a (modular) translation from R to R′

is a transformation f such that Dom(f) = R and f(r) is a subset of R′ for each

r ∈ Dom(f). Using Theorems 7 and 8, we can differentiate between the classes of

rules in Figure 8.1 in terms of modular translations:

Proposition 23. For any two languages R and R′ among UR, PR, TRC, TR, DR

and NDR such that R′ ⊂ R, there is no sound translation from R to R′.
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Theorems 7 and 8 allow us also to differentiate between subclasses of NDR

described in terms of the sizes of various parts of the rule. Define, for instance PBRi

(“positive body of size i”) as the set of rules r of NDR such that |body+(r)| ≤ i. We

can show that, for every i ≥ 0, there is no sound translation from PBRi+1 to PBRi

(or even from PBRi+1 ∩PR to PBRi). Similar properties can be stated in terms of

the sizes of body−(r), head+(r) and head−(r).

Another consequence of Theorem 8 is in terms of (absolute) tightness of

a program [Erdem and Lifschitz, 2003; Lee and Lifschitz, 2003]. Tightness is an

important property of logic programs: if a program is tight then its answer sets can

be equivalently characterized by the satisfaction of a set of propositional formulas

of about the same size. Modular translations usually don’t make nontight programs

tight:

Proposition 24. Let R be any subset of NDR that contains all unary rules, and

let f be any sound translation from R to NDR. For every nontight program Π ⊆ R

consisting of basic rules only,
⋃

r∈Π f(r) is nontight.

Note that Theorem 8 doesn’t relate classes of rule/formulas more general

than NDR. In terms of strong equivalence and modular translations, they are no for-

mulas more general than NDR. Indeed, every propositional formula can be strongly

equivalently written as a set of NDR rules [Cabalar and Ferraris, 2007].

Criteria for strong equivalence, in part related to Theorem 8, are proposed

in [Lin and Chen, 2005].

8.3 Applications: Cardinality Constraints

Let CCR denote the set of all rules with cardinality constraints (Section 2.2.2).

A straightforward generalization of the definition of a transformation allows us to

talk about sound translations between subclasses of CCR, and also between a sub-
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class of CCR and a subclass of PT. The concept of (modular) transformations and

translations can be extended to programs with cardinality constraints: we can have

translations between subclasses of CCR, and from/to subclasses of PT. The defini-

tion of the soundness for those translations is straightforward as well. For instance,

the two translations Ω 7→ [Ω] and Ω 7→ [Ω]nd from CCR to RNE defined in Chapter 4

are modular and sound.

Another class of programs similar to programs with cardinality constraints

— programs with monotone cardinality atoms — has been defined in [Marek et al.,

2004]. The results of that paper show that rules with monotone cardinality atoms are

essentially identical to rules with cardinality constraints that don’t contain negation

as failure; we will denote the set of all such rules by PCCR (“positive cardinality

constraints”).

First of all, we show how programs with cardinality constraints are related

to the class NDR. Let SNDR (Simple NDR) be the language consisting of rules of

the form

a; not d1; . . . ; not dq ← b1, . . . , bn,not c1, . . . ,not cm (8.2)

and

← b1, . . . , bn,not c1, . . . ,not cm. (8.3)

Proposition 25. There exist sound translations from SNDR to CCR, and back.

If we don’t allow negation in cardinality constraints, another relationship

holds. We define the class VSNDR (Very Simple NDR) consisting of rules of the

form

a; not a← b1, . . . , bn,not c1, . . . ,not cm (8.4)

and of the form (8.3).

Proposition 26. There exist sound translations from VSNDR to PCCR, and back.

Using Theorems 7 and 8, we will prove:

135



Proposition 27. There is no sound translation from CCR to PCCR.

Since the class PCCR is essentially identical to the class of rules with mono-

tone cardinality atoms, we conclude that programs with cardinality constraints are

essentially more expressive than programs with monotone cardinality atoms.

8.4 Proofs

8.4.1 Properties of Strong Equivalence

In this section — unless otherwise specified — we refer to the definition of a reduct

for propositional theories of Section 6.1. The main criterion that we use to check

strong equivalence is one slightly modified version of a characterization from Propo-

sition 8.

Lemma 40. Let A be the set of atoms occurring in theories Γ1 and Γ2. Γ1 and Γ2

are strongly equivalent iff, for each Y ⊆ A, ΓY
1 and ΓY

2 .

Recall also that ΓY
1 contains atoms from Y only, and similarly for ΓY

2 .

We will also use the following two lemmas. The first one is immediate from

the characterization of strong equivalence based on equivalence in the logic of here-

and-there from [Lifschitz et al., 2001]. The second comes from Lemma 4 from [Lif-

schitz et al., 2001].

Lemma 41. Let P1 and P2 be sets of theories. If each theory in P1 is strongly

equivalent to a theory in P2 and vice versa, then
⋃

Γ∈P1
Γ and

⋃

Γ∈P2
Γ are strongly

equivalent.

Lemma 42. Two theories Γ1 and Γ2 are strongly equivalent iff, for every program

Π ⊆ UR, Γ1 ∪Π and Γ2 ∪Π have the same answer sets.

136



8.4.2 Proof of Theorem 7

Theorem 7. For every transformation f such that Dom(f) contains all unary

rules, f is sound iff, for each r ∈ Dom(f), f(r) is strongly equivalent to r.

The proof from right to left is a direct consequence of Lemma 41: if f(r) is

strongly equivalent to r for every formula r ∈ R, then for any Γ ⊆ Dom(f), Π and
⋃

r∈Γ f(r) are strongly equivalent, and consequently have the same answer sets.

In the proof from left to right, we first consider the case when r is a unary

rule, and then extend the conclusion to arbitrary formulas. In the rest of this section,

f is an arbitrary sound transformation such that Dom(f) contains all unary rules.

By a and b we denote distinct atoms.

Lemma 43. For every fact a, {a} and f(a) are strongly equivalent.

Proof. In view of Lemma 40, we need to show that (i) f(a){a} is equivalent to {a},

and (ii) f(a)∅ is equivalent to ⊥. Since {a} is an answer set for {a}, it is an answer

set for f(a), so that (i) follows from Lemma 25. Since ∅ is not an answer set for

f(a), it follows we get that ∅ 6|= f(a)∅. Since f(a)∅ doesn’t contain atoms, (ii) must

hold.

Lemma 44. For every formula r and fact a, {r, a} and f(r) ∪ {a} have the same

answer sets.

Proof. In view of Lemma 43, f(r)∪ {a} and f(r)∪ f(a) have the same answer sets,

and the same holds for {r, a} and f(r) ∪ f(a) by hypothesis.

Lemma 45. For every rule r of the form a← a,

(i) f(r)∅ is classically equivalent to {r}∅, and

(ii) f(r){a} is classically equivalent to {r}{a}.
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Proof. First of all, since the empty set in the only answer set for {r} and then

for f(r), (i) is clearly true by Lemma 25. For (ii), we need to show that f(r){a}

is satisfied by both ∅ and {a}. Consider the theory consisting of rule r plus fact

a. Since {a} is an answer set for {r, a}, it is an answer set for f(r) ∪ {a} also by

Lemma 44. Consequently, by Lemma 25, f(r){a} ∪ {a} is classically equivalent to

{a} from which we derive that {a} |= f(r){a}. On the other hand, since {a} is not

an answer set for f(r), so also ∅ |= f(r){a}.

Lemma 46. For every rule r of the form a← b,

(i) f(r)∅ is classically equivalent to {r}∅,

(ii) f(r){a} is classically equivalent to {r}{a}, and

(iii) f(r){b} is classically equivalent to {r}{b}.

Proof. The proof of the first two claims is similar to the one of Lemma 45. To

prove (iii), it is sufficient to show that {b} 6|= f(r). Since {b} is not an answer set for

{r, b}, it is not an answer set for f(r) ∪ {b} either by Lemma 44. But ∅ 6|= (f(r) ∪

{b}){b} because ∅ 6|= {b}{b}; consequently {b} 6|= (f(r) ∪ {b}){b}. Since {b} |= {b}{b},

it follows that {b} 6|= f(r){b}, and then that {b} 6|= f(r) by Lemma 24.

Lemma 47. For every rule r of the form a ← b, f(r){a,b} is classically equivalent

to {r}{a,b}.

Proof. We need to show that the only subset of {a, b} not satisfying f(r){a,b} is {b},

that is

(i) {b} 6|= f(r){a,b},

(ii) {a, b} |= f(r){a,b},

(iii) {a} |= f(r){a,b}, and
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(iv) ∅ |= f(r){a,b}.

First of all, set {a, b} is an answer set for {r, b}, and consequently for f(r)∪{b} also

by Lemma 44. Consequently, by Lemma 25,

{a,b} is classically equivalent to (f(r) ∪ {b}){a,b}. (8.5)

From it we derive that {b} 6|= (f(r)∪ {b}){a,b}, and consequently (i). From (8.5) we

also derive (ii) and then that {a, b} |= (f(r)∪ {a}){a,b}. Notice that {a, b} is not an

answer set for f(r)∪{a} because it is not an answer set for {r, a} and by Lemma 44.

Consequently there is a proper subset of {a, b} that satisfies (f(r)∪ {a}){a,b}. Such

subset can only be {a} because it is the only one that satisfies {a}{a,b}. Claim (iii)

immediately follows.

The proof of (iv) remains. Let r′ be b ← a. Claims (i) and (ii) determine

which subsets of {a, b} satisfy (f(r)∪f(r′)){a,b}: from part (i) applied to both r and

r′ we get that {a, b} satisfies this theory, while {b} (by part (ii) applied to r) and

{a} (by part (ii) applied to r′) don’t. On the other hand {a, b} is not an answer set

for {r, r′} and then for f(r) ∪ f(r′) by the soundness hypothesis. We can conclude

that ∅ |= (f(r) ∪ f(r′)){a,b} from which (iv) follows.

Lemma 48. For every unary program Π, Π and
⋃

r∈Π f(r) are strongly equivalent.

Proof. In view of Lemma 41, it is sufficient to show that for each unary rule r, {r}

and f(r) are strongly equivalent. For rules that are facts, this is proven Lemma 43.

For rules r of the form a ← a, it follows by Lemma 45 and Lemma 40. Similarly,

for rules of the form a← b, it follows by Lemmas 46, 47 and Lemma 40.

Now we are ready to prove the second part of the main theorem: for any

formula r ∈ Dom(f), f(r) and {r} are strongly equivalent. By Lemma 42, it is

sufficient to show that, for each unary program Π, Π ∪ {r} and Π ∪ f(r) have the

same answer sets. First we notice that Π ∪ {r} and
⋃

r′∈Π∪{r} f(r′) have the same
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answer sets since Π ∪ {r} ⊆ Dom(f) and for the soundness of the transformation.

Then we can see that
⋃

r′∈Π∪{r} f(r′) =
⋃

r′∈Π f(r′)∪f(r). Finally,
⋃

r′∈Π f(r′)∪f(r)

and Π ∪ f(r) have the same answer sets because, by Lemma 48, programs Π and
⋃

r′∈Π f(r′) are strongly equivalent.

8.4.3 Proofs of Propositions 21 and 22

Proposition 21. For any program Π, Π and
⋃

r∈Π f1(r) have the same answer

sets.

Proof. Consider any set of atoms X. If {p, q} 6⊆ X then f(F ← G)X is essentially

{F ← G}X , and the claim easily follows. Otherwise f1(F ← G)X is essentially

{Fp↔q ← Gp↔q}. If we extend the notation of the subscript p↔ q to both programs

and sets of atoms, (
⋃

r∈Π f1(r))X can be seen as (ΠX)p↔q. A subset Y of X satisfies

ΠX iff Yp↔q satisfies (ΠX)p↔q. Since Yp↔q ⊆ X and |Yp↔q| = |Y |, we can conclude

that X is a minimal set satisfying (
⋃

r∈Π f1(r))X iff it is a minimal set satisfying

ΠX .

Proposition 22. For any program Π ⊆ NBR, Π and
⋃

r∈Π f2(r) have the same

answer sets.

Proof. Let Π′ be
⋃

r∈Π f2(r). First of all, it is easy to verify that Π and Π′ are

satisfied by the same sets of atoms, so that if X 6|= Π then X is not an answer set

for neither programs. Assume now that X |= Π. Then, X |= Π′. It is then not hard

to check that (Pi′)X is equivalent to a set of atoms Y , consisting of atoms a of X

such that there is a rule r in Π with head+(r) ∩ X = {a} and body−(r) ∩ X = ∅.

So X is an answer set for Π′ iff Y = X. It remains to show that X is an answer

set for Π′ iff Y = X. It is easy to verify that ΠX is Y plus a set of disjunctions of

two or more atoms of X. If Y = X then clearly ΠX is equivalent to Y . If not, let a

be an atom of X but not of X, and let Z be X \ {a}. It is not hard to verify that
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Z |= ΠX , since all elements of Y belong to Z, and, for each disjunction of two or

more atoms of X in ΠX , at least one of them belongs to Z. From this we conclude

that X is an answer set for Π iff Y = X.

8.4.4 Proof of Theorem 8

For simplicity, we consider the definition of an answer set for NDR programs as

defined in [Lifschitz and Woo, 1992], in which the reduct ΠX consists of the rule

head+(r)← body+(r) (8.6)

(head+(r) here stands for the disjunction of its elements, body+(r) for their conjunc-

tion) for every rule r in Π such that head−(r) ⊆ X and body−(r)∩X = ∅. It is easy

to check that this definition of a reduct is equivalent to the definition of a reduct for

programs with nested expressions (they are satisfied by the same sets of atoms, see

Section 3.1). Consequently, the characterization of strong equivalence based on the

reduct of [Turner, 2003] reviewed in Section 3.7 also is correct with this definition

of a reduct:

Lemma 49. Two programs Π1 and Π2 subsets of NDR are strongly equivalent iff,

for every consistent set Y of literals,

• Y |= ΠY
1 iff Y |= ΠY

2 , and

• if Y |= ΠY
1 then, for each X ⊂ Y , X |= ΠY

1 iff X |= ΠY
2 .

Theorem 8. Let r be a basic rule in NDR such that head+(r) 6= ∅. Every program

subset of NDR that is strongly equivalent to r contains a rule r′ such that

head+(r) ⊆ head+(r′) body+(r) ⊆ body+(r′)

head−(r) ⊆ head−(r′) body−(r) ⊆ body−(r′)
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Proof. Let Π be a program strongly equivalent to r. Let X be head+(r)∪head−(r)∪

body+(r), and let Y be body+(r). Then rX is (8.6). By Lemma 49, since X |= rX

(recall that head+(r) is nonempty by hypothesis) then X |= ΠX , and since Y 6|= rX

it follows that Y 6|= ΠX . Consequently, there is a rule of Π — the rule r′ of the

theorem’s statement — such that X |= (r′)X and Y 6|= (r′)X . From this second fact,

(r′)X is nonempty so it is

head+(r′)← body+(r′), (8.7)

and also Y |= body+(r′) and Y 6|= head+(r′).

To prove that head+(r) ⊆ head+(r′), take any atom a ∈ head+(r). The set

Y ∪ {a} satisfies rX , so it satisfies ΠX by Lemma 49, and then (r′)X also. On the

other hand, since Y |= body+(r′) and Y ⊆ Y ∪{a}, we have that Y ∪{a} |= body+(r′).

Consequently, Y ∪ {a} |= head+(r′). Since Y 6|= head+(r′), we can conclude that a

is an element of head+(r′).

The proof that body+(r) ⊆ body+(r′) is similar to the previous part of the

proof, by taking any a ∈ body+(r) and considering the set Y \{a} instead of Y ∪{a}.

To prove that head−(r) ⊆ head−(r′), take any atom a ∈ head−(r). Since

rX\{a} is empty, it is satisfied, in particular, by Y and X \ {a}. Consequently,

Y |= (r′)X\{a} by Lemma 49. On the other hand, Y 6|= (r′)X , so (r′)X\{a} is

not (8.7), and then it is empty. The only case in which (r′)X\{a} is empty and (r′)X

is not is if a ∈ head−(r′).

The proof that body−(r) ⊆ body−(r′) is similar to the previous part of the

proof, by taking any a ∈ body−(r) and considering the reduct rX∪{a}.

8.4.5 Definition of a Tight Program

Here we provide the definition of a tight program for programs in NDR [Lee and

Lifschitz, 2003].2 This class of logic programs is important because there is a poly-

2The definition of tightness of that paper is slightly more general.
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nomial time reduction from tight NDR-programs into a set of propositional formulas

(called the “completion” of the program [Clark, 1978; Lee and Lifschitz, 2003]) such

that the answer sets of the program are identical to the models of the completion.

That is, the problems of the existence of an answer set for a tight program is in

class NP, even if the program contains disjunction in the head.

For any program Π ∈NDR, consider functions g from the atoms occurring in

Π into the set of natural number. Program Π is tight if there is a function g such

that, for every rule r ∈ Π, for each element a ∈ body+(r) and each b ∈ head+(r),

g(a) < g(b).

For instance,

p← q

q ← r

is tight: take g(p) = 0, g(q) = 1 and g(r) = 2. Program

p← q

q ← p

is clearly not tight.

8.4.6 Proofs of Propositions 23 and 24

Proposition 23. For any two languages R and R′ among UR, PR, TR, TRC, DR

and NDR such that R′ ⊂ R, there is no sound translation from R to R′.

Proof. First of all, Theorem 8 shows us that

• no subset of UR is strongly equivalent to PR rule a← b, c,

• no subset of PR is strongly equivalent to TR rule a← b,not c,

• no subset of TRC is strongly equivalent to DR rule a; b← c, and

• no subset of DR is strongly equivalent to NDR rule a; not b← c.
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By Theorem 7, we can conclude the claim between UR and PR, PR and TR, TRC

and DR, and finally between DR and NDR.

The proof between TR and TRC remains. Consider the TRC rule r with

an empty head and an empty body. By Theorem 7, it is sufficient to show that no

subset of TR that contains atoms from r only is strongly equivalent to r. Notice

that r doesn’t contain atoms, and that the only subset of TR that doesn’t contain

atoms is the empty set; this set is not strongly equivalent to r.

Proposition 24. Let R be any subset of NDR that contains all unary rules, and

let f be any sound translation from R to NDR. For every nontight program Π ⊆ R

consisting of basic rules only,
⋃

r∈Π f(r) is nontight.

Proof. Consider any sound translation f and program Π1 consisting of rules of Π

with at least one positive element in the head. Consider also a program Π′ consisting,

for each rule r ∈ Π1, of a rule r′ ∈ f(r) such that

head+(r) ⊆ head+(r′) and body+(r) ⊆ body+(r′). (8.8)

(Such rule r′ exists by Theorem 8.) Clearly, Π′ ⊆
⋃

r∈Π f(r). In view of the definition

of tightness, it is then sufficient to show that Π′ is not tight. Assume, in sake of

contradiction, that Π′ is tight. Then, there is a function g such that, for every rule

r′ ∈ Π′, for each element a ∈ body+(r′) and each b ∈ head+(r′), g(a) < g(b). In

view of (8.8), it is easy to check that g makes Π1 tight. As the rules of Π \ Π1

don’t characterize tightness of Π, we conclude that Π is tight, which contradicts our

hypotheses.

8.4.7 Proofs of Propositions 25–27

All those proofs rely on the sound translations Ω 7→ [Ω] and Ω 7→ [Ω]nd of Section 4.2.

Proposition 25. There exist sound translations from SNDR to CCR, and back.
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Proof. We define a translation f from SNDR to CCR as follows: if r has the

form (8.2) then f(r) is

1 ≤ {a} ← 1 ≤ {b1}, . . . , 1 ≤ {bn}, {c1} ≤ 0, . . . , {cm} ≤ 0,

{not d1} ≤ 0, . . . , {not dq} ≤ 0,

and, if r has the form (8.3), then f(r) is

1 ≤ {} ← 1 ≤ {b1}, . . . , 1 ≤ {bn}, {c1} ≤ 0, . . . , {cm} ≤ 0, 1 ≤ {d1}, . . . , 1 ≤ {dq}.

It is easy to check that [f(r)] is strongly equivalent to {r}.

For the opposite direction, we take a rule r in CCR and consider [{r}]nd. We

can eliminate nesting from each of those rules by converting each body to a “dis-

junctive normal form” using De Morgan’s laws and the distributivity of conjunction

over disjunction. Then we can break each rule into several rules of the form

a← b1, . . . , bn,not c1, . . . ,not cm,not not d1, . . . ; not not dq

and

⊥ ← b1, . . . , bn,not c1, . . . ,not cm,not not d1, . . . ; not not dq.

In rules of the first kind, we can move each term not not di to the head as a disjunctive

term not di, obtaining (8.2); in rules of the second kind, we can eliminate double

negation, obtaining a formula of the form (8.3).

Proposition 26. There exist sound translations from VSNDR to NCCR, and back.

Proof. We define a translation f from VSNDR to NCCR as follows: if r has the

form (8.4) then f(r) is

{a} ← 1{b1}, . . . , 1{bn}, {c1}0, . . . , {cm}0

and, if r has the form (8.3), then f(r) is

1 ≤ {} ← 1 ≤ {b1}, . . . , 1 ≤ {bn}, {c1} ≤ 0, . . . , {cm} ≤ 0, 1 ≤ {d1}, . . . , 1 ≤ {dq}.
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It is easy to check that [f(r)] is strongly equivalent to {r}.

For the opposite direction, we take a rule r in NCCR and consider [{r}]nd.

If we rewrite the first of rules (4.10) as

lj ; not lj ← [C1], . . . , [Cn],

the body of each rule [{r}]nd is the conjunction of terms of the form [C], where C is

a cardinality constraint without negation as failure. In this case, [C] doesn’t contain

negations nested in another negation, so that the rewriting of the body in “disjunc-

tive” normal form doesn’t contain terms of the form not not a. Consequently, [{r}]nd

can be written as terms of the form

lj; not lj ← b1, . . . , bn,not c1, . . . ,not cm

and

⊥ ← b1, . . . , bn,not c1, . . . ,not cm.

The rules of the first kind have the form (8.4), the other rules have the form (8.3).

Proposition 27. There is no sound translation from CCR to PCCR.

Proof. Assume, in sake of contradiction, that a sound translation from CCR to

PCCR exists. Then, in view of Propositions 25 and 26, a sound translation from

SNDR to VSNDR exists. This is impossible in view of Theorems 7 and 8.
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Chapter 9

Causal Theories as Logic

Programs

9.1 Introduction to Causal Theories

Causal logic [McCain and Turner, 1997] is a formalism for knowledge representation,

especially suited for representing effects of actions. Causal theories are syntactically

simple but also very general: they consist of causal rules of the form

F ⇐ G (9.1)

where F and G are propositional formulas. Intuitively, rule (9.1) says that there is

a cause for F to be true if G is true. For instance, the causal rule

pt+1 ⇐ at (9.2)

can be used to describe the effect of an action a on a Boolean fluent p: if a is

executed at time t then there is a cause for p to hold at time t+ 1. Other important

concepts in commonsense reasoning can be easily expressed by rules of this kind

too. For instance, a rule of the form

F ⇐ F
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(“if F is true then there is a cause for this”) expresses, intuitively, that F is true by

default. In particular, the causal rule

pt ⇐ pt (9.3)

says that Boolean fluent p is normally true. The frame problem [McCarthy and

Hayes, 1969] is solved in causal logic using the rules

pt+1 ⇐ pt ∧ pt+1

¬pt+1 ⇐ ¬pt ∧ ¬pt+1.
(9.4)

These rules express inertia: if a fluent p is true (false) at time t then normally it

remains true (false) at time t + 1.

The equivalence of two fluents or actions can be expressed by equivalences

in the head. For instance, to express that two actions constants a and a′ are syn-

onymous, we can use causal rule

at ↔ a′t ⇐ ⊤.

Rules of this kind are used to semantically characterize the relationship between

modules in the Modular Action Description language MAD [Lifschitz and Ren,

2006]. For instance, [Erdoğan and Lifschitz, 2006] used an equivalence of this kind

to state that pushing the box in the Monkey and Bananas domain is a specialization

of a more general action “move”.

The language of causal theories has been extended in [Giunchiglia et al.,

2004a] to handle multi-valued constants. In the extended language, a constant may

assume values from an arbitrary finite set, not necessarily “true” and “false”. For

instance, we can express the fact that object x is in location l with loc(x) = l.

One advantage of using loc(x) = l instead of the Boolean fluent loc(x, l) is that

loc(x) = l implicitly expresses the commonsense fact that every object is exactly in

one position.
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In many useful causal rules, such as (9.2)–(9.4), the formula before the “⇐”

is a Boolean literal, a non-Boolean atom (such as loc(x) = l) or ⊥. Rules of this

kind are called definite. Such rules are important because a causal theory consisting

of definite rules can be converted into an equivalent set of propositional formu-

las [McCain and Turner, 1997; Giunchiglia et al., 2004a], so that its models can

be computed using a satisfiability solver. That translation is used in an imple-

mentation of the definite fragment of causal logic, called the Causal Calculator, or

CCalc.1 The Causal Calculator has been applied to several problems in the theory

of commonsense reasoning [Lifschitz et al., 2000; Lifschitz, 2000; Akman et al., 2004;

Campbell and Lifschitz, 2003; Lee and Lifschitz, 2006].

9.2 Syntax and Semantics of Causal Theories

Causal theories were originally introduced in [McCain and Turner, 1997]. We review

the more general syntax and semantics of causal theories — which allow multi-valued

constants — from [Giunchiglia et al., 2004a].

A (multi-valued) signature is a set σ of symbols c, called constants, with a set

of symbols Dom(c) (the domain of c) associated to each of them. A (multi-valued)

atom is a string of the form c = v, where c ∈ σ and v ∈ Dom(c). A (multi-valued)

formula is built from atoms using the connectives ∧, ∨, ¬, ⊤ and ⊥. Formulas of

the forms F → G and F ↔ G can be seen as abbreviations in the usual way.

A (multi-valued) causal rule is an expression of the form F ⇐ G, where F

and G are formulas. These formulas are called the head and the body of the rule

respectively. A (multi-valued) causal theory is a set of causal rules.

A (multi-valued) interpretation over σ is a (total) function that maps each

constant c of σ to an element of Dom(c). An interpretation I satisfies (or is a model

of) an atom c = v if I(c) = v. The definition of satisfaction and model of formulas

1http://www.cs.utexas.edu/~tag/ccalc/ .
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of more general form follows the usual rules of propositional logic.

The semantics of causal theories of [Giunchiglia et al., 2004a] defines when

an interpretation I of σ is a model of a causal theory T , as follows. The reduct T I

of T relative to I is the set of the heads of the rules of T whose bodies are satisfied

by I. We say that I is a model of T if I is the only model of T I . It is clear that

replacing the head or the body of a causal rule by an equivalent formula doesn’t

change the models of a causal theory.

Take, for instance, the following causal theory with Dom(c) = {1, 2, 3}:

¬(c = 1) ∨ c = 2⇐ ⊤

¬(c = 2) ∨ c = 1⇐ ⊤.
(9.5)

The reduct relative to any I is always

{¬(c = 1) ∨ c = 2,¬(c = 2) ∨ c = 1},

which is equivalent to c = 1 ↔ c = 2. The only model of the reduct is the inter-

pretation J such that J(c) = 3. It is then clear that J is a model of (9.5), while no

other interpretation I is a model of this causal theory because I is not a model of

the reduct.

A rule of the form

l1 ∨ · · · ∨ ln ⇐ G,

where n ≥ 0 and l1, . . . , ln are literals, is said to be in clausal form. It is also called

semi-definite if n ≤ 1, and definite if either the head is ⊥ (n = 0) or an atom. A

causal theory is in clausal form (semi-definite, definite) if all its rules are in clausal

form (respectively semi-definite, definite).

A constant c is binary if |Dom(c)| = 2. It is also called Boolean if Dom(c) =

{t, f}. Signatures, formulas, causal rules and causal theories are binary (Boolean),

if they contain binary (respectively, Boolean) constants only. In case of a binary
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signature, the difference between definite and semi-definite causal rules is not es-

sential, because every negative literal can be rewritten as an atom. For instance, if

the underlying signature is Boolean then ¬(c = t) is equivalent to c = f . In case

of Boolean constants c, we will often write c = t simply as c. If a causal theory

of a Boolean signature doesn’t contain atoms of the form c = f then the heads

and bodies of its rules are essentially classical, as in the original definition of causal

theories [McCain and Turner, 1997]. We call such theories MCT theories.

Take, for instance, the following MCT theory T of signature {p, q}:

p ∨ ¬q ⇐ ⊤

q ⇐ p.

The interpretation I defined by I(p) = I(q) = t is a model of T . Indeed, in this

case T I = {p ∨ ¬q, q}, and its only model is I. No other interpretation is a model

of T : if I(p) = t and I(q) = f then I is not a model of the reduct T I = {p ∨ ¬q, q},

while if I(p) = f then the reduct T I = {p ∨ ¬q} has more than one model.

9.3 Computational Methods

We are interested in methods for computing the models of a causal theory T other

than by using the definition of a model directly.

The Causal Calculator uses a technique limited to definite causal theories.

A finite definite causal theory can be easily turned into an equivalent set of propo-

sitional formulas using the “literal completion” procedure defined in [McCain and

Turner, 1997; Giunchiglia et al., 2004a]. Then the models of the causal theory can

be found by running a SAT solver on this set of formulas.

An alternative computational procedure is to translate the given causal the-

ory into a nondisjunctive logic program (the head of each rule is a literal or ⊥) under

the answer set semantics as in Proposition 6.7 from [McCain, 1997], and then invoke
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an answer set solver, such as smodels. This is discussed in [Doğandağ et al., 2001].

McCain’s translation is more limited than literal completion, in the sense that, in

addition to be applicable to definite theories only, those must be MCT-theories.

In this chapter we define two extensions of McCain’s translation. The first

one is applicable to the class of “almost definite” causal theories, a category of

MCT-theories that includes all definite theories and covers some other interesting

cases. One kind of interesting almost definite theories has to do with the idea of

transitive closure, or reachability in a directed graph, which plays an important

role in formal commonsense reasoning. The result of the translation is generally a

program with nested expressions, but, in the examples mentioned above, we obtain

a nondisjunctive program as with McCain’s translation.

The second translation is applicable to causal theories — even multi-valued

ones — that are in clausal form: the head of each rule is a disjunction of literals.

This class of causal theories is very general, as every causal theory can be rewritten

in clausal form. The output of this translation is a program with nested expressions

with the same “models”. We also show how we can modify the translation to

produces smaller logic programs. This translation, together with a polynomial time

“clausification” process described in Section 9.8, produces a program with nested

expressions from arbitrary causal theories in polynomial time. Nested expressions

can be eliminated in favor of disjunctive programs in the sense of [Gelfond and

Lifschitz, 1991], by a system such as nlp.2 We can then use answer set solvers that

accept disjunctive logic programs as input (such as cmodels, dlv and GnT) to

find the models of arbitrary causal theories.

2http://www.cs.uni-potsdam.de/~torsten/nlp/ .
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9.4 Almost Definite Causal Theories

In this chapter we will sometimes identify the logic program connectives , and ;

with the symbols used in propositional formulas ∧ and ∨, (but, in contrast to a

similar convention of Section 3.5, we don’t identify negation as failure not with ¬).

Under this convention, nested expressions that do not contain negation as failure are

identical to propositional formulas that are formed from literals using the connectives

∧, ∨, ⊤ and ⊥. Such propositional formulas are said to be in standard form, and

the literals they are formed from will be called their component literals.

By T we denote a causal theory whose rules have the form

G→ H ⇐ F, (9.6)

where F , G and H are in standard form. When G is ⊤, we will identify the head

G→ H of this rule with H, so that definite rules (with the body written in standard

form) can be viewed as a special case of (9.6).

Let l stand for the literal complementary to l. We say that l is default false

if T contains the rule

l⇐ l. (9.7)

We say that T is almost definite if, in each of its rules (9.6),

• the component literals of G are default false, and

• the component literals of H are default false, or H is a conjunction of literals.

Definite theories are almost definite: in each of their rules, G is ⊤, and H is

a literal or the empty conjunction ⊥. The pair of rules

¬q → p⇐ ⊤

q ⇐ q
(9.8)

is an example of an almost definite theory that is not definite.
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Now we will describe a translation that turns any almost definite causal

theory T into a logic program ΠT . For any standard formula F , by Fnot we denote

the nested expression obtained from F by replacing each component literal l with

not l. For instance,

(¬p ∧ q)not = not p,not ¬q.

For any almost definite causal theory T , the logic program ΠT is defined as

the set of the program rules

H ← G,Fnot (9.9)

for all causal rules (9.6) in T .

For instance, the translation of

p ∨ ¬q ⇐ ⊤

q ⇐ p,
(9.10)

is the program

p← ⊤,not ¬q

q ← ⊤,not ¬q

¬q ← ⊤,not q

which is strongly equivalent to

p← not ¬q

q ← not ¬q

¬q ← not q.

(9.11)

The translation of (9.8) can be similarly written as

p← ¬q

q ← not ¬q.
(9.12)

The theorem below expresses the soundness of this translation. We identify

each interpretation with the set of literals that are satisfied by it. Clearly this set

is complete: for each atom a, it contains either a or ¬a.
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Theorem 9. An interpretation is a model of an almost definite causal theory T iff

it is an answer set for ΠT .

Note that this theorem does not say anything about the answer sets for the

translation ΠT that are not complete. For instance, the first of the answer sets

{p, q}, {¬q}

for program (9.11) is complete, and the second is not; in accordance with Theo-

rem 9, the first answer set is identical to the only model of the corresponding causal

theory (9.10). The only answer set for the translation (9.12) of causal theory (9.8) is

{q}; it is incomplete, and accordingly (9.8) has no models. The incomplete answer

sets of a logic program can be eliminated by adding the constraints

⊥ ← not a,not ¬a (9.13)

for all atoms a.

Rules of ΠT can be more complex than allowed by the preprocessor lparse

of the system smodels. (The syntax of lparse does not permit disjunctions in the

bodies of rules, as well as conjunctions and disjunctions in the heads of rules.) If,

however, the formulas F and G in a rule (9.6) are conjunctions of literals, and H is

a literal or ⊥, then the translation (9.9) of that rule can be processed by lparse.

These conditions are satisfied in many interesting cases, including the examples of

almost definite causal theories discussed in the next section.

9.5 Examples

9.5.1 Transitive Closure

The transitive closure of a binary relation P on a set A can be described by an

almost definite causal theory as follows. For any x, y ∈ A such that xPy, the theory
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includes the causal rule

p(x, y)⇐ ⊤. (9.14)

In the remaining causal rules, x, y and z stand for arbitrary elements of A. By

default, P does not hold:

¬p(x, y)⇐ ¬p(x, y). (9.15)

If xPy then there is a cause for (x, y) to satisfy the transitive closure of P :

tc(x, y)⇐ p(x, y), (9.16)

and there is a cause for the implication tc(y, z)→ tc(x, z) to hold:

tc(y, z)→ tc(x, z)⇐ p(x, y). (9.17)

Finally, by default, the transitive closure relation does not hold:

¬tc(x, y)⇐ ¬tc(x, y). (9.18)

The following theorem expresses that this representation of transitive closure

in causal logic is adequate. By P ∗ we denote the transitive closure of P .

Theorem 10. Causal theory (9.14)–(9.18) has a unique model. In this model M ,

an atom is true iff it has the form p(x, y) where xPy, or the form tc(x, y) where

xP ∗y.

If we attempt to make the almost definite causal theory (9.14)–(9.18) definite

by replacing (9.17) with the definite rule

tc(x, z)⇐ p(x, y) ∧ tc(y, z)

then the assertion of Theorem 10 will become incorrect [Giunchiglia et al., 2004a,

Section 7.2].

The logic program corresponding to causal theory (9.14)–(9.18) is shown in

Figure 9.1.
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p(x, y) ← ⊤ if xPy
¬p(x, y) ← not p(x, y)
tc(x, y) ← not ¬p(x, y)
tc(x, z) ← tc(y, z),not ¬p(x, y)
¬tc(x, y) ← not tc(x, y)

Figure 9.1: Translation of causal theory (9.14)–(9.18).

Rules (9.16) and (9.17) above can be replaced with

p(x, y)→ tc(x, y)⇐ ⊤

and

p(x, y) ∧ tc(y, z)→ tc(x, z)⇐ ⊤.

The assertion of Theorem 10 holds for the modified theory also. Since the atoms

p(x, y) are default false, the modified theory is almost definite, so that Theorem 9

can be used to turn it into a logic program. Its translation differs from the one

shown in Figure 9.1 in that it does not have the combination not ¬ in the third and

forth lines.

The fact that the atoms p(x, y) are assumed to be defined by rules of the

forms (9.14) and (9.15) is not essential for the validity of Theorem 10, or for the

claim that the theory is almost definite; the relation P can be characterized by any

definite causal theory with a unique model. But the modification described above

would not be almost definite in the absence of rules (9.15).

Transitive closure often arises in work on formalizing commonsense reasoning.

For instance, Erik Sandewall’s description of the Zoo World3 says about the neighbor

relation among positions that it “is symmetric, of course, and the transitive closure of

the neighbor relation reaches all positions.” Because of the difficulty with expressing

transitive closure in the definite fragment of causal logic, this part of the specification

3http://www.ida.liu.se/ext/etai/lmw/ .
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Figure 9.2: Robby’s apartment is a 3 × 3 grid, with a door between every pair of
adjacent rooms. Initially Robby is in the middle, and all doors are locked. The goal
of making every room accessible from every other can be achieved by unlocking 8
doors, and the robot will have to move to other rooms in the process.

of the Zoo World is disregarded in the paper by Akman et al. [2004] where the Zoo

World is formalized in the input of language of CCalc.

Here is another example of this kind. The apartment where Robby the Robot

lives consists of several rooms connected by doors, and Robby is capable of moving

around and of locking and unlocking the doors. This is a typical action domain of

the kind that are easily described by definite causal theories. But the assignment

given to Robby today is to unlock enough doors to make any room accessible from

any other (Figure 9.2). To express this goal in the language of causal logic we need,

for any time instant t, the transitive closure of the relation “there is currently an

unlocked door connecting Room i with Room j.” In the spirit of the representation

discussed above, the transitive closure can be defined by the causal rules

Accessible(i, j)t ⇐ Unlocked(i, j)t

Accessible(j, k)t → Accessible(i, k)t ⇐ Unlocked(i, j)t

¬Accessible(i, j)t ⇐ ¬Accessible(i, j.)t

(9.19)

The causal theories in both examples are almost definite.
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¬MotorOn(G(i))t+1 ⇐ Toggle(S(i))t ∧MotorOn(G(i))t

MotorOn(G(i))t+1 ⇐ Toggle(S(i))t ∧ ¬MotorOn(G(i))t

¬Connectedt+1 ⇐ Pusht ∧ Connectedt

Connectedt+1 ⇐ Pusht ∧ ¬Connectedt

MotorOn(G(i))t+1 ⇐ MotorOn(G(i))t+1 ∧MotorOn(G(i))t

¬MotorOn(G(i))t+1 ⇐ ¬MotorOn(G(i))t+1 ∧ ¬MotorOn(G(i))t

Connectedt+1 ⇐ Connectedt+1 ∧ Connectedt

¬Connectedt+1 ⇐ ¬Connectedt+1 ∧ ¬Connectedt

MotorOn(G(i))0 ⇐ MotorOn(G(i))0
¬MotorOn(G(i))0 ⇐ ¬MotorOn(G(i))0

Connected0 ⇐ Connected0

¬Connected0 ⇐ ¬Connected0

Toggle(S(i))t ⇐ Toggle(S(i))t

¬Toggle(S(i))t ⇐ ¬Toggle(S(i))t

Pusht ⇐ Pusht

¬Pusht ⇐ ¬Pusht

(i = 1, 2; t = 0, . . . , n− 1);

Turning(G(i))t ⇐ MotorOn(G(i))t

Turning(G(1))t ↔ Turning(G(2))t ⇐ Connectedt

¬Turning(G(i))t ⇐ ¬Turning(G(i))t

(i = 1, 2; t = 0, . . . , n).

Figure 9.3: Two gears domain.

9.5.2 Two Gears

This domain, invented by Marc Denecker, is described in [McCain, 1997, Sec-

tion 7.5.5] as follows:

Imagine that there are two gears, each powered by a separate motor.

There are switches that toggle the motors on and off, and a button that

moves the gears so as to connect or disconnect them from one another.

The motors turn the gears in opposite (i.e., compatible) directions. A

gear is caused to turn if either its motor is on or it is connected to a gear

that is turning.
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¬MotorOn(G(i))t+1 ← not ¬Toggle(S(i))t,not ¬MotorOn(G(i))t

MotorOn(G(i))t+1 ← not ¬Toggle(S(i))t,not MotorOn(G(i))t

Connectedt+1 ← not ¬Pusht,not Connectedt

¬Connectedt+1 ← not ¬Pusht,not ¬Connectedt

MotorOn(G(i))t+1 ← not ¬MotorOn(G(i))t+1,not ¬MotorOn(G(i))t

¬MotorOn(G(i))t+1 ← not MotorOn(G(i))t+1,not MotorOn(G(i))t

Connectedt+1 ← not ¬Connectedt+1,not ¬Connectedt

¬Connectedt+1 ← not Connectedt+1,not Connectedt

MotorOn(G(i))0 ← not ¬MotorOn(G(i))0
¬MotorOn(G(i))0 ← not MotorOn(G(i))0

Connected0 ← not ¬Connected0

¬Connected0 ← not Connected0

Toggle(S(i))t ← not ¬Toggle(S(i))t

¬Toggle(S(i))t ← not Toggle(S(i))t

Pusht ← not ¬Pusht

¬Pusht ← not Pusht

(i = 1, 2; t = 0, . . . , n− 1),

Turning(G(i))t ← not ¬MotorOn(G(i))t

Turning(G(2))t ← Turning(G(1))t,not ¬Connectedt

Turning(G(1))t ← Turning(G(2))t,not ¬Connectedt

¬Turning(G(i))t ← not Turning(G(i))t

(i = 1, 2; t = 0, . . . , n).

Figure 9.4: Translation of the two gears domain.

McCain’s representation of this domain as a causal theory is shown in Fig-

ure 9.3. The first 4 lines describe the direct effects of actions. The next 4 lines have

the form (9.4) and express the commonsense law of inertia. The 8 lines that follow

say that the initial values of fluents and the execution of actions are “exogenous.”

The last 3 lines express that a gear’s motor being on causes the gear to turn, that

the gears being connected causes them to turn (and not to turn) together, and that

by default the gears are assumed not to turn.
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Because of the second line from the end, this theory is not definite. But we

can make it almost definite by replacing that line with

Turning(G(1))t → Turning(G(2))t ⇐ Connectedt

Turning(G(2))t → Turning(G(1))t ⇐ Connectedt.

By Proposition 4(i) from [Giunchiglia et al., 2004a], this transformation does not

change the set of models.

The corresponding logic program is shown in Figure 9.4. Many occurrences

of the combination not ¬ in this program can be dropped without changing the

answer sets.

9.6 Translation of causal theories in clausal form

In this section we will use some terminology from Section 9.4.

Recall, from Section 9.2, that a causal theory (non necessarily a MCT-theory)

in clausal form consists of rules (in clausal form) of the form

l1 ∨ · · · ∨ ln ⇐ G, (9.20)

where l1, . . . , ln (n ≥ 0) are literals. We will also assume that G is in standard form.

Given any causal theory T in clausal form, we define ΛT as the program with

nested expressions obtained from T

• by replacing each causal rule (9.20) by

l1; . . . ; ln ← Gnot, (l1; not l1), . . . , (ln; not ln) (9.21)

where each li stands for the literal complementary to li, and

• by adding, for every constant c ∈ σ and every distinct v, v′ ∈ Dom(c), rules

c = v ↔ ,
w∈Dom(c)\{v}

¬(c = w) (9.22)
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¬(c = v);¬(c = v′)← not (c = v),not (c = v′) (9.23)

where the expression of the form F ↔ G stands for two rules F ← G and

G← F .

According to this definition, each rule (9.21) of ΛT can be obtained from the

corresponding rule of T in three steps: by

• replacing each ∧ and ∨ with the corresponding “logic program connective”,

• replacing each component literal l in the body of each rule with not l, and

• adding some “excluded middle hypotheses” to the body of the rule.

This last step “compensates” the replacement of ∨ in the head of a rule with the

corresponding “stronger” logic program connective. It is clear that this translation

is linear if there is an upper bound on the size of the domain for each constant in T

(for instance, when T is binary).

Rules (9.22) and (9.23) relate literals containing the same constant. They

are needed to establish, for each interpretation I, a 1–1 relationship between the

models of T I and the subsets of I (where I is seen as the set of literals satisfied by

it) that satisfy (ΛT )I .

For instance, if T is

¬(c = 1) ∨ c = 2⇐ ⊤

¬(c = 2) ∨ c = 1⇐ ⊤.
(9.24)
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then ΛT is

¬(c = 1); c = 2← ⊤, (c = 1; not (c = 1)),(¬(c = 2); not ¬(c = 2))

¬(c = 2); c = 1← ⊤, (c = 2; not (c = 2)),(¬(c = 1); not ¬(c = 1))

c = 1↔ ¬(c = 2),¬(c = 3)

c = 2↔ ¬(c = 1),¬(c = 3)

c = 3↔ ¬(c = 1),¬(c = 2)

¬(c = 1);¬(c = 2)← not (c = 1),not (c = 2)

¬(c = 1);¬(c = 3)← not (c = 1),not (c = 3)

¬(c = 2);¬(c = 3)← not (c = 2),not (c = 3).

(9.25)

If T is (9.10) then ΛT is

p;¬q ←⊤, (¬p; not ¬p), (q; not q)

q ←not ¬p, (¬q; not ¬q)

p↔ ¬(p = f)

p = f ↔ ¬p

q ↔ ¬(q = f)

q = f ↔ ¬q

¬p;¬(p = f)← not p,not (p = f)

¬q;¬(q = f)← not q,not (q = f).

(9.26)

The theorem below expresses the soundness of this translation. We identify

each interpretation with the (complete) set of literals over σ that are satisfied by

the interpretation.

Theorem 11. For any causal theory T in clausal form, the models of T are identical

to the answer sets for ΛT .

163



For instance, the only answer set for (9.25) is {¬(c = 1),¬(c = 2), c = 3},

and indeed it is the only model of (9.24). The only answer set for (9.26) is

{p,¬(p = f), q,¬(q = f)},

which is the only model of (9.10).

For each causal rule (9.20) that has the form l1 ⇐ G (i.e., n = 1), we can

drop the “excluded middle hypothesis” from the corresponding rule (9.21) of ΛT .

Proposition 28. For any literal l and any nested expression F , the one-rule logic

program

l← F,
(

l; not l
)

is strongly equivalent to

l← F.

For instance, the second rule of (9.26) can be rewritten as

q ← not ¬p

and the answer sets don’t change.

However, dropping terms of the form li; not li from (9.21) is usually not sound

when n > 1. Take, for instance, the one-rule MCT causal theory:

p ∨ ¬p⇐ ⊤,

which has no models. As we expect, the corresponding logic program ΛT :

p;¬p← ⊤, (¬p; not ¬p), (p; not p)

p↔ ¬(p = f)

p = f ↔ ¬p

¬p;¬(p = f)← not p,not (p = f)

(9.27)

has no answer sets. If we drop the two disjunctions in the body of the first rule

of (9.27) we get a logic program with two answer sets {p,¬(p = f)} and {¬p, p = f}

instead.
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9.7 Reducing the Size of the Translation of Causal The-

ories in Clausal Form

Our simplification of ΛT depends on two parameters:

• a set S of atoms of σ such that every atom occurring in T belongs to S, and

• a set C of constants of σ such that every rule of T containing a constant from

C in the head is semi-definite (see Section 9.2).

For each constant c, let Nc denote the number of atoms containing c that do

not occur in S. We define the logic program ∆T (S,C) as obtained from ΛT by:

• dropping all rules (9.23) such that c ∈ C or {c = v, c = v′} 6⊆ S,

• replacing, for each constant c such that Nc > 0, rules (9.22) with the set of

rules

,
w : c=w∈S,w 6=v

¬(c = w)← c = v (9.28)

for all v ∈ Dom(c) such that c = v ∈ S, and

• adding

⊥ ← ,
w : c=w∈S

not (c = w) (9.29)

for each constant c such that Nc > 1.

We will denote ∆T (S, ∅) by ∆T (S). We can easily notice that ∆T (S, ∅) contains

atoms from S only. Clearly, when S contains all atoms of the underlying signature,

∆T (S) = ΛT . Taking S smaller and C larger makes ∆T (S,C) contain smaller and

simpler rules.

Rules (9.28) impose a condition similar to the left-to-right half of (9.22),

but they are limited to atoms of S. Rule (9.29) expresses, in the translation, the

following fact about causal theories: if neither of two distinct atoms c = v1 and
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c = v2 occurs in a causal theory T then no model of T maps c to v1 or v2. For

instance, if Dom(c) = {1, 2, 3} and only c = 1 occurs in T then every model of T

maps c to 1. However, if c = 2 occurs in T as well then c can be mapped to 3, as

shown by example (9.24).

For instance, if T is (9.24) then ∆T ({c = 1, c = 2}) is

¬(c = 1); c = 2← ⊤, (c = 1; not (c = 1)), (¬(c = 2); not ¬(c = 2))

¬(c = 2); c = 1← ⊤, (c = 2; not (c = 2)), (¬(c = 1); not ¬(c = 1))

¬(c = 2)← c = 1

¬(c = 1)← c = 2

¬(c = 1);¬(c = 2)← not (c = 1),not (c = 2)

(9.30)

If S is a set of atoms, a subset of {a,¬a : a ∈ S} is complete over S if it

contains exactly one of the two literals a or ¬a for each a ∈ S.

Theorem 12. Let T be a causal theory over σ. Let S be a set of atoms of σ such

that every atom occurring in T belongs to S, and let C be a set of constants of σ

such that every rule of T containing a constant from C in the head is semi-definite.

Then I 7→ I ∩ {a,¬a : a ∈ S} is a 1–1 correspondence between the models of T

and the answer sets of ∆T (S,C) that are complete over S.

We get the models of the original causal theory by looking at the unique

interpretation that satisfies each complete answer set for ∆T (S,C). (The uniqueness

of the interpretation is guaranteed by the theorem.) For instance, {¬(c = 1),¬(c =

2)} is the only complete answer set for (9.30); it corresponds to the interpretation

that maps c to 3, and this is indeed the only model of (9.24). Also this translation

∆T (S,C) may have incomplete answer sets.

Similarly to ΠT , program ∆T (S,C) may have incomplete answer sets, which

don’t correspond to any model of T . Also in this case, they can be eliminated from

the collection of answer sets ∆T (S,C) by adding
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We can notice that no constant c ∈ C occurs in the head of “intrinsically

disjunctive” rules of ∆T (S,C), in the following sense. If c ∈ C then each rule (9.21)

with c in the head is nondisjunctive because it comes from a semi-definite causal

rule, and ∆T (S,C) doesn’t contain rules (9.23) whose head contains c. Moreover,

rules (9.22) and (9.29) can be strongly equivalently rewritten as nondisjunctive rules.

In particular, it is possible to translate semi-definite causal theories into nondisjunc-

tive programs of about the same size. As a consequence, the problem of the existence

of a model of a semi-definite causal theory is in class NP.

When, for a binary constant c, only one of the two atoms belongs to S, all

rules (9.22) and (9.23) in ΛT for such constant c are replaced in ∆T (S,C) by a single

rule (9.28) whose head is ⊤, which can be dropped. In particular, an MCT theory

T over σ can be translated into logic program ∆T (σ), essentially consisting just of

rules (9.21) for all rules (9.20) in T .

For instance, if T is (9.10) then ∆T ({p, q}) is

p;¬q ← ⊤, (¬p; not ¬p), (q; not q)

q ← not ¬p, (¬q; not ¬q)

whose only complete answer set is {p, q} as expected.

9.8 Clausifying a Causal Theory

As we mentioned in the introduction, the translations from the previous sections

can also be applied to arbitrary causal theories, by first converting them into clausal

form. One way to do that is by rewriting the head of each rule in conjunctive normal

form, and then by breaking each rule

C1 ∧ · · · ∧ Cn ⇐ G, (9.31)

where C1, . . . , Cn (n ≥ 0) are clauses, into n rules

Ci ⇐ G (9.32)
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(i = 1, . . . , n) [Giunchiglia et al., 2004a, Proposition 4]. However, this reduction

may lead to an exponential increase in size unless we assume an upper bound on

the number of atoms that occur in the head of each single rule.

We propose a reduction from an arbitrary causal theory to a causal theory

where the head of each rule has at most three atoms. This translation can be

computed in polynomial time and requires the introduction of auxiliary Boolean

atoms. The translation is similar to the one for logic programs from [Pearce et al.,

2002] mentioned in the introduction.

We denote each auxiliary atom by dF , where F is a formula. For any causal

theory T , the causal theory T ′ is obtained by T by

• replacing the head of each rule F ⇐ G in T by dF , and

• adding, for each subformula F that occurs in the head of rules of T ,

– dF ↔ F ⇐ ⊤, if F is an atom, ⊤ and ⊥,

– dF ↔ ¬dG ⇐ ⊤, if F has the form ¬G, and

– dF ↔ dG ⊗ dH ⇐ ⊤, if F has the form G⊗H.

(⊗ denotes a binary connective.)

Intuitively, the equivalences in the heads of the rules above recursively define

each atom dF occurring in T ′ to be equivalent to F . This translation is clearly

modular.

If T is an MCT theory then T ′ is an MCT theory also. For instance, MCT

rule

p ∨ (q ∧ ¬r)⇐ r
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is transformed into the following 7 MCT rules:

dp∨(q∧¬r) ⇐ r

dp∨(q∧¬r) ↔ dp ∨ dq∧¬r ⇐ ⊤

dq∧¬r ↔ dq ∧ d¬r ⇐ ⊤

d¬r ↔ ¬dr ⇐ ⊤

da ↔ a⇐ ⊤ (a ∈ {p, q, r})

Theorem 13. For any causal theory T over a signature σ, I 7→ I|σ is a 1–1 corre-

spondence between the models of T ′ and the models of T .

We can see that every rule in causal theories of the form T ′ is either already

in clausal form, or has the body ⊤ and at most three atoms in the head. It is not

hard to see that the clausification process described at the beginning of the section

is linear when applied to T ′.

9.9 Related work

Theorems 9, 11 and 12 extend Proposition 6.7 from [McCain, 1997]. McCain’s

translation transforms each rule of an MCT-theory T

l ⇐ l1 ∧ · · · ∧ ln

(l1, . . . , ln are literals and l is a literal or ⊥) into a logic program rule

l← not l1, . . . ,not ln.

It is easy to check that ΠT is identical to McCain’s translation of T . Translation

∆T (σ) (where σ is the set of atoms in T ) differs from ΠT only for the presence of

terms of the form l1; not l1 in the body of rules, and those can be eliminated by

Proposition 28.

Another special case of Theorem 9 that was known before is the case when
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• every atom in the language of T is default false, that is to say, T contains the

causal rule ¬a⇐ ¬a for every atom a, and

• in every other rule (9.6) of T , F is a conjunction of negative literals, G is a

conjunction of atoms, and H is a disjunction of atoms.

This special case is covered essentially by the lemma from [Giunchiglia et al., 2004a,

Section 7.3]. What is interesting about this case is that by forming the translation

ΠT of a causal theory T satisfying the conditions above we can get an arbitrary set

of rules of the form

a1; . . . ; am ← b1, . . . , bn,not c1, . . . ,not cp (9.33)

where a1, . . . , am, b1, . . . , bn, c1, . . . , cp are atoms, plus the “closed world assumption”

rules

¬a← not a

for all atoms a. Since the problem of existence of an answer set for a finite set

of rules of the form (9.33) is ΣP
2 -hard [Eiter and Gottlob, 1993, Corollary 3.8], it

follows that the problem of existence of a model for an almost definite causal theory

is ΣP
2 -hard also. This fact shows that from the complexity point of view almost

definite causal theories are as general as arbitrary causal theories.

On the other hand, if the formula H in every rule (9.6) of an almost defi-

nite causal theory T is a literal or ⊥ then the corresponding logic program ΠT is

nondisjunctive. Consequently, the problem of existence of a model for the almost

definite causal theories satisfying this condition is in class NP, just as for definite

causal theories. This condition is satisfied, for instance, for both examples discussed

in Section 9.5.

If a causal theory T is definite then the corresponding logic program ΠT is

tight in the sense of [Erdem and Lifschitz, 2003]. The answer sets for a finite tight
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program can be computed by eliminating classical negation from it in favor of addi-

tional atoms and then generating the models of the program’s completion [Babovich

et al., 2000]. This process is essentially identical to the use of literal completion men-

tioned in the introduction. If T is almost definite but not definite then the program

ΠT , generally, is not tight.

Even in the case MCT-theories, the classes of almost definite causal theories

and of causal theories in clausal form partially overlap, neither is a subset of the

other. For a causal theory T that is both almost definite and in clausal form, the

two programs ΠT and ΛT are strongly equivalent to each other.

9.10 Proofs

We begin with a comment about notation. The semantics of propositional logic de-

fines when an interpretation satisfies a propositional formula; on the other hand, we

also defined when a set of literals satisfies a nested expression. Since we have agreed

to identify any interpretation with a set of literals, and to identify any standard

formula with a nested expression, these two definitions of satisfaction overlap when

applied to an interpretation (a complete set of literals) and a standard formula (a

nested expression without negation as failure). It is easy to see, however, that the

two definitions are equivalent to each other in this special case, so that we can safely

use the same symbol |= for both relations.

9.10.1 Proof of Theorem 9

For any nested expression F we denote by lit(F ) the set of literals that have regular

occurrences in F . (An occurrence is regular if it is not an occurrence of an atom

within a negative literal [Lifschitz et al., 1999],) In particular, if F is a standard

formula then lit(F ) is the set of all component literals of F . The following fact is

easy to check by structural induction:
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Fact 3. For any nested expression F and any consistent set X of literals,

X |= F iff X ∩ lit(F ) |= F.

Consider an almost definite causal theory T . For any interpretation I, the

reduct T I consists of implications G → H where G and H are standard. We will

denote by Θ(I) the set of program rules

H ← G (9.34)

for all implications G→ H in T I . It is clear that for any interpretation J ,

J |= Θ(I) iff J |= T I . (9.35)

By D we denote the set of default false literals of T . Since T is almost

definite, for any rule (9.34) in Θ(I)

lit(G) ⊆ D (9.36)

and

lit(H) ⊆ D or H is a conjunction of literals. (9.37)

Lemma 50. For any interpretations I, J , if I |= Θ(I) then

J |= Θ(I) iff I ∩ J |= Θ(I).

In the proof we use the following fact, which is easy to prove by structural

induction.

Fact 4. Let F be a nested expression without negation as failure, and let X, Y be

consistent sets of literals. If X |= F and X ⊆ Y then Y |= F .

Proof of Lemma 50. Case 1: J ∩ D 6⊆ I. Take a literal l such that l ∈ J ∩ D and

l 6∈ I. Since l ∈ D, T contains the rule l⇐ l. Since l 6∈ I, it follows that the formula l
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belongs to T I , so that Θ(I) contains the program rule l← ⊤. Consequently any set

of literals that satisfies Θ(I) contains l. But l ∈ J , so that l 6∈ J , which implies that

neither J nor I ∩ J satisfies Θ(I).

Case 2: J ∩D ⊆ I.

Left to right. Assume that I and J satisfy Θ(I), and take any rule (9.34) in Θ(I)

such that I∩J |= G. We need to check that I∩J |= H. By Fact 4, I |= G and J |= G.

Since I and J satisfy Θ(I), it follows that I |= H and J |= H. According to (9.37),

there are two possibilities. One is that lit(H) ⊆ D. Then, by the assumption of

Case 2,

J ∩ lit(H) ⊆ J ∩D ⊆ I ∩ J. (9.38)

By Fact 3, from J |= H we can conclude that J ∩ lit(H) |= H. By (9.38) and Fact 4,

it follows that I ∩J |= H. The other possibility is that H is a conjunction of literals

l1, . . . , ln. Since I and J both satisfy H, each of these literals belongs both to I and

to J , so that l1, . . . , ln ∈ I ∩ J , and we arrive at the same conclusion I ∩ J |= H.

Right to left. Assume that I ∩J |= Θ(I), and take any rule (9.34) in Θ(I) such that

J |= G. We need to check that J |= H. By Fact 3, from J |= G can conclude that

J ∩ lit(G) |= G. On the other hand, by (9.36) and the assumption of Case 2,

J ∩ lit(G) ⊆ J ∩D ⊆ I ∩ J.

By Fact 4, it follows that I ∩ J |= G. Since I ∩ J |= Θ(I), we can conclude that

I ∩ J |= H. By Fact 4, it follows that J |= H.

Lemma 51. For any consistent set X of literals and any interpretation I,

X |= Θ(I) iff X |= (ΠT )I .

In the proof we use the following fact, which is easy to prove by structural

induction.
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Fact 5. For any standard formula F , any interpretation I and any consistent set

X of literals,

X |= (Fnot)
I iff I |= F.

Proof of Lemma 51. The condition X |= (ΠT )I means that X satisfies the reduct

with respect to I of the translation (9.9) of every rule (9.6) of T . That reduct can

be written as

H ← G, (Fnot)
I (9.39)

Consequently, by Fact 5, the condition X |= (ΠT )I can be expressed by saying that,

for every rule (9.6) of T , if I |= F and X |= G then X |= H. This is equivalent to

X |= Θ(I).

Theorem 9. An interpretation is a model of an almost definite causal theory T iff

it is an answer set for ΠT .

Proof. Let I be an interpretation. The condition

I is a model of T

means that

I |= T I and, for any interpretation J , if J |= T I then J = I.

In view of (9.35), this is equivalent to the condition

I |= Θ(I) and, for any interpretation J , if J |= Θ(I) then J = I

and then, by Lemma 50, to

I |= Θ(I) and, for any interpretation J , if I ∩ J |= Θ(I) then J = I.

The last condition can be expressed by saying that

for any interpretation J , I ∩ J |= Θ(I) iff J = I.
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This is further equivalent to the assertion

I is the only subset of I that satisfies Θ(I),

because J 7→ I ∩ J is a 1–1 correspondence between the set of all interpretations

and the set of all the subsets of I. By Lemma 51, this assertion is equivalent to the

claim that I is minimal among the sets satisfying (ΠT )I , which means that I is an

answer set for ΠT .

9.10.2 Proof of Theorem 10

Let P be a binary relation on a set A, P ∗ its transitive closure, and T the causal

theory (9.14)–(9.18). Define the interpretation M by

M = {p(x, y) : xPy} ∪ {¬p(x, y) : not xPy}

∪ {tc(x, y) : xP ∗y} ∪ {¬tc(x, y) : not xP ∗y}.

In this notation, the theorem to be proved can be stated as follows:

Theorem 10. M is the only model of T .

Lemma 52. Let I be an interpretation such that T I is consistent. For any x, y ∈ A,

if xP ∗y then T I |= tc(x, y).

Proof. Observe that

T I = {p(x, y) : xPy}

∪ {¬p(x, y) : I 6|= p(x, y)}

∪ {tc(x, y) : I |= p(x, y)} ∪ {tc(y, z)→ tc(x, z) : I |= p(x, y)}

∪ {¬tc(x, y) : I 6|= tc(x, y)}.

(9.40)

Since T I is consistent, from lines 1 and 2 of (9.40) we see that I |= p(x, y) whenever

xPy. Consequently, T I contains

{tc(x, y) : xPy)} ∪ {tc(y, z)→ tc(x, z) : xPy}.

It remains to notice that these formulas entail tc(x, y) for all x, y such that xP ∗y.
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Lemma 53. For any interpretation I, if T I is consistent and complete then M |= T I .

Proof. According to (9.40), the set of formulas in T I that contain the atoms p(x, y)

is

{p(x, y) : xPy} ∪ {¬p(x, y) : I 6|= p(x, y)}.

Since T I is consistent and complete, for any x, y ∈ A

xPy iff I |= p(x, y).

It follows that (9.40) can be rewritten as

T I = {p(x, y) : xPy}

∪ {¬p(x, y) : not xPy}

∪ {tc(x, y) : xPy} ∪ {tc(y, z)→ tc(x, z) : xPy}

∪ {¬tc(x, y) : I 6|= tc(x, y)}.

(9.41)

M clearly satisfies the formulas in the first three lines of (9.41). To prove that M

satisfies the formulas in line 4, take any x, y such that I 6|= tc(x, y); we need to

check that M 6|= tc(x, y), or, in other words, that xP ∗y doesn’t hold. Assume xP ∗y.

Then, by Lemma 52, T I |= tc(x, y); since T I contains the formula ¬tc(x, y), this

contradicts the consistency of T I .

Proof of Theorem 10. First we need to check that M is the only interpretation sat-

isfying TM . By formula (9.40) applied to I = M ,

TM = {p(x, y) : xPy}

∪ {¬p(x, y) : not xPy}

∪ {tc(x, y) : xPy} ∪ {tc(y, z)→ tc(x, z) : xPy}

∪ {¬tc(x, y) : not xP ∗y)}.

(9.42)

It is clear that M satisfies all these formulas. Take any interpretation I satisfying TM

and any x, y ∈ A. From the first two lines of (9.42) we see that

I |= p(x, y) iff xPy iff M |= p(x, y).
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If xP ∗y then, by Lemma 52 applied to I = M , TM |= tc(x, y), and consequently

I |= tc(x, y). Otherwise, from line 4 of (9.42) we see that I |= ¬tc(x, y). Thus

I = M .

To show that an interpretation I different from M cannot be a model of T ,

notice that for such I, by Lemma 53, T I either is inconsistent, or is incomplete, or

is satisfied by an interpretation different from I. In each of these cases, I cannot be

the only interpretation satisfying T I .

9.10.3 Proof of Proposition 28

We use the following property about logic programs, easily provable by induction.

Fact 6. For any logic program Π, and any consistent set X of literals,

X |= ΠX iff X |= Π.

In view of this fact, we can rewrite the characterization of strong equivalence

in Section 3.7, which is a rephrasing of the characterization of strong equivalence

of [Turner, 2003], in the following way: two logic programs Π1 and Π2 are strongly

equivalent iff for every consistent set Y of literals,

(a) Y |= Π1 iff Y |= Π2, and

(b) if Y |= ΠY
1 then, for each X ⊂ Y , X |= ΠY

1 iff X |= ΠY
2 .

We also use the following property about logic programs, easily provable by

induction.

Proposition 28. For any literal l and any nested expression F , the one-rule logic

program

l← F,
(

l; not l
)

(9.43)

is strongly equivalent to

l← F. (9.44)
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Proof. Let Π2 be (9.43), and Π1 be (9.44). It is clear that condition (a) above holds.

We still need to prove (b). Take any consistent set Y of literals, and assume that Y

satisfies the reduct ΠY
1 :

l← F Y .

Case 1: l 6∈ Y . Then
(

l; not l
)Y

=
(

l;⊤
)

, which is equivalent to ⊤. Consequently

(Π2)Y is essentially identical to (Π1)Y , so that (b) holds. Case 2: l ∈ Y . Then

l 6∈ Y (Y is consistent), and then, since Y |= ΠY
1 , Y 6|= F Y . Consequently, since F Y

is a nested expression without negation as failure not, F Y is not satisfied by any

subset of Y . Consequently, all subset of Y satisfies both (Π1)Y and (Π2)Y , because

they both contain F Y as a conjunctive term in the body.

9.10.4 Proof of Theorems 11 and 12

We are going to prove Theorem 12 only, as the statement of Theorem 11 is a special

case of Theorem 12: recall that ΛT = ∆(S, ∅) where S contains all literals allowed

by the signature. We will use the following properties about logic programs.

Fact 7. Let Π be any logic program, and let Z be a set of literals not occurring in

Π. Then, for any two consistent sets X and Y of literals that

Y |= ΠX iff Y ∩ Z |= ΠX∩Z .

Fact 8. For any nested expression F and any two sets of literals X and Y such that

Y ⊆ X,

Y |= {⊥ ← F}X iff Y |= {⊥ ← F}.

Let T be a causal theory over σ, and let S be a set of atoms over σ that

do not occur in T , and C a set of constants which do not occur in the head of

nonsemi-definite rules. Let S′ be S ∪ {¬a : a ∈ S}. By any set X of literals (for
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instance, interpretations and S′) and any constant c, by Xc we denote the set of

literals of X that are over c.

Let Γ1 be the set of rules (9.21) of ∆(S,C), and Γ2 the other rules of

∆T (S,C). We say that an interpretation is a candidate model over S if, for each

constant c, atom c = I(c) ∈ S whenever two or more atoms of the form c = v

(v ∈ Dom(c) \ {I(c)}) don’t belong to S (or, alternatively, whenever Nc ≥ 2).

Lemma 54. Every model of T is a candidate model over S.

Proof. Take any interpretation I that is not a candidate model. This means that,

for some constant c and two values v1, v2 ∈ Dom(c), I(c) = v1, and c = v1, c = v2

don’t belong to S. This means that those two atoms don’t occur neither in T , not

in T I . Let I ′ be identical to I except that I ′(c) = v2. Consequently, if I is a model

of T I then I ′ is a model of T I , so that I cannot be the unique model of T I . We

conclude that I is not a model of T .

Lemma 55. I 7→ I ∩S′ is a 1–1 correspondence between the candidate models over

S and the consistent and complete set of literals over S satisfying Γ2.

Proof. We start by proving the right direction. It is easy to check that every inter-

pretation satisfies rules (9.22), (9.23) and (9.28) of Γ2. Now consider any rule (9.29)

which occurs in Γ2. This means that Nc > 1, so that at least two atoms of the form

c = v don’t occur in T . If an interpretation I is a candidate model then c = I(c)

belongs to S, which is the condition imposed by (9.29).

Now take any consistent and complete set X of literals over S that satisfies

Γ2. Consequently,

• X doesn’t contain more than one atom c = v (rules (9.28) and right direction

of (9.22)), and

• X contains an atom of the form c = v if Nc = 0 (left direction of (9.22)) or

Nc > 1 (rule (9.29)).
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(Rules (9.23) are always satisfied by complete sets of literals.) It is easy to see that

there is just one interpretation I such that I ∩S′ = X: it is the one that maps each

constant c to

(a) the value of v such that c = v ∈ X, if such value exists, and

(b) the only value of v ∈ Dom(c) such that c = v 6∈ S, otherwise. (The value of v

is unique, because, in this case, Nc = 1.)

This interpretation I is also a candidate model over S. Indeed, when Nc > 1 we are

in case (a), and in this case c = I(c) ∈ X ⊆ S.

Lemma 56. For any two interpretations I and J , and any causal theory T in clausal

form, I ∩ J |= ΓI
1 iff J is a model of T I .

Proof. It is sufficient to prove the claim for the case when T is a single rule (9.20),

and Γ1 rule (9.21).

Case 1: I is not a model for G. Then T I = ∅, and, in view of Fact 5, (Gnot)
I

is not satisfied by any subset of I. Consequently, since (Gnot)
I is a conjunctive term

in the body of ΓI
1, every subset of I satisfies ΓI

1. The claim immediately follows.

Case 2: I is a model for G. Then T I is

l1 ∨ · · · ∨ ln.

Consider the reduct of (9.21) relative to I. We notice that the body of that rule

contains a conjunctive term (Gnot)
I , but, in view of Fact 5, it is satisfied by all

sets of literals and then it can be dropped. Also, the terms of the form (li; not li)
X

in the body of the reduct can be written as li if li ∈ X, and dropped otherwise.

Consequently, we can write ΓI
1 as

l1; . . . ; ln ← ,
l∈{l1,...,ln}:l∈I

l
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where the “big comma” is similar to
∧

(in particular, it is ⊤ if there are no con-

junctive terms). Consequently, since interpretations are complete sets of literals, (l

ranges over l1, . . . , ln)

I ∩ J |= ΓI
1 iff l ∈ I ∩ J for some l whenever l ∈ I ∩ J for all l ∈ I

iff l ∈ J for some l ∈ I or l 6∈ I ∩ J for some l ∈ I

iff l ∈ J for some l ∈ I or l 6∈ J for some l ∈ I

iff l ∈ J for some l ∈ I or l ∈ J for some l 6∈ I

iff l ∈ J for some l

iff J is a model of T I .

Lemma 57. For any two interpretations I and J such that I is a candidate model

over S, I ∩ J ∩ S′ |= ∆T (S,C)I∩S′

iff J is a model of T I .

Proof. In view of Lemma 56 and Fact 7, we have that I ∩ J ∩ S′ |= ΓI∩S′

1 iff J is a

model of T I . It remains to show that I ∩ J ∩S′ |= ΓI∩S′

2 . By Lemma 55 and Fact 8,

I ∩ J satisfies the reduct of rules (9.29). The other rules of ΓI∩S′

2 are (9.22), (9.28),

and rules of the form

¬(c = v);¬(c = v′)← ⊤ (9.45)

such that both ¬(c = v) and ¬(c = v′) belong to S′ and I. (Some trivial rules

are dropped). We notice that, for each constant c and each pair of literals ¬(c =

v),¬(c = v′) that belong to I, at least one of them belongs to J also, so that (9.45)

is satisfied by I ∩J ∩S′. Consider any rule (9.22) of ΓI∩S′

2 . This means that Nc = 0,

so that (I ∩ J ∩ S′)c = (I ∩ J)c. If we consider that either (I ∩ J)c is Ic or a set of

|Dom(c)−2| literals of the form ¬(c = v) then clearly (9.22) is satisfied by I∩J∩S′.

Finally, take any c = v that belongs to I ∩ J ∩ S′, and consider the corresponding

rule (9.28). Since c = v ∈ I ∩ J ∩ S′ then Ic = Jc, so that ¬(c = v′) ∈ I ∩ J for all

v′ 6= v, and in particular it contains all conjunctive terms in the head of (9.28).
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For any interpretation I and any subset X of I, we define interpretation

J = f(I,X) as follows: for each constant c, J(c) is

(i) I(c), if either c = I(c) ∈ X, or ¬(c = v) ∈ X for all v ∈ Dom(c) \ {I(c)}, and

(ii) an arbitrary value v ∈ Dom(c) \ {I(c)} such that ¬(c = v) 6∈ X and possibly

such that c = v ∈ S (if such value exists), otherwise.

Lemma 58. For any interpretation I and any subset X of I, J = f(I, J) has the

following properties:

(a) for each constant c, if J(c) = I(c) then Xc = (I ∩ S′)c,

(b) X ⊆ J

(c) for each constant c 6∈ C, (I ∩ J ∩ S′)c = Xc, and

(d) I ∩ J ∩ S′ |= ΓI∩S′

1 .

Proof. To prove (a), first notice that, since X ⊂ I ∩ S′, Xc ⊆ (I ∩ S′)c. It remains

to show that (I ∩S′)c ⊆ Xc. Considering which elements belong to Ic, it is sufficient

to prove the following.

(x) if c = I(c) ∈ S′ then c = I(c) ∈ X, and

(y) for all v ∈ Dom(c) \ {I(c)}, if ¬(c = v) ∈ S′ then ¬(c = v) ∈ X.

Assume that J(c) = I(c), then one of the two conditions of (i) holds. Case 1:

c = I(c) ∈ X. Claim (x) clearly holds. It is not too hard to see that (y) holds if

X satisfies rule (9.28) with v = I(c), or the left-to-right direction of (9.22) with the

same substitution. It remains to notice that ∆T (S,C) contains one of those two

rules, that the reduct operation doesn’t modify them (they don’t contain negation

as failure) and that X |= (∆T (S,C))I∩S′

by hypothesis. Case 2: ¬(c = v) ∈ X

for all v ∈ Dom(c) \ {I(c)}. Then (y) clearly holds. To prove (x), assume that
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c = I(c) ∈ S′. Notice that Xc ⊆ S′, so ¬(c = v) ∈ S for all v ∈ Dom(c) \ {I(c)}.

Consequently, Nc = 0. By the definition of ∆, ∆T (S,C) (and then (∆T (S,C))I∩S′

)

contains rules (9.22) for that constant c. Since X |= (∆T (S,C))I∩S′

and by the

hypothesis of this case, it follows that c = I(c) ∈ X.

To prove (b), first we notice that, for each c such that J(c) = I(c), Xc ⊆ Jc

because X ⊂ I. Now consider constants c such that J(c) 6= I(c), i.e., (ii) was

applied. Since X ⊆ I, and the only atom of the form c = v ∈ I is c = I(c), X

doesn’t contain any atom of the form c = v. Consider now any literal of the form

¬(c = v) ∈ X. By the choice of J , J(c) 6= v, so that J contains ¬(c = v).

To prove (c), consider any constant c 6∈ C. The fact that Xc ⊆ (I ∩ J ∩ S′)c

follows from the hypothesis that X ⊂ I ∩ S′ and from (b). It remains to show that

(I ∩ J ∩S′)c ⊆ Xc. Case 1: J(v) = I(v). Then Jc = Ic and, by (a), Xc = (I ∩S′)c.

Consequently,

(I ∩ J ∩ S′)c = Ic ∩ Jc ∩ S′
c = Ic ∩ S′

c = (I ∩ S′)c = Xc.

Case 2: J(c) 6= I(c). Then Ic and Jc share only negative literals. Let ¬(c = w) be

one element of Ic, Jc and S′. The goal is to prove that ¬(c = w) ∈ X. Consider also

that J(c) has been selected using (ii). Case 2a: c = J(c) 6∈ S. Since we wanted

c = J(c) to be in S if possible, that means that

for all v ∈ Dom(c) \ {I(c)} such that ¬(c = v) 6∈ X, c = v 6∈ S

which can be written as

for all v ∈ Dom(c) \ {I(c)}, if c = v ∈ S then ¬(c = v) ∈ X,

and then as

if ¬(c = v) ∈ Ic and ¬(c = v) ∈ S′
c then ¬(c = v) ∈ Xc.

It remains to notice that v = w satisfies the “if” part, so ¬(c = w) ∈ Xc. Case 2b:

c = J(c) ∈ S. Since both c = w and c = J(c) belong to S, and c 6∈ C, ∆T (S,C)
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contains rule (9.23) with v = J(c). Note also that I doesn’t contain either c = J(c)

(since J(c) 6= I(c)) nor c = w (since ¬(c = w) ∈ Ic), consequently (∆T (S,C))I∩S′

contains rule

¬(c = J(c));¬(c = w)← ⊤.

Since X |= (∆T (S,C))I∩S′

by hypothesis but X 6|= ¬(c = J(c)) by (ii). We can then

conclude that ¬(c = w) ∈ X.

Now the proof of (d). Since the transformation T 7→ Γ1 is modular, it

is sufficient to consider a single causal rule r of T , and the corresponding logic

program rule r′ of Γ1, and prove that I ∩ J ∩ S′ |= (r′)I∩S′

. Since (r′)I∩S′

∈ ΓI∩S′

1

and X |= ΓI∩S′

1 then X |= (r′)I∩S′

. Case 1: the head of r contains an occurrence

of constant c ∈ C. Then, by the definition of C, the head of r is a literal. Then r′

has the form

l← Fnot, (l; not l)

and it can be simplified, by Proposition 28, into

l← Fnot.

Consequently, the reduct (r′)I∩S′

is

l← (Fnot)
I∩S′

.

The only literal occurring in ΓI∩S′

1 is l in the head, so, since X |= (r′)I∩S′

, and

X ⊆ I ∩ J ∩ S′ by hypothesis and (b), the claim follows. Case 2: the head of

r doesn’t contain occurrences of constants of c ∈ C. All occurrences of constants

in the body of r are in the scope of negation not in r′, then, in r′, all constants

occurring in (r′)I∩S′

don’t belong to C. The claim now follows from (c) and the fact

that X |= (r′)I∩S′

.

Theorem 12. Let T be a causal theory over σ, let S be a set of atoms over σ

and C a set of constants subset of σ. If S contains all atoms occurring in T and
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elements of C do not occur in the head of rules of T that are not semi-definite then

I 7→ I ∩ (S ∪ {¬a : a ∈ S}) is a 1–1 correspondence between the models of T and

the complete (over S) answer sets of ∆T (S,C).

Proof. By Lemma 54, only interpretations that are candidate models over S can

be models of T . Similarly, among the complete sets X of literals over S, only

the ones that satisfy Γ2 can be answer sets of ∆T (S,C). Indeed, if X 6|= Γ2 then

X 6|= ∆T (S,C), and then by Fact 6, X 6|= (∆T (S,C))X ; we can conclude that X

is not an answer set for ∆T (S,C). Consequently, by Lemma 55, it is sufficient to

show that a candidate model I over S is a model of T iff I ∩ S′ is an answer set for

∆T (S,C).

For the right-to-left direction, assume that I∩S′ is an answer set for ∆T (S,C).

Consequently, I ∩ S′ |= ∆T (S,C)I∩S′

and then I |= T I by Lemma 57 (take J to

be I). It remains to show that, for any interpretation J 6= I, J is not a model of

T I . Since J 6= I, there is a constant c such that I ∩ J doesn’t contain the two

literals c = I(c),¬(c = J(c)) of I. If c = I(c) 6∈ S then c = J(c) ∈ S, because

I is a candidate model. Consequently, either c = I(c) or ¬(c = J(c)) belong to

S′; also, both belong to I but none to J , so that I ∩ J ∩ S′ ⊂ I ∩ S′, and then

I ∩ J ∩ S′ 6|= (∆T (S,C))I∩S′

by the definition of an answer set. We can conclude,

by Lemma 57, that J 6|= T I .

For the left-to-right direction, assume that I is a model of T . This means

that I |= T I , so that I ∩ S′ |= (∆T (S,C))I∩S′

by Lemma 57. Now take any proper

subset X of I ∩ S′, and assume, in sake of contradiction, that X |= (∆T (S,C))I∩S′

.

By Lemma 58, there is a interpretation J such that I ∩ J ∩ S′ |= ΓI∩S′

1 (claim (d)),

and then that satisfies T I by Lemma 56. Moreover, J 6= I by claim (a) and the

hypothesis that X ⊂ J . We get the contradictory conclusion that I is not a model

of T .
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9.10.5 Proof of Theorem 13

Let T be a causal theory with signature σ. Let ∆ be the propositional theory

{dF ↔ def(F ) :F ∈ form(T )}, and ∆′ be {dF ↔ F :F ∈ form(T )}. Next lemma is

provable by induction.

Lemma 59. ∆ is equivalent to ∆′.

Lemma 60. I 7→ I|σ is a 1–1 correspondence between the models of (T ′)I and the

models of T I|σ .

Proof. Consider that (T ′)I is

{dF :F ⇐ G ∈ T, I |= G} ∪∆.

In view of Lemma 59 and the fact that the body of each rule of T is over σ, (T ′)I

is equivalent to

{dF :F ⇐ G ∈ T, I|σ |= G} ∪∆′

and then to

T I|σ ∪∆′.

We can notice that ∆′ is a set of equivalences that define auxiliary atoms in terms

of atoms from σ, and that T I|σ doesn’t contain auxiliary atoms. Consequently, the

1–1 correspondence between models follows from the fact that the truth value of

auxiliary atoms is determined in terms of atoms from σ in a unique way.

Theorem 13. For any causal theory T over σ, I 7→ I|σ is a 1–1 correspondence

between the models of T ′ and the models of T .

Proof. If I is a model of T ′ then I is the only model of (T ′)I . In view of Lemma 60,

I|σ is the only model of T I|σ , and then of T . Now take any model J of T . It

remains to show that, among all the interpretations I of the signature of T ′ such

that J = I|σ, exactly one is a model of T ′. First we notice that, since T and the

bodies of the rules of T ′ are over σ,
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(i) each T I|σ is identical to T J , and

(ii) all (T ′)I are identical to each other.

From (i) we get that J is the only model of every T I|σ . Consequently, by Lemma 60,

(T ′)I has a unique model M , with the following property: M |σ = J . Moreover, this

M is the same for all I ′s by (ii). Note that since M |σ = J , M is one of the

interpretations I that we are considering, so that M is the only model of (T ′)M and

consequently a model of T ′. No I 6= M is a model of T ′ because M is a model of

(T ′)I .
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Chapter 10

Conclusions

We saw that answer set programming is a declarative programming paradigm with a

clear semantics. Many mathematical tools for proving properties of ASP programs

have been devoloped, such as the concept of strong equivalence. Extending the

language to allow aggregates made many of such methods generally not applicable.

We hope that this work will help reasoning about programs with aggregates, and

that it clarifies the relationship between various definitions of an aggregate.

All this dissertation was about programs without variables, as the answer

set semantics requires eliminating them as a preprocessing step (called grounding).

On the other hand, there are several reasons why we want to have a definition of an

answer set that doesn’t require this preliminary step.

One of them is that variable elimination is becoming more and more time

consuming compared to the newer and faster search procedure implemented in an-

swer set solvers. For this reason, one line of research in answer set programming is

in figuring out if we can avoid grounding the whole program. For instance, if we are

interested in the truth value of a predicate only (say, dark in the Hitori example

in Section 2.1.3) it may be possible to ground only the rules that “influence” such

predicate. Research in this area may become simpler if we are able to reason about
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programs with variables.

In this direction, we have recently proposed, in [Ferraris et al., 2007], an

extension of the concept of an answer set from propositional theories to first-order

formulas. Its definition, however, is not based on the concept of a reduct: the answer

sets of a first order formula F are the models of a second-order formula built from

it. In the same paper we also proposed a characterization of strong equivalence for

the new definition of an answer set. We still need to extend other theorems defined

for propositional formulas, and to represent aggregates under this extended syntax.

Possible applications of this new definition of an answer set for first-order

formulas are related the fact that the answer set semantics for first-order formulas

is more expressive than classical first-order logic: for instance, we can define recur-

sive definitions such as reachability, and express defaults. There are commonsense

knowledge representation languages, such as the situation calculus [McCarthy and

Hayes, 1969], whose meaning is defined in terms of classical first-order logic. How-

ever, in classical first-order logic, it is difficult to express the commonsense law of

inertia. This problem could be avoided by redefining such languages as first-order

formulas under the answer set semantics.
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193



as special cases. In Proceedings of International Conference on Principles of

Knowledge Representation and Reasoning (KR), pages 377–387, 2006.

[Faber et al., 2004] Wolfgang Faber, Nicola Leone, and Gerard Pfeifer. Recursive

aggregates in disjunctive logic programs: Semantics and complexity. In Proceed-

ings of European Conference on Logics in Artificial Intelligence (JELIA), 2004.

Revised version: http://www.wfaber.com/research/papers/jelia2004.pdf.

[Ferraris et al., 2007] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A new

perspective on stable models. In Proceedings of International Joint Conference

on Artificial Intelligence (IJCAI), pages 372–379, 2007.

[Gelfond and Galloway, 2001] Michael Gelfond and Joel Galloway. Diagnosing dy-

namic systems in aprolog. In Working Notes of the AAAI Spring Symposium on

Answer Set Programming, 2001.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The stable

model semantics for logic programming. In Robert Kowalski and Kenneth Bowen,

editors, Proceedings of International Logic Programming Conference and Sympo-

sium, pages 1070–1080, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical

negation in logic programs and disjunctive databases. New Generation Com-

puting, 9:365–385, 1991.

[Giunchiglia et al., 2004a] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz,

Norman McCain, and Hudson Turner. Nonmonotonic causal theories. Artificial

Intelligence, 153(1–2):49–104, 2004.

[Giunchiglia et al., 2004b] Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea.

SAT-based answer set programming. In Proceedings of National Conference on

Artificial Intelligence (AAAI), pages 61–66, 2004.

194



[Heidt, 2001] Mary Lynn Heidt. Developing an inference engine for ASET-prolog.3

Master’s thesis, University of Texas at El Paso, 2001.
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[Soininen and Niemelä, 1998] Timo Soininen and Ilkka Niemelä. Developing a
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