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Abstract

Action languages B and C are similar to each other in
the sense that each of them is capable of describing
indirect effects of actions. On the other hand, these
languages are not equally expressive: each of them
has its own distinctive features that cannot be easily
translated into the other language. We clarify the re-
lationship between the expressive capabilities of these
languages by describing their common core—a subset
of B that can be translated into C by a simple syntactic
transformation.

Introduction

Action languages B (Gelfond & Lifschitz 1998, Sec-
tion 5) and C (Giunchiglia & Lifschitz 1998), (Gelfond
& Lifschitz 1998, Section 6) differ from the previous
generation of action description languages' in that they
allow us to describe ramifications, or indirect effects, of
executing an action. This is achieved by introducing
constructs that represent relationships between fluents.
For instance, walking to a different place affects not
only the person’s location but also, indirectly, the loca-
tion of the cell phone in his pocket, because of a rela-
tionship between his own location and the location of
the phone. Such relationships can be called static, be-
cause they operate within a single time instant. Action
descriptions in older languages were limited to dynamic
relationships between an action and the values of fluents
after its execution.

The languages B and C differ from each other in the
sense that they are based on different intuitions about
causality, and also in the sense that are not equally ex-
pressive: each of them has its own distinctive features
that cannot be easily translated into the other language.
In this note, we clarify the relationship between the ex-
pressive capabilities of these languages by describing
their common core—a subset of B that can be trans-
lated into C by a simple syntactic transformation. This
transformation turns a B-description into its “C-image”
by appending a standard set of postulates formalizing
the commonsense law of inertia (Shanahan 1997). It is
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needed because the commonsense law of intertia is built
into the semantics of B; in C, it is easily expressible, but
not automatically included.

To guarantee the equivalence of a B-description to its
C-image we need to assume that its static laws are free
of cycles. Conditions of this type have been used in
the study of equivalent transformations in the logic of
universal causation (Turner 1998, Theorem 5.15) and
for the purpose of simplifying logic programming rep-
resentations of action domains described in C (Lifschitz
& Turner 1999, Proposition 2).

Review: Languages B and C

We begin with a finite set of propositional atoms di-
vided into two groups, fluents and elementary actions.
An action is a function from elementary actions to truth
values. A transition system T is determined by a set of
functions from fluents to truth values, called the states
of T, and a set of triples (sp, a, s1), where s and s; are
states of T', and a is an action. These triples are called
the transitions of T'. A transition system can be visual-
ized as a directed graph that has states as its vertices,
with an edge from sq to s; labeled a for every transition
(s0,a,$1).

Language B
Syntax A fluent literal is a literal containing a fluent.
A condition is a set of fluent literals.

An action description in the language B, or B-
description, is a set of expressions of the following two
forms:

e static laws
Lif ¢, (1)
where [ is a fluent literal, and c is a condition;

e dynamic laws
e causes [ if ¢, (2)

where e is an elementary action, [ is a fluent literal,
and c is a condition.

Semantics We will identify a function assigning truth
values to atoms with the set of literals that get the value
true. In particular, any action can be thought of as a
set of elementary actions and their negations, and any



state of a transition system can be thought of as a set
of fluent literals.

About a set X of literals we say that it is closed under
a B-description D if, for every static law (1) from D,
I € X whenever ¢ C X. By Cnp(X) (“consequences
of X under D”) we denote the smallest set of literals
that contains X and is closed under D.

For any B-description D, the transition system T'(D)
represented by D is defined as follows:

e the states of T'(D) are the functions from fluents to
truth values that are closed under D;

e (s0,a,s1) is a transition of T'(D) iff
s1=Cnp(X U(soNs1)), (3)

where X is the set of all literals [ such that, for some
dynamic law (2) from D, e € a and ¢ C sy.

Discussion We understand a static law (1) as the in-
ference rule allowing us to derive the new fact [ from the
facts c established earlier. In the right-hand side of the
McCain-Turner equation (3),2 X is the set of explicit
effects of a, sp N sy is the set of facts justified by iner-
tia, and the application of Cnp generates the indirect
effects of a by applying the inference rules expressed by
the static laws.
Example: D consists of the dynamic law

e causes ¢ if p

and the static law
-r if q.

In this case the states of T'(D) are

{p,a.—r},  Ap,—q,r},  {p,—q,—r},
{-p,q,~r}, {-p,—q,r}, {-p,—q,—r}.

The transitions of T'(D) can be divided into three
groups. In some, e is executed and the precondition p
of its effect on ¢ is satisfied:

({p,q,~r}{e} {p.a,—r}),
<{pa _‘q7r}7{e}7{paQ7_‘r}>v (4)

<{pa -q, —|7"}, {6}, {p» q, _‘T}>'

(In the second of transitions (4), r is indirectly affected.)
In others, e is executed but the precondition p is not
satisfied:

<{_'pa q, _‘T'}, {6}7 {_'p7 q, _\7"}>,
({=p,~q, v}, {e}, {-p,~q,7}),
({=p, —q, —r} {e}, {=p, =g, —r}).
Finally, there are 6 transitions in which e is not exe-
cuted: (s, {—e},s) for all states s.

To check, for instance, that the second of transi-
tions (4) satisfies equation (3), we calculate:

Cnp(X U(soNs1))
= CnD({q} U ({pa _'qu} N {pa q, _"I’}))
= Cnp({p,a}) = {p,q,~r} = s1.

?(McCain & Turner 1995).

Language C

Syntax A formula is a propositional combination of
atoms. An action description in the language C, or C-
description, is a set of expressions of the following two
forms:

e static laws

caused f if g, (5)

where f and g are formulas that do not contain ele-
mentary actions;

e dynamic laws
caused f if g after h, (6)

where f and g are formulas that do not contain ele-
mentary actions, and h is a formula.

Semantics By | we denote the satisfaction relation
of classical propositional logic.

For any C-description D and any transition (s, a, s1),
D{s0:a51) (“the reduct of D relative to (sg,a,s1)”)
stands for the set consisting of

e the formulas f for all static laws (5) from D such that
s1 E g, and

e the formulas f for all dynamic laws (6) from D such
that s =g and s Ua = h.

For any C-description D, the transition system T'(D)
represented by D is defined as follows:

e the vertices of T(D) are the functions from fluents to
truth values that satisfy the formulas ¢ — f for all
static laws (5) from D;

e (sp,a,s1) is a transition of T'(D) iff s; is the only
function from fluents to truth values that satisfies
Disosast).

Discussion The semantics of C is based on the dis-
tinction between what is true and what has a cause.
The static law (5) says that there is a cause for f to
hold in a state if g is a true assertion about the values
of fluents in that state. The dynamic law (6) says that
there is a cause for f to hold in the resulting state of a
transition if (i) ¢ is a true assertion about the values of
fluents in that state, and (ii) h is a true assertion about
the values of fluents at the beginning of the transition
and about the execution of elementary actions during
the transition.
For instance, the dynamic law

caused q if true after e A p, (7)

where p and ¢ are fluents and e is an elementary action,
expresses that there is a cause for ¢ to hold in the re-
sulting state of a transition if e is executed during the
transition and p holds at the beginning of the transi-
tion. (Intuitively, the execution of e is the cause.) The
dynamic law

caused [ if [ after [, (8)

where [ is a fluent literal, expresses that there is a cause
for [ to hold after a transition if [ holds both before and



after the transition. (Intuitively, commonsense inertia
is the cause.)

The reduct of a C-description D relative to a transi-
tion (sg, a, s1) is the set of all formulas that are caused
to hold after this transition, according to D. The con-
dition

s1 1s the only function from fluents to truth values

that satisfies D{0-%-51)

in the definition of the semantics of C expresses the
principle of universal causation®: whatever is true, has
a cause, and the other way around.

Consider, for example, the C-description consisting of
the dynamic law (7), the static law

caused —r if g, 9)
and the dynamic laws (8) for the fluent literals

p, 7P, 4, —q, T, 7T (10)

as [. It describes the same transition system as the B-
description from Section . For instance, its reduct rel-
ative to the second of transitions (4) consists of three
formulas: ¢ (contributed by dynamic law (7)), —r (con-
tributed by static law (9)), and p (contributed by dy-
namic law (8) with p as ). The resulting state {p, ¢, —r}
of transition (4) is the only function from fluents to
truth values that satisfies these formulas.

The Translation

For any B-description D, its C-image is the C-
description obtained from D by

e rewriting each static law (1) as

caused [ if /\ U

l'ec
e rewriting each dynamic law (2) as

caused [ if true after e A /\ U
l'ec

e adding the dynamic laws (8) for all fluent literals .

For instance, the C-description from Section is the
C-image of the B-description from Section .

Generally, a B-description and its C-image are not
equivalent to each other, that is to say, they may repre-
sent different transition systems. But there is a simple
syntactic condition guaranteeing the equivalence of a
B-description to its C-image. The fluent dependency
graph of a B-description is the directed graph such that

e its vertices are arbitrary fluent literals, and
e it has an edge from [ to I iff the description contains
a static law (1) such that I’ € c.

3(McCain & Turner 1997).

For instance, the fluent dependency graph of the B-
description from Section has the vertices (10) and one
edge, from —r to q.

Soundness Theorem: A B-description is equivalent
to its C-image if its fluent dependency graph is acyclic.

Without the acyclicity assumption, the assertion of
the theorem would be incorrect. Consider, for instance,
the B-description

pif g,

q if p. (11)
There are no elementary actions in the underlying sig-
nature, so that the only action here is empty. The cor-
responding transition system has the states {p, ¢} and
{—p, q} and the transitions

{p,a},0,{p,q}),
({=p,—q},0,{=-p,~q}).

The C-image of (11) has one more transition, besides

these two:
{=p,—q},0,{p, q})-

Indeed, the reduct of the C-image of (11) relative to this
transition consists of the formulas p and ¢, contributed
by the translations

caused p if g,
caused q if p

of static laws (11).
We will return to the discussion of this conterexample
in the conclusion.

Proof of the Soundness Theorem

The proof is based on comparing two logic programs:
one that characterizes the transitions of a transition sys-
tem described in B (Balduccini & Gelfond 2003),* the
other providing a similar characterization for a subset
of the language C (Lifschitz & Turner 1999).

The atoms occurring in these logic programs are sym-
bols of the forms

f(0), f(1), €(0),

where f is a fluent and e is an elementary action. The
programs are nondisjunctive, but they contain classical
negation (Gelfond & Lifschitz 1991). So the heads of
their rules are these atoms and their classical negations

=f(0), =f(1), —e(0).

The body of a rule is a list of such literals, possibly with
the negation as failure symbol not prepended to some
of them.

We will be only interested in complete answer sets,
that is, in the sets containing exactly one member of

each complementary pair {f(0),=f(0)}, {f(1),~f(1)},
{e(0), =e(0)}.

4In that paper, B is referred to as AL.



Translating B-Descriptions into Logic
Programming

For any B-description D, its logic programming repre-
sentation LP(D) is the logic program consisting of

e the rules

1) — L1(t), .., L (D)

for each static law

(t=01) (12)

Lif Iy, .. )0, (13)

from D;

e the rule
I(1) « €(0),11(0),...,1,(0) (14)

for each dynamic law

e causes [ if I1,...,1, (15)

from D;

e the rules
£(1) < F(0).not ~F(1), )

~f(1) < =f(0), not f(1)
for every fluent f.

The following assertion is a restatement, in differ-
ent notation, of Lemma 4 from (Balduccini & Gelfond
2003).°

Lemma 1 For any B-description D, any sets sg, s1 of
fluent literals, and any action a, (so,a,s1) is a transi-
tion of T(D) iff the program

LP(D)uU{l(0) : l € spUa} (17)
has an answer set X such that sy = {l : (1) € X}.

By C we denote the set consisting of the rules

0) « not —f(0),
J:(f()O) «— not ;EO; (18)

for all fluents f, and

e(0) < not —e(0),
—e(0) < not e(0)

for all elementary actions e.

5The main difference is that the program in that paper
does not contain classical negation. Instead of complemen-
tary fluent literals f(¢), —f(t) it uses two different atoms
and includes a constraint that does not allow both atoms to
belong to the same answer set. Adding such a constraint has
the same effect as replacing one of the atoms by the classi-
cal negation of the other (Gelfond & Lifschitz 1991, Proposi-
tion 2). Furthermore, program (17) contains the facts —e(0)
for all elementary actions e that do not belong to a; these
facts do not correspond to any rules of the program from
(Balduccini & Gelfond 2003). The presence of these facts
in our program is clearly inessential, because literals of the
form —e(0) do not occur in the other rules. Finally, the
version of B in (Balduccini & Gelfond 2003) includes an ad-
ditional construct, impossible if, which is not used in this
note.

Lemma 2 For any B-description D, any sets sqg, s1 of
fluent literals, and any action a, (so,a,s1) is a transi-
tion of T(D) iff the set

{1(0) : lespUalU{l(1) : Il € s1} (20)
is an answer set of the program LP(D) U C.

Proof By Lemma 1, (sg,a,s;) is a transition of T(D)
iff there exists a set X of literals such that (i) X is
an answer set of (17) and (ii) s; = {l : I(1) € X}.
Any set X satisfying conditions (i) and (ii) contains
the literals 1(0) for all [ € sp Ua (because (17) contains
each of these literals as a fact) and the literals [(1) for
all I € s;. In other words, every such X is a super-
set of (20). Since (20) is complete, it follows that X
equals (20). Consequently the assertion of Lemma 1
can be reformulated as follows: (sg,a,s1) is a transi-
tion of T'(D) iff (20) is an answer set of (17). It remains
to observe that the reduct of (17) with respect to (20)
coincides with the reduct of LP(D) U C' with respect
to (20).

Translating C-Descriptions into Logic
Programming

In this section, D is a C-description such that the for-
mula f in each of its static laws (5) and dynamic
laws (6) is a literal, and the formulas g and h are con-
junctions of literals. The logic programming represen-
tation LP(D) of D is the logic program consisting of

e the rules®

1(t) «— not I1(t), ..., not Iy (t) (t=0,1) (21)
for each static law
caused [ if [{ A--- A, (22)
from D, and
e the rule
1(1) — not 1,(1),...,n0t (1), lyns1(0), ..., 1,(0)
(23)

for each dynamic law
caused [ if Iy A+ Al after L1 A Al (24)
from D.

The following assertion is a restatement, in different
notation, of Corollary 1 from (Lifschitz & Turner 1999).

Lemma 3 A complete set X of literals is an answer
set of LP(D) U C iff X has the form (20) for some
transition (so,a,s1) of T(D).

A split mapping for D is a function A from fluent
literals to nonnegative integers’ such that, for every
static law (22) and every dynamic law (24) from D,

AL, s Allm) < A(D).

5By [ we denote the literal complementary to [.

"In (Lifschitz & Turner 1999), the values of a split map-
ping are ordinals. We do not need infinite ordinals here,
because the set of fluents is assumed to be finite.



If X is a split mapping for D then in rules (21) and (23)
we can replace any occurrences of not [;(t) such that
A(l;) < A(1) with [;(t) without affecting the complete
answer sets of LP(D) U C (Lifschitz & Turner 1999,
Proposition 2).

Proof of the Theorem

Let D be a B-description with an acyclic fluent depen-
dency graph, and let D’ be the C-image of D. It is clear
that the transition systems described by D and by D’
have the same states. We need to show that they have
the same transitions.

Let sg and s be functions from fluents to truth val-
ues, let a be an action, and let X be the corresponding
set (20). By Lemma 3, (sg, a, s1) is a transition of T'(D’)
iff X is an answer set of the program LP(D')UC'. From
the definition of the C-image (Section ) and the def-
inition of the logic programming representation of a
C-description (Section ) we see that program LP(D’)
consists of

e rules (21) for each static law (13) from D,
e rule (14) for each dynamic law (15) from D,
e rules (16) for every fluent f.

For any fluent literal I, let A({) be the length of the
longest path in the fluent dependency graph of D that
starts at [. Since the graph is finite and acyclic, this is
a sound definition. It is clear that A is a split mapping
for D', and that the strict inequality

A, - A () < M)

holds for each static law (22) of D’. According to the
concluding remark of Section , the complete answer sets
of LP(D’) U C will not be affected by replacing each
pair of rules (21) with rules (12). This replacement
turns LP(D’) into LP(D). Consequently (s, a, s1) is a
transition of T'(D’) iff X is an answer set of the pro-
gram LP(D) U C. By Lemma 2, it follows that T'(D)
and T(D’) have the same transitions.

Conclusion

We have shown that B-descriptions with acyclic static
dependencies can be easily translated into C. The proof
exploits the close relationship of these languages to logic
programming under the answer set semantics.

Counterexample (11) shows that the acyclicity as-
sumption is essential. The static laws in that example
have simple intuitive meaning: they can be viewed as
saying that p is synonymous with ¢. Expressing syn-
onymy in C requires that we use formulas syntactically
more complex than literals. For instance, (11) can be
translated into C by the static law

caused p < q if true.
On the other hand, the static law

caused p if p,

syntactically similar to the trivial “inference rule”

pif p,
expresses in C the idea that p holds by default. This can
be useful for knowledge representation purposes (see
the example of a spring-loaded door in (Giunchiglia &
Lifschitz 1998)).

The need to postulate inertia by including dynamic
laws (8) makes C less concise than B. There are fluents,
on the other hand, whose values tend to change in a
specific way, rather than remain unchanged (see the
pendulum example in (Giunchiglia & Lifschitz 1998));
in such cases, the possibility of not including the inertia
assumption for a fluent may be useful.

The design of each of the languages B, C explores
a certain approach to the semantics of static causa-
tion in the simplest setting. Each of the languages was
meant to be extended in several ways. For instance, C+
(Giunchiglia et al. 2004) is an extension of C in which
values of a fluent may not be Boolean, and in which
a fluent can be defined in terms of other fluents. The
language ALM (Gelfond & Inclezan 2009) is a modular
language similar to B, and MAD (Lifschitz & Ren 2006;
Ren 2009) is a modular language similar to C. Com-
paring the expressivity of such extensions will be more
interesting than comparing the basic versions reviewed
in this note.
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