
Answer Sets and the Language of Answer Set
Programming

Vladimir Lifschitz



Answer set programming is a declarative programming paradigm based on
the answer set semantics of logic programs. This introductory article provides
the mathematical background for the discussion of answer set programming
in other contributions to this special issue.

Introduction
Answer set programming (ASP) is a declarative programming paradigm
introduced by Marek & Truszczynski (1999) and Niemelä (1999). It grew out of
research on knowledge representation (van Harmelen, Lifschitz, & Porter 2008),
nonmonotonic reasoning (Ginsberg & Smith 1988), and Prolog programming
(Sterling & Shapiro 1986). Its main ideas are described in the article by Janhunen &
Niemelä (2016) and in other contributions to this special issue.

In this introductory article our goal is to discuss the concept of an answer set, or
stable model, which defines the semantics of ASP languages. The answer sets of a
logic program are sets of atomic formulas without variables (‘‘ground atoms’’), and
they were introduced in the course of research on the semantics of negation in
Prolog. For this reason, we start with examples illustrating the relationship
between answer sets and Prolog and the relationship between answer set solvers
and Prolog systems. Then we review the mathematical definition of an answer set
and discuss some extensions of the basic language of ASP.

Prolog and Negation as Failure
Simple Prolog rules can be understood as rules for generating new facts, expressed
as ground atoms, from facts that are given or have been generated earlier. For
example, the Prolog program
p(1). p(2). p(3).
q(2). q(3). q(4).
r(X) :- p(X), q(X).

consists of 6 facts (‘‘1, 2, and 3 have property p; 2, 3, and 4 have property q’’) and
a rule: for any value of X, r(X) can be generated if p(X) and q(X) are given or
have been generated earlier.1 In response to the query ?- r(X) a typical Prolog
system will return two answers, first X = 2 and then X = 3.

Let us call this program Π1 and consider its modification Π2, in which the
‘‘negation as failure’’ symbol \+ is inserted in front of the second atom in the body
of the rule:
p(1). p(2). p(3).
q(2). q(3). q(4).
r(X) :- p(X), \+ q(X).

The modified rule allows us, informally speaking, to generate r(X) if p(X) has
been generated, assuming that any attempt to generate q(X) using the rules of the
program would fail. Given the modified program and the query ?- r(X) Prolog
returns one answer, X = 1.

What is the precise meaning of conditions of this kind, ‘‘any attempt to generate
. . . using the rules of the program would fail’’? This is not an easy question,
because the condition is circular: it attempts to describe when a rule R ‘‘fires’’ (can
be used to generate a new fact) in terms of the set of facts that can be generated
using all rules of the program, including R itself. Even though this formulation is
vague, it often allows us to decide when a rule with negation is supposed to fire. It
is clear, for instance, that there is no way to use the rules of Π2 to generate q(1),
because this atom is not among the given facts and it does not match the head of
any rule of Π2. We conclude that the last rule of Π2 can be used to generate r(1).

But there are cases when the circularity of the above description of negation as
failure makes it confusing. Consider the following program Π3, obtained from Π2

by replacing the facts in the second line with a rule:
p(1). p(2). p(3).
q(3) :- \+ r(3).
r(X) :- p(X), \+ q(X).



The last rule justifies generating r(1) and r(2), there can be no disagreement
about this. But what about r(3)? The answer is yes if any attempt to use the rules
of the program to generate q(3) fails. In other words, the answer is yes if the
second rule of the program does not fire. But does it? It depends on whether the
last rule can be used to generate r(3)---the question that we started with.

The first precise semantics for negation as failure was proposed by Clark (1978),
who defined the process of program completion---a syntactic transformation that
turns Prolog programs into first-order theories. The definition of a stable model, or
answer set, proposed ten years later (Gelfond & Lifschitz 1988), is an alternative
explanation of the meaning of Prolog rules with negation. It grew out of the view
that an answer set of a logic program describes a possible set of beliefs of an agent
associated with this program; see the paper by Erdem, Gelfond, & Leone (2016) in
this special issue. Logic programs are similar, in this sense, to autoepistemic
theories (Moore 1985) and default theories (Reiter 1980).2 The definition of an
answer set, reproduced below, adapts the semantics of default logic to the syntax
of Prolog.

We will see that program Π3, unlike Π1 and Π2, has two answer sets. One answer
set authorizes including X=3 as an answer to the query ?- q(X) but not as an
answer to the query ?- r(X); according to the other answer set, it is the other way
around. In this sense, program Π3 does not give an unambiguous specification for
query answering. Programs with several answer sets are ‘‘bad’’ Prolog programs.

In answer set programming, on the other hand, programs with several answer
sets (or without answer sets) are quite usual and play an important role, like
equations with several roots (or without roots) in algebra.

Answer Set Solvers
How does the functionality of answer set solvers compare with Prolog?

Each of the programs Π1, Π2, and Π3 will be accepted as a valid input by an
answer set solver, except that the symbol \+ for negation as failure should be
written as not. Thus Π2 becomes, in the language of answer set programming,
p(1). p(2). p(3).
q(2). q(3). q(4).
r(X) :- p(X), not q(X).

and Π3 will be written as
p(1). p(2). p(3).
q(3) :- not r(3).
r(X) :- p(X), not q(X).

Unlike Prolog systems, an answer set solver does not require a query as part of
the input. The only input it expects is a program, and it outputs the program’s
answer sets. For instance, given program Π1, it will find the answer set
p(1) p(2) p(3) q(2) q(3) q(4) r(2) r(3)

From the perspective of Prolog, this is the list of all ground queries that would
generate the answer yes for this program. For program Π2, the answer set
p(1) p(2) p(3) q(2) q(3) q(4) r(1)

will be calculated. Given Π3 as input, an answer set solver will find two answer
sets:
Answer: 1
p(1) p(2) p(3) q(3) r(1) r(2)
Answer: 2
p(1) p(2) p(3) r(3) r(1) r(2)

Definition of an Answer Set: Positive Programs
We will review now the definition of an answer set, beginning with the case when
the rules of the program do not contain negation, as in program Π1 above. By
definition, such a program has a unique answer set, which is formed as follows.



First we ground the program by substituting specific values for variables in its
rules in all possible ways. The result will be a set of rules of the form

A0 :- A1,...,An. (1)

where each Ai is a ground atom. (We think of ‘‘facts,’’ such as p(1) in Π1, as rules
of form (1) with n = 0 and with the symbol :- dropped.) For instance, grounding
turns Π1 into

p(1). p(2). p(3).
q(2). q(3). q(4).
r(1) :- p(1), q(1).
r(2) :- p(2), q(2).
r(3) :- p(3), q(3).
r(4) :- p(4), q(4).

The answer set of the program is the smallest set S of ground atoms such that for
every rule (1) obtained by grounding, if the atoms A1, . . . , An belong to S then the
head A0 belongs to S too.

For instance, in the case of program Π1 this set S includes
• the facts in the first two lines of the grounded program,
• the atom r(2), because both atoms in the body of the rule with the head r(2)

belong to S, and
• the atom r(3), because both atoms in the body of the rule with the head r(3)

belong to S.
The following program contains two symbolic constants, block and table:

number(1). number(2). number(3).
location(block(N)) :- number(N).
location(table).

Grounding turns the second rule into

location(block(1)) :- number(1).
location(block(2)) :- number(2).
location(block(3)) :- number(3).

The answer set of this program consists of the atoms

number(1) number(2) number(3) location(block(1))
location(block(2)) location(block(3)) location(table)

Definition of an Answer Set: Programs with Negation
In the general case, when the rules of the given program may contain negation,
grounding gives a set of rules of the form

A0 :- A1,...,Am, notAm+1 ,...,notAn. (2)

where each Ai is a ground atom. (To simplify notation, we showed all negated
atoms at the end.) For instance, the result of grounding Π2 is

p(1). p(2). p(3).
q(2). q(3). q(4).
r(1) :- p(1), not q(1).
r(2) :- p(2), not q(2).
r(3) :- p(3), not q(3).
r(4) :- p(4), not q(4).

To decide whether a set S of ground atoms is an answer set, we form the reduct of
the grounded program with respect to S, as follows. For every rule (2) of the
grounded program such that S does not contain any of the atoms Am+1, . . . , An,
we drop the negated atoms from (2) and include the ‘‘positive part’’ (1) of the rule
in the reduct. All other rules are dropped from the grounded program altogether.
Since the reduct consists of rules of form (1), we already know how to calculate its



answer set. If the answer set of the reduct coincides with the set S that we started
with then we say S is an answer set of the given program.

For instance, to check that the set

{p(1), p(2), p(3), q(2), q(3), q(4), r(1)} (3)

is an answer set of Π2, we calculate the reduct of the grounded program with
respect to this set. The reduct is
p(1). p(2). p(3).
q(2). q(3). q(4).
r(1) :- p(1).

(The last three rules of the grounded program are not included in the reduct
because set (3) includes q(2), q(3), and q(4).) The answer set of the reduct is
indeed the set (3) that we started with. If we repeat this computation for any set S
of ground atoms other than (3) then the result may be a subset of S, or a superset
of S, or it may partially overlap with S, but it will never coincide with S.
Consequently (3) is the only answer set of Π2.

Intuitively, the reduct of a program with respect to S consists of the rules of the
program that ‘‘fire’’ assuming that S is exactly the set of atoms that can be
generated using the rules of the program. If the answer set of the reduct happens to
be exactly S then we conclude that S was a ‘‘good guess.’’

The concept of an answer set can be defined in many other, equivalent ways
(Lifschitz 2010).

Extensions of the Basic Language
Arithmetic. Rules may contain symbols for arithmetic operations and comparisons,
for instance:
p(1). p(2).
q(1). q(2).
r(X+Y) :- p(X), q(Y), X<Y.

The answer set of this program is
p(1) p(2) q(1) q(2) r(3)

(In view of the condition X<Y in the body, the only values substituted for the
variables in the process of grounding are X=1, Y=2.)

Disjunctive rules (Gelfond & Lifschitz 1991). The head of a rule may be a
disjunction of several atoms (often separated by bars or semicolons), rather than a
single atom. For instance, the rule
p(1) | p(2).

instructs the solver to include p(1) or p(2) in each answer set. The answer sets of
this one-rule program are
Answer: 1
p(1)
Answer: 2
p(2)

Choice rules (Niemelä & Simons 2000). Enclosing the list of atoms in the head in
curly braces represents the ‘‘choice’’ construct: choose in all possible ways which
atoms from the list will be included in the answer set. For instance, the one-rule
program
{ p(1) ; p(2) }.

has 4 answer sets:
Answer: 1

Answer: 2
p(1)



Answer: 3
p(2)
Answer: 4
p(1) p(2)

A choice rule may specify bounds on the number of atoms that are included. The
lower bound is shown to the left of the expression in braces, and the upper bound
to the right. For instance, the one-rule program

1 { p(1) ; p(2) }.

has 3 answer sets---answers 2--4 from the previous example. The one-rule program

{ p(1) ; p(2) } 1.

has 3 answer sets as well---answers 1--3.

Constraints. A constraint is a disjunctive rule that has 0 disjuncts in the head, so
that it starts with the symbol :-. Adding a constraint to a program eliminates the
answer sets that satisfy the body of the constraint. For instance, the answer sets of
the program

{ p(1) ; p(2) }.
:- p(1), not p(2).

are answers 1, 3 and 4 from the list above. Answer 2 violates the constraint, because
it includes p(1) and does not include p(2).

Classical negation (Gelfond & Lifschitz 1991). Atoms in programs and in answer
sets can be preceded by the ‘‘classical negation’’ sign (-) that should be
distinguished from the negation as failure symbol (not). This is useful for
representing incomplete information. For instance, the answer set

p(a) p(b) -p(c) q(a) -q(c)

can be interpreted as follows: a and b have property p, and c does not; a has
property q, and c does not; whether b has property q we do not know. A rule of
the form

- A :- not A.

containing classical negation in the head and negation as failure in the body
expresses the ‘‘closed world assumption’’ for the atom A: A is false if there is no
evidence that A is true. The rule

p(T+1) :- p(T), not -p(T+1).

expresses the ‘‘frame default’’ (Reiter 1980) in the language of answer set
programming: if p was true at time T and there is no evidence that p became false
at time T+1 then p was true at time T+1.

Input languages of many answer set solvers include other useful extensions of
the basic language, such as aggregates (Faber, Leone, & Pfeifer 2004), weak
constraints (Buccafuri, Leone, & Rullo 1997), consistency-restoring rules
(Balduccini & Gelfond 2003), and P-log rules (Chitta, Gelfond, & Rushton 2009).

Extending the Definition of an Answer Set
The problem of extending the definition of an answer set to additional constructs,
such as those reviewed in the previous section, can be approached in several ways.
One useful idea is to treat expressions in the bodies and heads of rules as logical
formulas written in alternative notation. For instance, we can think of the list in the
body of (2) as a conjunction of literals:

A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An.

A choice expression {A1; . . . ;An} can be treated as a conjunction of ‘‘excluded
middle’’ formulas:

(A1 ∨ ¬A1) ∧ · · · ∧ (An ∨ ¬An)



(Ferraris & Lifschitz 2005). Under this approach, the rules of a grounded program
are expressions of the form F ← G, where F and G are formulas built from ground
atoms using conjunction, disjunction, and negation.3

The definition of the reduct was extended to such rules by Lifschitz, Tang, &
Turner [1999]. In the process of constructing the reduct of a rule F ← G with
respect to a set S of ground atoms, every subformula that begins with negation is
replaced by a logical constant: by true if it is satisfied by S, and by false otherwise.

Gebser et al. [2015] defined the syntax and semantics of many constructs
implemented in the solver CLINGO using a generalization of this approach that
allows the formulas F and G to contain implication, and that allows conjunctions
and disjunctions in F and G to be infinitely long.

Acknowledgements
Thanks to Gerhard Brewka, Martin Gebser, Michael Gelfond, Tomi Janhunen,
Amelia Harrison, Amanda Lacy, Yuliya Lierler, Nicola Leone, and Mirek
Truszczynski for comments on a draft of this article. This research was partially
supported by the National Science Foundation under Grant IIS-1422455.

Notes

1In Prolog programs, a period indicates the end of a rule. Capitalized identifiers
are used as variables. The symbol :- reads ‘‘if’’; it separates the ‘‘head’’ of the
rule (in this case, the atom r(X)) from its ‘‘body’’ (the pair of atoms p(X), q(X)).
Answer set programming inherited from Prolog these syntactic conventions and
terminology.

2The relationship between Prolog and autoepistemic logic was described by
Gelfond (1987).

3A more radical version of this view is to think of the whole rule F ← G as a
propositional formula---as the implication G→ F ‘‘written backwards’’ (Ferraris
2005). It is also possible to avoid the reference to grounding in the definition of an
answer set and to treat rules with variables as first-order formulas (Ferraris, Lee, &
Lifschitz 2011).

References
Balduccini, M., and Gelfond, M. 2003. Logic programs with consistency-restoring
rules4. In Working Notes of the AAAI Spring Symposium on Logical Formalizations of
Commonsense Reasoning.
Buccafuri, F.; Leone, N.; and Rullo, P. 1997. Enhancing disjunctive Datalog by
constraints. IEEE Transactions on Knowledge and Data Engineering 12:845--860.
Chitta, B.; Gelfond, M.; and Rushton, N. 2009. Probabilistic reasoning with
answer sets. Theory and Practice of Logic Programming 9:57--144.
Clark, K. 1978. Negation as failure. In Gallaire, H., and Minker, J., eds., Logic and
Data Bases. New York: Plenum Press. 293--322.
Erdem, E.; Gelfond, M.; and Leone, N. 2016. Applications of ASP. AI Magazine.
Faber, W.; Leone, N.; and Pfeifer, G. 2004. Recursive aggregates in disjunctive
logic programs: Semantics and complexity. In Proceedings of European Conference
on Logics in Artificial Intelligence (JELIA).
Ferraris, P., and Lifschitz, V. 2005. Weight constraints as nested expressions.
Theory and Practice of Logic Programming 5(1--2):45--74.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Stable models and circumscription.
Artificial Intelligence 175:236--263.



Ferraris, P. 2005. Answer sets for propositional theories. In Proceedings of
International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR), 119--131.
Gebser, M.; Harrison, A.; Kaminski, R.; Lifschitz, V.; and Schaub, T. 2015.
Abstract Gringo. Theory and Practice of Logic Programming 15:449--463.
Gelfond, M., and Lifschitz, V. 1988. The stable model semantics for logic
programming. In Kowalski, R., and Bowen, K., eds., Proceedings of International
Logic Programming Conference and Symposium, 1070--1080. MIT Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in logic programs and
disjunctive databases. New Generation Computing 9:365--385.
Gelfond, M. 1987. On stratified autoepistemic theories. In Proceedings of National
Conference on Artificial Intelligence (AAAI), 207--211.
Ginsberg, M., and Smith, D. 1988. Reasoning about action I: a possible world
approach. Artificial Intelligence 35:165--195.
Janhunen, T., and Niemelä, I. 2016. The answer set programming paradigm. AI
Magazine.
Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested expressions in logic
programs. Annals of Mathematics and Artificial Intelligence 25:369--389.
Lifschitz, V. 2010. Thirteen definitions of a stable model. In Fields of Logic and
Computation: Essays Dedicated to Yuri Gurevich on the Occasion of his 70th Birthday.
Springer. 488--503.
Marek, V., and Truszczynski, M. 1999. Stable models and an alternative logic
programming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective.
Springer Verlag. 375--398.
Moore, R. 1985. Semantical considerations on nonmonotonic logic. Artificial
Intelligence 25(1):75--94.
Niemelä, I., and Simons, P. 2000. Extending the Smodels system with cardinality
and weight constraints. In Minker, J., ed., Logic-Based Artificial Intelligence. Kluwer.
491--521.
Niemelä, I. 1999. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence
25:241--273.
Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence 13:81--132.
Sterling, L., and Shapiro, E. 1986. The Art of Prolog: Advanced Programming
Techniques. MIT Press.
van Harmelen, F.; Lifschitz, V.; and Porter, B., eds. 2008. Handbook of Knowledge
Representation. Elsevier.


