Two-Valued Logic Programs

Vladimir Lifschitz

University of Texas at Austin, USA

—— Abstract
We define a nonmonotonic formalism that shares some features with three other systems of non-
monotonic reasoning—default logic, logic programming with strong negation, and nonmonotonic
causal logic—and study its possibilities as a knowledge representation tool.

1 Introduction

This note is motivated by the desire to understand the existing methodologies of answer set
programming (ASP) [11, 14, 2, 4, 9]—the approach to knowledge representation based on
the answer set semantics of logic programs [5]. An answer set is a set of ground literals that
is consistent but possibly incomplete. Thus an answer set can be thought of as a function
that assigns to each ground atom A one of three values: true (A belongs to the set), false (—A
belongs to the set), or unknown (the set contains neither A nor —A). Most applications of
ASP do not exploit the possibility of distinguishing between three truth values of an atom in
an answer set, but there are important exceptions. The nonmonotonic formalism introduced
in this note is designed to facilitate the discussion of differences between “three-valued” and
“two-valued” uses of ASP.

Two-valued logic programs are essentially a special case of nondisjunctive logic programs
with strong (classical) negation under the answer set semantics. They also share some
features with default logic [16] and with nonmonotonic causal logic in the sense of [13]. As
in the case of default logic, the nonmonotonicity of two-valued logic programs is determined
by the use of “justifications.” On the other hand, literals play a special role in their syntax,
as they do in the definition of an answer set in [5], and this fact allows us to make their
semantics relatively simple: it does not refer to deductive closure in the sense of classical
logic. Finally, as in nonmonotonic causal logic, their semantics is defined in terms of two-
valued truth assignments—or, in other words, consistent and complete sets of literals—rather
than (possibly incomplete) extensions or (possibly incomplete) answer sets.

This note is simultaneously submitted to NMR 2012, a workshop that does not retain
copyright.

2 Definitions

2.1 Syntax

In this note, formulas are propositional formulas formed from a fixed set o of atoms. A
(two-valued) rule is an expression of the form

L()(—Ll,...,LnZF, (1)

where the head Ly and the premises L1, ..., L, (n > 0) are literals, and the justification F
is a formula. Rule (1) reads: derive Ly from Lq,..., L, if F' is a consistent assumption.
A pair of rules of the form

A «—Ly,...,L, : FAA,
-A «—Ly,...,L, : FA-A,

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Two-Valued Logic Programs

where A is an atom, can be abbreviated as
{4} — Ly,...,L, : F (2)

(“derive any of the literals A, —=A from L, ..., L, if that literal is consistent with assump-
tion F”). This abbreviation is similar to choice rules in the sense of [15]. Both in (1) and
in (2), if Fis T (truth) then we will drop the colon and F at the end of the rule. If, in
addition, n = 0 then « can be dropped too.

A (two-valued) program is a set of rules.

2.2 Semantics

As in classical propositional logic, an interpretation is a function from o to {false, true}.
We will identify an interpretation I with the set of literals that are satisfied by I.
The reduct of a program II relative to an interpretation I is the set of rules

L0<—L17...,Ln (3)

corresponding to the rules (1) of II for which I = F. We say that I is a model of II if the
smallest set of literals closed under the rules (3) equals I. In other words, models of II are
fixpoints of the operator oy from interpretations to sets of literals defined as follows: ayy(7)
is the smallest set of literals closed under the reduct of II relative to I.

It is clear that the set of models of a program is not affected by replacing the justification
of a rule with an equivalent formula. It is clear also that every literal that belongs to a model
of II is the head of a rule of II. It follows that if some atom from o does not occur in the
heads of rules then the program is inconsistent (that is, has no models). This is a property
that two-valued programs share with causal theories in the sense of [13].

2.3 Example

Let II be the program

{a},

b+ a,

or, written in full,
a «:a,
—a < —a,

b «—a: T,

with 0 = {a,b}. Since II has no rules with the head —b, the only possible models are
I = {a,b} and Iy = {—a,b}. The reduct of II relative to I; consists of the rules a and
b — a, so that ar(l;) = {a,b} = I1; I is a model. The reduct relative to I consists of the
rules —a and b < a, so that ag(lz) = {—a} # Iz; I> is not a model.

2.4 Constraints
Adding a pair of rules of the form
A «—:F,
-A «:F (5)

to a program II eliminates the models of IT that satisfy F. (Proof: adding these rules makes
the reduct of the program relative to I inconsistent if I satisfies F', and does not affect the
reduct otherwise.) We will call (5) a constraint and write it as «— F.

Vladimir Lifschitz

2.5 Clausal Form

We say that a program II is in clausal form if each of its justifications is a conjunction of
literals (possibly the empty conjunction T). For instance, program (4) is in clausal form.
Replacing a rule of the form

LOHLl,...,Ln : FVvG
in any program with the pair of rules

L()<—L17...,Ln : F,
Lo—1Ly,....,L, : G

does not affect the set of models. (Proof: for any interpretation I, the reduct relative to I
remains the same.) It follows that any program can be converted to clausal form by rewriting
the justifications in disjunctive normal form and then breaking every rule into several rules
corresponding to the disjunctive terms of its justification.

3 Relation to Traditional ASP Programs

3.1 Reduction to Programs with Strong Negation

As mentioned in the introduction, two-valued programs are essentially a special case of
nondisjunctive programs with strong negation. To make that claim precise, we will define
a simple translation that turns any two-valued program II in clausal form into a program
with strong negation. That program, tw2sn(II), is the set of rules

Lo« L1,...,Ly,not Lyy1,...,not L,

for all rules
L0<—L1,...7Ln : L7z+1/\"'/\Lp

of II. (By L we denote the literal complementary to L.) For instance, tv2sn turns program (4)
into

a <« not —a,
—a <+ not a, (6)
b «—a.

An interpretation I is a model of I iff I is an answer set of tv2sn(II). (Proof: the reduct
of tv2sn(II) relative to I in the sense of [5] is identical to the reduct of II relative to I.) In
other words, models of II are identical to complete answer sets of tv2sn(II). For instance,
program (6) has two answer sets, {a,b} and {—a}. The first of them is the only model of (4);
the second is incomplete.

Incomplete answer sets of a program with strong negation can be eliminated by adding
the rules

— not A, not —A (7)

for all atoms A. Consequently models of a program II in clausal form are identical to the
answer sets of the program obtained from tw2sn(I1) by adding rules (7) for all A from o.

Two-Valued Logic Programs

3.2 Complete Answer Sets in Disguise

In many ASP programs, strong negation is not used at all. Answer sets of such a program are
sets of positive literals; the intuition is that the falsity of an atom is indicated by its absence
in the answer set, rather than the presence of its negation. In this situation, we can think
of an answer set consisting of positive literals as a “complete answer set in disguise”’—as a
complete answer set X with all negative literals removed (symbolically, X N o).

Similarly, a program without strong negation can be viewed as a “two-valued program
in disguise.” Let II be a set of rules of the form

Ag — Av, ..., Ap,not Apyq,...,not Ay, (8)

where each A; is an atom. By Ip2tv(IT) we denote the two-valued program consisting of the
rules
Ao HAh...,An : _|An+1/\"'/_'Ap

for all rules (8) of II, and the rules
—A—:-A (9)

for all atoms A. Rule (9) makes the closed world assumption for A explicit.

Answer sets of II can be characterized as sets of the form X N o, where X is a model
of Ip2tv(I1). (Proof: tv2sn(Ip2tv(I1)) is the closed world interpretation of II in the sense of
[5, Section 6].) Thus the map X — X No is a 1-1 correspondence between the models of
Ip2tv(II) and the models of II.

Consider, for instance, the program II consisting of one rule a < not b. The correspond-
ing two-valued program is

a <« :—b,
—a + : -a,

—=b «—:-b.

Its only model is {a, —b}. By removing the negative literal —b from it, we get {a}, the only
answer set of II.

4 Relation to Causal Logic

Recall that a causal theory in the sense of [13] is a set of rules of the form F' «— G, where
F and G are propositional formulas. The reduct of a causal theory T relative to an inter-
pretation I is the set of the heads F of all rules F' « G of T for which I satisfies G. An
interpretation I is a model of a causal theory T' if the reduct of T relative to I is satisfied by I
and is not satisfied by any other interpretation. This semantics formalizes the philosophical
principle that McCain and Turner call the law of universal causation.

A causal theory is definite if the head of each of its rules is a literal. For any definite
causal theory T', we define the corresponding two-valued program ct2tv(T) as the set of rules
F «— : G for all rules F «— G of T. Models of any definite causal theory T are identical to
models of program ct2tv(T). (Proof: consider the reduct X of a definite causal theory T
relative to an interpetation I; I is the only interpretation satisfying X iff X = I.) In
other words, definite causal theories are essentially two-valued programs whose rules have
no premises. We can say also that two-valued programs generalize definite causal theories
by allowing “logic programming style premises” in the bodies of rules.

If the bodies of rules of a definite causal theory T are conjunctions of literals then ct2tv(T)
is a program in clausal form, and the transformation tv2sn defined above can be used to

Vladimir Lifschitz

turn that program into a program with strong negation. By composing ct2tv with tv2sn we
get the translation from the language of causal theories into logic programming with strong
negation familiar from [12, Section 6.3.3].

5 Representing Action Descriptions by Two-Valued Programs

Consider a finite set o of propositional atoms divided into two groups, fluents and elementary
actions. An action is a function from elementary actions to truth values. A transition
system T is determined by a set of functions from fluents to truth values, called the states
of T, and a set of triples (sg,a,s1), where so and s; are states of T, and a is an action.
These triples are called the transitions of T. A transition system can be visualized as a
directed graph that has states as its vertices, with an edge from sy to s; labeled a for every
transition (s, a, s1). Informally speaking, a transition (sg,a, s1) expresses the possibility of
the system changing its state from sy to s; when the elementary actions to which a assigns
the value true are concurrently executed.

Action description languages B and C, defined in [6, Section 5, 6] and [8], and reviewed in
[7, Section 2], serve for describing action domains by specifying transition systems. They are
closely related to logic programs under the answer set semantics [1, 10]. In this section we
show how the semantics of B and of a large (“definite”) fragment of C can be characterized
in terms of two-valued programs.

5.1 Translating B-Descriptions

This review of the syntax of B follows [7, Section 2.1.1]. A fluent literal is a literal containing
a fluent. A condition is a set of fluent literals. An action description in the language B, or
a B-description, is a set of expressions of two forms: static laws

Lif C,
where L is a fluent literal, and C' is a condition, and dynamic laws
e causes L if C|

where F is an elementary action, L is a fluent literal, and C is a condition. The semantics of
the language (see, for instance, [7, Section 2.1.2]) defines, for every B-description D, which
transition system it represents.

The set of transitions of that system can be described by the program b2tv(D), defined
as follows. Its signature oy consists of the symbols of the forms

£(0), €(0), f(1), (10)

where f is a fluent and e is an elementary action. Its rules are
(i) L(t) < L1(¢),..., Ln(t), where t = 0,1, for each static law

Lif Li,...,Ly,

from D;
(if) L(1) < e(0),L1(0),..., Ly, (0) for each dynamic law

ecauses Lif Ly,..., L,

from D;

Two-Valued Logic Programs

(iii) L(1) « L(0) : L(1) for every fluent literal L,

(iv) {A(0)} for every atom A of o.
Rules (iii) solve the frame problem by formalizing the commonsense law of inertia [17]; they
are similar to the “frame default” from [16]. Rules (iv) express that both the initial values
of fluents and the elementary actions to be executed can be chosen arbitrarily.

Recall that we agreed to identify truth-valued functions with sets of literals (Section 2.2).

Using this convention, we can characterize the set of transitions of an arbitrary B-descrip-
tion D in terms of models of b2tv(D) as follows:

Proposition. For any sets sg, s1 of fluent literals, and any action a, (sg,a,s1) is a transi-
tion of T(D) iff the set

{L(0) : LespUa}lU{L(1l) : L € sy}
is a model of b2tv(D).

This fact is a reformulation of Lemma 2 from [7], in view of the property of the trans-
formation tv2sn noted in Section 3.1. It establishes a 1-1 correspondence between the
transitions of D and the models of b2tv(D).

5.2 Translating Definite C-Descriptions

This review of the syntax of C follows [7, Section 2.2.1]. An action description in the language
C, or C-description, is a set of expressions of the two forms: static laws

caused I if G, (11)
where F' and G are formulas that do not contain elementary actions, and dynamic laws
caused F if G after H, (12)

where F' and G are formulas that do not contain elementary actions, and H is a formula.
The semantics of the language (see, for instance, [7, Section 2.2.2]) defines, for every C-
description D, which transition system it represents.
A C-description is definite if, in each of its laws (11), (12), the head F is a literal.
For any definite C-description D, the set of transitions of the corresponding system can be
described by the program c2tv(D), defined as follows. Its signature o; consists of the same
symbols (10) as in the case of B-descriptions. For any formula F' of the signature o, by F(0)
we will denote the formula of the signature oy obtained from F' by appending the string '(0)’
to each atom. For any formula F of the signature o that does not contain elementary actions,
F(1) we will denote the formula of the signature o7 obtained from F' by appending the
strmg (1)’ to each atom. The rules of c2tw(D) are
(i) F(t) < : G(¢t), where t =0, 1, for each static law (11) from D;
(ii) F(1) «: G() A H(0) for each dynamic law (12) from D;
(iii) {A(0)} for every atom A of o.

The characterization of transitions given by the proposition from Section 5.1, with b2tv
replaced by c2tv, holds for any definite C-description D. This fact is a corollary to Proposi-
tion 2 from [8], in view of the property of the transformation ct2tv noted in Section 4 above.
It establishes a 1-1 correspondence between the transitions of D and the models of ¢2tv(D).

If H in a dynamic law (12) is a conjunction of literals L; A --- A L,, then the rule in
clause (ii) of the definition of c2tv can be rewritten as

F(1) «— Ly(0),..., Lp(0) : G(1),

and the models of the theory will remain the same.

Vladimir Lifschitz

6 Conclusion

We have seen that the language of two-valued programs is sufficiently rich for expressing the
ASP solution to the frame problem that exploits the distinction between strong negation and
negation as failure (Section 5.1), and that it can model the uses of ASP that avoid strong
negation altogether (Section 3.2). There are also “mixed” representations, which express
the falsity of some atoms explicitly, in terms of strong negation, and treat the falsity of
other atoms in the spirit of an implicit closed world assumption. Such representations can
be often expressed by two-valued programs as well.

Uses of ASP for which the language of two-valued programs is inadequate are relatively
rare, but they do exist. Incomplete answer sets are essential for representing “weak ex-
ceptions” to defaults, as in [3, Example 3.2]: birds normally fly; wounded birds may or
may not fly. Another example is given by the approach to conformant planning presented
in [18]. The planner described in that paper operates with “partial states”™ —incomplete
sets of literals that approximate states in the sense of Section 5. The difference between
the applications of ASP that can be naturally represented by two-valued programs and the
applications for which it is not the case is an important distinction between two kinds of
answer set programs.

Acknowledgements

Thanks to Marc Denecker, Michael Gelfond, Joohyung Lee, Yuliya Lierler, and Fangkai
Yang for useful discussions related to the topic of this note.

—— References

1 Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with A-Prolog. Theory
and Practice of Logic Programming, 3(4-5):425-461, 2003.

2 Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

3 Chitta Baral and Michael Gelfond. Logic programming and knowledge representation.
Journal of Logic Programming, 19,20:73-148, 1994.

4 Michael Gelfond. Answer sets. In Frank van Harmelen, Vladimir Lifschitz, and Bruce
Porter, editors, Handbook of Knowledge Representation. Elsevier, 2008.

5 Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing, 9:365-385, 1991.

6 Michael Gelfond and Vladimir Lifschitz. Action languages'. FElectronic Transactions on
Artificial Intelligence, 3:195-210, 1998.

7 Michael Gelfond and Vladimir Lifschitz. The common core of action languages B and C2.
Unpublished draft, 2012.

8 Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causal explana-
tion: Preliminary report. In Proceedings of National Conference on Artificial Intelligence
(AAAI), pages 623-630. AAAT Press, 1998.

9 Vladimir Lifschitz. What is answer set programming? In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pages 1594-1597. MIT Press, 2008.

! http://www.ep.liu.se/ea/cis/1998/016/
2 http://www.cs.utexas.edu/users/vl/papers/bc.pdf

Two-Valued Logic Programs

10

11

12

13

14

15

16

17

18

Vladimir Lifschitz and Hudson Turner. Representing transition systems by logic programs.
In Proceedings of International Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR), pages 92-106, 1999.

Victor Marek and Mirostaw Truszczyriski. Stable models and an alternative logic pro-
gramming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pages
375-398. Springer Verlag, 1999.

Norman McCain. Causality in Commonsense Reasoning about Actions®. PhD thesis, Uni-
versity of Texas at Austin, 1997.

Norman McCain and Hudson Turner. Causal theories of action and change. In Proceedings
of National Conference on Artificial Intelligence (AAAI), pages 460-465, 1997.

Ilkka Niemeléd. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25:241-273, 1999.

Tlkka Niemeld and Patrik Simons. Extending the Smodels system with cardinality and
weight constraints. In Jack Minker, editor, Logic-Based Artificial Intelligence, pages 491—
521. Kluwer, 2000.

Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.
Murray Shanahan. Solving the Frame Problem: A Mathematical Investigation of the Com-
mon Sense Law of Inertia. MIT Press, 1997.

Phan Huy Tu, Tran Cao Son, Michael Gelfond, and Ricardo Morales. Approximation of
action theories and its application to conformant planning. Artificial Intelligence, 175:79—
119, 2011.

3 ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps.gz

	Introduction
	Definitions
	Syntax
	Semantics
	Example
	Constraints
	Clausal Form

	Relation to Traditional ASP Programs
	Reduction to Programs with Strong Negation
	Complete Answer Sets in Disguise

	Relation to Causal Logic
	Representing Action Descriptions by Two-Valued Programs
	Translating B-Descriptions
	Translating Definite C-Descriptions

	Conclusion

