
Achievements in Answer Set Programming

Vladimir Lifschitz

November 13, 2017

Abstract

This paper describes an approach to the methodology of answer set programming that can facil-
itate the design of encodings that are easy to understand and provably correct. Under this approach,
after appending a rule or a small group of rules to the emerging program we include a comment
that states what has been “achieved” so far. This strategy allows us to set out our understanding of
the design of the program by describing the roles of small parts of the program in a mathematically
precise way.

1 Introduction

This paper describes an approach to the methodology of answer set programming [Marek and Truszczyn-
ski, 1999, Niemelä, 1999] that can facilitate the design of encodings that are easy to understand and
provably correct. Under this approach, after appending a rule or a small group of rules to the emerging
program, the programmer would include a comment that states what has been “achieved” so far, in a
certain precise sense.

Consider, for instance, the following solution to the 8 queens problem, adapted from [Gebser et al.,
2012, Section 3.2].1

1 % Program 8Queens

2
3 row (1..8).

4 col (1..8).

5 8 { queen(I,J) : col(I), row(J) } 8.

6 :- queen(I,J), queen(I,JJ), J!=JJ.

7 :- queen(I,J), queen(II,J), I!=II.

8 :- queen(I,J), queen(II,JJ), (I,J)!=(II,JJ), |I-II|=|J-JJ|.

The first rule of 8Queens (Line 3), viewed as a one-rule program, has a unique stable model S, which
satisfies the following condition:

A ground atom of the form row(i) belongs to S iff i ∈ {1, . . . ,8}. (1)

Condition (1) holds also if S is the stable model of the first two rules of this program. And it holds
if S is any stable model of the first three rules, and so on, for all 6 “prefixes” (initial segments) of

1A concise introduction to ASP can be found in Chapter 1 of that book. Examples of programs in this paper are written in
the input language of the grounder GRINGO, Version 5.

1

the program. This is what we mean by achievement: once the programmer declares that a property
“has been achieved,” he is committed to maintaining this property of stable models until the program is
completed.

After writing the second rule (Line 4), the programmer can claim that something else has been
achieved:

A ground atom of the form col(j) belongs to S iff j ∈ {1, . . . ,8}. (2)

This condition holds if S is a stable model of any prefix of the program that includes the first two rules.
Additional properties achieved by adding the third rule can be expressed as follows:

Set S contains exactly 8 ground atoms of the form queen(i, j).
For each of these atoms, i, j ∈ {1, . . . ,8}. (3)

If a program is written in this manner then every achievement documented in the process of writing
it describes a property shared by all stable models of the entire program. In some cases this list of
achievements can serve as the skeleton of a proof of its correctness, in the spirit of Edsger Dijkstra’s
advice:

. . . one should not first make the program and then prove its correctness, because then the
requirement of providing the proof would only increase the poor programmer’s burden. On
the contrary: the programmer should let correctness proof and program grow hand in hand
[Dijkstra, 1972].

Recording important achievements in the process of writing an ASP program may be similar to record-
ing important loop invariants in procedural programming: it does not ensure the correctness of the
program but helps the programmer move toward the goal of proving correctness.

A preliminary report on this project was presented at the 2016 Workshop on Answer Set Program-
ming and Other Computing Paradigms. This is a corrected version of the paper that appeared in Theory
and Practice of Logic Programming.

2 Programs, Prefixes, and Achievements

In this paper, by an (ordered) program we understand a list of rules R1, . . . ,Rn (n ≥ 1) in the input
language of an answer set solver, such as CLINGO [Gebser et al., 2015b] or DLV [Eiter et al., 1998]. The
order of rules is supposed to reflect the order in which the programmer writes them in the process of
creating the program. It does not affect the semantics of the program, but it is essential for understanding
the process of programming.

We restrict attention to programs without classical negation. (This limitation is discussed in the
conclusion.) Stable models of a program without classical negation are sets of ground atoms that contain
no arithmetic operations, intervals, or pools [Gebser et al., 2015b, Sections 3.1.7, 3.1.9, 3.1.10]. Such
ground atoms will be called precomputed.2 An interpretation is a set of precomputed atoms.

The k-th prefix of a program R1, . . . ,Rn, where 1≤ k≤ n, is the program R1, . . . ,Rk. We will express
that a program Γ is a prefix of a program Π by writing Γ≤Π. The relation ≤ is a total order on the set
of prefixes of a program.

An achievement of a prefix Γ of Π is a property of sets of interpretations that holds for all stable
models of all programs ∆ such that Γ ≤ ∆ ≤ Π. For example, (1) is an achievement of the first prefix

2This terminology follows Gebser et al. [2015a], where “precomputed terms” are defined. Calimeri et al. [2012] talk about
elements of the “Herbrand universe” of a program in the same sense.

2

of program 8Queens; (2) is an achievement of its second prefix; and (3) is an achievement of its third
prefix. Conditions (1) and (2), and the conjunction of conditions (1)–(3), are achievements of the third
prefix as well. Any condition that holds for all sets of interpretations is trivially an achievement of any
prefix of any program.

The following three conditions are achievements of the last three prefixes of 8Queens:

Each column of the 8×8 chessboard includes at most one square (i, j)
such that the atom queen(i, j) belongs to S.

(4)

Each row of the 8×8 chessboard includes at most one square (i, j)
such that the atom queen(i, j) belongs to S.

(5)

Each diagonal of the 8×8 chessboard includes at most one square (i, j)
such that the atom queen(i, j) belongs to S.

(6)

Thus every stable model S of 8Queens satisfies all conditions (1)–(6).

3 Programs with Input

In some programs, constants are used as placeholders for values provided by the user [Gebser et al.,
2015b, Section 3.1.15]. For example, the constant n is used as a placeholder for an arbitrary positive
integer in the following more general version of 8Queens:

1 % Program NQueens

2
3 row (1..n).

4 col (1..n).

5 n { queen(I,J) : col(I), row(J) } n.

6 :- queen(I,J), queen(I,JJ), J!=JJ.

7 :- queen(I,J), queen(II,J), I!=II.

8 :- queen(I,J), queen(II,JJ), (I,J)!=(II,JJ), |I-II|=|J-JJ|.

The value of a placeholder is one kind of input that an answer set solver may expect in addition
to the rules of the program. A definition of an “extensional predicate” occurring in the bodies of rules
is another kind. Consider, for example, the following encoding of Hamiltonian cycles, adapted from
[Gebser et al., 2012, Section 3.3]:

1 % Program Hamiltonian

2
3 1 {in(X,Y) : edge(X,Y) } 1 :- vertex(X).

4 1 {in(X,Y) : edge(X,Y) } 1 :- vertex(Y).

5 reached(X) :- in(v0 ,X).

6 reached(Y) :- reached(X), in(X,Y).

7 :- not reached(X), vertex(X).

It needs to be supplemented by definitions of the predicate vertex/1, representing the set of vertices of a
finite digraph G; of the predicate edge/2, representing the set of edges of G; and of the placeholder v0,
which is a vertex of G.

3

In general, we understand an input as a function i defined on a finite set consisting of predicate
symbols and symbolic constants such that

• if p/m is a predicate symbol in the domain of i then i(p/m) is a finite set of m-tuples of precom-
puted terms;

• if c is a symbolic constant in the domain of i then i(c) is a precomputed term.3

The result of enriching a program Π by an input i, denoted by Π� i, is the program consisting of

• the facts p(t) for all predicate symbols p/m in the domain of i and all tuples t in i(p/m), followed
by

• the rules obtained from the rules of Π by substituting the terms i(c) for all occurrences of symbolic
constants c in the domain of i.

The stable models of Π� i will be called the stable models of Π for input i.
For example, if i is the input that maps n to 8 then NQueens � i is the program 8Queens. If i is the

input that maps vertex/1 to {a,b}, edge/2 to {(a,b),(b,a)}, and v0 to a, then Hamiltonian � i is the
program consisting of the facts

vertex(a). vertex(b). edge(a,b). edge(b,a).

followed by the rules of Hamiltonian with v0 replaced by a.
We will now extend the definition of an achievement to programs for which some inputs are desig-

nated as “valid.” For example, we can say that an input i is considered valid for the program NQueens
if its domain includes only one object—the symbolic constant n—and if i(n) is a positive integer. An
input i is considered valid for the program Hamiltonian if (a) its domain consists of three objects—the
predicate symbols vertex/1 and edge/2 and the symbolic constant v0; (b) i(edge/2) is the set of edges
of a digraph with the set of vertices i(vertex/1); and (c) i(v0) is a vertex of that graph.

In this setting, an achievement is a relation between valid inputs and sets of interpretations. Such a
relation A is an achievement of a prefix Γ of Π if, for every program ∆ such that Γ≤ ∆≤Π, A(i,S) holds
for every valid input i and every stable model S of ∆ for input i. In particular, if A is an achievement of
the entire program Π then A(i,S) holds for every valid input i and every stable model S of Π for that
input.

For example, the sentence

A ground atom of the form row(i) belongs to S iff i ∈ {1, . . . , i(n)} (7)

expresses a relation between i and S that is an achievement of the first prefix of NQueens. It is obtained
from condition (1) by replacing 8 with i(n), and achievements of the other prefixes of that program can
be obtained in a similar way from conditions (2)–(6).

The following two conditions are achievements of the first two prefixes of Hamiltonian:

Every pair (x,y) such that the atom in(x,y) belongs to S is an edge of the
digraph G with the vertices i(vertex/1) and edges i(edge/2); for every
vertex x of G there is a unique y such that the atom in(x,y) belongs to S.

(8)

3Programs with input in the sense of this definition are similar to lp-functions in the sense of Gelfond and Przymusinska
[1996]. The description of an lp-function specifies not only its input, but also its output; on the other hand, the input of an
lp-function includes predicates only, not placeholders.

4

For every vertex y of G there is a unique x such that the atom in(x,y) belongs to S. (9)

Nothing interesting has been achieved by adding the third rule, but the following condition is an achieve-
ment of the fourth prefix of the program:

The set of symbols x such that the atom reached(x) belongs to S consists
of the vertices x of G for which there exists a walk v0, . . . ,vn such that
n≥ 1, v0 = v0, vn = x, and every atom of the form in(vi,vi+1) belongs to S.

(10)

Finally, here is an achievement of the entire program:

For every vertex x of G, the atom reached(x) belongs to S. (11)

4 Records of Achievement

A record of achievement for a program Π is described by assigning an achievement AΓ to each Γ in the
record’s domain, which is a set of prefixes of Π that includes the entire program Π. We will represent
a record of achievement by the listing of the program with comments describing the achievements AΓ

placed vafter all prefixes Γ in the record’s domain.
For example, here is the program NQueens with a record of achievement:

1 % Program NQueens , with a record of achievement

2
3 % input: positive integer n (the size of the board).

4
5 % A square on the board is represented as a pair , column

6 % number and row number , both from the set {1,..,n}.

7
8 row (1..n).

9 % achieved: row/1 = {1,...,n}.

10
11 col (1..n).

12 % achieved: col/1 = {1,...,n}.

13
14 n { queen(I,J) : col(I), row(J) } n.

15 % achieved: Set queen/2 consists of n squares.

16
17 :- queen(I,J), queen(I,JJ), J!=JJ.

18 % achieved: Each column includes at most one square from queen /2.

19
20 :- queen(I,J), queen(II,J), I!=II.

21 % achieved: Each row includes at most one square from queen /2.

22
23 :- queen(I,J), queen(II,JJ), (I,J)!=(II,JJ), |I-II|=|J-JJ|.

24 % achieved: Each diagonal includes at most one square from

25 % queen /2.

5

The domain of this record achievement is the set of all prefixes of the program. The comment in
Line 3 shows which inputs for the program are considered valid. The comment in Line 9 is a concise
reformulation of condition (7). It uses row/1 as shorthand for “the set of precomputed terms i such that
the atom row(i) belongs to S.” In the other comments, col/1 and queen/2 are understood in a similar
way.

Program Hamiltonian with a record of achievement below uses another useful convention: in
Lines 11 and 12, we understand X and Y as metavariables for precomputed terms. The comment in
those lines is a reformulation of condition (9).

1 % Program Hamiltonian , with a record of achievement

2
3 % input: the set vertex /1 of vertices of a finite digraph G;

4 % the set edge/2 of edges of G; a vertex v0 of G.

5
6 1 {in(X,Y) : edge(X,Y) } 1 :- vertex(X).

7 % achieved: Set in/2 is a subset of edge /2; for every vertex

8 % X of G there is a unique Y such that in(X,Y).

9
10 1 {in(X,Y) : edge(X,Y) } 1 :- vertex(Y).

11 % achieved: For every vertex Y of G there is a unique X

12 % such that in(X,Y).

13
14 reached(X) :- in(v0 ,X).

15 reached(Y) :- reached(X), in(X,Y).

16 % achieved: Set reached /1 consists of the vertices that are

17 % reachable from v0 by a path of non -zero length

18 % in the subgraph of G with the set of edges in/2.

19
20 :- not reached(X), vertex(X).

21 % achieved: reached /1 = vertex /1.

5 Completeness

The record of achievement for program NQueens in Section 4 shows that every stable model S of that
program for the input n = 8 satisfies conditions (1)–(6). The converse is not true: some sets of precom-
puted atoms satisfying all these conditions are not stable models. This is clear from the fact that these
conditions say nothing about precomputed atoms formed using predicate symbols other than

row/1, col/1, queen/2. (12)

Adding such “irrelevant” atoms to a stable model of the program would not invalidate properties (1)–(6).
It is true, however, that if every atom in S contains one of the symbols (12) then S has all these properties
if and only if it is a stable model for n = 8.

This observation leads us to the following definitions. The vocabulary of a program Π is the set
of all precomputed atoms p(t1, . . . , tn) such that the predicate symbol p/n occurs in Π. A record of
achievement Γ 7→ AΓ for Π is complete if, for every valid input i, each subset S of the vocabulary

6

of Π � i that satisfies conditions AΓ(i,S) for all prefixes Γ in the record’s domain is a stable model
of Π for input i. The converse—every stable model S of Π for input i is a subset of the vocabulary
satisfying these conditions—is true for any record of achievement. Thus achievements in a complete
record provide a complete characterization of the class of stable models of the program.

For example, the record of achievement for NQueens in Section 4 is complete. This property can
be lost if we make the achievements in that record weaker. For instance, if we replace “consists of n
squares” in Line 15 by “consists of at most n squares” then we will not eliminate the possibility that
queen/2 is empty.

The completeness property holds not only for the entire record of achievement for NQueens above,
but also for its initial segments. For instance, a set S of precomputed atoms formed using row/1 satis-
fies (1) only if it is a stable model of the first rule of the program for n = 8. A set of precomputed atoms
formed using row/1, col/1 satisfies (1) and (2) only if it is a stable model of the first two rules, and so
forth.

The record of achievement for Hamiltonian in Section 4 is complete also, and so are its initial
segments. For example, a set S of precomputed atoms formed using the predicate symbols vertex/1,
edge/2, and in/2 satisfies condition (8) if and only if it is a stable model of the first rule of the program
for input i.

6 Achievement-Based Answer Set Programming

Both records of achievement given as examples in Section 4 are not only complete but also detailed, in
the sense that they include achievements for almost all prefixes of the programs. The only rule in these
programs that is not followed by an achievement comment is the first rule in the recursive definition of
reached. The role of that rule cannot be properly explained unless we treat it as part of the definition.

Developing an ASP program along with a complete and detailed record of achievement can be called
“achievement-based” answer set programming. This strategy allows us to set out our understanding of
the design of the program by describing the roles of individual rules, or small groups of rules, in a
mathematically precise way.

One of the advantages of this approach is that comments explaining what is achieved by a group of
rules at the beginning of a program help us start testing and debugging it at an early stage, when only a
part of the program has been written. To this end, we can run an answer set solver to find stable models
of the prefix that has has been already written and check that they satisfy the conditions in the available
“achieved” comments. A mismatch would indicate that there is a bug in the rules of the program written
so far, or perhaps that the programmer’s intentions have not been properly documented in the recorded
achievements.

A complete record of achievement is particularly valuable when it is closely related to the program’s
specification, because from the completeness of such a record we may be able to conclude that the
program is correct. For instance, from the completeness of the record of achievement of NQueens in
Section 4 we can conclude that the stable models of that program are in a one-to-one correspondence
with solutions to the n queens problem.

To further illustrate the idea of achievement-based ASP, we present below three “real life” ASP
programs accompanied by complete, detailed records of achievement. The first of them, program SCA
[Brain et al., 2012, Figure 1], generates sequence covering arrays4 of strength 3. Our version of SCA is
slightly different from the original program: the constraint in Line 19 here replaces the pair of rules

4A sequence covering array of strength t is an array of permutations of symbols such that every ordering of any t symbols
appears as a subsequence of at least one row.

7

hb(N,X,Z) :- hb(N,X,Y), hb(N,Y,Z).

:- hb(N,X,X).

The reason why we chose to make this change is that the first of the two rules above may temporarily
destroy the irreflexivity of the relation of hbN that was true at the previous step; that property is restored
by the second rule. That is not in the spirit of the achievement-based approach, which emphasizes the
gradual accumulation of properties that we would like to see in the complete program.

1 % Program SCA

2
3 % input: the number s of symbols 1,...,s; the number n of

4 % rows 1,...,n.

5
6 sym (1..s).

7 % achieved: sym/1 = {1,...,s}.

8
9 row (1..n).

10 % achieved: row/1 = {1,...,n}.

11
12 1 {hb(N,X,Y); hb(N,Y,X)} 1 :- row(N), sym(X), sym(Y), X!=Y.

13 % For every row N, let hb_N be the binary relation on sym/1

14 % defined by the condition: X hb_N Y iff hb(N,X,Y).

15 % achieved: each relation hb_N is irreflexive; each pair of

16 % distinct symbols satisfies either X hb_N Y

17 % or Y hb_N X.

18
19 :- hb(N,X,Y), hb(N,Y,Z), not hb(N,X,Z).

20 % achieved: each relation hb_N is transitive.

21
22 covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).

23 % For every row N and every symbol X, by M_{N,X} we denote

24 % the symbol that is the X-th smallest w.r.t. hb_N.

25 % achieved: for any symbols X, Y, Z, covered(X,Y,Z) iff ,

26 % for some row N, (X,Y,Z) is a subsequence of

27 % (M_{N,1},...,M_{N,s}).

28
29 :- not covered(X,Y,Z), sym(X), sym(Y), sym(Z),

30 X!=Y, Y!=Z, X!=Z.

31 % achieved: covered(X,Y,Z) for any pairwise distinct symbols

32 % X, Y, Z.

The other two examples are program Borda, adapted from [Charwat and Pfandler, 2015, Encod-
ing 1], which encodes the Borda rule for determining the winner in an election with several candidates,5

5Each voter ranks the list of candidates in order of preference. The candidate ranked last gets zero points; next to last gets
one point, and so on. The candidate with the most points is the winner.

8

1 % Program Borda

2
3 % input: the number m of candidates 1,...,m in an election

4 % E; the set p/3 of triples (P,Pos ,C) such that , for

5 % a fixed ordering pr_1 ,..., pr_l of the distinct

6 % preference relations in the profile of E, candidate

7 % C is at position Pos in relation pr_P; the set

8 % votecount /2 of pairs (P,VC) such that relation pr_P

9 % occurs VC times in the profile of E.

10
11 candidate (1..m).

12 % achieved: candidate /1 = {1,...,m}.

13
14 posScore(P,C,X*VC) :- p(P,Pos ,C), X=m-Pos , votecount(P,VC).

15 % achieved: posScore(P,C,S) iff the voters who chose

16 % relation pr_P in election E contributed S points

17 % to candidate C under the Borda rule.

18
19 score(C,N) :- candidate(C), N=#sum{S,P:posScore(P,C,S)}.

20 % achieved: score(C,N) iff candidate C earned N points in

21 % election E under the Borda rule.

22
23 winner(C) :- score(C,M), M=#max{S:score(_,S)}.

24 % achieved: winner(C) iff the number of points earned by

25 % candidate C in election E is maximal among all

26 % candidates.

9

and program OBT , adapted from [Brooks et al., 2007, Section 1], which encodes ordered binary trees.6

1 % Program OBT

2
3 % input: positive integer k.

4
5 leaf (0..k).

6 % achieved: leaf/1 = {0,...,k}.

7
8 vertex (0..2*k).

9 % achieved: vertex /1 = {0,...,2k}.

10
11 internal(X) :- vertex(X), not leaf(X).

12 % achieved: internal /1 = {k+1,...,2k}.

13
14 2 {edge(X,Y) : vertex(Y), X>Y} 2 :- internal(X).

15 % Let G be the digraph with the vertices vertex /1 and the

16 % edges edge /2.

17 % achieved: for every edge (X,Y) of G, X>Y; the out -degree

18 % of a vertex X in G is 2 if internal(X), and 0

19 % if leaf(X).

20
21 reachable(X,Y) :- edge(X,Y).

22 reachable(X,Y) :- edge(X,Z), reachable(Z,Y).

23 % achieved: reachable(X,Y) iff Y is reachable from X in G

24 % by a path of non -zero length.

25
26 :- vertex(X), X!=2*k, not reachable (2*k,X).

27 % achieved: every vertex of G other than 2k is reachable

28 % from 2k by a path of non -zero length.

29
30 :- reachable(X,X), vertex(X).

31 % achieved: G is acyclic.

32
33 max_child(X,Y) :- edge(X,Y), edge(X,Y1), Y > Y1.

34 % achieved: max_child(X,Y) iff Y is the largest child of X

35 % in G.

36
37 Y<Y1 :- max_child(X,Y), max_child(X1 ,Y1), Y>Y1 , X<X1.

38 % achieved: for any vertices X, X1 of G such that X<X1, the

39 % largest child of X is smaller than the largest

40 % child of X1.

6An ordered binary tree is a rooted binary tree with the leaves 0, . . . ,k and internal vertices k+1, . . . ,2k such that (i) every
internal vertex is greater than its children, and (ii) for any two internal vertices x and x1, x > x1 iff the maximum of the children
of x is grater than the maximum of the children of x1.

10

7 Achievements in Teaching

The achievement-based approach was emphasized in a class on answer set programming taught recently
to a group of over 50 undergraduates at the University of Texas at Austin. The idea of an achievement
was explained more informally than in this paper, but many examples were given. In most solutions
to programming assignments submitted for grading, students attempted to imitate the instructor’s use
of “input” and “achieved” comments, even though they were not instructed to do that. The degree of
their success depended, of course, on their previous exposure to logic and mathematics. When ASP
programs written by students were discussed in class, the instructor emphasized the difference between
the correctness of the program on the one hand, and the clarity and correctness of “input” and “achieved”
comments on the other.

Comments of these kinds can be used in exercises and test problems. In one case, students were
shown an “incomplete listing” of a graph coloring program:

1 % Color the vertices of a graph so that no two adjacent

2 % vertices share the same color.

3
4 % input: set vertex /1 of vertices of a graph G;

5 % set edge/2 of edges of G; set color /1 of colors.

6
7 1 {color(X,C) : color(C)} 1 :- vertex(X).

8 % achieved: for every vertex X there is a unique color C

9 % such that color(X,C).

10
11 ___

12 % achieved: no two adjacent vertices share the same color.

13
14 #show color /2.

The question was, “What rule would you place in Line 11?” On another occasion, students were asked
to write a one-rule program for which the following comments would be appropriate:

1 % Calculate the number of classes taught today on each of

2 % the seven floors of the computer science building.

3
4 % input: set where /2 of all pairs (C,I) such that class C

5 % is taught on the I-th floor.

6
7 ___

8 % achieved: howmany(I,N) iff the number of classes taught

9 % on the I-th floor is N.

10
11 #show howmany /2.

11

8 Conclusion

In achievement-based ASP, we start writing a program by describing its inputs. Then, after every rule
or small group of rules, we include a comment describing what has been achieved. Collectively these
comments represent a complete, detailed record of achievement.

As we are adding rules to an emerging ASP program, we deal at every step with a single executable
piece of code, unlike the non-executable pseudo-code formed in the process of stepwise refinement of a
procedural program, and unlike a collection of executable subroutines formed in the process of bottom-
up design. In the process, we think of prefixes of the emerging program as if they were complete
programs. We describe their stable models in a way that relates them to the stable models of the final
product.

The programs discussed in this paper do not use classical negation [Gelfond and Lifschitz, 1990]. In
the presence of classical negation, answer sets consist of “precomputed classical literals” —precomputed
atoms and classical negations of such atoms. Extending the definition of a complete record of achieve-
ment to such programs is straightforward. On the other hand, many programs with classical negation
contain defaults [Gelfond and Kahl, 2014, Chap. 5], such as the closed world assumption and the com-
monsense law of inertia, and the achievement-based approach may be not so useful in application to
programs containing defaults. A default does not “achieve” anything in the technical sense of Section 2.

When ASP is used for representing dynamic domains, a very different methodology can be recom-
mended: first describe the domain in an action description language, and then translate its causal laws
into answer set programming [Gelfond and Lifschitz, 1993], [Lifschitz and Turner, 1999], [Gelfond and
Kahl, 2014].

According to Gebser et al. [2012],

[t]he basic approach to writing encodings in ASP follows a generate-and-test methodology,
also referred to as guess-and-check. . . A “generating” part is meant to non-deterministically
provide solution candidates, while a “testing” part eliminates candidates violating some
requirements. . . Both parts are usually amended by “defining” parts providing auxiliary
concepts.

Most programs discussed in this paper are designed in accordance with this basic approach.7 The
advice to keep track of what has been achieved as you are adding rules to your program differs from
the “generate-and-test” advice in that it refers to mathematical properties of stable models, and not to
programmer’s intentions.

Acknowledgements

Thanks to Michael Gelfond, Amelia Harrison, Yuliya Lierler, Julian Michael, Liangkun Zhao, and the
anonymous referees for comments on earlier versions of this paper. Conversations and exchanges of
email messages with Mark Denecker, Esra Erdem, Martin Gebser, Roland Kaminski, Johannes Oetsch,
Dhananjay Raju, and Mirek Truszczynski helped the author develop a better understanding of the
methodology of answer set programming. This research was partially supported by the National Science
Foundation under Grant IIS-1422455.

7Program Borda is an exception—it has no generating part and no testing part. Also, it is not clear whether the designers
of Hamiltonian intended the second rule for the generating part or for the testing part. (The second rule is syntactically similar
to the first, which is definitely a generate rule. On the other hand, adding the second rule does not really generate new solution
candidates; it eliminates some of the candidates generated earlier.)

12

References

[Brain et al., 2012] Martin Brain, Esra Erdem, Katsumi Inoue, Johannes Oetsch, Jörg Pührer, Hans
Tompits, and Cemal Yilmaz. Event-sequence testing using answer-set programming. International
Journal on Advances in Software, 5:237–251, 2012.

[Brooks et al., 2007] Daniel R. Brooks, Esra Erdem, Selim T. Erdoğan, James W. Minett, and Donald
Ringe. Inferring phylogenetic trees using answer set programming. Journal of Automated Reasoning,
39:471–511, 2007.

[Calimeri et al., 2012] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovam-
battista Ianni, Roland Kaminski, Thomas Krennwallner, Nicola Leone, Francesco
Ricca, and Torsten Schaub. ASP-Core-2: Input language format. Available at
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf, 2012.

[Charwat and Pfandler, 2015] Günther Charwat and Andreas Pfandler. Democratix: A declarative ap-
proach to winner determination. In Proceedings of the 4th International Conference on Algorithmic
Decision Theory (ADT), 2015.

[Dijkstra, 1972] Edsger W. Dijkstra. The humble programmer. Communications of the ACM, 15:859–
866, 1972.

[Eiter et al., 1998] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-
cello. The KR system DLV: Progress report, comparisons and benchmarks. In Anthony Cohn,
Lenhart Schubert, and Stuart Shapiro, editors, Proceedings of International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR), pages 406–417, 1998.

[Gebser et al., 2012] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[Gebser et al., 2015a] Martin Gebser, Amelia Harrison, Roland Kaminski, Vladimir Lifschitz, and
Torsten Schaub. Abstract Gringo. Theory and Practice of Logic Programming, 15:449–463, 2015.

[Gebser et al., 2015b] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Marius Lindauer, Max
Ostrowski, Javier Romero, Torsten Schaub, and Sven Thiele. Potassco User Guide, version 2.0.
Available at http://potassco.sourceforge.net, 2015.

[Gelfond and Kahl, 2014] Michael Gelfond and Yulia Kahl. Knowledge Representation, Reasoning,
and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge Univer-
sity Press, 2014.

[Gelfond and Lifschitz, 1990] Michael Gelfond and Vladimir Lifschitz. Logic programs with classical
negation. In David Warren and Peter Szeredi, editors, Proceedings of International Conference on
Logic Programming (ICLP), pages 579–597, 1990.

[Gelfond and Lifschitz, 1993] Michael Gelfond and Vladimir Lifschitz. Representing action and
change by logic programs. Journal of Logic Programming, 17:301–322, 1993.

[Gelfond and Przymusinska, 1996] Michael Gelfond and Halina Przymusinska. Towards a theory of
elaboration tolerance: Logic programming approach. International Journal of Software Engineering
and Knowledge Engineering, 6(1):89–112, 1996.

13

[Lifschitz and Turner, 1999] Vladimir Lifschitz and Hudson Turner. Representing transition systems
by logic programs. In Proceedings of International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), pages 92–106, 1999.

[Marek and Truszczynski, 1999] Victor Marek and Miroslaw Truszczynski. Stable models and an alter-
native logic programming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective,
pages 375–398. Springer Verlag, 1999.

[Niemelä, 1999] Ilkka Niemelä. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence, 25:241–273, 1999.

14

